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Abstract: This paper introduces ILOG( a declarative 
language in the style of (stratified) datalog( which can 
be used for querying, schema translation, and schema aug- 
mentation in the context of object-based data models. The 
semantics of ILOG is based on the use of Skolem functors, 
and is closely related to semantics for object-based data ma- 
nipulation languages which provide mechanisms for explicit 
creation of object identifiers (OIDs). A normal form is pre- 
sented for ILOG’ programs not involving recursion through 
OID creation, which identifies a precise correspondence be- 
tween OIDs created in the target, and values and OIDs in 
the source. The expressive power of various sublanguages 
of ILOG’ is shown to range from a natural generalization 
of the conjunctive queries to the object-based context, to a 
language which can specify all computable database transla- 
t.ions (up to duplicate copies). The issue of testing vuliilityof 
ILOG programs translat.ing one semantic schema to an- 
other is studied: cases are presented for which several -valid- 
ity issues (e.g., functional and/or subset relationships in the 
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target schema) are decidable; and other cases are presented 
for which they are undecidable. Non-recursive ILOG is rich 
enough to simulate some schema translation languages based 
on local structural manipulation, and non-recursive ILOG’ 
can simulate the core of the OOAlgebra of [Day89], and of 
several other translation languages of the systems literature. 

1 Introduction ’ 

Object-based data models (both semantic and object- 
oriented) have received a great deal of attention over the 
past few years. A fundamental problem in this area is the de- 
velopment of data manipulation languages for object-based 
models which have a mathematical foundation as rigorous as 
the relational calculus and algebra. A key difference between 
the well-understood relational context and the object-based 
context is the presence, in the latter case, of object identi- 
fiers (OIDs) (or surrogates), which correspond to real and 
conceptual objects “in the world”. This paper introduces 
the family of ILOG languages; these are declarative lan- 
guages for querying, schema translation, and schema aug- 
mentation which generalize datalog and which support 
explicit OID creat,ion and manipulation. The paper also 
presents a number of results analyzing these languages, and 
comparing them wjth previously published data translation 
languages. 

An important impetus for the development of ILOG 
was the int,roduction, in the papers cm LDhl [KV84] and 
IQL [AK89], of formal data models and query languages 
which incorporate object identity in an explicit fashion. 
The IQL paper in particular demonstrated, among other 
things, how the presence of OIDs and recursion can lead 
to query languages with extremely rich restructuring capa- 
bilities, and expressive power close to that of Turing ma- 
chines. The present investigation continues with this focus 
on the impact of explicit OIDs on fundamental database is- 
sues. A key difference, however, is the semantics used for 
OID creat.ion: IQL uses a variation of the invention rules of 
detDL [AV88a, A\‘88b], while ILOG uses the observation 
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of Maier [Mai86], refined in [IiW89, CW89], that OID cre- 
ation can be simulated by associating Skolem functors with 
datalog rules. (A specific theoret.ical difference between lan- 
guages resulting from the two approaches to OID creation 
is exhibited in Example 7.6.) The use of Skolem functors 
makes it natural in ILOG”’ to use t.he conventional (strat- 
ified) least fixpoint semantics of logic programming. This 
permits a transfer of techniques from logic programming and 
datalog to the study of ILOG( Furt,hermore, this paper 
establishes a normal form (Proposition 7.1) for ILOG’ pro- 
grams not involving recursion through OID creation. This 
provides a formal mechanism for representing the correspon- 
dence between OIDs created in a target database and the 
OIDs and values of the source database. The normal form 
is a natural and useful tool for the development of many of 
the results of this paper, and also appears useful in the areas 
of update propagation and query optimization. 

The ILOG framework is designed to permit a focused 
study on the impact of explicit OIDs on database issues, and 
assumes a relatively simple context. For example, unlike 
the approaches of both [AI<891 and [Mai86, RW89, CW89], 
the framework here is based on a simple semantic database 
model (a subset of IF0 [AI1871 called IFO-) extended to 
incorporate object identity. In its current form, this model 
does not permit sets as1 “first-class citizens”, and has a nat- 
ural simulat.ion in the relational model. Additionally, as 
with logic programming and datalog, ILOG uses (in the 
terminology of, e.g., [Jac89]) d escriptitte typing: the typing 
is not implicit to the language, but a type-checking infer- 
ence mechanism based on the source and target schema-s 
can be established. This contrasts with IQL, OODAPLEX 
[Day89], and OOAlgebra [Day89], which use prescriptive 
typing: these languages support (and require) the explicit 
declaration of types for variables and program structures. 
Finally, the ILOG languages focus on data manipulation, 
and do not include mechanisms for specifying the target 
schema. It is assumed that a schema definition language 
is used for that purpose. 

This paper presents theoretical results for ILOG in 
two directions: (a) expressive power and complexity, and 
(b) testing the “validity” of schema translations expressed 
in ILOG( The first topic considers seven syntactically 
defined ILOG languages. Six of these stem from two di- 
mensions: (i) the presence or absence of st.rat,ified negation, 
and (ii) permitting full recursion, permit.ting “weak” recur- 
sion (i.e., not through OID creat.ion), and prohibiting re- 
cursion. It is shown that all of these languages have dis- 
tinct expressive powers, with nonrecursive ILOG without 
negation (nrecILOG) having power closely related to the 
conjunctive queries, and fully recursive ILOG with nega- 

1 Speaking informally, a model incorporates sets as “first-class 
citizens” if sets can be formed and manipulated independent of 
the use of tuples of pre-existing atomic values or objects which 
refer to them. For example, nested relations in PNF [Rl<S88, 
AB86] do not permit sets as first-class cit.izens, because each set 
occurring in a PNF nested relation can be uniquely identified by 
a tuple of atomic values. The analogous statement holds for the 
FDM although it supports multi-valued attributes. Examples of 
models with sets as first-class citizens include nested relations, 
comples objects, SDM, LDM, IFO, and the models underlying 
LDL, COL and IQL (see [HulY’J] for further discussion). 

tion (ILOG’) “almost” capable of specifying all computable 
database translations. (The proviso here stems from the 
inability of ILOG’ to ‘+emove copies”, a difficulty ini- 
tially observed in connection with IQL.) The weakest lan- 
guage, nrecILOG, can simulate the schema translation lan- 
gauges of the schema integration methodology presented 
in [BM81, Mot87], and nonrecursive ILOG with stratified 
negation (nrecILOG’) subsumes the cores of the OOAlge- 
bra and the translation languages of the Federated architec- 
ture [HM85] and the integration methodology of [DH84]. It 
is also shown that weakly recursive ILOG (wrecILOG(‘)) 
has the same data complexity as datalogt’) (and thus lies be- 
tween NLOGSPACE and PTIME). The seventh ILOG vari- 
ant is ILOG*, a practically motivated language for which 
a prototype has been implemented [HWW99]. In formal 
terms, the core of ILOG* is a generalization of nrecILOG 
which permits the use of the full relational calculus on source 
relations. It is shown here that the core of ILOG* is equiv- 
alent to nrecILOG’. 

An ILOG program P mapping from schema S to 
schema T is valid if for each instance I of S, the result of 
applying P (if the computation terminates) is an instance 
of T. (The result might fail to be an instance by violating 
functional, subset, or disjointness relationships required by 
T.) It is shown here that validity is decidable in EXPSPACE 
for IFO- schemas and nrecILOG. In particular, this result 
holds if (a) # is permitted in rule bodies, or (b) some at- 
tributes in the source and/or target schemas are required to 
be total. As a result, validity is decidabie for the language 
of [BM81, Mot87]. (Decidability of validity remains open if 
both (a) and (b) are present.) Validity for the richer vari- 
ants of ILOG (and thus, OOAlgebra, OODAPLEX and 
the languages of [DH84, HM85]) is shown to be undecidable. 

In the context of schema translation, the formal seman- 
tics of ILOG programs is defined by (a) Skolemizing the 
rules of the program, (b) taking the minimal model of the 
program as in logic programming (stratified model if nega- 
tion is present), and finally, (c) (non-deterministically) re- 
placing the non-atomic terms in the result by (distinct, es- 
sentially new) OIDs. A semantics for ILOG is also pre- 
sented for the case of schema augmentation, i.e., defining 
derived data. The ILOG syntax “hides” the Skolem func- 
tors from the user, thus bringing ILOG closer to some 
other, existing mechanisms for OID manipulation in the lit- 
erature (e.g., Smalltalk- [GR83], OODAPLEX, OOAlge- 
bra). Although not. explored in this paper, it appears that 
the Skolem-functor based semantics of ILOG can be used 
to provide a natural and rigorous basis for update prop 
agation and query optimization. In particular, the normal 
form result of Proposition 7.1 for wrecILOG’ programs pro- 
vides a mechanism whereby the created OIDs can be viewed 
as Skolem terms, and thus carry within them information 
about how/why they were created. This approach can be ex- 
tended to many practical schema translation languages and 
OOAlgebra, because they are subsumed by wrecILOG’. 

