
Efficient Implementation of Loops in Bottom-Up Evaluation
of Logic Queries*

Juhani Kuittinen’, Otto Nurmil, Seppo Sippu2,
and Eljas Soisalon-Soininen

‘Department of Computer Science, University of Helsinki
Teollisuuskatu 23, SF-0051 0 Helsinki, Finland

2 Departmen t of Computer Science, University of Jyviskylii
Seminaarinkatu 15, SF-40100 JyvSkylB, Finland

Abstract. We consider the efficient implementa-
tion of the bottom-up evaluation method for recursive
queries in logic databases. In the bottom-up evalu-
ation algorithms the non-mutually-recursive rules are
evaluated in certain order, whereas the evaluation or-
der within a set of the mutually recursive rules is
free. However, significant savings in join operations
can be achieved by arranging the mutually recursive
rules appropriately. We present an algorithm for split-
ting the evaluation loop for mutually recursive rules
into subloops and for determining the order in which
the rules should be evaluated within a loop. The semi-
naive evaluation algorithm is modified accordingly to
gain advantage from the evaluation order and to work
with the incremental relations (“deltas”) appearing at
different levels in the loop structure. The computa-
tion within a subloop is optimized by identifying loop-
invariant factors in the rules to be evaluated. Using
an experimental logic database system we demonstrate
the usefulness of our algorithm in implementing data-
log queries optimized by the “magic sets” and related
term rewriting strategies.

*The work was supported by the Academy of Finland.

Permission to copy without fee all or part of this material i\

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Bnse

Endowment. To copy otherwise. or to rcpuhlish. require> ;I fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

1. Introduct ion

Recursive data base queries expressed in datalog (func-
tion-free Horn clause programs) are most conveniently
evaluated using the bottom-up (or forward chaining)
evaluation method (see, e.g., [l, 2, 5, 141). As the basic
“naive” or “semi-naive” bottom-up method becomes
inefficient when the query contains bound arguments,
the usual approach is to preprocess the original query
by means of some term rewriting strategy so that the
bindings in the query literal can be used to restrict the
set of database facts consulted [3,4,6]. Recently, it has
been shown that it is possible to rewrite any safe data-
log program as an equivalent datalog program so that
the semi-naive bottom-up evaluation of the rewritten
program is as efficient as the top-down evaluation of
the original program [16].

The structure of the naive and semi-naive evalua-
tion algorithm is determined by the “rule-goal graph”,
which represents the dependencies between the predi-
cates and rules in the datalog program to be evaluated
[13, 41. The strongly connected components of this
graph represent the maximal sets of mutually recursive
predicates and rules. For each such component, the
naive evaluation algorithm contains a loop that com-
putes the values for the predicates in that component.
The execution order between the loops is determined
by the partial order between the strongly connected
components, so that first comes the loop that imple-
ments the component whose predicates do not depend
on predicates in the other components [13, 10, 7, 8,4].

The values of the predicates within a component
are computed in an incremental fashion: at each it-
eration every rule whose head and body contains a
predicate belonging to the component is used to add
data to the current value of the predicate in the head
of the rule. The relations for the predicates are ini-

372

tially empty, and the computation will terminate when
no new tuples can be added to any relation. In the
naive Fvaluation the entire current values of the rela
tions are used in computing the new values, whereas
in the semi-naive evaluation differential techniques are
used to avoid repeated computations [l, 2, 5, 4, 141.

The number of join operations performed in the
evaluation depends directly on the number of itera
tions required by each loop. Thus, special attention
should be paid to optimizing the loop structure of the
evaluating algorithm.

Let US consider the following simple example prs
gram (where we have left out the arguments of the
predicates).

1. PI :-c.

2. PI :- Ps.
3. Pz :- P3.
4. P3 :- Pd.
5. P4 :- P5.

6. P5 :-PI.

The predicates PI, . . . , P5 are mutually recursive. If
the recursive rules 2.. .6 are evaluated in the order
{2,3,4,5,6} in the loop of the naive evaluation alg&
rithm, the relation corresponding to PZ remains empty
until the fourth iteration. A much better way is to
evaluate the rules in the reverse order {6,5,4,3,2) in
which P2 gets its first tuples already in the first itera-
tion.

