
ILOG: Declarative Creation and Manipulation

of Object Identifiers*

(Estendecl Abstract)

Richard Hull’

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0782
USA

hullQcse.usc.edu

Abstract: This paper introduces ILOG(a declarative
language in the style of (stratified) datalog(which can
be used for querying, schema translation, and schema aug-
mentation in the context of object-based data models. The
semantics of ILOG is based on the use of Skolem functors,
and is closely related to semantics for object-based data ma-
nipulation languages which provide mechanisms for explicit
creation of object identifiers (OIDs). A normal form is pre-
sented for ILOG’ programs not involving recursion through
OID creation, which identifies a precise correspondence be-
tween OIDs created in the target, and values and OIDs in
the source. The expressive power of various sublanguages
of ILOG’ is shown to range from a natural generalization
of the conjunctive queries to the object-based context, to a
language which can specify all computable database transla-
t.ions (up to duplicate copies). The issue of testing vuliilityof
ILOG programs translat.ing one semantic schema to an-
other is studied: cases are presented for which several -valid-
ity issues (e.g., functional and/or subset relationships in the

*This research supported in part by NSF grant IRI-8719875.
‘Research by this author also supported in part by NSF grant

INT-8817874 and a grant from AT&T
t Research by this author was performed while visiting the

Computer Science Department of the University of Southern Cal-
ifornia. This author was supported in part by Yazaki Memorial
Foundation for Science & Technology.

Permission to copy without l&2 all or piirr of rhih matcri:ll i\

granted provided that the copies arc not made or distrihutcd till

direct commercial advantage. the VLDB copyright notics and

the title of the publication and its dntt’ appcur. L 31x\ notice‘ i5 given

that copying is hj, permission of the Veq Larpc Delta Base

Endowment. To copy othcrwisc. or to rcpuhlibh. rcquirc\ ;I [cc

and/or special permission from the EnJo%mcnt.

Proceedings of the 16th VLDB Confercncc
Brisbane, Australia 1990

Masatoshi Yoshikawa*

Department of Information and
Communication Sciences
Kyoto Sangyo University

Kamigamo, Kita-ku, Kyoto 603
Japan

yosikawaQkyoto-su.ac.jp

target schema) are decidable; and other cases are presented
for which they are undecidable. Non-recursive ILOG is rich
enough to simulate some schema translation languages based
on local structural manipulation, and non-recursive ILOG’
can simulate the core of the OOAlgebra of [Day89], and of
several other translation languages of the systems literature.

1 Introduction ’

Object-based data models (both semantic and object-
oriented) have received a great deal of attention over the
past few years. A fundamental problem in this area is the de-
velopment of data manipulation languages for object-based
models which have a mathematical foundation as rigorous as
the relational calculus and algebra. A key difference between
the well-understood relational context and the object-based
context is the presence, in the latter case, of object identi-
fiers (OIDs) (or surrogates), which correspond to real and
conceptual objects “in the world”. This paper introduces
the family of ILOG languages; these are declarative lan-
guages for querying, schema translation, and schema aug-
mentation which generalize datalog and which support
explicit OID creat,ion and manipulation. The paper also
presents a number of results analyzing these languages, and
comparing them wjth previously published data translation
languages.

An important impetus for the development of ILOG
was the int,roduction, in the papers cm LDhl [KV84] and
IQL [AK89], of formal data models and query languages
which incorporate object identity in an explicit fashion.
The IQL paper in particular demonstrated, among other
things, how the presence of OIDs and recursion can lead
to query languages with extremely rich restructuring capa-
bilities, and expressive power close to that of Turing ma-
chines. The present investigation continues with this focus
on the impact of explicit OIDs on fundamental database is-
sues. A key difference, however, is the semantics used for
OID creat.ion: IQL uses a variation of the invention rules of
detDL [AV88a, A\‘88b], while ILOG uses the observation

455

of Maier [Mai86], refined in [IiW89, CW89], that OID cre-
ation can be simulated by associating Skolem functors with
datalog rules. (A specific theoret.ical difference between lan-
guages resulting from the two approaches to OID creation
is exhibited in Example 7.6.) The use of Skolem functors
makes it natural in ILOG”’ to use t.he conventional (strat-
ified) least fixpoint semantics of logic programming. This
permits a transfer of techniques from logic programming and
datalog to the study of ILOG(Furt,hermore, this paper
establishes a normal form (Proposition 7.1) for ILOG’ pro-
grams not involving recursion through OID creation. This
provides a formal mechanism for representing the correspon-
dence between OIDs created in a target database and the
OIDs and values of the source database. The normal form
is a natural and useful tool for the development of many of
the results of this paper, and also appears useful in the areas
of update propagation and query optimization.

The ILOG framework is designed to permit a focused
study on the impact of explicit OIDs on database issues, and
assumes a relatively simple context. For example, unlike
the approaches of both [AI<891 and [Mai86, RW89, CW89],
the framework here is based on a simple semantic database
model (a subset of IF0 [AI1871 called IFO-) extended to
incorporate object identity. In its current form, this model
does not permit sets as1 “first-class citizens”, and has a nat-
ural simulat.ion in the relational model. Additionally, as
with logic programming and datalog, ILOG uses (in the
terminology of, e.g., [Jac89]) d escriptitte typing: the typing
is not implicit to the language, but a type-checking infer-
ence mechanism based on the source and target schema-s
can be established. This contrasts with IQL, OODAPLEX
[Day89], and OOAlgebra [Day89], which use prescriptive
typing: these languages support (and require) the explicit
declaration of types for variables and program structures.
Finally, the ILOG languages focus on data manipulation,
and do not include mechanisms for specifying the target
schema. It is assumed that a schema definition language
is used for that purpose.

This paper presents theoretical results for ILOG in
two directions: (a) expressive power and complexity, and
(b) testing the “validity” of schema translations expressed
in ILOG(The first topic considers seven syntactically
defined ILOG languages. Six of these stem from two di-
mensions: (i) the presence or absence of st.rat,ified negation,
and (ii) permitting full recursion, permit.ting “weak” recur-
sion (i.e., not through OID creat.ion), and prohibiting re-
cursion. It is shown that all of these languages have dis-
tinct expressive powers, with nonrecursive ILOG without
negation (nrecILOG) having power closely related to the
conjunctive queries, and fully recursive ILOG with nega-

1 Speaking informally, a model incorporates sets as “first-class
citizens” if sets can be formed and manipulated independent of
the use of tuples of pre-existing atomic values or objects which
refer to them. For example, nested relations in PNF [Rl<S88,
AB86] do not permit sets as first-class cit.izens, because each set
occurring in a PNF nested relation can be uniquely identified by
a tuple of atomic values. The analogous statement holds for the
FDM although it supports multi-valued attributes. Examples of
models with sets as first-class citizens include nested relations,
comples objects, SDM, LDM, IFO, and the models underlying
LDL, COL and IQL (see [HulY’J] for further discussion).

tion (ILOG’) “almost” capable of specifying all computable
database translations. (The proviso here stems from the
inability of ILOG’ to ‘+emove copies”, a difficulty ini-
tially observed in connection with IQL.) The weakest lan-
guage, nrecILOG, can simulate the schema translation lan-
gauges of the schema integration methodology presented
in [BM81, Mot87], and nonrecursive ILOG with stratified
negation (nrecILOG’) subsumes the cores of the OOAlge-
bra and the translation languages of the Federated architec-
ture [HM85] and the integration methodology of [DH84]. It
is also shown that weakly recursive ILOG (wrecILOG(‘))
has the same data complexity as datalogt’) (and thus lies be-
tween NLOGSPACE and PTIME). The seventh ILOG vari-
ant is ILOG*, a practically motivated language for which
a prototype has been implemented [HWW99]. In formal
terms, the core of ILOG* is a generalization of nrecILOG
which permits the use of the full relational calculus on source
relations. It is shown here that the core of ILOG* is equiv-
alent to nrecILOG’.

An ILOG program P mapping from schema S to
schema T is valid if for each instance I of S, the result of
applying P (if the computation terminates) is an instance
of T. (The result might fail to be an instance by violating
functional, subset, or disjointness relationships required by
T.) It is shown here that validity is decidable in EXPSPACE
for IFO- schemas and nrecILOG. In particular, this result
holds if (a) # is permitted in rule bodies, or (b) some at-
tributes in the source and/or target schemas are required to
be total. As a result, validity is decidabie for the language
of [BM81, Mot87]. (Decidability of validity remains open if
both (a) and (b) are present.) Validity for the richer vari-
ants of ILOG (and thus, OOAlgebra, OODAPLEX and
the languages of [DH84, HM85]) is shown to be undecidable.

In the context of schema translation, the formal seman-
tics of ILOG programs is defined by (a) Skolemizing the
rules of the program, (b) taking the minimal model of the
program as in logic programming (stratified model if nega-
tion is present), and finally, (c) (non-deterministically) re-
placing the non-atomic terms in the result by (distinct, es-
sentially new) OIDs. A semantics for ILOG is also pre-
sented for the case of schema augmentation, i.e., defining
derived data. The ILOG syntax “hides” the Skolem func-
tors from the user, thus bringing ILOG closer to some
other, existing mechanisms for OID manipulation in the lit-
erature (e.g., Smalltalk- [GR83], OODAPLEX, OOAlge-
bra). Although not. explored in this paper, it appears that
the Skolem-functor based semantics of ILOG can be used
to provide a natural and rigorous basis for update prop
agation and query optimization. In particular, the normal
form result of Proposition 7.1 for wrecILOG’ programs pro-
vides a mechanism whereby the created OIDs can be viewed
as Skolem terms, and thus carry within them information
about how/why they were created. This approach can be ex-
tended to many practical schema translation languages and
OOAlgebra, because they are subsumed by wrecILOG’.