As noted above, ILOG in its current form can be used 
in connect.ion with any object-based model for which there 
is a natural simulation by the relational model. A natu- 
ral extension of ILOG could be made to provide mecha- 
nisms for creating and manipulating sets, as in COL [AG88], 
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(8) sounx sckm8 

(b) Augmentation with &rived data 

Figure 1: Example sclleinas 

LDL [NT89], IQL, or the langauge of [Abi89]. As shown in 
Exapmle 7.5, the inclusion of a “grouping” construct (which 
is present in IQL) into ILOG’ wanld yield a strictly more 
powerful language, even if the source and target schemas do 
not include the set construct. 

Section 2 presents brief examples of nrecILOG, and the 
intuition behind the formal semantics of ILOG based 
on Skolem functors. Section 3 reviews concepts and no- 
tation needed for the formal development. Section 4 artic- 
ulates some key differences between semantic data models 
and models in which object identity is an explicit construct. 
In particular, the section introduces a new definition of in- 

stance for semantic schemas, which formally captures the 
intuition that OIDs, in and of themselves, carry no informa- 
tion. Section 5 introduces the formal syntax and semantics 
of ILOG( and Section 6 present,s the equivalence of this 
semantics to one based on “explicit OID creation”, a varia- 
tion of the semantics used for IQL and most practical data 
manipulation languages for object-based models. Se&on 7 
presents normal forms for nrecILOG and wrecILOG’; con- 
siders the expressive power of ILOG languages; and provides 
comparisons wit,h the semant.ics and power of both IQL and 
practical schema t.ransla.tion languages. Section 8 considers 
validity testing. Due t,o space limitations, much of the dis- 
cussion is terse, and proofs are omitted or sketched. Details 
may be found in t.he full paper \IIYSl]. 

2 Example and motivation 

This section present.s an extended example which illust,rates 
how ILOG can be used to create and manipulate OIDs, a.nd 
gives the intuition behind t,he formal semant.ics of ILOG. 
The example uses a simple subset. of ILOG in which recur- 
sion and negation are not permitt.ed. (The example also il- 
lustrates a form of aggregat.e operat.or, although aggregates 

are not considered in the theoretical treatment of ILOG 
which follows.) The presentation in this section is largely 
informal; precise definitions are given ic Sections 3, 5 and 6 
below. 

ILOG can be used for (a) defining derived data, (b) spec- 
ifying a translation from one schema to another, and (c) 
expressing queries. In the first case, the original schema is 
augmented, and the new data may refer to the input data. In 
the second case the new data is presumed to be independent 
of the source data. Interpreted in a broad sense, queries can 
involve both the definition of derived data and/or the trans- 
lation of (selected portions of) the source to a new schema. 
In all cases, there are two aspects to the specification: de- 
scribing the new schema (or new schema components), and 
describing how the new schema (components) are to be pop- 
ulated. Several languages for specifying schema definition 
(augmentation) have been developed; we do not consider 
that further here. The ILOG languages focus on the second 
aspect. 

Consider the semantic data model schema shown in Fig- 
ure l(a). (This is an IFO- schema as defined in Sec- 
tion 3; the diagramatic conventions are essentially those of 
[AH87, HI<87], and similar to those of [ShiSl].) This schema 
models hypothetical data concerning purchases made by 
governmental agencies. The schema includes abstract types 
for government-agency, invoice, and supplier, and a sub- 
type of supplier called foreign-supplier. Single-valued 
dtributes include a-name mapping each government agency 
to a string, and value mapping each invoice to a cost (viewed 
here as an at,omic, printable type). The multi-valued ut- 
tribute purchases maps each government agency to a set 
of invoices, which represent purchases made by that agency. 
The oggregafion (or tzryle) construct indicates that each item 
is an ordered pair, consist.ing of a part-name and a quantity. 

ILOG exploits the natural correspondence between se- 
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mantic schemas (in which sets do not occur as “first-class 
citizens”) and relational schemas. Under this correspon- 
dence, abst,ract types and subtypes map to unary relations, 
and (single- and multi-valued) attributes and aggregations 
map to relations of the appropriate arity. (For example, the 
a-name attribut.e on government-agency maps to a binary 
relation 0-71(1mc satisfying the iunct.ional dependency 1 - 
2; and l.he items at,tribllte on invoice maps to a ternary re- 
lation i2ems. with no associated functional dependencies.) 
The specific naming convclll.ion used is left t.0 the systenl 
designer; we use rrd hoc naming here. 

Exanlple 2.1: We first augment the schema of Figure 
l(a) to form the schema of Figure l(b) (the added compo- 
nents are highlighted), and use ILOG to populate the aug- 
mentation. In particular, we create a new entity set called 
audit-unit - each audit-unit is a new conceptual object 
corresponding to an agency-supplier pair (a, s) where a has 
at least one invoice with supplier s, and s is a foreign sup- 
plier. Intuitively, each audit-unit can serve as a locus for 
data concerning audits of such agency-supplier pairs. (In 
this example, only one audit-unit OID is created for a pair 
(a,s), regardless of how many invoices relate a with s; dif- 
ferent rules could be used to obtain other policies for OID 
creation.) We also define two single-valued attributes which 
associate these newly created objects to agencies and suppli- 
ers, and a single-valued attribute which gives the sum of val- 
ues of all invoices associated with the agency-supplier pair 
associated with the audit-unit. The following ILOG pro- 
gram accomplishes this, with output relations audit-unit, 
agency-of, supplier-of, and total-of: 

int-aud-un( *, a, s) + purchases(a, i), 
supplied-by(i, s), foreign-supplier(s) 

audit-unit(u) + int-aud-un(u, a, s) 
agency-of (u, a) + int-aud-un(u, a, s) 
supplier-of (u, 9) + int-axd-un(u, a, s) 
total-value(u, sum(v)) +- int-aud-un(u, a, s), 

purchases(a, i), supplied-by(i, s), value(i, TV) 

Intuitively, execution of this program results in the creation 
of (new) OIDs for each (a, s) pair satisfying the conditions 
of the body of the first rule given above. The intermediate 
relation int-aud-an. is used to “create” each such OID, and 
t,o “hold” it.s correspondence to t,he witness (i.e., t,uple of 
values and OIDs which lead to its creation.) As with con- 
ventional datalog, variables in the rule body not occurring 
in the head (e.g., the variable i ranging over invoices) are 
viewed as existentially quant.ified wit.hin the body. 

The remaining rules are used t.o describe how the four 
components added to the schema are to be popula.ted. Al- 
though we do not include a formal study of aggregate op- 
erations in this paper, we have included the last rule to 
illustrate how certain aggregate functions can be naturally 
incorporatecl into the ILOG (and datalog) framework (alter- 
native approaches are considered in [NT89, She90]). Speak- 
ing informally, the semantics of this rule is as follows: For 
each u, the set S(u) of tuples (~1, s, i, ,u) satisfying the rule 
body is obtained. A project.ion of S(u) ont,o the 1) coordi- 
nate is performed to obt.ain a rnul!i.sel of ,u-values. The sum 
operat.or is applied to t,llis bag to obtain t.he value associated 
with 1,. by foltrl-otrltte. 0 

As a second example, we describe an ILOG program that 
can be used to translate (some of the) data from the original 
schema to a completely separate schema, shown in Figure 
l(c). Importantly, no OIDs used in the source schema will be 
permitted in the instances computed for the target schema. 

