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Abstract This paper presents a novel and simple 
method, called CommitYLSN, for determining if a piece 
of data is in the commltted state in a transaction pro- 
cessing system. This method is a much cheaper alter- 
native to the locking approach used by the prior art for 
this purpose. The method takes advantage of the concept 
of a log sequence number (LSN). In many systems. an 
LSN is recorded in each page of the data base to relate 
the state of the page to the log of update actions for 
that page. Our method uses information about the LSN 
of the first log record (call it Commit-LSN) of the oldest 
update transaction still executing in the system to infer 
that all the updates in pages with page_LSN less than 
Commit LSN have been committed. This reduces locking 
and latching. In addition. the method may also increase 
the level of concurrency that could be supported. The 
Commit LSN method makes it possible to use fine- 
granulazty locking without unduly penalizing transactions 
which read numerous records. It also benefits update 
transactions by reducing the cost of fine-granularity lock- 
ing when contention is not present for data on a page. 
We discuss in detail many applications of this method 
and illustrate its potential benefits for various environ- 
ments. In order to apply the Commit-LSN method, ex- 
tensions are also proposed for those systems in which 
(1) LSNs are not associated with pages (AS1400,’ SQLIDS, 
System R), (2) LSNs are used only partially (IMS), and/or 
(3) not all objects’ changes are logged (AS1400, SQL/DS. 
System R). 

1. Introduction 

In many cases of data base interactions, the sole purpose 
of locking is to ensure that a given piece of data that is 
about to be read is in the committed state. In those 
cases, locking is not really being done to delay future 
updates. This is the case with transactions that run with 
the Cursor Stability (CS) level of isolation (i.e., consis- 
tency /eve/ 2 of System R [Gray781 - see the section 
“1.2. Latches and Locks”) when they do not have the 
intention to update the data being read. Typically, ad 
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hoc queries that examine large volumes of data and that 
generally do not perform any updates of the examined 
data are run at this level of isolation [PMCLSSO]. For 
transactions that run with the Repeatable Read (RR) 
level of isolation (i.e., consistency /eve/ 3 of System R - 
see the section “1.2. Latches and Locks”) also, there are 
times when the data base management system (DBMS) 
does some reads using CS. This happens, for example, 
in DB2’ during referential constraint checking. Avoiding 
the locking and unlocking interactions with the lock man- 
ager saves not only pathlength. but it may also increase 
concurrency, depending on the granularity of locking. In 
one system, when there are no conflicts. acquiring a lock 
and releasing it costs about 800 instructions. 

Fine-granularity (e.g., record) locking is very helpful in 
increasing the level of concurrency that can be supported 
by reducing contention amongst transactions for access 
to data. The ARIES (Algorithm for Recovery and Isolation 
Exploiting Semantics), ARIES/NT (NeSted Transactions), 
ARIES/KVL (Key-Value Locking), ARlESlLHS (Linear 
Hashing with Separators) and ARIES/IM (Index Manage- 
ment) methods presented in [MHLPS89, MohaSOa, 
MohaSOb. MoLe89, MoPi90, RoMo89] are examples of 
methods which support high concurrency. ARIES has 
been implemented, to varying degrees, in the IBM prod- 
ucts OS/2 Extended Edition Database Manager’ [ChMy88] 
and 082 V2R1, in the IBM Research prototypes Starburst 
[SCFLMRG] and Quicksilver [HMSCSS], and in the Uni- 
versity of Wisconsin’s Gamma data base machine 
[DGSBHSO]. The drawback of fine-granularity locking is 
that for those transactions that access large number of 
records, the number of locks that need to be acquired 
may increase dramatically compared to the situation 
with, for example, page locking. If. for those transactions 
which only need to determine that some piece of data 
is in the committed state, the system could somehow 
avoid locking, then we can have the benefits of fine- 
granularity locking for transactions which access few 
records and at the same time avoid the drawbacks of 
such a locking granularity for transactions which access 
numerous records for reading. A method for avoiding 
locking is expected to be useful very often since in most 
data bases, at any given time, most of the data is in the 
committed state. 

1.1.. &crkw qf’ the iklcthod 

In most transaction systems that use write-ahead logging 
(WAL) for their recovery, updates to pages get. logged 
and every page’s header has a field called page_LSN 
which contains what is called the log sequence number 
(LSN). The LSN is a monotonically increasing number 
which i,; typically the logical address of the log record 
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describing the most recent update to the page. Existing 
systems (e.g., IBM’s DB2 [Crus84], IMS [GaKi85, PeSt83, 
Yama83] and the OS12 Extended Edition Database Man- 
ager, and Tandem’s Nonstop SQL’ [Tand87]) have used 
the LSN concept only to accomplish the recovery of the 
data after a system failure, to guarantee the transaction 
atomicity and persistence properties [HaRe83]. 

The crux of the Commit LSN method is to use this LSN 
information and information about the currently active 
update transactions to come to some conclusions about 
whether or not all the data on a given page is in the 
committed state, without resorting to locking. This is 
done by comparing the page’s LSN with the information 
about the oldesf update transaction still executing in the 
system. The crucial fact that makes our method accom- 
plish its objectives is that no page with an LSN value 
that is less fhan the LSN of the Begin-Transaction log 
record of the oldest executing update transaction could 
have any uncommitted data. The Commit-LSN method 
applies whether the lowest granularity of locking is a 
page or something finer than that (e.g., record). 

We have extended the Commit-LSN method to use it in 
those transaction systems which do not necessarily log 
changes to all the pages of the data base (e.g., as in 
AS/400’ [CICo89, DHLPR891, Infoi-mix-Turbo’ [Curt88], 
SQLlDS [ChGY81], and System R [CABGKBI]) and which 
do not necessarily store in the page header the LSN 
value (e.g., AS1400. IMS, SQL/D% System R). In such 
systerns. we can make a change so that the systems 
keep track of the youngest transaction to have updated 
each page and use this information in the same fashion 
the LSN information is used by our method in the other 
systems to reduce or avoid locking. 

The rest of this section introduces some concepts and 
terminologies relating to locking, latching, logging, and 
recovery. Section 2 discusses the goals that we had in 
mind when we designed the Commit-LSN method. The 
method is presented in detail in section 3, while the 
implementations of the method in different systems are 
discussed in section 4. Section 5 discusses optimizations 
to improve the usefulness of the Commit-LSN concept 
in the presence of long-running update transactions. Nu- 
merous applications of the Commit-LSN method are out- 
lined in section 6. Section 7 discusses the impact of the 
shared disks (dafa sharing) [MoNPSO, ReSW89] and the 
shared nothing (partitioned) [DGSBHSO, Shoe861 envi- 
ronments on the extent of applicability of the method. 
Finally, section 8 presents a summary of our work. 

1.2. I,ntcllcs nnd Locks 

Normally latches and locks are used to control access 
to shared information. Locking has been discussed to a 
great extent in the literature. Latches, on the other hand. 
have not been discussed that much. Latches are Iike 
semaphores. Usually, latches are used to guarantee 
physical consistency of data, while locks are used lo 
assure logical consistency of data. Latches are usually 

held for a much shorter period of time than are locks. 
Also, the deadlock detector is not informed about latch 
waits. Latches are requested in such a manner so as to 
avoid deadlocks involving latches alone, or involving 
latches and locks 

Acquiring a latch is cheaper than acquiring a lock (in the 
no-conflict case, 10s of instructions versus 100s of in- 
structions), because the latch control information is al- 
ways in virtual memory in a fixed place, and direct ad- 
dressability to the latch information is possible given the 
latch name. On the other hand, storage for individual 
locks may have to be acquired, formatted, and released 
dynamically, and more instructions need to be executed 
to acquire and release locks. This is because, in most 
systems, the number of lockable objects is many orders 
of magnitude greater than the number of latchable ob- 
jects. 