As noted above, ILOG in its current form can be used
in connect.ion with any object-based model for which there
is a natural simulation by the relational model. A natu-
ral extension of ILOG could be made to provide mecha-
nisms for creating and manipulating sets, as in COL [AG88],

456

(8) sounx sckm8

(b) Augmentation with &rived data

Figure 1: Example sclleinas

LDL [NT89], IQL, or the langauge of [Abi89]. As shown in
Exapmle 7.5, the inclusion of a “grouping” construct (which
is present in IQL) into ILOG’ wanld yield a strictly more
powerful language, even if the source and target schemas do
not include the set construct.

Section 2 presents brief examples of nrecILOG, and the
intuition behind the formal semantics of ILOG based
on Skolem functors. Section 3 reviews concepts and no-
tation needed for the formal development. Section 4 artic-
ulates some key differences between semantic data models
and models in which object identity is an explicit construct.
In particular, the section introduces a new definition of in-

stance for semantic schemas, which formally captures the
intuition that OIDs, in and of themselves, carry no informa-
tion. Section 5 introduces the formal syntax and semantics
of ILOG(and Section 6 present,s the equivalence of this
semantics to one based on “explicit OID creation”, a varia-
tion of the semantics used for IQL and most practical data
manipulation languages for object-based models. Se&on 7
presents normal forms for nrecILOG and wrecILOG’; con-
siders the expressive power of ILOG languages; and provides
comparisons wit,h the semant.ics and power of both IQL and
practical schema t.ransla.tion languages. Section 8 considers
validity testing. Due t,o space limitations, much of the dis-
cussion is terse, and proofs are omitted or sketched. Details
may be found in t.he full paper \IIYSl].

2 Example and motivation

This section present.s an extended example which illust,rates
how ILOG can be used to create and manipulate OIDs, a.nd
gives the intuition behind t,he formal semant.ics of ILOG.
The example uses a simple subset. of ILOG in which recur-
sion and negation are not permitt.ed. (The example also il-
lustrates a form of aggregat.e operat.or, although aggregates

are not considered in the theoretical treatment of ILOG
which follows.) The presentation in this section is largely
informal; precise definitions are given ic Sections 3, 5 and 6
below.

ILOG can be used for (a) defining derived data, (b) spec-
ifying a translation from one schema to another, and (c)
expressing queries. In the first case, the original schema is
augmented, and the new data may refer to the input data. In
the second case the new data is presumed to be independent
of the source data. Interpreted in a broad sense, queries can
involve both the definition of derived data and/or the trans-
lation of (selected portions of) the source to a new schema.
In all cases, there are two aspects to the specification: de-
scribing the new schema (or new schema components), and
describing how the new schema (components) are to be pop-
ulated. Several languages for specifying schema definition
(augmentation) have been developed; we do not consider
that further here. The ILOG languages focus on the second
aspect.

Consider the semantic data model schema shown in Fig-
ure l(a). (This is an IFO- schema as defined in Sec-
tion 3; the diagramatic conventions are essentially those of
[AH87, HI<87], and similar to those of [ShiSl].) This schema
models hypothetical data concerning purchases made by
governmental agencies. The schema includes abstract types
for government-agency, invoice, and supplier, and a sub-
type of supplier called foreign-supplier. Single-valued
dtributes include a-name mapping each government agency
to a string, and value mapping each invoice to a cost (viewed
here as an at,omic, printable type). The multi-valued ut-
tribute purchases maps each government agency to a set
of invoices, which represent purchases made by that agency.
The oggregafion (or tzryle) construct indicates that each item
is an ordered pair, consist.ing of a part-name and a quantity.

ILOG exploits the natural correspondence between se-

457

mantic schemas (in which sets do not occur as “first-class
citizens”) and relational schemas. Under this correspon-
dence, abst,ract types and subtypes map to unary relations,
and (single- and multi-valued) attributes and aggregations
map to relations of the appropriate arity. (For example, the
a-name attribut.e on government-agency maps to a binary
relation 0-71(1mc satisfying the iunct.ional dependency 1 -
2; and l.he items at,tribllte on invoice maps to a ternary re-
lation i2ems. with no associated functional dependencies.)
The specific naming convclll.ion used is left t.0 the systenl
designer; we use rrd hoc naming here.

Exanlple 2.1: We first augment the schema of Figure
l(a) to form the schema of Figure l(b) (the added compo-
nents are highlighted), and use ILOG to populate the aug-
mentation. In particular, we create a new entity set called
audit-unit - each audit-unit is a new conceptual object
corresponding to an agency-supplier pair (a, s) where a has
at least one invoice with supplier s, and s is a foreign sup-
plier. Intuitively, each audit-unit can serve as a locus for
data concerning audits of such agency-supplier pairs. (In
this example, only one audit-unit OID is created for a pair
(a,s), regardless of how many invoices relate a with s; dif-
ferent rules could be used to obtain other policies for OID
creation.) We also define two single-valued attributes which
associate these newly created objects to agencies and suppli-
ers, and a single-valued attribute which gives the sum of val-
ues of all invoices associated with the agency-supplier pair
associated with the audit-unit. The following ILOG pro-
gram accomplishes this, with output relations audit-unit,
agency-of, supplier-of, and total-of:

int-aud-un(*, a, s) + purchases(a, i),
supplied-by(i, s), foreign-supplier(s)

audit-unit(u) + int-aud-un(u, a, s)
agency-of (u, a) + int-aud-un(u, a, s)
supplier-of (u, 9) + int-axd-un(u, a, s)
total-value(u, sum(v)) +- int-aud-un(u, a, s),

purchases(a, i), supplied-by(i, s), value(i, TV)

Intuitively, execution of this program results in the creation
of (new) OIDs for each (a, s) pair satisfying the conditions
of the body of the first rule given above. The intermediate
relation int-aud-an. is used to “create” each such OID, and
t,o “hold” it.s correspondence to t,he witness (i.e., t,uple of
values and OIDs which lead to its creation.) As with con-
ventional datalog, variables in the rule body not occurring
in the head (e.g., the variable i ranging over invoices) are
viewed as existentially quant.ified wit.hin the body.

The remaining rules are used t.o describe how the four
components added to the schema are to be popula.ted. Al-
though we do not include a formal study of aggregate op-
erations in this paper, we have included the last rule to
illustrate how certain aggregate functions can be naturally
incorporatecl into the ILOG (and datalog) framework (alter-
native approaches are considered in [NT89, She90]). Speak-
ing informally, the semantics of this rule is as follows: For
each u, the set S(u) of tuples (~1, s, i, ,u) satisfying the rule
body is obtained. A project.ion of S(u) ont,o the 1) coordi-
nate is performed to obt.ain a rnul!i.sel of ,u-values. The sum
operat.or is applied to t,llis bag to obtain t.he value associated
with 1,. by foltrl-otrltte. 0

As a second example, we describe an ILOG program that
can be used to translate (some of the) data from the original
schema to a completely separate schema, shown in Figure
l(c). Importantly, no OIDs used in the source schema will be
permitted in the instances computed for the target schema.

Exanlple 2.2: In this translation we build up a set of
audit-unit,s for which the total value is at least one million
dollars: we assume that an audit is required for each such
audit-unit. We include an abstract type for the agencies hav-
ing required audits, the attribute audits-of mapping each
such agency to the set of related audit-units, an attribute
giving the name of the associated supplier, and again give
the total-value of the audit-unit. (We use a different at-
tribute name, because the attribute used here is a restric-
tion of the attribute used before.) The ILOG program to
accomplish this translation includes the first and last rules
from the program given above, and also the six rules given
now. The output of this program is given by the relations
required-audit, ra-agency, audits-of, supplies-name, and
ra-total-value.

required-audit(u) + int-aud-un(u, a, s),
total-value(u, v), v 2 lo6

int-sa-agency(*, a) + int-aud-un(u, a, s),

ia-ugency(a’)
required-audit(u)

+ int-ra-agency(a’, a)
audits-of (a’, u) t int-sa-agency(a’, a),

int-aud-un(u, a, s), required-audit(u)
supplier-name(u, n) + int-aud-un(u, a, s),

required-audit(u), a-name(s, n)
ra-total-value(u, v) + requhed-audit(u),

total-value(u, v)

(In this example we created new OIDs for ra-agency.
As detailed in Remark 5.3 below, this program can be made
more succinct by permitting the explicit use of OIDs from
the source in the target. However, since this program is
considered as a translation specification, the “association”
of these OIDs to the source instance will be lost.) 0

As detailed in Section 5, ILOG’ supports full recursion
and strat,ified negation. Also, although not done in this
paper, the ILOG languages could be generalized to permit
the direct use of single- and multi-valued attributes in the
style of [AH88, AG88] (e.g., permitting the use of atoms
‘supplier-na.me(s) = n’ and ‘u E audits-of(a)‘).