Exanlple 2.2: In this translation we build up a set of 
audit-unit,s for which the total value is at least one million 
dollars: we assume that an audit is required for each such 
audit-unit. We include an abstract type for the agencies hav- 
ing required audits, the attribute audits-of mapping each 
such agency to the set of related audit-units, an attribute 
giving the name of the associated supplier, and again give 
the total-value of the audit-unit. (We use a different at- 
tribute name, because the attribute used here is a restric- 
tion of the attribute used before.) The ILOG program to 
accomplish this translation includes the first and last rules 
from the program given above, and also the six rules given 
now. The output of this program is given by the relations 
required-audit, ra-agency, audits-of, supplies-name, and 
ra-total-value. 

required-audit(u) + int-aud-un(u, a, s), 
total-value(u, v), v 2 lo6 

int-sa-agency(*, a) + int-aud-un(u, a, s), 

ia-ugency(a’) 
required-audit(u) 

+ int-ra-agency(a’, a) 
audits-of (a’, u) t int-sa-agency(a’, a), 

int-aud-un(u, a, s), required-audit(u) 
supplier-name(u, n) + int-aud-un(u, a, s), 

required-audit(u), a-name(s, n) 
ra-total-value(u, v) + requhed-audit(u), 

total-value(u, v) 

(In this example we created new OIDs for ra-agency. 
As detailed in Remark 5.3 below, this program can be made 
more succinct by permitting the explicit use of OIDs from 
the source in the target. However, since this program is 
considered as a translation specification, the “association” 
of these OIDs to the source instance will be lost.) 0 

As detailed in Section 5, ILOG’ supports full recursion 
and strat,ified negation. Also, although not done in this 
paper, the ILOG languages could be generalized to permit 
the direct use of single- and multi-valued attributes in the 
style of [AH88, AG88] (e.g., permitting the use of atoms 
‘supplier-na.me(s) = n’ and ‘u E audits-of(a)‘). 

We conclude this section with intuitive remarks concern- 
ing the formal semantics of ILOG. A fundamental influence 
on the development of ILOG is found in the so-called “al- 
phabet logics”: O-logic [Mai86], ‘O-logic-revisited’ [I<W89], 
and C-logic [CW89]. In particular, the premise that OIDs 
are essentially terms built using Skolem functors appears 
to have initially surfaced in these papers. (The more basic 
intuition that objects are naturally created from aggrega- 
tions (tuples) of values and objects may be found in se- 
mantic model schema translation languages described in, 
e.g., [BM81, HM85, Day89].) To illustrate this point, recall 
the rule of Example 2.1 for defining int-aud-un. Following 
[I<\V89, CW89], we note that in first-order logic, this rule 
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could be rewritten as 

Vu vs 376 vi [int-aud-un(u, a, s) - 
purchases(a, i), supplied-by(i, s), 
foreign-supplier(s) ] 

Following [KW89, CW89], a Skolem functor’ is now intro- 
duced: 

Vu Vs Vi [in&au&un(f,-,(a, s), a, 9) c 
putchases(a, i), supplied-by(i, s), 
foreign-szLpplier(s) ] 

The quantifiers can now be omitted from this rule without 
ambiguity. In the formal semantics, ILOG programs are 
first replaced by their Skolemizations, and then evaluated as 
in (stratified) lo&c programming. Skolem terms (i.e., terms 
in which a Skolem functor occurs) which are present in the 
output correspond to new OIDs. The final step of the ILOG 
semantics is the replacement of these Skolem terms by (non- 
deterministically chosen) OIDs. Intuitively, an OID is cre- 
ated whenever a ground Skolem term is included into some 
relation. 

The final step of the ILOG semantics, replacing Skolem 
terms by OIDs, is included for two reasons: (i) to highlight 
the close parallel between ILOG and languages which sup 
port explicit OID creation, including IQL, OOAlgebra, and 
OODAPLEX; and (ii) to make the language more accessible 
to a wide class of potential users. The use of explicit Skolem 
functors yields a benefit in the succinctness of ILOG pro- 
grams. In particular, the ILOG rules defining int-aud-un, 
audit-unit, and agency-of given in Example 2.1 can be ab- 
breviated to 

audit-unit(f,-,(a, s)) + purchases(a, i), 
supplied-by(i, s) 

agency-of(fa-u(a, s), a) + audit-unit(f,-U(a, s)) 

In ILOG the relationship between created OIDs and their 
witnesses is held in intermediate relations; if explicit Skolem 
terms are permitted then the OID and its witnesses can be 
bundled into a single term. 

3 Preliminaries 
We assume general familiarity with the relational model 
and query languages [U1187] iucluding conjunctive queries 
[CM77]; (stratified) datalog and logic programming [Llo87, 
Apt88], and semantic database models [IIK87]. In this sec- 
tion we establish notation for these areas; due to space lim- 
itations exposition is terse. 

Relational preliminaries: We assume an infinite set R of 
relation names. Each R E R has an associated nritg (Y(R) > 
1. A relationul (database) schema is a set S = {RI,. . . , R,} 
of distinct relation names. We assume an infinite set Dom a 
universe of domain elements. For simplicity of presentation 
we do not at this point include a mechanism for assigning 
types to different columns of a relation instance. In the 
conventional approach, a (relation) instanceof relation name 

2 We use ‘functor’ instead of ‘function’ because, following logic 
programming, synt,actically distinct terms will never be equated. 

R is a finite subset of DomacR), and a (database) instance of 
a relational schema D = {RI,. . . , Rn} is a function I with 
domain D, where I(Rj) is an instance of Rj for each j E 
[l..n]. (We shall modify this approach in Section 4 below.) 
A functional dependency (FD) is a syntactic expression of 
the form R : X - Y, where R is a relation name and X, Y c 
{I,..., a(R)}. An inclusion dependency (IND) [CFP84] is 
a syntactic expression of the form R[X] C R’[Y], where R 
and R’ are relation names, X is a non-repeating sequence 
over (1,. . . ,cr(R)}, and Y is a non-repeating sequence over 
(1,. . . ,cu(R’)}. We assume the notion of satisfaction (k) 
of an FD or IND by a database instance is well-known. A 
disjointness dependency (DISD) is a syntactic expression of 
the form R#R’, where R, R’ are unary relation names. A 
relational instance satisfies R#R’ (denoted t==) if R and R’ 
are assigned disjoint relations. Finally, a constrained schema 
is a pair (D, C) where D is a relational schema and C a set 
of constraints over D. An instance of this pair is an instance 
of D satisfying C. 

We assume familiarity with the (domain) relational cal- 
culus. The conjunctive queries are a subset of the relational 
calculus queries whose formulas (a) are in prenex normal 
form, (b) use only existential quantifiers, (c) use only the 
connective A (i.e., do not use V, 1 or -). 

(Stratifled) datalog and logic programming: We first 
establish notation for (stratified) datalog, and then general- 
ize to logic programming. We assume an infinite set Var of 
variables (which is disjoint from Dom). In the context of 
datalog, a term is a variable or an element of Dom. We as- 
sume familiarity with the notions of atom, literal, datalog 
rule, rule head and rule body. We permit equality (=) and 
inequality (#) in rule bodies unless otherwise noted. An 
equality atom (literal) is one involving = or #; an equality- 
free atom (literal) is one not involving = or #. A datalog 
rule is range-restrictedif each variable occurring in the head 
and each variable occurring in a negated atom (this includes 
# atoms) in the body also occurs in an equality-free atom in 
the body. We consider only range-restricted datalog’ rules 
in the sequel. 

We assume familiarity with the notion of datalog pro- 
gram. We often blur a relational instance I with its associ- 
ated set of atoms. We assume familiarity with the immediate 
consequence operator Tp and the cumulative powers Tp fi i 
(0 5 i 5 w) used to define the least fixpoint semantics for 
datalog programs. We assume familiarity with the notion of 
stratification [ABW86, vG86], and the semantics associated 
with stratified datalog’ programs. 

For a datalog program P, sch(P) denotes the set of re- 
lation names occurring in P. In the spirit of [AV87] we con- 
sider datalog programs in connection with source and tar- 
get relations. Specifically, a datalog program with source 
S and target T is a triple (P, S, T) where (a) P is a datalog 
program, (b) S and T are disjoint sets of relation names, and 
(c) no relation name in S occurs in the head of a rule of P. 
We do not insist that all members of S or T occur in P. 
We use P to denote (P, S, T) if S and T are specified by the 
context. Given (P, S,T), P is viewed as a mapping from 
instances over S to instances over T in the usual fashion. 
For an instance I of S, P(I) denotes the resulting instance 
of T. 
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A fundamental premise of this palnr is that OID cre- 
ation can be achieved in a datalog context through the use 
of Skolem functors. As a result, we shall use conventional 
logic programming in addition t,o datalog. To maintain con- 
sistency with t,he relational point of view, we use the term 
‘relation name’ for ‘predicate’. We include a set F of fun&or 
(symbol), where each f E F has associated ority o(f). We 
assume familiarity wit,h the generalization to logic program- 
ming of the concepts given above for datalog. We some- 
times speak of a logic(‘) program P with source S and tar- 
get T, and view it as a function from “instances” of S to 
“instances” of T, where an “instance” might include both 
domain elements and terms built from functors and domain 
elements. In this paper, the instances of S will be instances 
in the conventional sense, but the instances of T may include 
non-atomic terms. 