Locks rnay be obtained in different modes such as S 
(Shared), X (eXclusive), IX (Intention exclusive), IS (In- 
tention Shared), and SIX (Shared Intention eXclusive), 
and at different granularities such as record (tuple), table 
(relation), file (tablespace, segment, dbspace) [Gray78]. 
The S and X locks are the most common ones. S provides 
the read privilege and X provides the read and write 
privileges. Locks on a given object can be held simul- 
taneously by different transactions only if those locks’ 
modes are compatible. The compatibility relationships 
amongst the different modes of locking are shown in 
Figure 1. A check mark (‘J’) indicates that the corre- 
sponding modes are compatible 

Figwr 1: Lock Mode Compatibility Matrix 

With hierarchical locking. the intention locks (IX, IS, and 
SIX) are generally obtained on the higher levels of the 
hierarchy (e.g., table), and the S and X locks are obtained 
on the lower levels (e.g., record). The nonintention mode 
locks (S or X), when obtained on an object at a certain 
level of the hierarchy. implicitly grant locks of the cor- 
responding mode on thp lower level objects of that higher 
level object. The intention mode locks, on the other 
hand, only give the privilege of requesting the corre- 
sponding intention or nonintention mode locks on the 
lower level objects (e.g , SIX on a table implicitly grants 
S on al’ the records of that table. and it allows X to be 
requested explicilly on the records). For more details, 
the reader is refcrrfd to [Gray78]. 

Lock requests may be made with the condifional or the 
c/ncondifiona/ option. A conditional Irequest means that 
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the requestor is not willing to wait if the lock is not 
grantable immediately at the time the request is pro- 
cessed. An unconditional request means that the reques- 
tor is willing to wait until the lock becomes grantable. 
Locks may be held for different durations. An uncondi- 
tional request for an instant duration lock means that 
the lock is not to be actually granted, but the lock man- 
ager has to delay returning the lock call with the success 
status until the lock becomes grantable. Manual duration 
locks are released some time after they are acquired 
and, typically, long before transaction termination. Com- 
mit duration locks are released only at the time of ter- 
mination of the transaction, i.e., after commit or abort is 
completed. The above discussions concerning conditional 
requests, S and X modes, and durations, except for com- 
mit duration, apply to iatches also. 

Transactions may request different levels of isolation (or 
consistency) with respect to each other. SQUDS, the 
OS/2 Extended Edition Database Manager, DE2 and 
Nonstop SQL support the isolation levels cursor stability 
(consistency /eve/ 2 of System R [Gray78]) and repeat- 
able read (/eve/ 3 of System R). They are referred to as 
CS and RR, respectively. Both return only committed 
data to the transactions, unless the accessed data is 
uncommitted data belonging to the accessing transaction. 
When the chosen level is CS, as long as an updateable 
SQL cursor is positioned on a record, a lock will continue 
to be held on the record and the record will be guaranteed 
to exist in the data base, unless the current transaction 
itself deletes the record after the cursor is positioned on 
it. As soon as the cursor is moved to a different record, 
the lock may be released on the previous record. 

With RR, locks are held on all the accessed data until 
the end of the transaction. Actually, locks are somehow 
held even on nonexistent data, which could have satisfied 
the query. In [MohaSOa, MoLe89], we discuss how this 
is done when the accesses are made via indexes. With 
RR, if a certain query were to be posed at a certain 
point in a transaction, and a little later the same query 
were to be posed within the same transaction, then the 
response to the query would be the same, even if it 
were a negative response like nof found, unless the 
same transaction had changed the data base to cause a 
difference to be introduced in the responses. If all the 
transactions are run with RR, then their concurrent ex- 
ecutions would be serIa/Izable in the sense of [EGLT76]. 
That is, the concurrent execution would be equivalent to 
some serial execution of those transactions. With CS, 
only the locks on data modified by the transaction are 
held for commit duration and so, repeating a query may 
give a different response due to other concurrent trans- 
actions’ intervening activities. CS supports higher con- 
currency than RR since the S locks are held for a shorter 
time with CS. Typically, users posing ad hoc queries for 
decision support run their transactions with CS to reduce 
the harmful interactions with the transactions which are 
supporting production applications [PMCLSSO]. The in- 
tention here is to read only committed data, but not to 
prevent future updates of the read data by other trans- 
actions before the reading transaction terminates. 

In order to avoid starvation, typically lock managers 
process lock requests in the first-in-first-out (FIFO) dis- 

cipline. As a result, sometimes a transaction may have 
to wait, even though its requested lock mode is compat- 
ible with the currently held mode, just because there is 
already a waiting request whose mode is incompatible 
with the held mode. While, from an overall system point 
of view this is a desirable wait, from the individual new 
request’s viewpoint it is an undesirable wait. It wourd 
be desirable, at least under some circumstances, to 
avoid this waiting as long as it does not cause starvation. 

1.3. Logging and Recovery 

To meet transaction and data recovery guarantees, the 
transaction processing system records in a log the 
progress of a transaction, and its actions which cause 
changes to recoverable data objects. The log becomes 
the source for ensuring either that the transaction’s com- 
mitted actions are reflected in the data base in spite of 
various types of failures, or that its uncommitted actions 
are undone (i.e., rolled back). The log can be thought of 
logically as an ever growing sequential file. 

Each log record is assigned, by the log manager, a 
unique log sequence number (LSN) at the time the record 
is written to the log. The LSNs are assigned in ascending 
sequence. Typically, they are the logical addresses of 
the corresponding log records [Crus84]. At times, ver- 
sion numbers or timestamps are also used as LSNs 
[MoNPSO, ReSW89, Yama83]. On finishing the logging 
of an update to a page, in many sysiems (e.g., in DB2, 
Starburst, QuickSilver, the OS12 Extended Edition Data- 
base Manager and Nonstop SQL), the LSN of the log 
record corresponding to the latest update to the page is 
placed in a field (page_LSN) in the page header. Hence, 
knowing the LSN of a page allows the system to correlate 
the state of the page with respect to those logged up- 
dates relating to that page. That is, at the time of re- 
covery, the page LSN and the log record’s LSN can be 
compared to determine unambiguously whether or not 
that log record’s update is already reflected in that page 
[MHLPS89]. 

The nonvolatile version of the log is stored on what is 
generally called stable storage (e.g., disk). This storage 
remains intact and available across system failures. 
Whenever log records are written, they are placed first 
only in the volatile storage (i.e., virtual storage) buffers 
of the log fiie. Only at certain times (e.g., at prepare 
time during the execution of the two-phase commit pro- 
tocol - see [MoLi83, MoL086]) are the log records up 
to a certain LSN written, in log page sequence, to stable 
storage. This is called forcing the log up to that LSN. 