We conclude this section with intuitive remarks concern-
ing the formal semantics of ILOG. A fundamental influence
on the development of ILOG is found in the so-called “al-
phabet logics”: O-logic [Mai86], ‘O-logic-revisited’ [I<W89],
and C-logic [CW89]. In particular, the premise that OIDs
are essentially terms built using Skolem functors appears
to have initially surfaced in these papers. (The more basic
intuition that objects are naturally created from aggrega-
tions (tuples) of values and objects may be found in se-
mantic model schema translation languages described in,
e.g., [BM81, HM85, Day89].) To illustrate this point, recall
the rule of Example 2.1 for defining int-aud-un. Following
[I<\V89, CW89], we note that in first-order logic, this rule

458

could be rewritten as

Vu vs 376 vi [int-aud-un(u, a, s) -
purchases(a, i), supplied-by(i, s),
foreign-supplier(s)]

Following [KW89, CW89], a Skolem functor’ is now intro-
duced:

Vu Vs Vi [in&au&un(f,-,(a, s), a, 9) c
putchases(a, i), supplied-by(i, s),
foreign-szLpplier(s)]

The quantifiers can now be omitted from this rule without
ambiguity. In the formal semantics, ILOG programs are
first replaced by their Skolemizations, and then evaluated as
in (stratified) lo&c programming. Skolem terms (i.e., terms
in which a Skolem functor occurs) which are present in the
output correspond to new OIDs. The final step of the ILOG
semantics is the replacement of these Skolem terms by (non-
deterministically chosen) OIDs. Intuitively, an OID is cre-
ated whenever a ground Skolem term is included into some
relation.

The final step of the ILOG semantics, replacing Skolem
terms by OIDs, is included for two reasons: (i) to highlight
the close parallel between ILOG and languages which sup
port explicit OID creation, including IQL, OOAlgebra, and
OODAPLEX; and (ii) to make the language more accessible
to a wide class of potential users. The use of explicit Skolem
functors yields a benefit in the succinctness of ILOG pro-
grams. In particular, the ILOG rules defining int-aud-un,
audit-unit, and agency-of given in Example 2.1 can be ab-
breviated to

audit-unit(f,-,(a, s)) + purchases(a, i),
supplied-by(i, s)

agency-of(fa-u(a, s), a) + audit-unit(f,-U(a, s))

In ILOG the relationship between created OIDs and their
witnesses is held in intermediate relations; if explicit Skolem
terms are permitted then the OID and its witnesses can be
bundled into a single term.

3 Preliminaries
We assume general familiarity with the relational model
and query languages [U1187] iucluding conjunctive queries
[CM77]; (stratified) datalog and logic programming [Llo87,
Apt88], and semantic database models [IIK87]. In this sec-
tion we establish notation for these areas; due to space lim-
itations exposition is terse.

Relational preliminaries: We assume an infinite set R of
relation names. Each R E R has an associated nritg (Y(R) >
1. A relationul (database) schema is a set S = {RI,. . . , R,}
of distinct relation names. We assume an infinite set Dom a
universe of domain elements. For simplicity of presentation
we do not at this point include a mechanism for assigning
types to different columns of a relation instance. In the
conventional approach, a (relation) instanceof relation name

2 We use ‘functor’ instead of ‘function’ because, following logic
programming, synt,actically distinct terms will never be equated.

R is a finite subset of DomacR), and a (database) instance of
a relational schema D = {RI,. . . , Rn} is a function I with
domain D, where I(Rj) is an instance of Rj for each j E
[l..n]. (We shall modify this approach in Section 4 below.)
A functional dependency (FD) is a syntactic expression of
the form R : X - Y, where R is a relation name and X, Y c
{I,..., a(R)}. An inclusion dependency (IND) [CFP84] is
a syntactic expression of the form R[X] C R’[Y], where R
and R’ are relation names, X is a non-repeating sequence
over (1,. . . ,cr(R)}, and Y is a non-repeating sequence over
(1,. . . ,cu(R’)}. We assume the notion of satisfaction (k)
of an FD or IND by a database instance is well-known. A
disjointness dependency (DISD) is a syntactic expression of
the form R#R’, where R, R’ are unary relation names. A
relational instance satisfies R#R’ (denoted t==) if R and R’
are assigned disjoint relations. Finally, a constrained schema
is a pair (D, C) where D is a relational schema and C a set
of constraints over D. An instance of this pair is an instance
of D satisfying C.

We assume familiarity with the (domain) relational cal-
culus. The conjunctive queries are a subset of the relational
calculus queries whose formulas (a) are in prenex normal
form, (b) use only existential quantifiers, (c) use only the
connective A (i.e., do not use V, 1 or -).

(Stratifled) datalog and logic programming: We first
establish notation for (stratified) datalog, and then general-
ize to logic programming. We assume an infinite set Var of
variables (which is disjoint from Dom). In the context of
datalog, a term is a variable or an element of Dom. We as-
sume familiarity with the notions of atom, literal, datalog
rule, rule head and rule body. We permit equality (=) and
inequality (#) in rule bodies unless otherwise noted. An
equality atom (literal) is one involving = or #; an equality-
free atom (literal) is one not involving = or #. A datalog
rule is range-restrictedif each variable occurring in the head
and each variable occurring in a negated atom (this includes
atoms) in the body also occurs in an equality-free atom in
the body. We consider only range-restricted datalog’ rules
in the sequel.

We assume familiarity with the notion of datalog pro-
gram. We often blur a relational instance I with its associ-
ated set of atoms. We assume familiarity with the immediate
consequence operator Tp and the cumulative powers Tp fi i
(0 5 i 5 w) used to define the least fixpoint semantics for
datalog programs. We assume familiarity with the notion of
stratification [ABW86, vG86], and the semantics associated
with stratified datalog’ programs.

For a datalog program P, sch(P) denotes the set of re-
lation names occurring in P. In the spirit of [AV87] we con-
sider datalog programs in connection with source and tar-
get relations. Specifically, a datalog program with source
S and target T is a triple (P, S, T) where (a) P is a datalog
program, (b) S and T are disjoint sets of relation names, and
(c) no relation name in S occurs in the head of a rule of P.
We do not insist that all members of S or T occur in P.
We use P to denote (P, S, T) if S and T are specified by the
context. Given (P, S,T), P is viewed as a mapping from
instances over S to instances over T in the usual fashion.
For an instance I of S, P(I) denotes the resulting instance
of T.

459

A fundamental premise of this palnr is that OID cre-
ation can be achieved in a datalog context through the use
of Skolem functors. As a result, we shall use conventional
logic programming in addition t,o datalog. To maintain con-
sistency with t,he relational point of view, we use the term
‘relation name’ for ‘predicate’. We include a set F of fun&or
(symbol), where each f E F has associated ority o(f). We
assume familiarity wit,h the generalization to logic program-
ming of the concepts given above for datalog. We some-
times speak of a logic(‘) program P with source S and tar-
get T, and view it as a function from “instances” of S to
“instances” of T, where an “instance” might include both
domain elements and terms built from functors and domain
elements. In this paper, the instances of S will be instances
in the conventional sense, but the instances of T may include
non-atomic terms.

A semantic model: The ILOG languages are intended
for use in translating one object-based schema to another,
and for defining derived data in the object-based context.
This paper uses a particular simple, representative semantic
database model, called IFO-. This model can be viewed as
a subset of IF0 [AH871 or GSM [HK87], or as a generaliza-
tion of the ER [Che76] or Functional Data [ShiSl] models.
In particular, it supports abstract and value object sets (or
entity sets), single and multi-valued attributes (also known
as data functions), aggregation (i.e., tuples), and ISA rela-
tionships (more specifically, specialization relationships in
the sense of [AH87, HK87]). (IFO- supports everything of
the IF0 model except for: the set construct; nested aggrega-
tion constructs; nested attributes; and generalization.) Due
to space limitations, we present only the following abridged
definition of IFO- schemas; essentially all salient features of
this model are illustrated in the schemas of Figure 1.

Definition: An IFO- schema is a directed graph S =
(V, E) where

V = Vv41 W Vob6 U V&, u V,,, (value vertices, abstract
vertices, subtype vertices, and aggregation vertices, re-
spectively;

E = Eaoatt u E,,,-,tt u EISA u Eeomp (single-valued at-
tribute edges, multi-valued attribute edges, ISA (or spe-
cialization) edges, and component edges of aggregation
vertices, respectively); and

various natural conditions concerning ISA relationships
and aggregation are satisfied (e.g., see [HK87]).

Relative to this paper, an important feature of the se-
mantic model used here is that there is a natural, direct
simulation of this model by the relational model (see Sec-
tion 4). The ILOG languages presented in this paper can be
used with any object-based model that has this property.

4 Incorporating OIDs into se-
mant ic models

This section briefly explores differences between the original
semantic models and subsequent data models which incor-
porate object identity as an explicit construct, and then ex-
tends the IFO- model to incorporate OIDs by developing a

new definition for instancesof a schema. This extension also
leads to a variat,ion of the relational model in the context of
IFO- simulations.
Object-based models: Intuitively, values (e.g., integers,
booleans, strings) are objects whose associated meaning is
universally agreed upon, and which “carry” their own mean-
ing. In contrast, “ubstract” objectscorrespond to real or con-
ceptual objects “in the world” for which relevant information
is carried only by relationships to other objects. This dis-
tinction was originally put forth in the semantic data mod-
eling literature [HK87]; a good recent articulation of this
distinction is presented in [Bee89].