The structure of the example program is quite
simple - the rule-goal gaph corresponding to the
program has only one simple cycle. The structure of
programs obtained by optimizing datalog queries by
the “magic sets” and related methods tend to become
complicated, and it is no longer a trivial task to choose
a good evaluation order for the mutually recursive
rules. In Section 2 we shall explain a method to
determine an appropriate evaluation order for a set of
mutually recursive rules.

In order to benefit of the evaluation order, the tu-
ples obtained for a predicate during an iteration must
immediately be used to compute new tuples for the
other predicates during the same iteration. In the
conventional semi-naive evaluation, the tuples are not
available before the following iteration. The optimiza-
tion aspect of using the just computed tuples imme-
diately is shortly discussed in [7] and in [15, Exercise
12.71. In Section 3 we shall show in detail how to man-
age with the incremental relations (“deltas”) during
the semi-naive evaluation so that we obtain maximal
benefit from the evaluation order of the rules. This
includes the identification of loop-invariant factors in
the rules to be evaluated within a subloop; these fac-

tors are then moved outside the loop and computed at
an outer level in the loop structure.

The strategy is used in an experimental logic data,
base system being implemented at the University of
Helsinki. Our experience shows that the number of
join operations can be reduced even 50% by using
the algorithm in connection with programs found in
literature and the queries optimized by “magic sets”
and related rewriting strategies (Section 4).

We assume the reader is familiar with the basic
notions pertaining to datalog programs [4, 14).

2. Determining the Evaluation
Order

Consider the datalog program

1. P:-A.
2. P:-A,P,B.
3. Q:-s.
4. R:-Q,P.
5. R:-Q,R.
6. S:-C.
7. S:-C,Q,R. ’

Here A, B, and C are base predicates. The rule-goal
graph [4, 131 for this program is shown in Figure 1.

As suggested in [13, 4, lo], the rule-goal graph can
be used to organize the naive and semi-naive evalua-
tion of the program so that each maximal subset of
mutually recursive predicates is evaluated as a whole.
These maximal subsets are obtained by determining
the strongly connected components [12] of the rule-
goal graph. The components that are singleton sets
represent base predicates and non-recursive rules; all
the other components represent maximal sets of mu-
tually recursive predicates and rules that are recursive
with these predicates.

The components are sorted topologically [9] accord-
ing to the partial order induced by the arcs of the rule-
goal graph between the components. First come those
components that have no incoming arcs. For example,
one of the possible linear orders for the components of
the graph in Figure 1 is:

(the rules are indicated by their numbers).
Each component representing a set of mutually

recursive predicates gives rise to a loop of its own in
the naive or semi-naive evaluation algorithm. In our
example there are two loops: one for evaluating the

373

ii 1 ----__-----------------------
Fig. 1. A rule-goal graph. Square nodes denote predicate
nodes and oval nodes denote rule nodes. The strongly
connected components are enclosed by a broken line.

recursive rule 2 and the other for evaluating the set of
mutually recursive rules {3,4,5,7}.

The order guarantees that a non-recursive rule is
not evaluated until the rules for its subgoals have been
evaluated. Moreover, the rules for those subgoals of a
recursive rule r that are not mutually recursive with
the head of r will be evaluated before evaluating any
rule mutually recursive with r.

The strategy above does not impose any order be-
tween the rules within a single component. In the fol-
lowing we shall refine the strategy so that every com-
ponent will eventually be totally ordered in a way that
decreases the number of iterations needed in the loops
and, accordingly, the number of relational operations
needed when the rules in the loops are evaluated. In
Section 3 we shall then show how to utilize this order
in implementing the semi-naive evaluation algorithm.

Our strategy is to use iire same strategy recursively
for the components. The nodes corresponding to a
non-singleton component do, of course, not have a
topological order. Therefore we temporarily remove
some edges from the component. These edges are
chosen so that the component will in any case be
split into smaller components that have a topological
order, and so that the head predicate of the first rule
in the obtained linear order will have rules outside
the component, too. The strategy is then repeated
recursively for the non-singleton strongly connected
subcomponents. They will appear as nested loops

in the final evaluation program. The details of the
strategy is explained in the following.