There are two general approaches to recovery: the write- 
ahead loggfng (WAL) approach [Gray78, MHLPS89] and 
the shadow-page technique [GMBLL81, MHLPS89]. WAL 
is the recovery method of choice in most systems, even 
though the shadow-page technique of System R or a 
variation of it is used in systems like SQUDS and Informix- 
Turbo. In WAL systems, an updated page is written back 
to the same nonvolatile storage location from which it 
was read. The WAL protocol asserts that the log records 
representing changes to some data must already be on 
stable storage before the changed data is allowed to 
replace the previous version of that data on nonvolatile 
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storage. The buffer manager uses the LSN associated 
with the page to ensure that the log has been forced up 
to that LSN before it writes the modified page to non- 
volatile storage. In System R’s implementation of the 
shadow-page technique, periodically an action-consistent 
checkpoint is taken by quiescing all activity in the data 
manager. This state of the data base (the shadow ver- 
sion) is preserved on disk until the next checkpoint by 
creating new copies of any pages which get modified in 
the interim (the current version). Should a system failure 
occur, restart recovery always happens from the most 
recent (internally consistent) shadow version of the data 
base. Even with this technique, logging of updates is 
performed. 

Generally, each log record describes the update per- 
formed on only a single page. The undo (respectively, 
redo) portion of a log record provides information on 
how to undo (respectively, redo) changes performed by 
the transaction. A log record which contains both the 
undo and the redo information is called an undo-redo 
log record. Sometimes, a log record may be written to 
contain only the redo information or only the undo infor- 
mation. Such a record is called a redo-on/y log record 
or undo-only log record, respectively. 

2. Goals 

Our goals in doing this work were: 

Provide a more efficient, in terms of number of com- 
puter instructions executed, method for determining 
that a piece of data is in the committed state, without 
using locking. 

Improve the level of concurrent execution of transac- 
tions that could be supported by avoiding obtaining 
locks which may cause unnecessary lock waits and 
unnecessary interferences amongst transactions. 

Support fine-granularity locking in such a way that it 
does not become too expensive for transactions which 
access large quantities of data for reading and for 
transactions which update the data when there isn’t 
contention on the affected pages. 

Make use of the fact that in some systems pages of 
the data base have tags associated with them for re- 
lating the page state to a logged history of updates in 
order to infer some additional facts about the data on 
the pages and thereby reduce locking. 

Make use of the logging that is done in transaction 
systems for recovery purposes to achieve the goal of 
reducing locking even where those systems are not 
presently tagging every page with the state information 
which relates the page state to logged information. 

3. The Commit-LSN Method 

In this section, we describe in detail the commit_LSN 
method and how it is used. In the next section, we 
describe the implementation of the method in systems 

which have adopted different approaches to logging and 
recovery. 

All transactions are assumed to get at least an intention 
lock (e.g., in the IS mode) on the higher level object 
(e.g., the table). The objective is only to reduce the 
locking at the lower levels (e.g., pages or records) of the 
object. Even when page is the smallest granularity of 
locking, an exclusive (X) latch is used by update trans- 
actions to let other nonlocking transactions (i.e., readers 
of the page) know that an update is in progress. This 
permits, when desired, uncommitted data to be read, as 
in systems like AS/400, IMS, and Nonstop SQL, with 
physical consistency of the data and the validity of point- 
ers being guaranteed by making such transactions ac- 
quire a share (S) mode latch before examining a page. 
With finer than page locking, all updaters and readers 
are in any case required to do latching in the appropriate 
mode before examining the page [MHLPSIO]. 

An update transaction writes a Begin-Transaction log 
record just before performing its first update. Read-only 
transactions do not do any logging. The LSN of the 
Begin-Transaction log record is termed the Begin-LSN 
of the transaction. Typically, a component of the system 
called the recovery manager or the transaction manager 
maintains a transaction table which contains one entry 
for each active transaction. In the entry associated with 
an update transaction, the Begin-LSN value will also be 
stored. With the Commit LSN method, the functionality 
of the recovery manager-is extended so that it may be 
queried at any time to obtain Commit-LSN, which is the 
minimum of the Begin-LSNs of all the currently active 
update transactions. If there is no update transaction in 
the system at that point in time, then the current end- 
of-log LSN (EOL-LSN) is returned by the recovery man- 
ager as the value of Commit-LSN. 

With respect to the maintenance of Commit-LSN, one 
possibility is to keep it in shared storage and let the 
recovery manager modify it using Compare & Double 
Swap (S/370 instruction) type logic, whenever the termi- 
nation of an update transaction causes Commit-LSN to 
change. In this case, the transactions which need 
Commit-LSN can obtain it directly from this shared stor- 
age. The steps involved in maintaining this (Global) 
Commit-LSN are: 

When the system restarts after a failure, initialize 
Commit-LSN to EOL-LSN, if no transactions are still 
active at the end of restart recovery; else, initialize 
it to Minimum(Begin-LSNs of Active Transactions). 

During normal system operation, if a transaction is 
terminating (after completing commit or abort) and 
the terminating transaction’s Begin-LSN < > 
Commit-LSN then leave the value as it is. Otherwise, 
compute the new value of Commit-LSN: If no other 
update transaction is active, then set the new value 
of Commit-LSN to EOL-LSN; else set it to 
Minimum(Begin-LSNs of Active Transactions). 

Figure 2 shows, as an example. the state of a log as of 
a certain time. It shows the log records written by dif- 
fere,lt transactions and the LSNs of those log records. 
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Log and its Contents 

T3( Pl 

Tl { Pl P2 P3 1 74 { P4 52 ) 

LSN 10 20 30 48 50 60 70 100 110 120 130 150 160 

Cokit LSN 
File 3 

GlObId 
Con& t_LSN 

Transaction Table 

{ - Begin-Transaction Log Record 
} - End-Transaction Log Record 
Pl, P2, . . . - Log Records of File P's Pages 
Sl, s2, . . . - Log Records of File S's Pages 
Active Update Transactions: 72, T3 
Terminated Transactions: 11, T4 Global Comnit~LSH: 40 

Figure 2: A Log Scenario 

For each update log record, it also shows the file name 
and page number within the file whose update is recorded 
in that log record. For example, P2 refers to an update 
to page 2 of file P. The figure also shows the contents 
of the transaction table and the value of the (global) 
commit_LSN field as of the time of the log state depicted 
in that figure. 

If Commit-LSN is not needed very often, then it may be 
more cost effective to compute it only when it is needed. 
Various possibilities exist for implementing the continu- 
ous tracking of Commit-LSN. The recovery manager 
could use a priority queue to keep track of the Begin LSNs 
of the currently active update transactions. Alterna&ely, 
if it is expensive to maintain it continuously, then the 
recovery manager could compute Commit-LSN at regular 
intervals based on elapsed time, number of terminations 
of update transactions, amount of logging, etc. 

Traditionally, locks are used to determine whether a 
piece of data that needs to be accessed by a transaction 
is currently in the committed state or not. The main idea 
behind the Commit LSN method is the use of 
Commit LSN to determine, without locking, that some 
data is in fact in the committed state as of that time. 
The interpretation of Commit LSN is that at /east all 
updates logged prior to that poht in the log have already 
been committed. It is possible that some additional up- 
dates logged after the Commit LSN have also been com- 
mitted. It will cost the transacGon more to find out which 

of those later updates (i.e., updates with LSN > = 
Commit-LSN) have been committed. 