Traditionally, semantic models have assumed the exis-
tence of a (computer-representable) surrogate for each (real
or conceptual) object “in the world”. As formalized in the
IF0 model, there is an implicit, essentially “God-given” as-
sociation between surrogates and objects in the world, which
is independent of all databases instances. For example,
surrogates pr , pz, and pa of type person might be associ-
ated with the persons named Joe, Mary and Sue (respec-
tively). In this case, the relations { (pl , ‘Joe’), (pz, ‘Mary’)}
and ((~2, ‘Joe’), (ps, ‘Mary’)} are distinct and in no way
equivalent. Of course, in most implementations of seman-
tic models the surrogates are created “on the fly”, and so
the association of surrogates to values (and implicitly, to ob-
jects in the world) is effectively made at the time of instance
creation and/or extension.

The notion of explicit object identity first arose in
Smalltalk- [GR83], and was discussed in the context of
databases in [KCSG]. The first theoretical database model to
incorporate explicit object identifiers was LDM [KV84], this
in turn significantly influenced the development of the model
of IQL. Under this approach, OIDs are associated with ob-
jects “in the world” only in the context of a particular in-
stance. Thus, if or, 02, and 0s are OIDs, then the relation
RI = {(or, ‘Joe’), (02, ‘Mary’)} could be used to associate 01
with the person named Joe and 02 with the person named
Mary. Also, the relation R2 = ((02, ‘Joe’), (03, ‘Mary)} could
be used to associate 02 and 0s with Joe and Mary, respec-
tively. Under the semantics of explicit OIDs, RI and R2
are (in the absence of other data) interchangable, and thus
viewed as equivalent. As a result, the formal semantics as-
sociated with explicit OIDs reflects the realities of database
implementations more accurately than the formal semantics
associated with IFO.

The formal definition of instance given now, which ex-
tends the direction. taken in [AK89], reflects the fact that
the only information held by OIDs is their interconnection
with each other and with values. Speaking intuitively, an
“instance” will be an equivalence class of “pre-instances”
under the equivalence relation which permits shuffling of the
OIDs used.

Notation: We assume an infinite set 0-dom of object
identifiers (OIDs), and a disjoint set V-dom of values. (V-
dom is usually partitioned further, into integers, strings,
etc.; we largely ignore those details in this abstract).

Definition: Let S = (V, E) be an IFO- schema. A pre-
instance of S is a function I with domain VU E.-,tt U Em-,tt

460

such that?

1. for each w E vVol, Z[v] = V-dom. (In practice, Z[v]
need not be specified for TV E V,,l.)

2. for each 21 E Kbs, Z[v] Et’” 0-dom; and for each
w, Y’ E xbs with 2, # v’, Z[v] n Z[v’] = 0.

3. for each p E Sub and (p, 9’) E EISA, Z[p] C_ Z[q].

4. for each r E V,,, with components pl, . . . , p,, (in that
order), Z[r] cfin IIy=‘E,Z[p;].

5. for each f E E,-,rt with source v and target v’, Z[f] is
a partial function from Z[v] to Z[v’].

6. for each f E E,-,tt with source w and target u’, Z[f is
a total function from Z[v] to Prin(ZIJl).

Constraints can be added to make some of the single-valued
attributes total.

Following [AK891 we have:

Definition: Let S = (V, E) be an IFO- schema. Two
pre-instances Z,Z’ of S are OZD-equivalent (-01~) if there
is a permutation u on 0-dom such that (extending u to
pre-instances in the natural fashion) a(Z) = I’. The OID-
equivalence class of a pre-instance Z is denoted by [I].

Finally,

Deflnition: Let S = (V, E) be an IFO- schema. An
instance of S is an equivalence class of pre-instances under
OID-equivalence.

In general, we identify an instance I by [I] where Z is
some pre-instance in I. Mappings from instances of a schema
S to instances of a schema T are typically specified in terms
of mappings from pre-instances over S to pre-instances over
T, in this case it must be verified that the specification
is well-defined, i.e., that it is independent of the represen-
tative pre-instance used. (Although using a different for-
malism, this sentiment is included in the definition of ‘db-
transformation’ in [AK89].)
Relational simulations: The syntax of ILOG exploits
the natural correspondence between object-based schemas
(in which sets are not “first-class citizens”) with relational
schemas. Briefly, the relational simulation (Rs, Cs) of an
IFO- schema S is a constrained schema, where Rs asso-
ciates a unary relation to each abstract and subtype node; an
n-ary relation to each aggregation node of width n; and re-
lations of appropriate arit,y to each single- and multi-valued
attribute edge. Functional dependencies are included in Cs
for the single-valued attribute edges; inclusion dependen-
cies are included for each ISA edge, to restrict the ranges
of attribute and component edges, and to enforce totalness
constraints if they are present: and disjointness dependen-
cies are included to ensure the separation of sets assigned to
abstract types. (This is similar t.o the relational simulation
of IRIS schemas described in [LV87].)

In this context of relational simulations of object-based
schemas, we again define non-standard notions of pre-
instance and instance for (constrained) relational schemas.
We again use the disjoint set.s 0-dom and V-dom. A pre-
instance of schema D (constrained schema (D, C)) is an as-
signment of a relation (over O-don1 U V-dam) t,o each

3,Y Cf’” Y denotes lhat S is a finite subset of I’. P”“(X)
denotes-the family of all finite subs&s of X.

relation name in D, (which satisfies all of the dependencies
in C). An instance is an equivalence class of preinstances
under OID-equivalence. (Thus, the conventional notion of
‘instance’ is termed ‘pre-instance’ in this context.)

5 Syntax and semantics of
IL0 G languages

In this section, we will present a formal definition of the syn-
tax of the whole spectrum of ILOG variants ranging from
the most restricted class, nonrecursive ILOG, to the most
general class, stratified ILOG’; give a semantics of ILOG
using Skolem functors essentially in the spirit of O-logic, as
refined by ‘O-logic revisited’ and C-logic; and at the end
of the section briefly introduce ILOG*[HWWSO], an imple-
mented variant of ILOG.

5.1 ILOG’: syntax

In this section, we first give the syntax of ILOG’; this sub
sumes the syntax of all the languages of our interest. Then,
we will give the subclasses of ILOG’ along the two orthogo-
nal dimensions: negation and recursion. Along the negation
dimension, we will present two positions: no negation and
stratified negation. As for the recursion dimension, we will
consider three positions: nonrecursive, weakly recursive and
fully recursive. Hence, the combination of these subclasses
yields six sublanguages as a whole (see Figure 2.)

DeAnition: (ZLOG’) An inuention atom is an expression
of the form R(*, tl , . . . , t,,,) where R is a relation name with
o(R) = m + 1 (m 1 0), * is a special symbol called the in-
vention symbol and the ti (1 5 i < m) are terms. In ILOG’,
a rule is an expression of the form A + L1, . . . , L, where
the body LI, . . . , L, (n 2 1) is a sequence (viewed as a con-
junction) of (positive or negative) literals (possibly including
equality literals), and the head A is an equality-free atom
(possibly involving invention). A rule is a non-invention
(invention, resp.) rule if the head is a non-invention atom
(invention atom, resp.). A program is a finite set of rules
with a restriction that no relation name can appear in ihe
head of both a non-invention rule and an invention rule.’ A
relation name appearing in the head of an invention rule is
an invention relation name.

The following notion of range-restricted ILOG’ rule is
a straightforward extension of the one for datalog’: An
ILOG’ rule is range-restricted if each variable occurring in
the head and each variable occurring in a negated atom
(this includes # literals) in the body also occurs in a pos-
itive equality-free atom in the body. We claim the major-
ity of ILOG’ programs which appear in practice are range-
restricted. Therefore, hereafter throughout the paper, we
consider only range-restricted ILOG’ rules.

An ILOG’ program P with source S and target T,
(P, S, T), can also be defined in a manner analogous to the
case of datalog’.

41t is easy to verify that this restriction does not cause any
loss of expressive power.

461

\Ve now define the sublanguages of ILOG’. The first,
dimension to be explored is that of negation. The two posi-
tions along this dimension, no negation and stratified nega-
tion, correspond exactly to datalog and stratified datalog’,
respectively. Thus, formal definit,ions of these sublanguages
are omitted here. Since stratified ILOG’ is the most gen-
eral class in this dimension, we use ILOG” to mean stratified
ILOG’ in the sequel.

We now consider the second dimension: recursion. Fully
recursive ILOG is exactly the same as ILOG(hence
we usually omit the term fully recursive. The definition of
non-recursive ILOG is analogous to that of datalog(
and is omitted. Intuitively, an ILOG program is weakly
recursive if it is free of recursions through OID creation.
We will use nrecILOGf’) and wrecILO&‘) to denote non-
recursive and weakly recursive ILOG(respectively.

Definition: (weakly recursive ILOG’ programs) Given an
ILOG’ program P, let P’ an equivalent program resulting
from the removal of equality atoms from P (in some pre-
determined canonical fashion; ‘#’ is permitted). Consider
pairs (R, i) for each relation name R in P and each posi-
tion i E [l..&(R)]. We say that (R, i) *-derives (Q,j) in P,
denoted (R,i) - (Q,i), as follows:

(R, 4 - (Q, j) if there is a rule in P’ of the form
Q(sI~...,s~,...,s~) + R(tl,,.., ti ,..., tm) ,...
where 1, = s, is a variable;

(R,i) - (Q,i + 1) if there is a rule in P’ of the form
Q(*,ar.. .,sJ ,..., sn) + R(h ,..., ,,..., tm) ,... t
where ti = s3 is a variable; and

(Q, j + 1) - (Q, 1) if there is a rule in P’ of the form
Q(*,sl,... ,sj)...) s,)c... where s, is a variable.