Let C be a non-singleton component. Obviously,
C must contain some predicate node to which an arc is
coming from outside, i.e., from a node in some compo-
nent preceding C in the linear order of the components.
We call such a node an entry node. The only case in
which a component may not have an entry node is that
the program contains useless predicates that cannot
derive a string of base literals (such predicates nec-
essarily compute the empty set of tuples and should
be eliminated from the program). In our example we
find that P is an entry node of the component {P, 2)
and that S is the only entry node of the component
{Q,R,S,3,4,5,7).

We split each non-singleton component into smaller
components by removing some arcs between the nodes
in the component. In order to make sure that the
component will really be split, we simply remove all
the arcs that are coming to the entry node from the
other nodes of the component. (If there are sev-
eral entry nodes, one of them is selected.) Thus,
from the component {P, 2) we remove the arc (2, P)
and from the component {Q, R,S,3,4,5,7} we re-
move the arc (7,s). To each such component we
then apply the algorithm for finding the strongly con-
nected components, and sort these topologically. No-
tice that the component will always be split: at least
the entry node will form a component of its own. In
our example, the component {P,2} is split into the
components {P), { 2)) given in the linear order re-
sulting from the topological sort. The component
(4, R, S> 3,4,5,7) is similarly split into the list of com-
ponents {Sl, 131, {&I, {4I,{R, 5),{7).

We repeat the above process of splitting compo-
nents until all the remaining components are single-
tons. In the example, the process will terminate after
the component {R, 5) is split into {R}, (5). The result
of the algorithm is a nested structure of linear orders:

A,l,B,(P,2),W,(S,3,Q,4,(R>5),7)-

Each substructure (. . .) will give rise to a loop of its
own in the semi-naive evaluation algorithm. Inside the
loop the rules listed in the substructure will be evalu-
ated in the order indicated. Observe that each rule will
receive tuples from at least some of the preceding pred-
icate nodes (or they will remain empty in the result)
and that each substructure begins with the entry node
of the corresponding component. As the entry node,
by definition, receives tuples from some preceding com-
ponent, these tuples can thus be made available to the
next loop at the earliest possible convenience.

In generating the semi-naive evaluation algorithm
from the order structure, the predicate nodes will no

374

longer be needed. Thus we may represent the above
order structure more succinctly as

1, (2) 6, (394, (5) 7)

which is the same as

P:-A, (P:-A,P,B), S:-C,
(Q :- S, R :- Q, P, (R :- Q, R), S :- C,Q, R).

3. Implementing the Order
Structure

The conventional semi-naive evaluation (see, e.g, [14])
does not use the tuples computed for a predicate at the
current iteration when the predicate is used to com-
pute tuples for other predicates in the same iteration.
Therefore, the order of the rules in a loop has no effect
in the number of iterations needed. In this section we
shall show how to manage with the incremental rela-
tions, i.e. A’s, in the loops of a program implementing
the semi-naive evaluation so that the termination of
the loop can be correctly determined and, apart from
that, the tuples found during an iteration can imme-
diately be used in other rules to generate new tuples.
The implementation also includes the use of incremen-
tal relations in the case of nested loops. (In the con-
ventional implementation, there are loops only at one
level.)

We shall now explain the details of the implemen-
tation of the loop at level 1 1 1 of the loop structure
determined by the algorithm of Section 2. Let S be the
set of predicates that appear in the rules to be evalu-
ated in the loop and in the higher level loops enclosed
by it. We divide S into two sets, P and Q, where P is
the set of predicates that appear in the head of some
rule to be evaluated in the loop and Q is the set of
other predicates.

For each head predicate P E P we introduce two
temporary incremental relations, denoted by AlP and
A{P. The invariant for ArP is that it is the set of tu-
ples inserted into P during the most recent completed
iteration of the loop. The invariant for A{P is that it
is the set consisting of ArP and of the tuples inserted
into P earlier at the present iteration. Notice that the
invariant for AI P is the same as that for the incremen-
tal relation in the conventional implementation. The
relation A,P will be used to control the termination
of the loop, and Ai P will be used for the termination
control and to compute new tuples in the loop. We
always have Al P C Ai P G P.