The Commit-LSN method’s steps at the time of a page 
access are: 

1. Find out Commit-LSN from the recovery manager 
or access it in shared storage. 

Note that it is not necessary for the transaction to 
obtain the latest value of Commit-LSN before every 
page access, as long as it is done at least once 
before the first page access. While an out of date 
Commit-LSN does not cause any inconsistencies, it 
may increase the number of times locks have to be 
obtained. 

2. Latch the page in share (S) mode. 

3. If page_LSN < Commit-LSN, then conclude that all 
data on the page is in the committed state; otherwise, 
do locking as usual and determine whether data of 
interest is committed or not. 

4. Implementation in Different Systems 

The Commit-LSN method is directly implementable in 
systems like 082, Starburst, QuickSilver, the OS12 Ex- 
tended Edition Database Manager, the Gamma data base 
machine and Nonstop SQL since those systems use the 
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WAL protocol and they store LSNs in the nonvolatile 
storage versions of pages also. 

One problem with its implementation in systems like IMS 
is that such systems do not acquire latches on pages.* 
This can be easily taken care of by introducing latching. 
But the major problem with applying the Commit-LSN 
method to systems like IMS relates to the t’naintenance 
of LSNs on pages. Only for a dirty page in the buffer 
pool, IMS Full Function maintains in the page’s buffer 
control block the LSN of the latest update log record. 
When the dirty page is written to nonvolatile storage, 
the page_LSN is not written with it, but is discarded. 
Changing this would be a major effort since it would 
require changes to page formats and the reorganization 
of existing data. The problem with discarding the 
page_LSN is that if a page with uncommitted data were 
to be replaced in the buffer pool (due to IMS Full Func- 
tion’s steal policy) and later on the same page were to 
be read in, the page_LSN information would be lost and 
the fact that the page contains uncommitted data could 
not be inferred without locking. What all these mean is 
that, if the buffer manager knows that a page in the 
buffer pool is dirty, then the page LSN that the buffer 
manager is forced to track for enforcing the WAL protocol 
could be utilized and benefit could be derived from the 
Commit-LSN method. If a page is not dirty (i.e., buffer 
version = nonvolatile storage version), then the system 
cannot tell whether it contains any uncommitted updates 
or not. The Commit-LSN method’s approach to handling 
such situations is to make systems like IMS Full Function 
associate with a page that is read from disk either (1) 
the current end-of-log LSN or (2) the maximum of the 
LSNs of all the dirty pages so far written to disk for the 
object (e.g., file) containing that page. This LSN can then 
be treated conservative/y as the page LSN. It i,s really 
an upper bound for the true page_LSN? The page_LSN 
remains at this value until the page is dirtied. Having 
done this, the rest of the Commit-LSN method may be 
used as before in systems like IMS also. 

Although a system like the AS1400 also uses the W\L 
protocol, unfortunately, in that system, even when dirty 
data is in virtual storage, the page_LSN is not maintained. 
That system does not have a buffer pool per se; because 
of its single-level storage concept (similar to that of the 
801 [ChMe88]), the paging subsystem is the buffer man- 
ager. WAL is ensured by making an updated page inel- 
igible for being paged out until the log record written for 
that update is forced to stable storage. If the AS/400’s 
paging is modified along the lines of what was discussed 
earlier for IMS Full Function, then the Commit-LSN 
method can be applied. 

The major problem in applying the Commit-LSN method 
to systems like SQL03 and System R is that such sys- 
tems use the shadow-paging technique for recovery 
[GMBLLII] and they do not maintain LSNs for pages in 
the buffer pool or on nonvolatile storage, although they 

log changes to the data and the log manager has the 
notion of an LSN. Additionally. no logging is done of 
changes to index pages and of updates to any of the 
pages (index or data) during transaction rollback (i.e., 
no compensation log records (CL&) are written - see 
[tvlHLPS89]). Informix-Turbo and the AS/400 also do not 
log index changes. 

In order to exploit the Commit-LSN method, the above 
systems should be modified to store in every page the 
Begin ISN of the youngest transaction to update the 
page,%dependent of whether logging is done for that 
update or not. That is, whenever a transaction makes a 
change to a page, the transaction compares its own 
Begin-LSN with the LSN value currently stored on the 
page. The higher of the two values is now stored on the 
page. In the case of indexes for which no logging is 
done, the above applies for key inserts and key deletes. 
For structure modification operations (SMOs - e.g., page 
splits and page deletes), which cause keys or key-range 
responsibility to be moved from one leaf to another, the 
page into which keys or additional key-range responsi- 
bility is shifted is assigned a new LSN which is 
Maximum(Begin-LSN of current transaction, Current 
Page-LSN of page from which keys or key-range respon- 
sibility is shifted, Current-Page LSN of page being mod- 
ified). This change in the procedure for determining the 
new page_LSN is to account for the fact that the SMO 
might cause some uncommitted data of one transaction 
to be moved from one page to another by a different 
transaction. 

5. Object-Specific Commit-LSNs 

Instead of having one global Commit-LSN that covers 
all objects, transactions can benefit further by computing 
an object-specific Commit LSN that is specific to the 
object to be accessed. In th7.s way, a long-running update 
transaction that accesses some other objects and keeps 
the global Commit-LSN quite a bit in the past will not 
unduly restrict the applicability of the Commit-LSN 
method to the object of interest. The steps involved in 
computing this object-specific (e.g., file specific) 
Commit-LSN are: 

1. After the transaction locks (e.g., in IS mode) the 
object (e.g., the file) to be accessed, and just before 
it accesses the object, it notes the current EOL-LSN. 
Call it O/d EOL-LSN. 

2. It queries the lock manager to ascertain the identities 
of the other transactions that have update-type locks 
(e.g.. IX and SIX mode locks) on that object. Call 
this set of transactions the Updater-List. 

Nofe that we are not concerned about the transac- 
tions that have read-type locks (e.g., IS and S) on 
that object even though some of those may be up- 

2 For this reason, when unlocked reads (con.ri.rlenc~ /eve1 I of System R) arc pcrfnrmcd in IMS, physical contictcncy of lhe data is not guaranteed and that 
may lead to abnormal termination of transactions. 

3 In systems (e.g., IMS Fast Path [GaKi8S]) which do not allow uncommincd dala to he tiltcn lo dtsk (no-r!eal policy [llaRe83]), the page_LSN can 
he set to zero, instead of the end-of-log I.SN, since the page cannot cnntain any uncomm tied data. 
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date transactions because of their activities against 
other objects. 

The Updater-List is passed on to the recovery man- 
ager to find out the minimum of Begin-LSNs of those 
transactions. 

Note that by the time the list is passed on to the 
recovery manager some of those transactions may 
have already terminated and some other transac- 
tions might have acquired update-type locks on this 
object. It is to deal with the latter that we noted the 
EOL-LSN before requesting the Updater-List from 
the lock manager. We can assert that any other 
transactions beginning to modify the object must be 
writing log records (for that object) with LSNs greater 
than or equal to the noted EOL-LSN. 

The recovery manager returns Minimum-Begin-LSN 
which is the minimum of the Begin LSNs of all the 
transactions in the list that are still-in existence. If 
none of those transactions is in existence, then it 
returns the value infinity. 

