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Abstract. We consider the efficient implementa- 
tion of the bottom-up evaluation method for recursive 
queries in logic databases. In the bottom-up evalu- 
ation algorithms the non-mutually-recursive rules are 
evaluated in certain order, whereas the evaluation or- 
der within a set of the mutually recursive rules is 
free. However, significant savings in join operations 
can be achieved by arranging the mutually recursive 
rules appropriately. We present an algorithm for split- 
ting the evaluation loop for mutually recursive rules 
into subloops and for determining the order in which 
the rules should be evaluated within a loop. The semi- 
naive evaluation algorithm is modified accordingly to 
gain advantage from the evaluation order and to work 
with the incremental relations (“deltas”) appearing at 
different levels in the loop structure. The computa- 
tion within a subloop is optimized by identifying loop- 
invariant factors in the rules to be evaluated. Using 
an experimental logic database system we demonstrate 
the usefulness of our algorithm in implementing data- 
log queries optimized by the “magic sets” and related 
term rewriting strategies. 
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1. Introduct ion 

Recursive data base queries expressed in datalog (func- 
tion-free Horn clause programs) are most conveniently 
evaluated using the bottom-up (or forward chaining) 
evaluation method (see, e.g., [l, 2, 5, 141). As the basic 
“naive” or “semi-naive” bottom-up method becomes 
inefficient when the query contains bound arguments, 
the usual approach is to preprocess the original query 
by means of some term rewriting strategy so that the 
bindings in the query literal can be used to restrict the 
set of database facts consulted [3,4,6]. Recently, it has 
been shown that it is possible to rewrite any safe data- 
log program as an equivalent datalog program so that 
the semi-naive bottom-up evaluation of the rewritten 
program is as efficient as the top-down evaluation of 
the original program [16]. 

The structure of the naive and semi-naive evalua- 
tion algorithm is determined by the “rule-goal graph”, 
which represents the dependencies between the predi- 
cates and rules in the datalog program to be evaluated 
[13, 41. The strongly connected components of this 
graph represent the maximal sets of mutually recursive 
predicates and rules. For each such component, the 
naive evaluation algorithm contains a loop that com- 
putes the values for the predicates in that component. 
The execution order between the loops is determined 
by the partial order between the strongly connected 
components, so that first comes the loop that imple- 
ments the component whose predicates do not depend 
on predicates in the other components [13, 10, 7, 8,4]. 

The values of the predicates within a component 
are computed in an incremental fashion: at each it- 
eration every rule whose head and body contains a 
predicate belonging to the component is used to add 
data to the current value of the predicate in the head 
of the rule. The relations for the predicates are ini- 
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tially empty, and the computation will terminate when 
no new tuples can be added to any relation. In the 
naive Fvaluation the entire current values of the rela 
tions are used in computing the new values, whereas 
in the semi-naive evaluation differential techniques are 
used to avoid repeated computations [l, 2, 5, 4, 141. 

The number of join operations performed in the 
evaluation depends directly on the number of itera 
tions required by each loop. Thus, special attention 
should be paid to optimizing the loop structure of the 
evaluating algorithm. 

Let US consider the following simple example prs 
gram (where we have left out the arguments of the 
predicates). 

1. PI :-c. 

2. PI :- Ps. 
3. Pz :- P3. 
4. P3 :- Pd. 
5. P4 :- P5. 

6. P5 :-PI. 

The predicates PI, . . . , P5 are mutually recursive. If 
the recursive rules 2.. .6 are evaluated in the order 
{2,3,4,5,6} in the loop of the naive evaluation alg& 
rithm, the relation corresponding to PZ remains empty 
until the fourth iteration. A much better way is to 
evaluate the rules in the reverse order {6,5,4,3,2) in 
which P2 gets its first tuples already in the first itera- 
tion. 

The structure of the example program is quite 
simple - the rule-goal gaph corresponding to the 
program has only one simple cycle. The structure of 
programs obtained by optimizing datalog queries by 
the “magic sets” and related methods tend to become 
complicated, and it is no longer a trivial task to choose 
a good evaluation order for the mutually recursive 
rules. In Section 2 we shall explain a method to 
determine an appropriate evaluation order for a set of 
mutually recursive rules. 

In order to benefit of the evaluation order, the tu- 
ples obtained for a predicate during an iteration must 
immediately be used to compute new tuples for the 
other predicates during the same iteration. In the 
conventional semi-naive evaluation, the tuples are not 
available before the following iteration. The optimiza- 
tion aspect of using the just computed tuples imme- 
diately is shortly discussed in [7] and in [15, Exercise 
12.71. In Section 3 we shall show in detail how to man- 
age with the incremental relations (“deltas”) during 
the semi-naive evaluation so that we obtain maximal 
benefit from the evaluation order of the rules. This 
includes the identification of loop-invariant factors in 
the rules to be evaluated within a subloop; these fac- 

tors are then moved outside the loop and computed at 
an outer level in the loop structure. 

The strategy is used in an experimental logic data, 
base system being implemented at the University of 
Helsinki. Our experience shows that the number of 
join operations can be reduced even 50% by using 
the algorithm in connection with programs found in 
literature and the queries optimized by “magic sets” 
and related rewriting strategies (Section 4). 

We assume the reader is familiar with the basic 
notions pertaining to datalog programs [4, 14). 