Before the loop, the relation AlP is initialized
to 0 and A{P to A{-,P or, if 1 = 1, to P. In
the beginning of each iteration, AlP and AiP are

initialized to contain the same set of tuples, i.e., the
tuples inserted into P during the most recent iteration.
These tuples are obtained as the difference A; P- Alp.

During the iteration, new tuples are inserted into
Ai P but not into Al P. Thus the termination condition
for the loop, “no new tuples are found during the
iteration”, is AiP = AIP for all P E P.

In the conventional implementation new tuples are
computed by using the whole relations and the incre-
ments from the most recent iteration. More specifi-
cally, let

P:-s1,s*,...,s, (1)
be a rule to be evaluated in the loop, and ki, k2, . . , , k,
be the indices of the predicates of P in its body. In the
conventional implementation, the code generated for
rule (1) consists of the statements

insert EVALUATE(P :- S1,. . . , Skisl, AiS,,,

ski+17e”>sm)-p

into P and AiP

for i = l,... ,n, where EVALUATE(r) denotes the tu-
ples obtained by evaluating the argument rule r (with-
out the assignment to the head).

In our modified implementation weshall use the or-
der of rules as computed by the algorithm of Section 2.
We must use the incremental relations already in the
iteration in which increments are found. As defined
above, the A; relations contain these increments and
those from the most recent completed iteration. On
the first loop level we therefore simply replace the re-
lations Ai& of the conventional implementation by
the relations AiSki.

Let us assume that we are generating code for the
rule

P:-s1,s2,...,sm (2)
in a loop of level 1 > 1. Let k1, ka, . . . , k, be the
indices of the predicates in the body of (2) for which
Ski is the head of a rule in the present loop, in the
loops enclosed by it (level> 1), or in the loops that
enclose it (level< I). Let maxc., denote 1 if Sk; is the
head of a rule to be evaluated in the present loop or
a loop enclosed by it and, otherwise, the level of the
highest loop that enclose the present one and where
Sk, appears as a head predicate. The rule (2) could
now be implemented by the statements

insert EVALUATE(P :- SI, S2, . . . , Sk,-1, Al,,,,, Sk,,

Sk,+1 > . . .,s”)- P
into P,AiP,A’,P,. . . , and AiP,

for i= l,...,n.

375

P:=O;Q:=O;R:=0;S:=0;
P:-.4:

insert EVALUATE(P :- A) - P into P;
P :- A, P, B :

A;P:=P;ArP:=:& {Initialize A’s}
repeat

ArP:=A;P-ArP; {Tuples from the most recent iteration.]
A;P := ArP; {Tuples from this and the most recent iteration.}
insert EVALUATE(P :- A, A; P, B) - P into P and A; P;

until A’,P = ArP; {No more new tuples.}
s-:-c:

insert EVALUATE(S:- c)- S into S;

for X E {Q, R,S} do begin A;X := X; ArX := 0 end;
{Initialize A’s for all head predicates
of the rules in the following loop}

repeat
for X E {Q, R, S} do ArX := A.;X - ArX;

{Tuples from the most recent iteration.}
for X E {Q, R, S) do A{X := ArX; {Tuples from this and the most recent iteration.)

Q:-S:
insert EVALUATE(Q :- A;S) - Q into Q and A’,Q;

R:-Q,P:
insert EVALUATE(R :- Al,Q, P) - R into R and A;R;

R I-- Q, R :
insert EVALUATE(R :- A;Q, R) - R into R and A; R;

{The statements moved from the following loop.}
A’,R:=A’,R;A2R:=0; {Initialize A’s for the inner loop.}
repeat

APR:=A;R-A2R;
A;R := AsR;
insert EVALUATE(R :- Q, A; R) - R into R, A; R, and A; R

{Update A’,R (the outer loop), too.}
until Al,R = A2R;

S:-C,Q,R:
insert EVALUATE(S :- C, A;Q, R) - S into S and AiS;
insert EVALUATE(S :- C, Q, A; R) - S into S and A;S;

until Al,Q = ArQ and A; R = Ar R and A;S = ArS.