Having obtained the Minimum-Begin-LSN from the 
recovery manager, the object-specific Commit LSN 
is computed for the object of interest as the minihm 
of {Old EOL-LSN, Minimum-Begin-LSN}. 

Another possibility for computing the object-specific 
Commit LSN is to track, for each transaction and for 
each object that it updates, a lower bound on the LSN 
of the log record of the first update that the transaction 
makes to that object. This information is kept in the 
virtual storage descriptor associated with the object. A 
transaction needing the object-specific Commit-LSN can 
then use the minimum of the tracked values and the 
EOL-LSN as the Commit-LSN. The value computed in 
this fashion will be greater than or equal to the value 
derived from the previously given method which involved 
interacting with the lock manager and the recovery man- 
ager. 

The scenario in Figure 2 illustrates the advantage of an 
object-specific Commit-LSN over the global Commit-LSN. 
When using only the global Commit-LSN value, if page 
P3 is accessed, then locking would be necessary since 
P3’s LSN (60) is greater than the former (40). On the 
other hand, if the object-specific Commit-LSN for file P 
had been used, then the locking will not be necessary 
since the former (110) is greater than P3’s LSN. 

6. Applications of the Method 

In this section, a number of applications of the 
Commit-LSN method are described. Some of them ben- 
efit all transactions, while others benefit only transactions 
that are performing read-only activities with CS. In this 
section, only the single system scenario is considered. 
In the next section, we consider the shared disks and 
the shared nothing environments. 

Some of the applications of the Commit-LSN method are: 

1. CS Read-Only File Scans For read-only CS file 
scans, there is no need to do locking of data while ac- 
cessing data pages for which page_LSN < Commit-LSN. 
Latching is still needed to do this check, evaluate pred- 
icates and retrieve columns of qualifying records. To 
amortize the cost of latching, in one access to the page, 
all the qualifying records on that page can be retrieved. 
Even for updateable CS scans, the checking of the 
satisfiability of predicates can be done without locking, 
if the above condition is true. If a record does not qualify 
and the above condition is true, then no locking needs 
to be performed. Only after determining that a record 
qualifies does a manual duration lock need to be acquired 
in the case of updateable CS file scans. 

The possibility of this optimization lets one consider 
keeping the granularity of locking small (e.g., at the 
record level) to increase concurrency for the benefit of 
RR transactions and CS read accesses with the update 
intent, while at the same time not penalizing the CS 
read-only accesses with the huge cost of locking and 
unlocking every record that is accessed. For most of the 
pages that the CS scan accesses, the transaction is ex- 
pected to avoid locking completely, due to the 
Commit-LSN method. 

2. CS Read-Only index Scans For CS index scans, the 
techniques of index ANDing/ORing [MHWCSO] can be 
combined with the Commit-LSN method to dramatically 
reduce the extent of locking. CS (read) index accesses 
for which the index contains sufficient information to 
respond to the query, without accessing data pages, can 
also behave like in the case of data page accesses men- 
tioned above. 

With CS, if an index look-up is to be followed by a data 
page access, and if no locking is performed during the 
index access, then the same Commit-LSN value that was 
used for avoiding the locking during the index access 
should also be used while accessing the data page for 
avoiding locking. If, on accessing the data page, the 
data page’s LSN is found to be less than the Commit LSN 
value passed by the index manager, then the predicates 
checked via the index are still guaranteed to be true and 
locking of the data may be avoided, if the access is a 
read-only one. If the former condition does not hold, 
then even the predicates already checked by the index 
manager must be rechecked. Note that in this case the 
record whose record ID (RID) was provided by the index 
manager may no longer exist or, if multiple table’s 
records are allowed to be intermixed on the same page, 
then a record belonging to a different table might now 
exist with that RID. By using the current Commit-LSN 
value, it may still be possible to avoid locking. 

The algorithm presented in Figure 3 may be used for CS 
(read-only and update) scans, if one or more indexes 
are to be used for identifying the qualifying records of 
a single table before accessing the data pages, as dis- 
cussed in [MHWCSO]. To simplify the pseudo-code, we 
have ignored the details about what happens if a lock is 
not grantable when it is requested. Since a page latch 
is held, the lock requests must be made conditionally. 
If the lock is not granted, then, to avoid deadlocks in- 
volving latches, the latch must be released and the lock 
requested unconditionally. Finally, when the lock is 
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Note Conmit-LSN BEFORE starting the scan of the first index and call it Begin-Cornit-LSN 
Don't do any locking while accessing the indexes 
Generate the list of RIDS satisfying the different predicates checked 

via the different indexes and sort the RIDS in ascending order 
Start accessing the records whose RIDS are in the list 
For each record in the list do the following: 

Latch record's page 
IF poge_LSN c Begin-Cot&t-LSN THEN /* predicates checked before are still valid and */ 

/* all data on page is in the committed state */ 
check ANY REMAINING predicates /* only predicates NOT checked during index accesses */ 
IF predicates are satisfied THEN 

IF updateable scan THEN 
lock data for manual duration 

unlatch page and return data 
ELSE ignore record and unlatch page /* predicates not satisfied */ 

ELSE /* predicates checked via index need rechecking */ 
IF page_LSN c CURRENT Cornit-LSN THEN /* all data in page in conmitted state */ 

check ALL the predicates 
IF predicates are satisfied THEN 

IF upduteuble stun THEN 
lock data for manual duration 

unlatch page and return data 
ELSE ignore record and unlatch page /* predicates not satisfied */ 

ELSE /* data on page may not be in the colmlitted state */ 
check ALL the predicates 
IF predicutes ore satisfied THEN 

IF upduteubZe stun THEN 
lock data for manual duration, unlatch page and return data 

ELSE lock data for instant duration, unlatch page and return data 
ELSE /* predicates not satisfied */ 

lock data for instant duration /* to confirm coumitted state */ 
ignore record and unlatch page 

Figure 3: Combining Commit-LSN Method With Index ANDlORing Technique 

- 

granted all the predicates already evaluated must be 
reevaluated, if the page_LSN had changed during the 
time the page latch was not held. 

3. Referential Constraint Enforcement One method of 
referential constraint enforcement during a modification 
to the data base does the following: (1) do the modification 
(delete, insert or update) first; (2) then check for refer- 
ential constraint violations; (3) if constraints are violated, 
then undo the modification (via a partial rollback). This 
method has been implemented in DB2 V2Ri. With this 
implementation, since the second step does only read 
operations, locks need not be obtained on the data in 
the pages accessed during that step if (1) the Commit-LSN 
method’s condition (page_LSN < Commit-LSN) is satis- 
fied and (2) the referential constraint is satisfied.” This 
is acceptable even if the transaction performing the op- 
eration has requested the RR level of isolation.5 If the 

constraint is violated, RR is requested, and the repeat- 
ability of the violation must be guaranteed, then a commit 
duration lock must be acquired. 

As an example, if the operation is an insert of a child 
table’s record and the foreign key is not null, then a 
check is made to ensure that a record whose primary 
key is equal to the inserted record’s foreign key exists 
in the parent table. When the primary key index of the 
parent table is accessed to perform this check, the 
Commit LSN method comes into play and locking can 
be avoided under the above conditions. In summary, the 
Commit LSN method may reduce the cost of enforcing 
referentTal integrity constraints. 