We define A to be the transitive closure (not the reflexive
transitive closure) of -. An ILOG program P is weakly
recursive if it does not contain any invention relation name

R such that (R, 1) k+ (R, 1).

It is easy to see that every non-recursive ILOG’ is weakly
recursive.

5.2 Declarative semantics of ILOG
programs using Skolem functors

In this subsection we describe the declarative semantics as-
sociated with ILOG programs. We distinguish two con-
texts: schema translation, where there is no relationship be-
tween the OIDs of the source instance and the OIDs of the
target instance; and schema augmentation, where the target
(pre-)instance is permitted to refer directly to OIDs of the
source (pre-)instance. We begin by focusing exclusively on
schema translation, and then modify the semantics for the
case of augmentation.

Suppose now that (P, S, T) is an ILOG program, con-
sidered in the context of schema translation, and where S
and T are relational schema-s. In principle, the semantics of
P defined here will be a function from instances of S to in-
stances of T. This function might be partial because P may
call for the creation of an infinite instance (or in other words,
the computation associated with P may not terminate).

The function defined by P will be specified in terms
of its behavior on pre-instances of S. (This is compatible

with most implementations, which indeed store a single pre-
instance of an object-based database.) This function is oh
tained through a three-step process, briefly outlined now:

1. construct the ‘Skolemization’ Skol(P) of P by intro-
ducing Skolem functors;

2. for an instance I = [I] of S, compute” Skol(P)(I) using
conventional (or stratified) logic programming, to ob-
tain a ‘Skolemized’ pre-instance, that is, a pre-instance
in which Skolem functors may occur;

3. compute5 the set MkInstTr(Skol(P)(I)) of all pre-
instances J obtained from Skol(P)(I) by mapping
each non-value term of Skol(P)(I) to a distinct (non-
deterministically chosen) OID. As we shall see, this set
of pre-instances is an instance of T, and is the value
assigned to P(1).

If in step (2) above Skol(P)(I) yields an infinite set, then
P(1) is undefined. (If constraints are associated with T, e.g.,
if it is the relational simulation of an IFO- schema, then
the output P(1) may violate some of those constraints. We
defer consideration of this issue until Section 8; until then we
assume that the target relational schema has no associated
constraints.)

We now consider step (1) in more detail. Following the
intuition described in Section 2, we have:

Definition: Let P be an ILOG program. The Skolem-
izotion of P, denoted SkoZ(P) is obtained by the following
transformation from P

(a) For each n-ary relation name R (n 2 1) which appears
in the head of an invention rule in P, introduce a new

(n - I)-ary functor fR (the Skolem functor of R).

(b) Replace each head of an invention rule in P having the
form R(*, 21,. . . ,z,,-l) by
R(~R(z.I,...,z~-I),xI,...,x~-I).

Example 5.1: We show an ILOG’ program P, and
Skol(P) below it.

R(*, 2, Y) - U(x, Y)
R(*, x,x) + V(x, Yh -W(y)
V(*, x) + W(x), +J(x, Y)

WR(X, y), 2, Y) - UC?, Y)

WR(X, x),x, ~1 c V(z, ~1, -W(y)

WV(X), x) + W(x), +J(x, Y)

0

Note that if P is in ILOG’, then SkoZ(P) is stratified. To
describe step (2), we informally introduce: A Skolem term
is a term in which at least one Skolem functor occurs. A
Skolemizedpre-instanceof a relational schema S is like a pre-
instance, except that Skolem terms may occur (in addition
to values and OIDs). For an instance I = [I] of S, Skol(P)(I)
is a Skolemized pre-instance over T.

Step (3) of the process is intended to yield the instance of
T which is identified by Skol(P)(I). In particular, all OIDs

5We use the term ‘compute’ for readability, but this can be
specified declaratively.

462

and Skolem terms occurring in Skol(P)(Z) are to be viewed
as undistinguished OIDs - relationships of Skolem terms and
their components are to be ignored (removed), and relation-
ships of OIDs in Skol(P)(Z) and Z are to be ignored. This
is accomplished formally by the function MkZnstTr:

Definition: IlrikZnstT7 is the mapping from Skolemized
pre-instances to sets of pre-instances defined so that for each
Skolemized pre-instance I, MlcZnsU’r(Z) = {p(Z) 1 p :O-
dom U (Skolem terms in I) --, 0-dom is a l-l mapping}.

It is straightforward to verify that:

Proposition 5.2: Let (P, S, T) be an ILOG program.

(a) If Z is a pre-instance of S then Skol(P)(Z) is infinite or
MlcZnstTr(Skol(P)(Z)) is an instance of T; and

(b) If Z NOID I’ then both Skol(P)(Z) and SkoZ(P)(Z’) are
infinite, or MkZnstTr(Skol(P)(Z)) =
MkZnstTr(Skol(P)(Z’)). Thus, the mapping I = [I] c-,
MkZnstTr(Skol(P)(Z)) is well-defined.

In view of this proposition, we can safely define the se-
mantics of (P, S, T) (in the context of schema translation) by
P(1) = MkZnstTr(Skol(P)(I)) if Skol(P)(Z) is finite, and
undefined otherwise, where Z is some (any) pre-instance in
I.

Remark 5.3: In the formal semantics just established for
ILOG in the context of schema translation, OIDs in the
target pre-instance “lose” their association with the source
pre-instance. In practice, it may be appropriate to discour-
age programs for which OIDs (outside of Skolem terms) in
the target pre-instance might overlap with the source pre-
instance OIDs, because the true semantics may not cor-
respond to the programmer’s intended semantics. On the
other hand, permitting this kind of overlap can simplify
ILOG programs. For example, a program equivalent to
that of Example 2.2 can be obtained by replacing the rules
there for int-ra-agency, ra-agency, and audits-of by

m-agency(a) + agency(a), int-a&-un(u, a, s),
required-audit(u)

audits-o j(a, u) + agency(a), int-au&un(u, a, s),
required-audit(u)

a

We now turn to the use of ILOG for schema augmen-
tation, i.e., for defining derived data. Again, suppose that
(P,S,T) is an ILOG program, where S and T are rela-
tional schemas. Suppose further that Z is a pre-instance of
S which is currently stored by some implementation. The
result of applying P to Z may include OIDs from I, and this
association should not be destroyed as it was in the context
of schema translation. For this reason, the third step listed
above for the semantics of schema t,ranslat.ion is modified in
the context of schema augmentation, and a fourth is added:

3’. compute5 the set Il4kZnstAvg(Z, Sbol(P)(Z)) of all pre-
instances .7 obtained from Skol(P)(Z) by leaving each
OID in Z fixed, and mapping each non-atomic term
of Skol(P)(Z) to a distinct, new (non-deterministically
chosen) OID.

4. Nondeterministically choose
J E MkZnstAug(Z, Skol(P)(Z)) to serve aa the output
of the computation.

To provide more detail, we first (informally) establish
the following notation: If S and T are disjoint relational
schemas, then S @ T denotes their union. If Z and J are
pre-instances of S and T, respectively, then Z @ J denotes
the “union” of Z and J, a pre-instance over S $ T. Also,
Obj(Z) denotes the set of OIDs which occur in I.

Suppose now that a pre-instance I is fixed. As before,
the semantics of P on Z is given in three steps. The first
two are as before, yielding the computation of Skol(P)(I),
which is (infinite or) a Skolemized pre-instance of T. This
is transformed into a set of pre-instances using the function:

Definition: MkInstAug maps pairs (Z, J), where
Z is a pre-instance of S and J is a Skolemized pre-
instance of T, into sets of pre-instances of T as follows:
MkInstAug(I, J) = {p(J) 1 p :0-dom U (Skolem terms
in J) 4 0-dom is l-l and leaves Obj(I) fixed }.

It is straightforward to verify that:

Proposition 5.4: Let (P, S, T) be an ILOG program.

(4

@I

If Z is a pre-instance of S then Skol(P)(Z) is infi-
nite or MkInstAug(Z, Skol(P)(I)) is an equivalence
class of pre-instances under the equivalence relation
-OIDIObJ(Q], where for each X c 0-dom, J wolD[x]
J’ iff there is some permutation u on 0-dom which
leaves X fixed such that J’ = u(J).
Let I be an instance of S. Then SkoZ(P)(Z) is infinite
for some Z E I iff Skol(P)(I) is infinite for each Z E I.
Furthermore, if Skol(P)(I) is finite, then the set (I @
J 1 Z E I and J E MkInstAug(I,Skol(P)(I))} is an
instance of S @ T.

In view of this proposition, we can safely define the
semantics P,,, of (P, S,T) in the context of schema aug-
mentation so that for each pre-instance Z of S, P,,,(I) =
MkInstAug(I, SEol(P)(I)) if Skol(P)(I) is finite, and un-
defined otherwise. In practice, application of P to a pre-
instance Z in the context of schema augmentation will yield
the pre-instance Z @ J, where J is a non-deterministically
chosen member of P,,,(I).

Remark 5.5: A problem arises in the object-based context
if derived data is to be (re-)computed as needed rather than
comput,ed once and stored. Specifically, under the semantics
just established, the OIDs used for newly created objects in
the derived data may be different for each re-computation.
To overcome this problem in practice, a regime can be es-
tablished which assigns OIDs to non-ground Skolem terms
in a systematic manner. 0

5.3 ILOG*: an implemented ILOG
laiiguage

The research reported in this paper occurred in parallel with
the development and prototype implementation of another
ILOG variant, called ILOG” [HWWSO]. This practically
motivated language will be used in connection with a larger
project supporting database sharing [WHW89].