Fig. 2. The modified semi-naive evaluation program for the example of Section 2. The order structure of the program is
p :- A, (J’ :- A, P, B), S :- C, (Q :- S, R :- Q, P, (R :- Q, R), S :- C, Q, R).

The incremental relations AL,. Ski remain con-
stant inside the loop whenever rnaxkl < 1. Therefore,
these statements can more efficiently be computed out-
side the loop. They are moved onto the level where
A’ max,i&, changes, that is, onto the level maxgi. On
that level, the statements are placed immediately be-
fore the loop where (2) is to be evaluated.

In conclusion, a rule is, in general, evaluated by
several insert statements of the above type. The level
on which a statement is placed is the same as the index
of the A’ on the right hand side of the argument of
the corresponding EVALUATE function. The relations
into which the new tuples are inserted are the head
of the rule and all lower level A’ relations for the
head. The following program fragment demonstrates

the initialization of the incremental relations and the
overall structure of a loop.

The statements moved from the loop to level I- 1;
for X E P do begin AiX := A{-,X; AIX := 8 end;

repeat
for X E P do AlX := A;X - A/X;
for X E P do A;X := AIX;
The code for the rules and the subloops in the
order indicated by the algorithm of Section 2;

until AjX = AIX for all X E P.

The code for the example program of Section 2 is
shown in Figure 2.

376

4. Experimental Results

In this,section we present experimental results ob-
tained by applying our evaluation strategy to the “non-
linear same generation problem” [S]. This problem
is expressed as how to compute the predicate Query,
when the datalog program is:

sg(X,Y):-jfal(X,Y).

SdX,Y) :- uP(X,Xl),sg(Xi,Xz),P4t(Xz,Y2),

s!7(Y2Jl)Jowfq5,q.
Query(Y) :- sg(a, Y).

Here a is a constant and flat, up, and down are base
predicates. Figure 3 shows two samples of data for the
predicates flat, up, and down. We shall present results
for data A,, with n = 4,6,8,10 and for data B, with
n = 4,16,64,256.

First we consider our evaluation strategy in con-
nection with the magic sets optimization [3, 61. Using
“supplementary magic sets” [6], the above program is
rewritten as:

1.

2.

3.

4.

5.

6.

7.

8.

9.

magic-q(a).

supm4gic2(X, X,) :- magic-sg(X), up(X, XI).

supm4gic3(X, X2) :- supm4gic2(X,Xl),sg(Xl,X2).

supmagic.+(X, Yz) :- Supm4giCs(x, X2),jht(&,Y2).

sg(X, Y) :- magic-sg(X),flot(X,Y).

w(X, Y) :- svw7ic4(X, y2), w(Y2, YI),
down(Y1, Y).

magic-sg(X1) :- supm4gic2(X, Xl).

magic-sg(Y2) :- supmagic,(X, Y2).

Query(Y) :- sg(a, Y).

For simplicity, we have left out the adornment (bf) of
the predicates sg and magic-sg.

In the conventional semi-naive evaluation, rules 1
to 9 are evaluated in the order

1,(2,3,4,5,6,7,8),9,

where the order within the strongly connected compo-
nent {2,3,. . . ,8} is irrelevant (new tuples obtained for
a predicate during an iteration are not used to com-
pute new tuples for other relations until succeeding
iterations).

The results for conventional semi-naive evaluation
are shown in Table 1. The column “# tuples” gives
the total number of tuples in the base relations up,
Pat, and down. The column “# iterations” gives
the number of iterations of the loop for the strongly
connected component {2,3,. . . ,8}. The column “#
joins” gives the total number of joins performed during

A: 1 0 Lo

(4

” -n

n-l u
I

I ;; -; n-l

0,:

(b)

Fig. 3. Two sets of test data for the nonlinear same
generation problem. The arrows going up denote tuples in
the base relation up, the arrows going to the right denote
tuples in the base relation fiat, and the arrows going down
denote tuples in the base relation down. Data A, is defined
inductively on n.

the evaluation. The column “join size” gives the total
number of tuples in the input and output relations of
all the join operations.