4. Space Reservation When record locking is used, 
the space released by one transaction must be protected 
from being consumed by another transaction, until the 

4 Today, in DR2, the second step is executed with CS as the tcolntmn Icvrl. This CRLKCS mmunl duration locks tn hc acquired and relcased. 

5 Not holding the locks on the data accessed in step 2 until commit dots not cause prohlrmc hecaute of the rollowing If any other transaction tries to 
modify the data accessed during the second step concurrently in a way that would cau :e lhe already checked constraint to he violated, then such a 
transaction would be forced to access the data modified by the first transachon in stc,o I tn order for it lo ensure that il is not violating any constraints. 
If the lirst transaction has not terminated, then the second transaction will not be able to access the latter immediately, hut would he forced to wait. It 
is to cause this wait to occur that the modification is performed hef~re the potsthlc violation is checked. 
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former commits. Otherwise, some other transactions 
might consume the freed space and then the space- 
freeing transaction might choose to rollback and find it 
impossible to put back the data on the original page due 
to lack of space. The method used in Starburst and the 
OS/2 Extended Edition Database Manager to do space 
reservation is described in [LiMP86]. The basic idea 
behind methods like that is to make the space releasing 
operations obtain locks (e.g., in IX mode) on the page 
and leave ‘trails” on the page to let subsequent space 
consuming transactions know that there is potentially 
some uncommitted freed space on the page. The trans- 
action attempting to perform a space consuming opera- 
tion, on noticing the ‘trail’, is forced to get a lock (e.g., 
instant duration X mode) on the page to verify that the 
space releasing operation has in fact committed, before 
it consumes the space and, possibly, erases the trail. 
Even if the lock is granted the trail should not be erased, 
if the current transaction itself held the IX lock. 

The application of the Commit-LSN method avoids the 
need for the space consuming transaction that notices 
the existence of the trail to have to lock the page to 
consume the space, if the page_LSN is less than the 
Commit-LSN. If the latter condition holds, then the trail 
can also be erased. The erasure is correct only if the 
current transaction itself is guaranteed not to have freed 
up any space on the page. Note that even transactions 
which access the page for update operations that neither 
free nor use additional space can do the erasure under 
the above condition. It would be useful to record the 
erasing of the trail in the log record of the update action 
so that at redo time, during system restart, the trail can 
be reset conveniently. 

5. ARIESIIM Index Algorithm The ARIES/IM index con- 
currency and recovery algorithms described in [MoLe89] 
set the value of the Delete-Bit on a leaf page to ‘1’ 
when doing the deletion of a key on that page. When a 
key is about to be inserted on a leaf page, if that page’s 
Delete Bit has the value ‘I’, then the inserter is required 
to acquire the structure modification (SM) latch in S 
mode (this latch becomes a global lock in the SD envi- 
ronment) and then reset the Delete-Bit to ‘0’. What this 
means is that the inserter has to wait until any in-progress 
SM (page split or page delete) anyiYhere in the index 
tree is completed. This is done to make sure that the 
tree would be structurally consistent when the following 
sequence of events occurs: (1) the inserting transaction 
consumes all the space released by the deleting trans- 
action and commits, (2) the deleting transaction rolls 
back, and (3) a traversal of the index tree from the root 
is necessary for performing a logical undo due to the 
lack of space on the original page to put back the deleted 
key. If this happens during normal processing, the tree 
may be inconsistent and the deleter can wait for it to 
become consistent; however, at restart time, since undo 
for all losing transactions is performed in a single back- 

ward scan of the log (see [MliLPS89]), waiting will not 
be fruitful. Hence, the burden is placed on the inserter 
to make sure that its action will not cause trouble for 
the deleter. Note that if the deleter had committed by 
the time the inserter attempts its operation then the 
acquisition of the SM latch (lock in the SD environment), 
which may reduce concurrency and cause delays, is un- 
necessary. 

In the original ARlESllM algorithms, there is no simple 
way for the inserter to find out whether the defeter has 
committed or not committed. The idea here is that if the 
Delete-Bit were to be currently set at ‘1’ and the 
page_LSN were to be less than the Commit-LSN, then 
the inserter can reset the Delete-Bit to ‘0’ and safely 
do its key insert without having to synchronize itself with 
any SM, which may be on-going, using the SM latch 
(lock). This improves concurrency also. If the 
Commit-LSN condition does not hold then the original 
ARIES/IM method applies. With the Commit-LSN method, 
the system can potentially save a latch (lock) call at the 
time of every key insert on a page that follows a key 
delete involving the same page. 

6. Next Key Locking in Indexes If, for a particular in- 
dex, high concurrency is extremely important and RR is 
not a requirement. then during a key insert, the next key 
lockjng requirement (i.e., the instant duration X lock to 
be acquired on the next higher key currently in the index, 
before the insertion of the current key) of the methods 
of ARIESIIM [MoLe89], ARlESlKVL [MohaSOa], and Sys- 
tem R [MohaSOa] can be dropped, as long as the index 
is a noqunique index. Under these conditions, for key 
deletes in both unique and nonunique indexes, the next 
key locking (commit duration X locks) must still be per- 
formed to make sure that no uncommitted deletes are 
‘skipped” over during a scan or a look-up operation, if 
not skipping over is a requirement. The intent of this 
lock is to let other transactions know about the uncom- 
mitted delete by blocking them. 

Even if RR is not required, the next key locking require- 
ment for inserts has to be enforced in unique indexes to 
make sure that the key being inserted is not the same 
as another one which is currently in the uncommitted 
deleted state.6 If the key to be inserted is higher than 
the highest key on the page, then the next key locking 
requirement potentially causes an extra I/O to read in 
the next page. This next key locking during inserts 
causes some unnecessary synchronization and delays if 
it so happens that there are no uncommitted deletes in 
the range of interest and (1) the next key had been 
inserted by another transaction that has not yet commit- 
ted,;’ OR (2) the next key is locked in the S mode by 
anol her transaction. 

For a unique index also, by applying the Commit-LSN 
method during a key insert, the system can avoid the 
next key locking and, possibly, an I/O if (1) RR is not 

6 In ARfES/KVI. and System R alone, the next key locking under thcac conditions in unique indexes can he avoided if we changed the duration of the 
lock obtained on the d&red key from instant to commit. With this change, the lock on lhc key to he in.wr/ed will not be granted lf lhere is an uncommitted 
delete of the same key value by another transaction. This of course incrcatcs Ihc numhcr ,,I commit duration locks and also may cause unnecessary lock 
collisions due to the fact that key values are hashed to gcncrate lock names. Of course, th s would he a hcller method if next key locking during a delete 
can be avoided under the condition that not skipping over uncommiucd dclclcs is not a rcquirrmcnt. 
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necessary, (2) the key does not already exist on the 
page, and (3) the page_LSN is less than the Commit-LSN. 
The last condition guarantees that there are no uncom- 
mitted deletes (or inserts, for that matter) on the page 
and hence the uniqueness constraint will not be violated, 
even if all the currently running update transactions 
were to rollback. If condition 3 is not satisfied, the sys- 
tem can still use other methods (like the IX locking tech- 
nique of ARIES/KVL) to improve concurrency. 