463

For the purposes of this paper, we view ILOG* as nre-
cILOG augmented wit,h t,he ability t,o use t,he full rela-
tional calculus on source inst,ances. (ILOG* as described in
[HWWSO] is actually stronger, because it also has the ability
to use external functions defined by LISP subroutines. This
is because the ILOG* prototype is built on the database
programming langauge AP5 [Coh86. Coh89], which is an
extension of Common Lisp. There are also some essent,ially
syntactic differences between t,he ILOG’ described here and
described in [HWWSO].)

Formally, an ILOG* rule from relational source schema
S to relational target schema T has the form A + L1, . . . , L,
where A is an atom (possibly with invention), and where
each Li is either a positive atom or a relational calculus for-
mula over S with 0 or more free variables. An ILOG* pro-
gram is a set of ILOG* rules which is non-recursive. The se-
mantics of ILOG* programs is given in the natural, bottom-
up fashion. As shown in Theorem 7.3, ILOG* has expressive
power equivalent to that of nrecILOG’.

6 Explicit OID creation seman-
tics of ILOG

In this section, we will give the definition of an explicit
OID creation semantics for ILOG programs essentially in
the spirit of detTL, detDL and IQL (a comparison of this
semantics to IQL semantics is presented at the end of Sec-
tion 7), and show that this semantics is equivalent to the
Skolem functor semantics defined in the previous section.
We focus here on the case of schema translation; analogous
results hold for schema augmentation.

Deflnition: (witness) Let P be an ILOG program, and Z
a pre-instance of s&(P). Also, let R be an n-ary invention
relation name in P. A tuple a’ = (al,. . . , a,-~) is a witness

(i.e.
I if

1.

2.

3.

witnessing the need for a new OID) for h under P on

there exists an invention rule r of the form
R(*,zl,... ,z+I) + Ll,. . . , L, in P;

there exists a ground substitution 0 such that Z b LjB
for j E [l,. . . , m] and 0(zi) = ai for i E [l,. . . , n - I];

and

there is no way to extend B (by assigning a mem-
ber of 0-dom to the *-symbol) such that Z b
R(*, Zl,. . . ,z,-,)e.

Deflnition: (semantics of ILOG programs using direct
OID semantics) For an ILOG program P, ~JJ is a binary re-
lation on pre-instances of s&(P). The pair of pre-instances
(Z,J)isinY?pif: J=lu{ABIA+L1,...,L,isinP;Ais
not an invention at,om; and 0 is a ground substitution such
that Z + L,e for i E [l, . . ,m]} u{R(o~,a,al,. . .,a,-~) 1 R
is an invention relation name; u’ = (al, . . . , a,-1) is a witness
for R under P on I; and OR,3 is a new, distinct OID for each
invention relation name R and witness tuple ii for R under
P on Z } Given a program P, the jizpoint operator f’~ ‘1 w
is a binary relation on pre-instances defined as follows: The
pair (I, J) of pre-instances of s&(P) is in i% t w if: (1)
there exists a sequence Z = lo, II,. . . of instances of s&(P)

such t,hat for each i (0 5 i < w), the pair (Z,,Zi+l) is in ?p;
(2) J = Ui<,lt; and (3) J is finite.

The explicit OID creation semantics of an ILOG program
(P, S, T) is defined as a mapping B from pre-instances of S to
sets of pre-instances of T such that for a given pre-instance
Z of S, p(Z) is undefined if {J 1 (I, J) E ?l~ t w} is empty,
and is6 {J[T] 1 (I, J) E -ib t w} otherwise. (Intuitively,
p(Z) is undefined if some (any) “computation” of pp on Z
is nonterminating.)

This semantics is extended to ILOG’ in the natural fash-
ion. It. is now straightforward to show:

Proposition 6.1: Let (P,S,T) be an ILOG program
with source and target schemas.

(a) If Z is a pre-instance of S then k(Z) is undefined, or is
an instance of T; and

(b) For any two pre-instances II and Zz of S, if ZI ~01~ Zz,
then both P(Zl) and p(Z,) are undefined, or I =

P(I2).

Proposition 6.1, as in the case of Skolem functor seman-
tics in the previous section, permits us to view P as a map-
ping from instances to instances: For an instance I of S, P(I)
is the instance on T such that P(1) = [.7] where J E P(Z)
and Z is some (any) pre-instance of S such that I = [I] if
p(Z) is defined; j(I) is undefined otherwise. The following
theorem establishes, in the context of schema translation,
the equivalence of the two semantics of ILOG(namely
Skolem functor semantics defined in the pievious section and
the explict OID creation semantics defined above.

Theorem 6.2: Let (P, S, T) be an ILOG program with
source and target schemas. For any instance I of S, both
P(1) and j(I) are undefined, or P(1) = P(1).

An analogous result can be obtained in the context of
schema augmentation.

‘i Expressive power
This section establishes a number of results concerning the
relative expressive power and complexity of the ILOG lan-
guages. The weakest of the languages is nrecILOG, which
is closely related to the conjunctive queries, but more suc-
cinct. The strongest of the languages is ILOG’ - similar
to IQL this langauge can express all computable database
translations up to “copy removal”. A key element of the de-
velopment is a result specifying normal forms for nrecILOG
and wrecILOG’ programs. The section also analyzes some
salient. differences between ILOG and I&L, and briefly
compares some more practical schema translation languages
with ILOG(

We begin by presenting normal forms for nrecILOG and
wrecILOG’ programs. Intuitively, the proposition states
these programs can be rewritten so that (i) there is no “cas-
cading” of OID creation, and (ii) OID creation can be “de-
layed” until the last stage of the “computation”. To define

61f schema Sz is contained in schema S1 and I< is a pre-
instance of 4, then K[Sz] is the restriction of K to S2.

464

Figure 2: Relative expressivity of ILOG languages

the notion of cascading formally, given an ILOG program
P, write R =+ R’ if there is a rule in P with head relation
name R’ and relation name R occurring positively in the
body; and let $. denote the transitive closure of +. Then
P has cascading of OID creation if there is a pair R, R’ of

invention relation names such that R $ R’. We now have:

Proposition 7.1: (Normal Forms)

1. IfP

(4

(b)

2. IfP

(4

is a nrecILOG program then:

there is a nonrecursive logic program Lp which is
equivalent to Skol(P) such that the body of each
rule contains only source relation names.

there is a nrecILOG program P’ equivalent to P
which does not have cascading of OID creation.

is a wrecILOG’ program then:

there is a logic’ program Lp equivalent to
Skol(P) such that if a functor occurs in a literal
A of Lp with relation name R, then R does not
occur in any rule body; and for at least one strat-
ification of Lp, all functors occur in the heads of
rules in the last stratum of Lp.

(b) there is a wrecILOG’ program P’ equivalent to
P which does not have cascading of OID creation;
and such that for at least one stratification of P’,
all invention relation names occur in the last stra-
tum of P’.

Proof: (Sketch) The proofs re!y,on the fact that in the
absence of *-recursion, an ILOG<” program can simulate
a Skolem term f(al, . . ,a,,) with the tuple (al,. . . ,a,,).
(This can be generalized to Skolem terms of arbitrary fixed
depths.) Using this, the argument shows that cascading of
OID creation can be eliminated, and that OID creation can
be “pushed” through the strata of a wrecILOG’ program.

The normal forms of t,he above proposition can be ex-
ponential in the size of the original ILOG program. The
normal form proposition and results of [Var8?] imply:

Proposition 7.2: The data complexity of wrecILOG is
NLOGSPACE, and of wrecILOG’ is between NLOGSPACE
and PTIME. The output Skol(P)(I) of a wrecILOG’ pro-
gram on input pre-instance I can be computed in PTIME
(in terms of the size of I).

We now present t,he main t,heoret.ical result of the section.
We say that an ILOG language L is (properly) subsumed by

language L’ (denoted using C, E) if each mapping realized
by a program in L is also realized by a program in L’. L and
L’ are equivalent (denoted G) if L C L’ and L’ 5 L. The
results of the following theorem are summarized in Figure
2.

Theorem 7.3: If (L, L’) is an edge in the graph of Figure
2 then L c L’; and if L, L’ are two languages which are not
comparable in the figure, then their expressive powers are
incomparable. Finally, ILOG* z nrecILOG’.

We now have a sequence of results for ILOG’ showing
that it comes “close” to specifying all computable database
translations. These results are similar to results for IQL
presented in [AK89]. Essentially in the spirit of that paper,
we have’:

Deflnition: Let S and T be IFO- schemas. A mapping
from instances of S to instances of T is a database translation
if it is (a) Turing computable (under some fixed encoding
scheme) and (b) generic (in the sense of [CH80, Hu186]).

We now informally introduce a notion which is essen-
tially the same as ‘schema with copies’ from [AK89], but
relativized to IFO-. Intuitively, a copy-version of an in-
stance I of S is an instance J = [fl over a new schema
S+ , where .7 contains one or more OID-equivalent copies of
pre-instances of I. The schema St is augmented by a single
new abstract vertex Uindet, which is used to distinguish the
different copies of a copy version. (The. formal definition is
omitted for space reasons.) Again in the spirit of [AKBS],
we have:

Definition: Let F be a database translation from S to
T. Then G from S to Tt computes F modulo copy removal
if for each instance I of S, (i) G(1) is undefined if F(I) is
undefined, and (ii) G(1) is a copy-version of F(1) if F(1) is
defined.