A semantic model: The ILOG languages are intended 
for use in translating one object-based schema to another, 
and for defining derived data in the object-based context. 
This paper uses a particular simple, representative semantic 
database model, called IFO-. This model can be viewed as 
a subset of IF0 [AH871 or GSM [HK87], or as a generaliza- 
tion of the ER [Che76] or Functional Data [ShiSl] models. 
In particular, it supports abstract and value object sets (or 
entity sets), single and multi-valued attributes (also known 
as data functions), aggregation (i.e., tuples), and ISA rela- 
tionships (more specifically, specialization relationships in 
the sense of [AH87, HK87]). (IFO- supports everything of 
the IF0 model except for: the set construct; nested aggrega- 
tion constructs; nested attributes; and generalization.) Due 
to space limitations, we present only the following abridged 
definition of IFO- schemas; essentially all salient features of 
this model are illustrated in the schemas of Figure 1. 

Definition: An IFO- schema is a directed graph S = 
(V, E) where 

V = Vv41 W Vob6 U V&, u V,,, (value vertices, abstract 
vertices, subtype vertices, and aggregation vertices, re- 
spectively; 

E = Eaoatt u E,,,-,tt u EISA u Eeomp (single-valued at- 
tribute edges, multi-valued attribute edges, ISA (or spe- 
cialization) edges, and component edges of aggregation 
vertices, respectively); and 

various natural conditions concerning ISA relationships 
and aggregation are satisfied (e.g., see [HK87]). 

Relative to this paper, an important feature of the se- 
mantic model used here is that there is a natural, direct 
simulation of this model by the relational model (see Sec- 
tion 4). The ILOG languages presented in this paper can be 
used with any object-based model that has this property. 

4 Incorporating OIDs into se- 
mant ic models 

This section briefly explores differences between the original 
semantic models and subsequent data models which incor- 
porate object identity as an explicit construct, and then ex- 
tends the IFO- model to incorporate OIDs by developing a 

new definition for instancesof a schema. This extension also 
leads to a variat,ion of the relational model in the context of 
IFO- simulations. 
Object-based models: Intuitively, values (e.g., integers, 
booleans, strings) are objects whose associated meaning is 
universally agreed upon, and which “carry” their own mean- 
ing. In contrast, “ubstract” objectscorrespond to real or con- 
ceptual objects “in the world” for which relevant information 
is carried only by relationships to other objects. This dis- 
tinction was originally put forth in the semantic data mod- 
eling literature [HK87]; a good recent articulation of this 
distinction is presented in [Bee89]. 

Traditionally, semantic models have assumed the exis- 
tence of a (computer-representable) surrogate for each (real 
or conceptual) object “in the world”. As formalized in the 
IF0 model, there is an implicit, essentially “God-given” as- 
sociation between surrogates and objects in the world, which 
is independent of all databases instances. For example, 
surrogates pr , pz, and pa of type person might be associ- 
ated with the persons named Joe, Mary and Sue (respec- 
tively). In this case, the relations { (pl , ‘Joe’), (pz, ‘Mary’)} 
and ((~2, ‘Joe’), (ps, ‘Mary’)} are distinct and in no way 
equivalent. Of course, in most implementations of seman- 
tic models the surrogates are created “on the fly”, and so 
the association of surrogates to values (and implicitly, to ob- 
jects in the world) is effectively made at the time of instance 
creation and/or extension. 

The notion of explicit object identity first arose in 
Smalltalk- [GR83], and was discussed in the context of 
databases in [KCSG]. The first theoretical database model to 
incorporate explicit object identifiers was LDM [KV84], this 
in turn significantly influenced the development of the model 
of IQL. Under this approach, OIDs are associated with ob- 
jects “in the world” only in the context of a particular in- 
stance. Thus, if or, 02, and 0s are OIDs, then the relation 
RI = {(or, ‘Joe’), (02, ‘Mary’)} could be used to associate 01 
with the person named Joe and 02 with the person named 
Mary. Also, the relation R2 = ((02, ‘Joe’), (03, ‘Mary)} could 
be used to associate 02 and 0s with Joe and Mary, respec- 
tively. Under the semantics of explicit OIDs, RI and R2 
are (in the absence of other data) interchangable, and thus 
viewed as equivalent. As a result, the formal semantics as- 
sociated with explicit OIDs reflects the realities of database 
implementations more accurately than the formal semantics 
associated with IFO. 

The formal definition of instance given now, which ex- 
tends the direction. taken in [AK89], reflects the fact that 
the only information held by OIDs is their interconnection 
with each other and with values. Speaking intuitively, an 
“instance” will be an equivalence class of “pre-instances” 
under the equivalence relation which permits shuffling of the 
OIDs used. 

Notation: We assume an infinite set 0-dom of object 
identifiers (OIDs), and a disjoint set V-dom of values. (V- 
dom is usually partitioned further, into integers, strings, 
etc.; we largely ignore those details in this abstract). 

Definition: Let S = (V, E) be an IFO- schema. A pre- 
instance of S is a function I with domain VU E.-,tt U Em-,tt 
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such that? 

1. for each w E vVol, Z[v] = V-dom. (In practice, Z[v] 
need not be specified for TV E V,,l.) 

2. for each 21 E Kbs, Z[v] Et’” 0-dom; and for each 
w, Y’ E xbs with 2, # v’, Z[v] n Z[v’] = 0. 

3. for each p E Sub and (p, 9’) E EISA, Z[p] C_ Z[q]. 

4. for each r E V,,, with components pl, . . . , p,, (in that 
order), Z[r] cfin IIy=‘E,Z[p;]. 

5. for each f E E,-,rt with source v and target v’, Z[f] is 
a partial function from Z[v] to Z[v’]. 

6. for each f E E,-,tt with source w and target u’, Z[f is 
a total function from Z[v] to Prin(ZIJl). 

Constraints can be added to make some of the single-valued 
attributes total. 

Following [AK891 we have: 

Definition: Let S = (V, E) be an IFO- schema. Two 
pre-instances Z,Z’ of S are OZD-equivalent (-01~) if there 
is a permutation u on 0-dom such that (extending u to 
pre-instances in the natural fashion) a(Z) = I’. The OID- 
equivalence class of a pre-instance Z is denoted by [I]. 

Finally, 

Deflnition: Let S = (V, E) be an IFO- schema. An 
instance of S is an equivalence class of pre-instances under 
OID-equivalence. 

In general, we identify an instance I by [I] where Z is 
some pre-instance in I. Mappings from instances of a schema 
S to instances of a schema T are typically specified in terms 
of mappings from pre-instances over S to pre-instances over 
T, in this case it must be verified that the specification 
is well-defined, i.e., that it is independent of the represen- 
tative pre-instance used. (Although using a different for- 
malism, this sentiment is included in the definition of ‘db- 
transformation’ in [AK89].) 
Relational simulations: The syntax of ILOG exploits 
the natural correspondence between object-based schemas 
(in which sets are not “first-class citizens”) with relational 
schemas. Briefly, the relational simulation (Rs, Cs) of an 
IFO- schema S is a constrained schema, where Rs asso- 
ciates a unary relation to each abstract and subtype node; an 
n-ary relation to each aggregation node of width n; and re- 
lations of appropriate arit,y to each single- and multi-valued 
attribute edge. Functional dependencies are included in Cs 
for the single-valued attribute edges; inclusion dependen- 
cies are included for each ISA edge, to restrict the ranges 
of attribute and component edges, and to enforce totalness 
constraints if they are present: and disjointness dependen- 
cies are included to ensure the separation of sets assigned to 
abstract types. (This is similar t.o the relational simulation 
of IRIS schemas described in [LV87].) 

In this context of relational simulations of object-based 
schemas, we again define non-standard notions of pre- 
instance and instance for (constrained) relational schemas. 
We again use the disjoint set.s 0-dom and V-dom. A pre- 
instance of schema D (constrained schema (D, C)) is an as- 
signment of a relation (over O-don1 U V-dam) t,o each 

3,Y Cf’” Y denotes lhat S is a finite subset of I’. P”“(X) 
denotes-the family of all finite subs&s of X. 

relation name in D, (which satisfies all of the dependencies 
in C). An instance is an equivalence class of preinstances 
under OID-equivalence. (Thus, the conventional notion of 
‘instance’ is termed ‘pre-instance’ in this context.) 

5 Syntax and semantics of 
IL0 G languages 

In this section, we will present a formal definition of the syn- 
tax of the whole spectrum of ILOG variants ranging from 
the most restricted class, nonrecursive ILOG, to the most 
general class, stratified ILOG’; give a semantics of ILOG 
using Skolem functors essentially in the spirit of O-logic, as 
refined by ‘O-logic revisited’ and C-logic; and at the end 
of the section briefly introduce ILOG*[HWWSO], an imple- 
mented variant of ILOG. 