7. Logical Deletion of Keys One way to reduce locking 
in indexes and thereby improve the pathlength and the 
concurrency, while still guaranteeing RR, is to do logical 
deletion of keys instead of physical deletion. That is, 
during a key delete operation, instead of removing the 
key from the page, it is left there with a delete-flag set 
to ‘I’, as in IMS [Ober80] and in [Mino84]. Of course, 
this operation must be logged. If the delete were to be 
rolled back, then the delete-flag is reset to ‘0’. This also 
avoids the possibility of a page split during the undo of 
a key delete. Performing deletes in this fashion avoids 
the need for next key locking during deletes which is 
required in ARIESIIM, ARlESlKVL and System R. This 
saves a commit duration X lock and improves the 
pathlength and concurrency, and still lets the system 
provide RR. If the key to be deleted is the highest key 
on the page, then the next key locking requirement po- 
tentially causes an extra l/O to read in the next page. 
Even with logical deletes, next key locking must be per- 
formed during key inserts, as long as RR must be guar- 
anteed. Modifications to ARlESllM along these and other 
lines to improve concurrency dramatically are explored 
further in [MoHPSO]. 

The major problem with this logical-delete approach is 
that, at some point after the’ commit of the key-deleting 
transaction, the logically deleted key must be removed 
to free up the space occupied by it in order to reduce 
the number of page splits and to improve performance 
during searches. Ordinarily, such garbage collections 
would require getting locks on the deleted keys to make 
sure that they are committed. The physical deletes which 
are performed when such locking is successful should 
also be logged since the redoing of updates during re- 
start is page oriented (i.e., same page is updated during 
redo as during normal processing) and the system needs 
to be able to repeat history. Logging is required because 
locks are not available at restart time to determine which 
keys can be physically deleted and which cannot be due 
to uncommitted deletes by in-doubt and in-flight trans- 
actions. Note that readers of keys should lock logically 
deleted keys. Only after the locks are granted, can they 
ignore them. Readers should not leave behind S locks 
on logically deleted keys to guarantee RR since those 
keys may get garbage collected without the knowledge 
of the readers. The garbage collector gets, if at all, only 
a conditional instant duration S lock on a logically deleted 

key to determine that it is committed and hence that it 
can be physically deleted. 

The cost of garbage collection of the logically deleted 
keys can be reduced by using the Commit-LSN method, 
as explained below. Readers can also benefit from the 
Commit-LSN method. Locking of logically deleted keys 
can be avoided by readers, if the Commit-LSN method 
helps them to deduce immediately that all the logical 
deletions on the page have been committed. 

During any update operation* on an index leaf page, if 
the page_LSN is less than the Commit-LSN. then ALL 
the logically deleted keys on that page can be physically 
deleted without incurring any locking cost. A field in the 
page header can be made to keep a count of the number 
of logically deleted keys on the page to trigger this ac- 
tion. The log records for the physical deletes need not 
include the key values themselves. In contrast, in a 
logical-delete action’s log record, the complete key value 
is needed to be able to perform the undo if the transaction 
were to rollback. In the physical key delete log records, 
it is enough to indicate the ordinal position(s), in the key 
sequence on the page, of the key(s) to be deleted (e.g., 
the 3rd and the 17th keys on the page). This record can 
be written as a redo-only log record and the repeating 
history feature of the ARIES recovery method will ensure 
that the log record’s effects persist even if the garbage 
collecting transaction were to be rolled back later on. In 
fact, this log record need not even be written as a sep- 
arate record, but its contents could be combined with 
those of the record logging the main update action of 
this transaction on this page. The garbage collection 
part of such a log record is never undone. 

Thus, the Commit-LSN method in combination with the 
logical delete approach can save a commit duration X 
lock during a delete operation and an instant duration S 
lock during the garbage collection of a logically deleted 
key. The avoidance of the next key lock can also increase 
the level of concurrency that can be supported. It can 
also save a reader an instant duration S lock during a 
look-up operation that encounters a logically deleted key. 

8. Data-Only Locking When using certain index man- 
agement methods like ARIESIIM, sometimes it may be 
found that a transaction holds an X lock on a record or 
a page, even though the transaction has not updated 
and does not intend updating the corresponding data 
page. This happens because, in ARIESIIM, in the interest 
of reducing the number of locks (see [Mole891 for more 
explanations), the locks on the index keys were made to 
be the same as the locks on the underlying data from 
whic:h those index entries were extracted. That is, the 
same lock name is used to designate objects (records 
and keys) which are related but which reside in different 
pages. Given this data-only locking approach, in contrast 
to the index-specific locking approaches of DB2, System 
R and ARIESIKVL, the next key locking done during a 

7 In the ARIES/KVL method [Moha90a], which guarantees RR, such unnecessary synchrori7ation is nvoidcd hy making the inscrtcrr lock the inserted key 
and the next key in the 1X mode, instead of the X mode; that method, while it improves concurrency, ttill cotts the pnthlcngth incurred to get the lock. 

8 Even readers, which are already update transactions due tn their activities on other data, c:m play the role of Good Snmarctanc and do garbage collection 
when the appropriate conditions are true. 
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key delete causes an extra commit duration X lock to be 
acquired on the underlying data, thereby potentially caus- 
ing unnecessary .delays to other reader transactions, if 
they insist on finding out whether some data page’s data 
is committed or not committed by acquiring locks on the 
data. For the same reason, a reader transaction doing 
an index-only access on index II may get blocked, if it 
does locking. This may happen not because any data on 
that index page is currently in the uncommitted state, 
but because an updater may hold an X lock on the un- 
derlying data (data page or some row on the data page, 
depending on the granularity of locking). The latter may 
be the case either because the latter transaction updated 
the underlying data, or because of its next key locking 
on some other index or in the same index due to an 
update on a different page of the current index. Under 
these conditions, use of the Commit-LSN method during 
data and index page accesses allows the transactions to 
save locking costs, avoid unnecessary lock waits and 
also increase concurrency. The Commit-LSN method 
lets the transactions have the best of both: the reduced 
number of locks due to the data-only locking feature of 
ARIES/IM and a compensation for the reduction in con- 
currency that data-only locking causes. 

Even with index-specific locking (e.g., with key-value lock- 
ing as in System R and ARIESIKVL). a single lock may 
cover data in multiple pages. For example, a single key 
value lock may lock up many index entries, even though 
only one of them may be in the uncommitted state. 

9. FIFO Lock Request Processing Because of the FIFO 
discipline that is normally followed in granting lock re- 
quests to avoid starvation, some additional delays may 
be caused if a lock is used to determine that a piece of 
data is in the committed state. An example situation 
where, due to this observation, the Commit-LSN method 
may help is: Tl holds an S lock on Dl; T2 has requested 
an X lock on Dl and is forced to wait; T3 wants to check 
if Dl is in the committed state, hence it requests a lock 
on Dl, and is forced to wait. 

10. Overflow Records When a record is updated and 
it no longer fits in the original page, in systems like DB2, 
the OS12 Extended Edition Database Manager, SQL/D& 
and System R, the updated record is inserted on a dif- 
ferent page. During such an operation, the record should 
still retain its original RID since the index entries contain 
the original RID. To accomplish this, in the original page, 
the data record is replaced with a pointer record which 
contains the RID (called the overflow RID) of the updated 
data record on the overflow page. While performing the 
insert of the updated data record on the overflow page, 
the above systems have to make sure that they are not 
reusing the RID of an uncommitted deleted record of 
another transaction. This check is done by acquiring an 
instant lock on the overflow page or RID. It should be 
easy to see that the Commit LSN method could be used 
to possibly avoid getting this lock. Note that since all 
accesses to the overflow record happen only through 
the original RID, the lock on the original RID is sufficient 
to indicate that the updated record is in the uncommitted 
state. 