Table 2 shows the results for semi-naive evaluation
implemented using our strategy. The results of Table 2
have been obtained by using the evaluation order

1,(2,7,5,(3,4,6),8),9.

This is the order produced by the algorithm given in
Section 2. In Table 2, the subcolumn “outer” gives the
number of iterations of the loop for (2,7,5, (. . .), 8) and
the subcolumn “inner” gives the number of iterations
of the loop for (3,4,6).

Comparing the figures in Table 1 with those in
Table 2 indicates that the appropriate ordering of the
evaluation of a set of mutually recursive rules may lead
to a significant reduction in the number of joins as well
as in the number of tuples involved in joins.

377

Next we consider our evaluation strategy in con-
nection with the “regular envelopes” optimization pre-
sented in [ll]. As regards the amount of database
facts consulted, this strategy is less efficient than the
magic sets strategy because the restricting “envelopes”
computed may be larger than the true magic sets.
However, the predicates computing these envelopes are
never mutually recursive with the other predicates, so
that their computation becomes effectively a prepro-
cessing task.

Ato 1 4,090 1 3,579 1 32,211 1 18,282;255
B4 80 1 26 1 234 [2,735
B16 344 50 450 23,255
B64 1,400 146 1,314 275,255
B256 5,624 530 4,770 4,001,975

Using regular envelopes, our example program is
rewritten as:

Table 1. Conventional semi-naive implementation of the
magic sets optimized query.

1. in-q(a);

2. in-sg(X1) :- in-q(X), up(X,Xl).

3. in-sg(Y2) :- in-sg(X),jlat(X,Yz).

4. in-sg(Yz) :- ~~~-w(X2),fl4X2, y2).

5. out-sg(Y) :- in-sg(X), jlat(X, Y).

6. oui-q(Y) :- oul-sg(X2),flat(X2, Y).

7. out-q(Y) :- auf-sg(Yl), down(Y1, Y).

8. sg(X, Y) :- in-sg(X), J&(X, Y).

9. sg(X, Y) :- in-w(X), UP(X, XI), sg(Xl, X2),

W(X2, Yz), sg(y2, X), down(K, Y).

10. Query(Y) :- sg(a, Y).

The algorithm of Section 2 produces the evaluation
order

data # tuples # iterations # joins join size
outer inner

A4 58 11 22 190 1,632
A6 250 47 94 814 27,062
AS 1,018 191 382 3,310 439,054
AIO 4,090 767 1,534 13,294 7,060,590
B4 80 6 14 120 1,365
Bl6 344 18 43 369 16,380
B64 1,400 66 163 1,401. 239,976
BZ56 5,624 258 643 5,529 3,743,640

1, (2,3,5, (7,6), 4), 8, (9, 10.

Thus the computation of sg will only begin after the
“envelope predicates” in-sg and out-sg have been pre-
computed in the loop for (2,3,5, (. . .),4). Table 3
shows the results for this order. The subcolumn “1st
outer” gives the number of iterations of the loop for
(2,3,5, (. . .),4), the subcolumn “inner” the number of
iterations of the loop for (7,6) and the subcolumn
“2nd” the number of iterations of the loop for (9).

Table 2. Modified semi-naive implementation of the magic
sets optimized query.

data # tuples -
Jom size

Comparing the figures in Table 3 with those in
Table 2 shows how the loop structure resulting from
the rewriting of the program in the optimization phase
may affect the efficiency of the evaluation. The fact
that the “envelope predicates” in-sg and out-sg are
evaluated in a loop separate from that for sg has
resulted in significant savings in the number of joins.
On the other hand, the total number of tuples involved
in joins is somewhat larger; this reflects the fact that
the regular envelope computed by in-sg and out-sg is
not so tight as the magic set computed by magic-sg.

.44

A6

A8
AIO
B4

B16

B64
B256

58
250

1,018
4,090 1 768 1 2,046 1 10 1 7,265

80 1 51 231 31 97

2,487
29,163

400,323
6,052,971

2,720
27,920

376,400
5,733,200

Table 3. Modified semi-naive implementation of the regu-
lar envelopes optimized query.