5.1 ILOG’: syntax 

In this section, we first give the syntax of ILOG’; this sub 
sumes the syntax of all the languages of our interest. Then, 
we will give the subclasses of ILOG’ along the two orthogo- 
nal dimensions: negation and recursion. Along the negation 
dimension, we will present two positions: no negation and 
stratified negation. As for the recursion dimension, we will 
consider three positions: nonrecursive, weakly recursive and 
fully recursive. Hence, the combination of these subclasses 
yields six sublanguages as a whole (see Figure 2.) 

DeAnition: (ZLOG’) An inuention atom is an expression 
of the form R(*, tl , . . . , t,,,) where R is a relation name with 
o(R) = m + 1 (m 1 0), * is a special symbol called the in- 
vention symbol and the ti (1 5 i < m) are terms. In ILOG’, 
a rule is an expression of the form A + L1, . . . , L, where 
the body LI, . . . , L, (n 2 1) is a sequence (viewed as a con- 
junction) of (positive or negative) literals (possibly including 
equality literals), and the head A is an equality-free atom 
(possibly involving invention). A rule is a non-invention 
(invention, resp.) rule if the head is a non-invention atom 
(invention atom, resp.). A program is a finite set of rules 
with a restriction that no relation name can appear in ihe 
head of both a non-invention rule and an invention rule.’ A 
relation name appearing in the head of an invention rule is 
an invention relation name. 

The following notion of range-restricted ILOG’ rule is 
a straightforward extension of the one for datalog’: An 
ILOG’ rule is range-restricted if each variable occurring in 
the head and each variable occurring in a negated atom 
(this includes # literals) in the body also occurs in a pos- 
itive equality-free atom in the body. We claim the major- 
ity of ILOG’ programs which appear in practice are range- 
restricted. Therefore, hereafter throughout the paper, we 
consider only range-restricted ILOG’ rules. 

An ILOG’ program P with source S and target T, 
(P, S, T), can also be defined in a manner analogous to the 
case of datalog’. 

41t is easy to verify that this restriction does not cause any 
loss of expressive power. 
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\Ve now define the sublanguages of ILOG’. The first, 
dimension to be explored is that of negation. The two posi- 
tions along this dimension, no negation and stratified nega- 
tion, correspond exactly to datalog and stratified datalog’, 
respectively. Thus, formal definit,ions of these sublanguages 
are omitted here. Since stratified ILOG’ is the most gen- 
eral class in this dimension, we use ILOG” to mean stratified 
ILOG’ in the sequel. 

We now consider the second dimension: recursion. Fully 
recursive ILOG is exactly the same as ILOG( hence 
we usually omit the term fully recursive. The definition of 
non-recursive ILOG is analogous to that of datalog( 
and is omitted. Intuitively, an ILOG program is weakly 
recursive if it is free of recursions through OID creation. 
We will use nrecILOGf’) and wrecILO&‘) to denote non- 
recursive and weakly recursive ILOG( respectively. 

Definition: (weakly recursive ILOG’ programs) Given an 
ILOG’ program P, let P’ an equivalent program resulting 
from the removal of equality atoms from P (in some pre- 
determined canonical fashion; ‘#’ is permitted). Consider 
pairs (R, i) for each relation name R in P and each posi- 
tion i E [l..&(R)]. We say that (R, i) *-derives (Q,j) in P, 
denoted (R,i) - (Q,i), as follows: 

(R, 4 - (Q, j) if there is a rule in P’ of the form 
Q(sI~...,s~,...,s~) + . . . . R(tl,,.., ti ,..., tm) ,... 
where 1, = s, is a variable; 

(R,i) - (Q,i + 1) if there is a rule in P’ of the form 
Q(*,ar.. .,sJ ,..., sn) + . . . . R(h ,..., ,,..., tm) ,... t 
where ti = s3 is a variable; and 

(Q, j + 1) - (Q, 1) if there is a rule in P’ of the form 
Q(*,sl,... ,sj )...) s,)c... where s, is a variable. 

We define A to be the transitive closure (not the reflexive 
transitive closure) of -. An ILOG program P is weakly 
recursive if it does not contain any invention relation name 

R such that (R, 1) k+ (R, 1). 

It is easy to see that every non-recursive ILOG’ is weakly 
recursive. 

5.2 Declarative semantics of ILOG 
programs using Skolem functors 

In this subsection we describe the declarative semantics as- 
sociated with ILOG programs. We distinguish two con- 
texts: schema translation, where there is no relationship be- 
tween the OIDs of the source instance and the OIDs of the 
target instance; and schema augmentation, where the target 
(pre-)instance is permitted to refer directly to OIDs of the 
source (pre-)instance. We begin by focusing exclusively on 
schema translation, and then modify the semantics for the 
case of augmentation. 

Suppose now that (P, S, T) is an ILOG program, con- 
sidered in the context of schema translation, and where S 
and T are relational schema-s. In principle, the semantics of 
P defined here will be a function from instances of S to in- 
stances of T. This function might be partial because P may 
call for the creation of an infinite instance (or in other words, 
the computation associated with P may not terminate). 

The function defined by P will be specified in terms 
of its behavior on pre-instances of S. (This is compatible 

with most implementations, which indeed store a single pre- 
instance of an object-based database.) This function is oh 
tained through a three-step process, briefly outlined now: 

1. construct the ‘Skolemization’ Skol(P) of P by intro- 
ducing Skolem functors; 

2. for an instance I = [I] of S, compute” Skol(P)(I) using 
conventional (or stratified) logic programming, to ob- 
tain a ‘Skolemized’ pre-instance, that is, a pre-instance 
in which Skolem functors may occur; 

3. compute5 the set MkInstTr(Skol(P)(I)) of all pre- 
instances J obtained from Skol(P)(I) by mapping 
each non-value term of Skol(P)(I) to a distinct (non- 
deterministically chosen) OID. As we shall see, this set 
of pre-instances is an instance of T, and is the value 
assigned to P(1). 

If in step (2) above Skol(P)(I) yields an infinite set, then 
P(1) is undefined. (If constraints are associated with T, e.g., 
if it is the relational simulation of an IFO- schema, then 
the output P(1) may violate some of those constraints. We 
defer consideration of this issue until Section 8; until then we 
assume that the target relational schema has no associated 
constraints.) 

We now consider step (1) in more detail. Following the 
intuition described in Section 2, we have: 

Definition: Let P be an ILOG program. The Skolem- 
izotion of P, denoted SkoZ(P) is obtained by the following 
transformation from P 

(a) For each n-ary relation name R (n 2 1) which appears 
in the head of an invention rule in P, introduce a new 

(n - I)-ary functor fR (the Skolem functor of R). 

(b) Replace each head of an invention rule in P having the 
form R(*, 21,. . . ,z,,-l) by 
R(~R(z.I,...,z~-I),xI,...,x~-I). 

Example 5.1: We show an ILOG’ program P, and 
Skol(P) below it. 

R(*, 2, Y) - U(x, Y) 
R(*, x,x) + V(x, Yh -W(y) 
V(*, x) + W(x), +J(x, Y) 

WR(X, y), 2, Y) - UC?, Y) 

WR(X, x),x, ~1 c V(z, ~1, -W(y) 

WV(X), x) + W(x), +J(x, Y) 

0 

Note that if P is in ILOG’, then SkoZ( P) is stratified. To 
describe step (2), we informally introduce: A Skolem term 
is a term in which at least one Skolem functor occurs. A 
Skolemizedpre-instanceof a relational schema S is like a pre- 
instance, except that Skolem terms may occur (in addition 
to values and OIDs). For an instance I = [I] of S, Skol(P)(I) 
is a Skolemized pre-instance over T. 

Step (3) of the process is intended to yield the instance of 
T which is identified by Skol(P)(I). In particular, all OIDs 

5We use the term ‘compute’ for readability, but this can be 
specified declaratively. 
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and Skolem terms occurring in Skol(P)(Z) are to be viewed 
as undistinguished OIDs - relationships of Skolem terms and 
their components are to be ignored (removed), and relation- 
ships of OIDs in Skol(P)(Z) and Z are to be ignored. This 
is accomplished formally by the function MkZnstTr: 

Definition: IlrikZnstT7 is the mapping from Skolemized 
pre-instances to sets of pre-instances defined so that for each 
Skolemized pre-instance I, MlcZnsU’r(Z) = {p(Z) 1 p :O- 
dom U (Skolem terms in I) --, 0-dom is a l-l mapping}. 