10. CS Updateable Scans As far as data qualifying for 
updateable CS scans are concerned, the Commit-LSN 

method may be used to delay or avoid locking the data, 
if the current definition of CS (see the section “1.2. 
Latches and Locks”) is relaxed. When an attempt is 
made to do an update or a delete on the current scan 
position (using the UPDATE or DELETE WHERE CURRENT 
OF CUf!SOR SQL statement), it must be acceptable for 
the system to respond that the record under the cursor 
either co longer exists or that it no longer satisfies the 
predicates of the scan, if, due to the fact that no lock 
was acquired when the cursor was positioned during the 
read, some other transaction’s activity had caused the 
original state of affairs to change. If the state is still the 
same as determined either by noticing that the page_LSN 
has not changed since the scan was positioned on the 
record or, if the page_LSN has changed, by reevaluating 
the predicates, then an attempt is made to acquire the 
X lock on the data and perform the update or delete. 
Note that even with the current definition of CS, the 
update or delete operation may fail due to a deadlock. 
So, the mere fact that an S lock is acquired currently in 
most systems when an updateable scan is positioned on 
a record and is held when the user examines the record, 
does not guarantee to the user that he would definitely 
be able to modify the record, if he desires to do so. A 
deadlock may cause the user’s transaction to be rolled 
back. If the Commit LSN method is used and a lock is 
not acquired at the time of positioning the scan, then it 
would be like an optimistic approach. This approach may 
or may not be acceptable and perhaps the user should 
be given a choice. 

7. Shared Disks Versus Partitioning 

In a multisystem configuration, shared disks (SD) and 
shared nothing (SN - i.e., partitioned approach) environ- 
ments have different effects on the extent of applicability 
of the Commit-LSN method. In the case of SD, the disks 
are shared by the multiple instances of the DBMS, but 
each DBMS instance has its own buffer pool and global 
locks, and buffer coherency protocols are required to 
preserve consistency of the data in the face of the ability 
of all the systems to read and modify any of the data in 
the data base. SD is the approach taken in IBM’s IMS 
Data Sharing [PeSt83, Yama83], TPF [Scru87] and the 
Amoeba research project [MoNPSO, SNOP85], in NEC’s 
DCS [SMMT84], and in DEC’s VAX RdbNMS’ and VAX 
DBMS’ in the VAXcluster’ environment [KrLS86, 
ReSW89]. In the case of SN, each system can read or 
modify directly only a portion of the data in the data 
base. SN is the approach taken in Nonstop SQL, 
Teradata’s DBCI1012’ [Tera88], and the University of 
Wisconsin’s Gamma data base machine [DGSBHSO]. 

It should be quite clear that SN stands to benefit the 
most from the Commit-LSN method since in that envi- 
ronment there is only, at most, one copy of the data in 
the bufter pool. The Commit-LSN can be determined by 
each system independently of the other systems. With 
SD, conceptually, each system needs to periodically poll 
the other systems to determine the minimum 
Commit LSN across all the systems (various alternatives 
are possible for implementing this efficiently). As noted 
before, it is acceptable to use an out-of-date Commit-LSN. 
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The latter can only cause unnecessary locking and not 
the reading of any uncommitted data. 

With SD, since there can be more than one copy of each 
page across the different buffer pools, unless a given 
system is already known to have the latest version of a 
given page, the utility of the Commit-LSN method is 
reduced. It is applications I, 2, 3, 8, and 9 of the 
Commit-LSN method that suffer the most in data sharing, 
if the CS transactions always need to see the most re- 
cent version of any data. When record locking is in 
effect, even if the system is forced to behave like an 
updater of the page, which may involve acquiring a 
global lock on the page to be sure that the transaction 
is reading the latest version of the page, the system can 
still benefit if the Commit-LSN method avoids the need 
for acquiring the record-level global locks. SD is penal- 
ized the most, compared to SN, when page locking is 
done, but it is still better compared to SD in which the 
Commit-LSN method is not adopted. The amount of 
global locking will not decrease, but some local locking 
will be avoided. 

It is possible to design a method in which, if sufficiently 
large amount of data is going to be read in one system 
and the amount of concurrent update activity in the other 
systems is small, the updating systems can be made to 
let the reading system know what pages are being up- 
dated by them that belong to the object being read and 
for those pages alone the reading system can do locking. 
This penalizes the updating transactions and it is not 
clear that this is desirable. Another possibility is to relax 
the requirement that the CS reader always see the latest 
version of the data. 

Also, a version number technique [MoNPSO] used to 
avoid the need for a merged log across the systems, 
makes it impossible to correlate a page’s version number 
(a counter that monotonically increases for a particular 
page) with the information about the Begin-LSNs of the 
currently executing transactions. This is because the 
version number assigned to a page during an update 
may be less than the Begin-LSN of the updating tra:is- 
action even if the system equates the Begin-LSN to the 
timestamp assigned to that transaction’s 
Begin Transaction log record. This could be fixed by 
ensuring that the version number assigned at the time 
of an update to the page is always at least as high as 
the updating transaction’s Begin-LSN. 

Earlier, it was pointed out as to how the data-only locking 
performed by the ARlESllM method and the next key 
locking performed during key deletes could cause some 
unnecessary lock waits during index and data page ac- 
cesses and how the Commit-LSN method reduces the 
impact of those. In SD, there is another feature which 
could cause unnecessary waits for some types of ac- 
cesses. This is due to the fact that the instant duration 
X lock acquired on the next key during key inserts in the 
single system environment had to be changed to a com- 
mit duration X lock in SD. The Commit-LSN method can 
reduce the impact of this change. 

8. Summary 

We presented a novel and simple method, called 
Commit-LSN, for determining if a piece of data is in the 
committed state in a transaction processing system. This 
method is a much cheaper alternative to the locking 
approach used by the prior art for this purpose. The 
method took advantage of the concept of log sequence 
number (LSN) which, in many systems, is recorded in 
each page of the data base to relate the state of a page 
to the log of update actions for that page. information 
which is normally used only for recovery purposes is 
exploited by the Commit-LSN method to improve per- 
formance. The method uses information about the LSN 
of the first log record (called Commit-LSN) of the oldest 
update transaction still executing in the system to infer 
that all the updates in pages with page_LSN Iess than 
Commit-LSN have been committed and thereby reduces 
locking and latching overheads. In addition, this method 
was also shown to increase the level of concurrency that 
could be supported. We described how our method 
makes it possible to use fine-granularity locking without 
unduly affecting transactions which read numerous 
records. We also described its benefits to update trans- 
actions due to the reduction in the cost of fine-granularity 
locking when contention is not present for data on a 
page. We discussed in detail many applications of this 
method and illustrated its potential benefits. We also 
analyzed the impact of the shared disks and the shared 
nothing environments. Techniques for implementing this 
method in systems based on write-ahead logging or the 
shadow-page technique were presented. For the 5way 
join query analyzed in [PMCLSSO], we have estimated 
that the Commit-LSN method could save up to 90% of 
the pathlength, depending on the sizes of records, num- 
ber of records per page, predicate selectivities, etc. 
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