We can now state the following analog of a result for IQL;
a key element of the proof is demonstrating that ILOG’
has the power to create an arbitrary number of OIDs while
avoiding nontermination.

Theorem 7.4: ILOG’ can express all computable
database translations modulo copy removal.

As with IQL, the above theorem easily implies that
ILOG’ can specify all database translations whose range is
contained in any of the following sets: (a) {YES, NO}; (b)
instances in which no OIDs occur; (c) instances in which no
values occur. (Another recent logic-based langauge which
can express all computable queries is IDLOG [SheSO]. This
language does not involve OIDs, but the presence of integers
and addition enables the “creation” of an arbitrary amount
of “work-space”.)

It was recently shown that in the absence of copy-
removal, neither IQL nor ILOG’ express all computable
queries [AK90]. Furthermore, as shown in the next ex-
ample, in the absence of copy-removal ILOG’ is strictly

‘The definition here appears to be simpler than that of [AK89];
some intricacy here is hidden in t.he definition of ‘instance’ as
equivalence class of pre-instances.

465

weaker than IQL, even when restricted to input and out-
put not involving sets. This difference in t,he power of the
two languages can be traced to t.he fact that IQL supports a
“grouping” construct (as in LDL [NTPS]) while ILOG’ does
not.

Example 7.8: Consider the IFO- schema S = (V, E)
where there is one abstract vertex z1,, one value vertex uv,
and one multi-valued attribute edge f from tea to vv. For
a pre-instance Z of S define the equivalence relation -* 011

Z[u,] by: o ~1 o’ iff Z[f(o) = Z[f(o’). Let F be the com-
putable database translation from S to S which has the
following behavior: F([Z]) = [J] where for each equivalence
class 0 = [o]-, there is exactly one element po E .Z[V~],
and .Z[f(po) = Z[f](o). Intuitively, F collapses OIDs of [I]
which are equivalent under --I.

To show that there is no ILOG’ program that computes
F, suppose for the sake of contradiction that P does. Let
a, b, c, d be values which do not occur in P. Consider now
the input pre-instances Z, of S, described here by enumer-
ating the pairs in RZ[Z] (where a, b, c, d are values, and z,, y,
are OIDs), where: I, = {(z,,a),(~,,b),(y~,c),(y,,d) I i E
[l..n]}. Using the fact that all OIDs created by P on inputs
[InI have a representation using Skolem functors, it can be
shown that P does not compute F.

In contrast, IQL can compute F through the use of the
grouping construct. In particular, IQL can use grouping to
form a collection of all sets Z[f(o) for o E Z[t~a]. These
sets can in turn be used to create new OIDs, one for each
equivalence class OIDs in Z[v,]. 0

We now turn to comparing the semantics for OID cre-
ation in ILOG with those of IQL. Both languages pro-
vide an explicit mechanism to create new objects, based on
the existence of a tuple of already existing values and ob-
jects which satisfy certain conditions. IQL permits object
creation in different and possibly multiple columns of a re-
lation name, whereas ILOG permits object creation only in
the first column of selected relation names. This difference
is largely cosmetic.

The semantics of an IQL program is given through an
iterative procedure, namely “firing” the set of rules of the
program in parallel. This procedure is closely related to the
use of the cumulative powers of the immediate consequence
operator to construct least fixpoints, but with an important
difference. In both ILOG and IQL, if an object is created
for a given rule and tuple at some point, then new objects
will not be created for that rule and tuple in subsequent
iterations. In the first iteration for which a tuple newly
satisfies some rule for a relation name R, ILOG will create
exactly one new OID for that R and that tuple. In contrast,
IQL may create more than one new OID for R and the tuple
- it creates a new OID for each rule defining R for which
this tuple is satisified. This feature of IQL semantics and its
implications are explored in the following example.

Example 7.6: We introduce a variant of the ILOG seman-
tics, called ILOG’ semantics, which corresponds to a funda-
mental aspect of the IQL semantics. We show that without
negation, ILOG’ semantics is fundamentally non-monotonic
and strictly richer than ILOG semantics.

Recall the explicit OID creation semantics for ILOG pro-
grams given in Section 6 above. The ILOG’ semantics is
given in the same fashion, with the following difference: In
an iteration starting with pre-instance I, a new OID is cre-
ated for each rule T with head p(*, ~1,. . . , z,,) and tuple
(al,. . . , a,) such that (a) the body of T is satisfied by some
assignment @ with e(z;) = a, for i E [l..n], and (b) there is
no b such that p(b, al, . . . , a,) is already true in I. The dif-
ference between this and the ILOG semantics is that here, a
new OID is created for each rule (under certain conditions),
whereas in ILOG a new OID is created for each relation
name (under certain conditions).

It is relatively straightforward to show that each ILOG
program can be simulated by an ILOG’ program. We now
exhibit an ILOG’ program P which cannot be simulated by
an ILOG program. In this program, $ and 0 are constants,
R and R’ are source relations, and new is the target relation:

Rz(z, z) - R(z, z) R;(z,z) + R’(z,z)
RI(~, Y) + R(z, Y) Ritz, Y) - R’(z, Y)
Rz(z,;) + RI(~,Y),RI(Y,z) R;(z,t) - R;(z,y),R:(y,z)
new(*) + R2($,Q) new(*) - R;(% @)

Let Z = {R($, l), R(1, O), R’(S, l), R’(l,O)} and J = Z U

{ R($, a)}. Under ILOG’ semantics, P on Z creates exactly
two new OIDs (in the third iteration of parallel rule exe-
cution) while P on .Z creates exactly one new OID (in the
second iteration). Since Z C J, this implies that ILOG’
is essentially non-monotonic. Because. ILOG semantics is
rooted in logic programming, which is monotonic, no ILOG
program (without negation) can simulate the behavior of P.
cl

We conclude this section with a brief comparison of sub-
languages of ILOG with four more pragmatically moti-
vated data manipulation languages in the literature; more
details can be found in [HY91]. The first is the language
for “superview construction” [BM81, Mot87]: this language
can be simulated in its entirety by nrecILOG. The three
other Iangauges are: the transformation language of Multi-
base system [DH84], the derivation operators of the Feder-
ated approach [HM85], and OOAlgebra [Day89]. Each of
these incorporates set difference, and so cannot be simu-
lated by nrecILOG. Each also includes other features, such
as arithmetic operators or multisets, which fall outside of the
scope of the ILOG languages as presented here. However,
the “core” of each of these three languages can be simulated
by nrecILOG’.

8 Testing validity of transla-
t ions

An ILOG program is valid if it maps instances of the
source schema to instances of the target schema. The map-
ping may be invalid because the assigned value of a single-
valued attribute in the target may not be single-valued, or
because a subset or disjointness relationship required by the
target schema is not satisfied. The notion of validity can
also be extended to encompass totalness and other integrity
constraints on the source and/or target.

466

In this section we study the problem of testing validity at
compile time of ILOG with IFO- schemas. It turns out
that several validity issues (specifically, functional depen-
dency, subset relationships, and disjointness relationships)
are decidable for nrecILOG programs (possibly involving
‘#‘). These result,s are also true if totalness constraints are
permitted on single-valued attributes of the source and/or
target schemes, provided that ‘#’ is not permitted. (The
case with both totalness constraints and ‘#’ remains open.)
On the other hand, essentially all validity issues are unde-
cidable for nrecILOG‘ and wrecILOG.

We begin with formal definitions, for both the object-
based and relational contexts.

Definition: Let S and T be IFO- schemas, possibly with
constraints. A mapping F. on instances of S is valid if for
each instance I of S, F(1) is an instance of T or is undefined.
If P is an ILOG program from S to T, then P is valid if
for each pre-instance I of S, P(I) is a pre-instance of T or
is undefined (because Sliol(P)(I) is infinite).

In the spirit of [AH88], the notion of validity can essen-
tially be recast in the context of the relational model using
the notion of “implication problems”:

@ - Q Implication Problem for language A: Let Q,Q
be classes of relational dependencies and A be a relational
language. Given a program (P, S, T) in language A, C C @
over S and I’ E 9 over T, is it true that: for all I over S,
I + C and P(I) defined implies P(I) b r?

By generalizing techniques and results from [Klu80]
([AH88]) we obtain:

Theorem 8.1: The following problems are undecidable for
nrecILOG’ (wrecILOG) programs:

(a) 0-FD implication (FD-FD implication)

(b) 0-IND implication (O-IND implication)

(c) 0-disjointness implication (FD-disjointness implica-
tion)

Furthermore, for both languages, validity with respect to
IFO- schemas as source and target is undecidable.

We turn now to decidability results for nrecILOG pro-
grams. The first result uses the Normal Form proposition
to generalize results of [KP82].

Theorem 8.2: The FD-FD implication problem is decid-
able for nrecILOG (possibly with ‘#‘). The complexity of
this problem is at least PSPACE, and is bounded above by
EXPTIME.

Because of the close relationship between nrecILOG pro-
grams and conjunctive queries, there is a close relation-
ship between a-IND implication problems for nrecILOG and
testing containment between conjunct.ive queries applied in
the context of dependencies from @. Unfortunately, (FD
u IND)-IND implication is in general undecidable for con-
junctive queries, since logical implicat.ion of an IND by a
set of FDs and INDs is undecidable [Mit.83]. Posit,ive re-
sults can be obt.ained, however, if we restrict attemion t,o
nrecILOG programs whose source and target are (relational
simulations of) IFO- schemas. In particular, by generaliz-
ing tableaux chasing techniques and results from [JK84] we
have:

Theorem 8.3: It is decidable, given an nrecILOG program
P from IFO- source S to IFO- target T, whether P(1) is
an instance of T for each instance I of S. Furthermore,
this result continues to hold if some single-valued attributes
of source and/or target are required to be total but ‘f’ is
not permitted. The complexity of these problems is at least
PSPACE and is bounded above by EXPSPACE.