It is straightforward to verify that: 

Proposition 5.2: Let (P, S, T) be an ILOG program. 

(a) If Z is a pre-instance of S then Skol(P)(Z) is infinite or 
MlcZnstTr(Skol(P)(Z)) is an instance of T; and 

(b) If Z NOID I’ then both Skol(P)(Z) and SkoZ(P)(Z’) are 
infinite, or MkZnstTr(Skol(P)(Z)) = 
MkZnstTr(Skol(P)(Z’)). Thus, the mapping I = [I] c-, 
MkZnstTr(Skol(P)(Z)) is well-defined. 

In view of this proposition, we can safely define the se- 
mantics of (P, S, T) (in the context of schema translation) by 
P(1) = MkZnstTr(Skol(P)(I)) if Skol(P)(Z) is finite, and 
undefined otherwise, where Z is some (any) pre-instance in 
I. 

Remark 5.3: In the formal semantics just established for 
ILOG in the context of schema translation, OIDs in the 
target pre-instance “lose” their association with the source 
pre-instance. In practice, it may be appropriate to discour- 
age programs for which OIDs (outside of Skolem terms) in 
the target pre-instance might overlap with the source pre- 
instance OIDs, because the true semantics may not cor- 
respond to the programmer’s intended semantics. On the 
other hand, permitting this kind of overlap can simplify 
ILOG programs. For example, a program equivalent to 
that of Example 2.2 can be obtained by replacing the rules 
there for int-ra-agency, ra-agency, and audits-of by 

m-agency(a) + agency(a), int-a&-un(u, a, s), 
required-audit(u) 

audits-o j(a, u) + agency(a), int-au&un(u, a, s), 
required-audit(u) 

a 

We now turn to the use of ILOG for schema augmen- 
tation, i.e., for defining derived data. Again, suppose that 
(P,S,T) is an ILOG program, where S and T are rela- 
tional schemas. Suppose further that Z is a pre-instance of 
S which is currently stored by some implementation. The 
result of applying P to Z may include OIDs from I, and this 
association should not be destroyed as it was in the context 
of schema translation. For this reason, the third step listed 
above for the semantics of schema t,ranslat.ion is modified in 
the context of schema augmentation, and a fourth is added: 

3’. compute5 the set Il4kZnstAvg(Z, Sbol(P)(Z)) of all pre- 
instances .7 obtained from Skol(P)(Z) by leaving each 
OID in Z fixed, and mapping each non-atomic term 
of Skol(P)(Z) to a distinct, new (non-deterministically 
chosen) OID. 

4. Nondeterministically choose 
J E MkZnstAug(Z, Skol(P)(Z)) to serve aa the output 
of the computation. 

To provide more detail, we first (informally) establish 
the following notation: If S and T are disjoint relational 
schemas, then S @ T denotes their union. If Z and J are 
pre-instances of S and T, respectively, then Z @ J denotes 
the “union” of Z and J, a pre-instance over S $ T. Also, 
Obj(Z) denotes the set of OIDs which occur in I. 

Suppose now that a pre-instance I is fixed. As before, 
the semantics of P on Z is given in three steps. The first 
two are as before, yielding the computation of Skol(P)(I), 
which is (infinite or) a Skolemized pre-instance of T. This 
is transformed into a set of pre-instances using the function: 

Definition: MkInstAug maps pairs (Z, J), where 
Z is a pre-instance of S and J is a Skolemized pre- 
instance of T, into sets of pre-instances of T as follows: 
MkInstAug(I, J) = {p(J) 1 p :0-dom U (Skolem terms 
in J) 4 0-dom is l-l and leaves Obj(I) fixed }. 

It is straightforward to verify that: 

Proposition 5.4: Let (P, S, T) be an ILOG program. 

(4 

@I 

If Z is a pre-instance of S then Skol(P)(Z) is infi- 
nite or MkInstAug(Z, Skol(P)(I)) is an equivalence 
class of pre-instances under the equivalence relation 
-OIDIObJ(Q], where for each X c 0-dom, J wolD[x] 
J’ iff there is some permutation u on 0-dom which 
leaves X fixed such that J’ = u(J). 
Let I be an instance of S. Then SkoZ(P)(Z) is infinite 
for some Z E I iff Skol(P)(I) is infinite for each Z E I. 
Furthermore, if Skol(P)(I) is finite, then the set (I @ 
J 1 Z E I and J E MkInstAug(I,Skol(P)(I))} is an 
instance of S @ T. 

In view of this proposition, we can safely define the 
semantics P,,, of (P, S,T) in the context of schema aug- 
mentation so that for each pre-instance Z of S, P,,,(I) = 
MkInstAug(I, SEol(P)(I)) if Skol(P)(I) is finite, and un- 
defined otherwise. In practice, application of P to a pre- 
instance Z in the context of schema augmentation will yield 
the pre-instance Z @ J, where J is a non-deterministically 
chosen member of P,,,(I). 

Remark 5.5: A problem arises in the object-based context 
if derived data is to be (re-)computed as needed rather than 
comput,ed once and stored. Specifically, under the semantics 
just established, the OIDs used for newly created objects in 
the derived data may be different for each re-computation. 
To overcome this problem in practice, a regime can be es- 
tablished which assigns OIDs to non-ground Skolem terms 
in a systematic manner. 0 

5.3 ILOG*: an implemented ILOG 
laiiguage 

The research reported in this paper occurred in parallel with 
the development and prototype implementation of another 
ILOG variant, called ILOG” [HWWSO]. This practically 
motivated language will be used in connection with a larger 
project supporting database sharing [WHW89]. 
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For the purposes of this paper, we view ILOG* as nre- 
cILOG augmented wit,h t,he ability t,o use t,he full rela- 
tional calculus on source inst,ances. (ILOG* as described in 
[HWWSO] is actually stronger, because it also has the ability 
to use external functions defined by LISP subroutines. This 
is because the ILOG* prototype is built on the database 
programming langauge AP5 [Coh86. Coh89], which is an 
extension of Common Lisp. There are also some essent,ially 
syntactic differences between t,he ILOG’ described here and 
described in [HWWSO].) 

Formally, an ILOG* rule from relational source schema 
S to relational target schema T has the form A + L1, . . . , L, 
where A is an atom (possibly with invention), and where 
each Li is either a positive atom or a relational calculus for- 
mula over S with 0 or more free variables. An ILOG* pro- 
gram is a set of ILOG* rules which is non-recursive. The se- 
mantics of ILOG* programs is given in the natural, bottom- 
up fashion. As shown in Theorem 7.3, ILOG* has expressive 
power equivalent to that of nrecILOG’. 

6 Explicit OID creation seman- 
tics of ILOG 

In this section, we will give the definition of an explicit 
OID creation semantics for ILOG programs essentially in 
the spirit of detTL, detDL and IQL (a comparison of this 
semantics to IQL semantics is presented at the end of Sec- 
tion 7), and show that this semantics is equivalent to the 
Skolem functor semantics defined in the previous section. 
We focus here on the case of schema translation; analogous 
results hold for schema augmentation. 

Deflnition: (witness) Let P be an ILOG program, and Z 
a pre-instance of s&(P). Also, let R be an n-ary invention 
relation name in P. A tuple a’ = (al,. . . , a,-~) is a witness 

( i.e. 
I if 

1. 

2. 

3. 

witnessing the need for a new OID) for h under P on 

there exists an invention rule r of the form 
R(*,zl,... ,z+I) + Ll,. . . , L, in P; 

there exists a ground substitution 0 such that Z b LjB 
for j E [l,. . . , m] and 0(zi) = ai for i E [l,. . . , n - I]; 

and 

there is no way to extend B (by assigning a mem- 
ber of 0-dom to the *-symbol) such that Z b 
R(*, Zl,. . . ,z,-,)e. 

Deflnition: (semantics of ILOG programs using direct 
OID semantics) For an ILOG program P, ~JJ is a binary re- 
lation on pre-instances of s&(P). The pair of pre-instances 
(Z,J)isinY?pif: J=lu{ABIA+L1,...,L,isinP;Ais 
not an invention at,om; and 0 is a ground substitution such 
that Z + L,e for i E [l, . . ,m]} u{R(o~,a,al,. . .,a,-~) 1 R 
is an invention relation name; u’ = (al, . . . , a,-1 ) is a witness 
for R under P on I; and OR,3 is a new, distinct OID for each 
invention relation name R and witness tuple ii for R under 
P on Z } Given a program P, the jizpoint operator f’~ ‘1 w 
is a binary relation on pre-instances defined as follows: The 
pair (I, J) of pre-instances of s&(P) is in i% t w if: (1) 
there exists a sequence Z = lo, II,. . . of instances of s&(P) 

such t,hat for each i (0 5 i < w), the pair (Z,,Zi+l) is in ?p; 
(2) J = Ui<,lt; and (3) J is finite. 