378

5. Conclusion

We have generalized the semi-naive bottom-up eval-
uation strategy so aa to gain advantage of the entire
loop structure of the datalog program being evaluated.
First, we presented an algorithm for determining for
any datalog program a nested structure of linear or-
ders in which each substructure represents a sequence
of rules that will be evaluated within a loop of their
own in the evaluation algorithm. The algorithm oper-
ates with the rule-goal graph by repeatedly splitting
strongly connected components into subcomponents
and determining an appropriate linear order between
these subcomponents.

Secondly, we showed how any order structure can
be implemented as a modified semi-naive algorithm
that can manage with nested loops and incremental
relations corresponding to different levels in the order
structure. This algorithm includes the optimization
that loop-invariant factors in rule bodies are identified
and pushed onto that level in the loop structure in
which their values really change.

Finally, we presented experimental results obtained
by using the above method to evaluate a non-linearly
recursive datalog program optimized by “magic sets”,
and one optimized by a similar rewriting strategy but
leading to a different loop structure. Significant sav-
ings in join operations were achieved when compared
to the conventional implementation of the semi-naive
algorithm.

References

1. I. Balbin, and K. Ramamohanarao, A differential
approach to query optimization in recursive deduc-
tive databases. TR-86/7, Dept. of Computer Sci-
ence, University of Melbourne, 1986.

2. F. Bancilhon, Naive evaluation of recursively de-
fined relations. In: On Knowledge Base Manage-
ment Systems-Integrating Artificial Intelligence
and Database Technologies, (Brodie and Mylopou-
lm, eds), Springer-Verlag, 1986, pp 165-178.

3. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ull-
man, Magic sets and other strange ways to imple-
ment logic programs. In: Proc. 5th ACM Symp. on
Principles of Database Systems, 1986, pp 1-15.

4. F. Bancilhon, and R. Ramakrishnan, An amateur’s
introduction to recursive query processing strate-
gies. In: Proc. ACM SIGMOD’86, Internat. Conf.
on Management of Data, 1986, pp 16-52.

5. R. Bayer, Query evaluation and recursion in de-
ductive database systems. Unpublished memoran-
dum, Technical University of Munich, 1985.

6. C. Beeri, and R. Ramakrishnan, On the power of
magic. In: Proc. 6th ACM Symp. on Principles of
Database Systems, 1987, pp 269-283.

7. S. Ceri, G. Gottlob, and L. Lavazza, Translation
and optimization of logic queries: the algebraic
approach. In: Proc. 12th Internat. Conf. on Very
Large Data Bases, 1986, pp 395-402.

8. S. Ceri, and L. Tanca, Optimization of systems of
algebraic equations for evaluating datalog queries.
In: Proc. 13th Internat. Conf. on Very Large Data
Bases, 1987, pp 31-41.

9. D. E. Knuth, The Art of Computer Programming.
Vol. 1: Fundamental Algorithms. Addison-Wesley,
1968.

10. K. Morris, J. D. Ullman, and A. Van Gelder,
Design overview of the NAIL! system. In: Proc. 3rd
Internat. Conf. on Logic Programming, London,
1986, Springer-Verlag, pp 554-568.

11. S. Sippu, and E. Soisalon-Soininen, An opti-
mization strategy for recursive ‘queries in logic
databases. In: Proc. 4th Internat. IEEE Co& on
Data Engineering, 1988, pp 470-477.

12. R. Tarjan, Depth first-search and linear graph
algorithms. SIAM J. Comput. 1 (1972), 146-160.

13. J. D. Ullman, Implementation of logical query
languages for databases. ACM Trans. Database
Syst. 10 (1985), 289-321.

14. J. D. Ullman, Principles of Database and
Knowledge-Base Systems, vol. I, Computer Science
Press, 1988.

15. J. D. Ullman, Principles of Database and
Knowledge-Base Systems, vol. II: The New Tech-
nologies, Computer Science Press, 1989.

16. J. D. Ullman, Bottom-up beats top-down for dat-
alog. In: Proc. 8th ACM Symp. on Principles of
Database Systems, 1989, pp 140-149.

379