Acknowledgements
The authors are grateful to (Serge Abiteboul and Paris
Kanellakis) [Surjatini Widjojo and Dave Wile] for numer-
ous provocative discussions about (theoretical) [practical]
aspects of languages for OIDs.

References
[AB86] S. Abiteboul and N. Bidoit. Nonfirst normal form

relations: An algebra allowing data restructuring. J.
Comput. Syst. Sci., 33:361-393, 1986.

[Abi89] Serge Abiteboul. Towards a deductive object-
oriented database language. In Proc. of First Intl. Conf.
on Deductive and Object-Oriented Databases, pages 419-
438, 1989.

[ABWSS] K. Apt, H. Blair, and A. Walker. Toward a theory
of declarative knowledge. In Proc. of Workshop on Foun-
dations of Deductive Databases and Logic Programming,
1986.

[AG88] S. Abiteboul and S. Grumbacli. COL: A logic-based
language for complex objects. In Advances in Database
Technology - EDBT ‘88. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1988.

[AH871 S. Abiteboul and R. Hull. IFO: A formal seman-
tic database model. ACM Trans. on Database Systems,
12(4):525-565, Dec. 1987.

[AH881 S. Abiteboul and R. Hull. Data functions, DATA-
LOG, and negation. In Proc. ACM SIGMOD Symp. on
the Management of Data, pages 143-153, 1988.

[AK891 S. Abiteboul and P. Kanellakis. Object identity as a
query language primitive. In Proc. ACM SIGMOD Symp.
on the Management of Data, pages 159-173, 1989.

[AK901 S. Abiteboul and P. Kanellakis. Private communi-
cation, 1990.

[Apt881 Krzysztof R. Apt. Introduction to logic program-
ming. Technical Report TR-87-35, (revised), Dept. of
Computer Science, Univ. of Texas at Austin, July 1988.
to appear in Handbook of Theoretical Computer Science.

[AV87] Serge Abiteboul and Victor Vianu. A transaction
language complete for database update and specification.
In Proc. ACM Symp. on Principles of Database Systems,
pages 260-268, 1987.

[AV88a] Serge Abiteboul and Victor Vianu. Datalog exten-
sions for database queries and updates. Technical Report
900, INRIA, Sept. 1988.

[AV88b] Serge Abiteboul and Victor Vianu. Procedural and
declarative database update languages. In Proc. ACM
Symp. on Principles of Database Systems, 1988.

[Bee891 Catriel Beeri. Formal models for object oriented
databases. In Proc. of First Intl. Conf. on Deductive and
Object-Oriented Databases, 1989.

467

[BMSl] P. Buneman and A. Metro. Constructing super-
views. In Proc. ACM SIGMOD Symp. on the Manage-
ment of Data, pages 56-64, 1981.

[CFP84] M.A. Casanova, R. Fagin, and C.H. Papadim-
itriou. Inclusion dependencies and their interaction with
functional dependencies. J. Comput. Syst. Sci., 28(1):29-
59, 1984.

[CHSO] Ashok Ii. Chandra and David Harel. Computable
queries for relational data bases. J. Comput. Syst. Sci.,
21(2):156-178, Oct. 1980.

[Che76] P.P. Chen. The entity-relationship model - toward
a unified view of data. ACM Trans. on Database Systems,
1(1):9-36, March 1976.

[CM771 A. K. Chandra and P. M. Merlin. Optimal imple-
mentation of conjunctive queries in relational data bases.
In Proc. ACM SIGACT Symp. on the Theory of Comput-
ing, pages 77-90, 1977.

[Coh86] Don Cohen. Programming by specification and an-
notation. In Proc. of AAAI, 1986.

[Coh89] Don Cohen. Compiling complex database transi-
tion triggers. In Proc. ACM SIGMOD Symp. on the Man-
agement of Data, pages 225-234, 1989.

[CW89] Weidong Chen and David S. Warren. C-Logic of
complex objects. In Proc. ACM Symp. on Principles of
Database Systems, pages 369-378, 1989.

(Day891 Umeshwar Dayal. Queries and views in an object-
oriented data model. In Proc. of Second Intl. Workshop on
Database Programming Languages, pages 80-102. Morgan
Kaufmann, Los Altos, CA, June 1989.

[DH84] U. Dayal and H.Y. Hwang. View definition and gen-
eralization for database integration in a multidatabase
system. IEEE Trans. on Software Engineering, SE-
10(6):628-644, 1984.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley, Read-
ing, MA, 1983.

[HI<871 R. Hull and R. King. Semantic database modeling:
Survey, applications, and research issues. ACM Comput-
ing Surveys, 19(3):201-260, September 1987.

[HM85] D. Heimbigner and D. McLeod. A federated ar-
chitecture for information management. ACM Trans. on
O&e Information Systems, 3(3):253-278, July 1985.

[Hu186] R. Hull. Relative information capacity of sim-
ple relational schemata. SIAM Journal of Computing,
15(3):856-886, August 1986.

[Hu189] R. Hull. Four views of complex objects: A sophis-
ticate’s introduction. In S. Abiteboul, P.C. Fischer, and
H.-J. Schek, editors, Nested Relations and Complex Ob-
jects in Databases, pages 87-116. Springer-Verlag LNCS
361, 1989.

[HWWSO] Richard Hull, Surjatini Widjojo, and Dave
Wile. Specificational approach to database transforma-
tion. Technical report, USC/Information Sciences Insti-
tute, February 1990.

[HY91] R. Hull and M. Yoshikawa. ILOG: Declarative Cre-
ation and Manipulation of Object Identifiers, 1991. in
preparation.

[Jac89] Dean Jacobs. A type system for algebraic database
programming languages. In Proc. of Second Intl. Work-
shop on Database Programming Languages, June 1989.

[JK84] D. S. Johnson and A. Klug. Testing containment of
conjunctive queries under functional and inclusion depen-
dencies. J. Comput. Syst. Sci., 28:167-189, 1984.

[KC861 S. Khoshafian and G. Copeland. Object identity. In
Proc. ACM Conj. on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 406-416, 1986.

[KluSO] A. Klug. Calculating constraints on relational ex-
pressions. ACM Trans. on Database Systems, 5(3):260-
290, September 1980.

[KP82] Anthony Klug and Rod Price. Determining view
dependencies using tableaux. ACM Trans. on Database
Systems, 7(3):361-380, Sept. 1982.

[I<V84] Gabriel M. Kuper and Moshe Y. Vardi. A new ap-
proach to database logic. In Proc. ACM Symp. on Prin-
ciples of Database Systems, pages 86-96, 1984.

[KW89] M. Kifer and James Wu. A logic for object-oriented
logic programming (Maier’s o-logic revisited). In Proc.
ACM Symp. on Principles of Database Systems, pages
379-393, 1989.

[Llo87] J. W. Lloyd. Foundations of Logic Programming
(Second Edition). Springer-Verlag, Berlin, 1987.

[LV87] Peter Lyngbaek and Victor Vianu. Mapping a se-
mantic database model to the relational model. In Proc.
ACM SIGMOD Symp. on the Management of Data, 1987.

[Mai86] D. Maier. A logic for objects. In Workshop on
Foundations of Deductive Databases and Logic Prograam-
ing, pages 6-26, Washington, D.C., August 1986.

[Mit83] J. C. Mitchell. The implication problem for func-
tional and inclusion dependencies. Information and Con-
trol, 56:154-175, 1983.

[Mot871 A. Motro. Superviews: Virtual integration of mul-
tiple databases. IEEE Transactions on Software Engi-
neering, SE-13(7), July 1987.

[NT891 S. Naqvi and S. Tsur. A Logical Langauge for Data
and Z<nowledge Bases. Computer Science Press, New
York, 1989.

[RKSSS] M. A. Roth, H. F. Korth, and A. Silberschatz.
Extended algebra and calculus for nested relational
databases. ACM Trans. on Database Systems, 13(4):389-
417, Dec. 1988.

[SheSO] Yeh-Heng Sheng. IDLOG: Extending the expressive
power of deductive database languages. In Proc. ACM
SIGMOD Symp. on the Management of Data, pages 54-
63, May 1990.

[ShiBl] D. Shipman. The functional model and the data
language DAPLEX. ACM Trans. on Database Systems,
6(1):140-173, 1981.

[Ul187] Jeffrey D. Ullman. Principles of Database and
Knowledgebase Systems. Computer Science Press, Po-
tomac, Maryland, 1987.

[Var82] Moshe Y. Vardi. The complexity of relational query
languages. In Proc. ACM SIGACT Symp. on the Theory
of Computing, pages 137-146, 1982.

[vG86] A. van Gelder. Negation as failure using tight deriva-
tions for general logic programs. In Proc. of Workshop on
Foundations of Deductive Databases and Logic Program-
ming, 1986.

[WHW89] Surjatini Widjojo, Richard Hull, and Dave Wile.
Distributed Information Sharing using WorldBase. IEEE
Ofice Knowledge Engineering, 3(2):17-26, August i989.

468