The explicit OID creation semantics of an ILOG program 
(P, S, T) is defined as a mapping B from pre-instances of S to 
sets of pre-instances of T such that for a given pre-instance 
Z of S, p(Z) is undefined if {J 1 (I, J) E ?l~ t w} is empty, 
and is6 {J[T] 1 (I, J) E -ib t w} otherwise. (Intuitively, 
p(Z) is undefined if some (any) “computation” of pp on Z 
is nonterminating.) 

This semantics is extended to ILOG’ in the natural fash- 
ion. It. is now straightforward to show: 

Proposition 6.1: Let (P,S,T) be an ILOG program 
with source and target schemas. 

(a) If Z is a pre-instance of S then k(Z) is undefined, or is 
an instance of T; and 

(b) For any two pre-instances II and Zz of S, if ZI ~01~ Zz, 
then both P(Zl) and p(Z,) are undefined, or I = 

P(I2). 

Proposition 6.1, as in the case of Skolem functor seman- 
tics in the previous section, permits us to view P as a map- 
ping from instances to instances: For an instance I of S, P(I) 
is the instance on T such that P(1) = [.7] where J E P(Z) 
and Z is some (any) pre-instance of S such that I = [I] if 
p(Z) is defined; j(I) is undefined otherwise. The following 
theorem establishes, in the context of schema translation, 
the equivalence of the two semantics of ILOG( namely 
Skolem functor semantics defined in the pievious section and 
the explict OID creation semantics defined above. 

Theorem 6.2: Let (P, S, T) be an ILOG program with 
source and target schemas. For any instance I of S, both 
P(1) and j(I) are undefined, or P(1) = P(1). 

An analogous result can be obtained in the context of 
schema augmentation. 

‘i Expressive power 
This section establishes a number of results concerning the 
relative expressive power and complexity of the ILOG lan- 
guages. The weakest of the languages is nrecILOG, which 
is closely related to the conjunctive queries, but more suc- 
cinct. The strongest of the languages is ILOG’ - similar 
to IQL this langauge can express all computable database 
translations up to “copy removal”. A key element of the de- 
velopment is a result specifying normal forms for nrecILOG 
and wrecILOG’ programs. The section also analyzes some 
salient. differences between ILOG and I&L, and briefly 
compares some more practical schema translation languages 
with ILOG( 

We begin by presenting normal forms for nrecILOG and 
wrecILOG’ programs. Intuitively, the proposition states 
these programs can be rewritten so that (i) there is no “cas- 
cading” of OID creation, and (ii) OID creation can be “de- 
layed” until the last stage of the “computation”. To define 

61f schema Sz is contained in schema S1 and I< is a pre- 
instance of 4, then K[Sz] is the restriction of K to S2. 
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Figure 2: Relative expressivity of ILOG languages 

the notion of cascading formally, given an ILOG program 
P, write R =+ R’ if there is a rule in P with head relation 
name R’ and relation name R occurring positively in the 
body; and let $. denote the transitive closure of +. Then 
P has cascading of OID creation if there is a pair R, R’ of 

invention relation names such that R $ R’. We now have: 

Proposition 7.1: (Normal Forms) 

1. IfP 

(4 

(b) 

2. IfP 

(4 

is a nrecILOG program then: 

there is a nonrecursive logic program Lp which is 
equivalent to Skol(P) such that the body of each 
rule contains only source relation names. 

there is a nrecILOG program P’ equivalent to P 
which does not have cascading of OID creation. 

is a wrecILOG’ program then: 

there is a logic’ program Lp equivalent to 
Skol(P) such that if a functor occurs in a literal 
A of Lp with relation name R, then R does not 
occur in any rule body; and for at least one strat- 
ification of Lp, all functors occur in the heads of 
rules in the last stratum of Lp. 

(b) there is a wrecILOG’ program P’ equivalent to 
P which does not have cascading of OID creation; 
and such that for at least one stratification of P’, 
all invention relation names occur in the last stra- 
tum of P’. 

Proof: (Sketch) The proofs re!y,on the fact that in the 
absence of *-recursion, an ILOG<” program can simulate 
a Skolem term f(al, . . ,a,,) with the tuple (al,. . . ,a,,). 
(This can be generalized to Skolem terms of arbitrary fixed 
depths.) Using this, the argument shows that cascading of 
OID creation can be eliminated, and that OID creation can 
be “pushed” through the strata of a wrecILOG’ program. 

The normal forms of t,he above proposition can be ex- 
ponential in the size of the original ILOG program. The 
normal form proposition and results of [Var8?] imply: 

Proposition 7.2: The data complexity of wrecILOG is 
NLOGSPACE, and of wrecILOG’ is between NLOGSPACE 
and PTIME. The output Skol(P)(I) of a wrecILOG’ pro- 
gram on input pre-instance I can be computed in PTIME 
(in terms of the size of I). 

We now present t,he main t,heoret.ical result of the section. 
We say that an ILOG language L is (properly) subsumed by 

language L’ (denoted using C, E) if each mapping realized 
by a program in L is also realized by a program in L’. L and 
L’ are equivalent (denoted G) if L C L’ and L’ 5 L. The 
results of the following theorem are summarized in Figure 
2. 

Theorem 7.3: If (L, L’) is an edge in the graph of Figure 
2 then L c L’; and if L, L’ are two languages which are not 
comparable in the figure, then their expressive powers are 
incomparable. Finally, ILOG* z nrecILOG’. 

We now have a sequence of results for ILOG’ showing 
that it comes “close” to specifying all computable database 
translations. These results are similar to results for IQL 
presented in [AK89]. Essentially in the spirit of that paper, 
we have’: 

Deflnition: Let S and T be IFO- schemas. A mapping 
from instances of S to instances of T is a database translation 
if it is (a) Turing computable (under some fixed encoding 
scheme) and (b) generic (in the sense of [CH80, Hu186]). 

We now informally introduce a notion which is essen- 
tially the same as ‘schema with copies’ from [AK89], but 
relativized to IFO-. Intuitively, a copy-version of an in- 
stance I of S is an instance J = [fl over a new schema 
S+ , where .7 contains one or more OID-equivalent copies of 
pre-instances of I. The schema St is augmented by a single 
new abstract vertex Uindet, which is used to distinguish the 
different copies of a copy version. (The. formal definition is 
omitted for space reasons.) Again in the spirit of [AKBS], 
we have: 

Definition: Let F be a database translation from S to 
T. Then G from S to Tt computes F modulo copy removal 
if for each instance I of S, (i) G(1) is undefined if F(I) is 
undefined, and (ii) G(1) is a copy-version of F(1) if F(1) is 
defined. 

We can now state the following analog of a result for IQL; 
a key element of the proof is demonstrating that ILOG’ 
has the power to create an arbitrary number of OIDs while 
avoiding nontermination. 

Theorem 7.4: ILOG’ can express all computable 
database translations modulo copy removal. 

As with IQL, the above theorem easily implies that 
ILOG’ can specify all database translations whose range is 
contained in any of the following sets: (a) {YES, NO}; (b) 
instances in which no OIDs occur; (c) instances in which no 
values occur. (Another recent logic-based langauge which 
can express all computable queries is IDLOG [SheSO]. This 
language does not involve OIDs, but the presence of integers 
and addition enables the “creation” of an arbitrary amount 
of “work-space”.) 

It was recently shown that in the absence of copy- 
removal, neither IQL nor ILOG’ express all computable 
queries [AK90]. Furthermore, as shown in the next ex- 
ample, in the absence of copy-removal ILOG’ is strictly 

‘The definition here appears to be simpler than that of [AK89]; 
some intricacy here is hidden in t.he definition of ‘instance’ as 
equivalence class of pre-instances. 
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weaker than IQL, even when restricted to input and out- 
put not involving sets. This difference in t,he power of the 
two languages can be traced to t.he fact that IQL supports a 
“grouping” construct (as in LDL [NTPS]) while ILOG’ does 
not. 

Example 7.8: Consider the IFO- schema S = (V, E) 
where there is one abstract vertex z1,, one value vertex uv, 
and one multi-valued attribute edge f from tea to vv. For 
a pre-instance Z of S define the equivalence relation -* 011 

Z[u,] by: o ~1 o’ iff Z[f(o) = Z[f(o’). Let F be the com- 
putable database translation from S to S which has the 
following behavior: F([Z]) = [J] where for each equivalence 
class 0 = [o]-, there is exactly one element po E .Z[V~], 
and .Z[f(po) = Z[f](o). Intuitively, F collapses OIDs of [I] 
which are equivalent under --I. 

To show that there is no ILOG’ program that computes 
F, suppose for the sake of contradiction that P does. Let 
a, b, c, d be values which do not occur in P. Consider now 
the input pre-instances Z, of S, described here by enumer- 
ating the pairs in RZ[Z] (where a, b, c, d are values, and z,, y, 
are OIDs), where: I, = {(z,,a),(~,,b),(y~,c),(y,,d) I i E 
[l..n]}. Using the fact that all OIDs created by P on inputs 
[InI have a representation using Skolem functors, it can be 
shown that P does not compute F. 

In contrast, IQL can compute F through the use of the 
grouping construct. In particular, IQL can use grouping to 
form a collection of all sets Z[f(o) for o E Z[t~a]. These 
sets can in turn be used to create new OIDs, one for each 
equivalence class OIDs in Z[v,]. 0 

We now turn to comparing the semantics for OID cre- 
ation in ILOG with those of IQL. Both languages pro- 
vide an explicit mechanism to create new objects, based on 
the existence of a tuple of already existing values and ob- 
jects which satisfy certain conditions. IQL permits object 
creation in different and possibly multiple columns of a re- 
lation name, whereas ILOG permits object creation only in 
the first column of selected relation names. This difference 
is largely cosmetic. 

The semantics of an IQL program is given through an 
iterative procedure, namely “firing” the set of rules of the 
program in parallel. This procedure is closely related to the 
use of the cumulative powers of the immediate consequence 
operator to construct least fixpoints, but with an important 
difference. In both ILOG and IQL, if an object is created 
for a given rule and tuple at some point, then new objects 
will not be created for that rule and tuple in subsequent 
iterations. In the first iteration for which a tuple newly 
satisfies some rule for a relation name R, ILOG will create 
exactly one new OID for that R and that tuple. In contrast, 
IQL may create more than one new OID for R and the tuple 
- it creates a new OID for each rule defining R for which 
this tuple is satisified. This feature of IQL semantics and its 
implications are explored in the following example. 

Example 7.6: We introduce a variant of the ILOG seman- 
tics, called ILOG’ semantics, which corresponds to a funda- 
mental aspect of the IQL semantics. We show that without 
negation, ILOG’ semantics is fundamentally non-monotonic 
and strictly richer than ILOG semantics. 

Recall the explicit OID creation semantics for ILOG pro- 
grams given in Section 6 above. The ILOG’ semantics is 
given in the same fashion, with the following difference: In 
an iteration starting with pre-instance I, a new OID is cre- 
ated for each rule T with head p(*, ~1,. . . , z,,) and tuple 
(al,. . . , a,) such that (a) the body of T is satisfied by some 
assignment @ with e(z;) = a, for i E [l..n], and (b) there is 
no b such that p(b, al, . . . , a,) is already true in I. The dif- 
ference between this and the ILOG semantics is that here, a 
new OID is created for each rule (under certain conditions), 
whereas in ILOG a new OID is created for each relation 
name (under certain conditions). 

It is relatively straightforward to show that each ILOG 
program can be simulated by an ILOG’ program. We now 
exhibit an ILOG’ program P which cannot be simulated by 
an ILOG program. In this program, $ and 0 are constants, 
R and R’ are source relations, and new is the target relation: 

Rz(z, z) - R(z, z) R;(z,z) + R’(z,z) 
RI(~, Y) + R(z, Y) Ritz, Y) - R’(z, Y) 
Rz(z,;) + RI(~,Y),RI(Y,z) R;(z,t) - R;(z,y),R:(y,z) 
new(*) + R2($,Q) new(*) - R;(% @) 

Let Z = {R($, l), R(1, O), R’(S, l), R’(l,O)} and J = Z U 

{ R($, a)}. Under ILOG’ semantics, P on Z creates exactly 
two new OIDs (in the third iteration of parallel rule exe- 
cution) while P on .Z creates exactly one new OID (in the 
second iteration). Since Z C J, this implies that ILOG’ 
is essentially non-monotonic. Because. ILOG semantics is 
rooted in logic programming, which is monotonic, no ILOG 
program (without negation) can simulate the behavior of P. 
cl 

We conclude this section with a brief comparison of sub- 
languages of ILOG with four more pragmatically moti- 
vated data manipulation languages in the literature; more 
details can be found in [HY91]. The first is the language 
for “superview construction” [BM81, Mot87]: this language 
can be simulated in its entirety by nrecILOG. The three 
other Iangauges are: the transformation language of Multi- 
base system [DH84], the derivation operators of the Feder- 
ated approach [HM85], and OOAlgebra [Day89]. Each of 
these incorporates set difference, and so cannot be simu- 
lated by nrecILOG. Each also includes other features, such 
as arithmetic operators or multisets, which fall outside of the 
scope of the ILOG languages as presented here. However, 
the “core” of each of these three languages can be simulated 
by nrecILOG’. 

8 Testing validity of transla- 
t ions 

An ILOG program is valid if it maps instances of the 
source schema to instances of the target schema. The map- 
ping may be invalid because the assigned value of a single- 
valued attribute in the target may not be single-valued, or 
because a subset or disjointness relationship required by the 
target schema is not satisfied. The notion of validity can 
also be extended to encompass totalness and other integrity 
constraints on the source and/or target. 
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In this section we study the problem of testing validity at 
compile time of ILOG with IFO- schemas. It turns out 
that several validity issues (specifically, functional depen- 
dency, subset relationships, and disjointness relationships) 
are decidable for nrecILOG programs (possibly involving 
‘#‘). These result,s are also true if totalness constraints are 
permitted on single-valued attributes of the source and/or 
target schemes, provided that ‘#’ is not permitted. (The 
case with both totalness constraints and ‘#’ remains open.) 
On the other hand, essentially all validity issues are unde- 
cidable for nrecILOG‘ and wrecILOG. 

We begin with formal definitions, for both the object- 
based and relational contexts. 

Definition: Let S and T be IFO- schemas, possibly with 
constraints. A mapping F. on instances of S is valid if for 
each instance I of S, F(1) is an instance of T or is undefined. 
If P is an ILOG program from S to T, then P is valid if 
for each pre-instance I of S, P(I) is a pre-instance of T or 
is undefined (because Sliol(P)(I) is infinite). 

In the spirit of [AH88], the notion of validity can essen- 
tially be recast in the context of the relational model using 
the notion of “implication problems”: 

@ - Q Implication Problem for language A: Let Q,Q 
be classes of relational dependencies and A be a relational 
language. Given a program (P, S, T) in language A, C C @ 
over S and I’ E 9 over T, is it true that: for all I over S, 
I + C and P(I) defined implies P(I) b r? 

By generalizing techniques and results from [Klu80] 
([AH88]) we obtain: 

Theorem 8.1: The following problems are undecidable for 
nrecILOG’ (wrecILOG) programs: 

(a) 0-FD implication (FD-FD implication) 

(b) 0-IND implication (O-IND implication) 

(c) 0-disjointness implication (FD-disjointness implica- 
tion) 

Furthermore, for both languages, validity with respect to 
IFO- schemas as source and target is undecidable. 

We turn now to decidability results for nrecILOG pro- 
grams. The first result uses the Normal Form proposition 
to generalize results of [KP82]. 

Theorem 8.2: The FD-FD implication problem is decid- 
able for nrecILOG (possibly with ‘#‘). The complexity of 
this problem is at least PSPACE, and is bounded above by 
EXPTIME. 

Because of the close relationship between nrecILOG pro- 
grams and conjunctive queries, there is a close relation- 
ship between a-IND implication problems for nrecILOG and 
testing containment between conjunct.ive queries applied in 
the context of dependencies from @. Unfortunately, (FD 
u IND)-IND implication is in general undecidable for con- 
junctive queries, since logical implicat.ion of an IND by a 
set of FDs and INDs is undecidable [Mit.83]. Posit,ive re- 
sults can be obt.ained, however, if we restrict attemion t,o 
nrecILOG programs whose source and target are (relational 
simulations of) IFO- schemas. In particular, by generaliz- 
ing tableaux chasing techniques and results from [JK84] we 
have: 

Theorem 8.3: It is decidable, given an nrecILOG program 
P from IFO- source S to IFO- target T, whether P(1) is 
an instance of T for each instance I of S. Furthermore, 
this result continues to hold if some single-valued attributes 
of source and/or target are required to be total but ‘f’ is 
not permitted. The complexity of these problems is at least 
PSPACE and is bounded above by EXPSPACE. 
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