2. Determining the Evaluation 
Order 

Consider the datalog program 

1. P:-A. 
2. P:-A,P,B. 
3. Q:-s. 
4. R:-Q,P. 
5. R:-Q,R. 
6. S:-C. 
7. S:-C,Q,R. ’ 

Here A, B, and C are base predicates. The rule-goal 
graph [4, 131 for this program is shown in Figure 1. 

As suggested in [13, 4, lo], the rule-goal graph can 
be used to organize the naive and semi-naive evalua- 
tion of the program so that each maximal subset of 
mutually recursive predicates is evaluated as a whole. 
These maximal subsets are obtained by determining 
the strongly connected components [12] of the rule- 
goal graph. The components that are singleton sets 
represent base predicates and non-recursive rules; all 
the other components represent maximal sets of mu- 
tually recursive predicates and rules that are recursive 
with these predicates. 

The components are sorted topologically [9] accord- 
ing to the partial order induced by the arcs of the rule- 
goal graph between the components. First come those 
components that have no incoming arcs. For example, 
one of the possible linear orders for the components of 
the graph in Figure 1 is: 

(the rules are indicated by their numbers). 
Each component representing a set of mutually 

recursive predicates gives rise to a loop of its own in 
the naive or semi-naive evaluation algorithm. In our 
example there are two loops: one for evaluating the 
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ii 1 ----__----------------------- 
Fig. 1. A rule-goal graph. Square nodes denote predicate 
nodes and oval nodes denote rule nodes. The strongly 
connected components are enclosed by a broken line. 

recursive rule 2 and the other for evaluating the set of 
mutually recursive rules {3,4,5,7}. 

The order guarantees that a non-recursive rule is 
not evaluated until the rules for its subgoals have been 
evaluated. Moreover, the rules for those subgoals of a 
recursive rule r that are not mutually recursive with 
the head of r will be evaluated before evaluating any 
rule mutually recursive with r. 

The strategy above does not impose any order be- 
tween the rules within a single component. In the fol- 
lowing we shall refine the strategy so that every com- 
ponent will eventually be totally ordered in a way that 
decreases the number of iterations needed in the loops 
and, accordingly, the number of relational operations 
needed when the rules in the loops are evaluated. In 
Section 3 we shall then show how to utilize this order 
in implementing the semi-naive evaluation algorithm. 

Our strategy is to use iire same strategy recursively 
for the components. The nodes corresponding to a 
non-singleton component do, of course, not have a 
topological order. Therefore we temporarily remove 
some edges from the component. These edges are 
chosen so that the component will in any case be 
split into smaller components that have a topological 
order, and so that the head predicate of the first rule 
in the obtained linear order will have rules outside 
the component, too. The strategy is then repeated 
recursively for the non-singleton strongly connected 
subcomponents. They will appear as nested loops 

in the final evaluation program. The details of the 
strategy is explained in the following. 

Let C be a non-singleton component. Obviously, 
C must contain some predicate node to which an arc is 
coming from outside, i.e., from a node in some compo- 
nent preceding C in the linear order of the components. 
We call such a node an entry node. The only case in 
which a component may not have an entry node is that 
the program contains useless predicates that cannot 
derive a string of base literals (such predicates nec- 
essarily compute the empty set of tuples and should 
be eliminated from the program). In our example we 
find that P is an entry node of the component {P, 2) 
and that S is the only entry node of the component 
{Q,R,S,3,4,5,7). 

We split each non-singleton component into smaller 
components by removing some arcs between the nodes 
in the component. In order to make sure that the 
component will really be split, we simply remove all 
the arcs that are coming to the entry node from the 
other nodes of the component. (If there are sev- 
eral entry nodes, one of them is selected.) Thus, 
from the component {P, 2) we remove the arc (2, P) 
and from the component {Q, R,S,3,4,5,7} we re- 
move the arc (7,s). To each such component we 
then apply the algorithm for finding the strongly con- 
nected components, and sort these topologically. No- 
tice that the component will always be split: at least 
the entry node will form a component of its own. In 
our example, the component {P,2} is split into the 
components {P), { 2)) given in the linear order re- 
sulting from the topological sort. The component 
(4, R, S> 3,4,5,7) is similarly split into the list of com- 
ponents {Sl, 131, {&I, {4I,{R, 5),{7). 

We repeat the above process of splitting compo- 
nents until all the remaining components are single- 
tons. In the example, the process will terminate after 
the component {R, 5) is split into {R}, (5). The result 
of the algorithm is a nested structure of linear orders: 

A,l,B,(P,2),W,(S,3,Q,4,(R>5),7)- 

Each substructure (. . .) will give rise to a loop of its 
own in the semi-naive evaluation algorithm. Inside the 
loop the rules listed in the substructure will be evalu- 
ated in the order indicated. Observe that each rule will 
receive tuples from at least some of the preceding pred- 
icate nodes (or they will remain empty in the result) 
and that each substructure begins with the entry node 
of the corresponding component. As the entry node, 
by definition, receives tuples from some preceding com- 
ponent, these tuples can thus be made available to the 
next loop at the earliest possible convenience. 

In generating the semi-naive evaluation algorithm 
from the order structure, the predicate nodes will no 
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longer be needed. Thus we may represent the above 
order structure more succinctly as 

1, (2) 6, (394, (5) 7) 

which is the same as 

P:-A, (P:-A,P,B), S:-C, 
(Q :- S, R :- Q, P, (R :- Q, R), S :- C,Q, R). 

3. Implementing the Order 
Structure 

The conventional semi-naive evaluation (see, e.g, [14]) 
does not use the tuples computed for a predicate at the 
current iteration when the predicate is used to com- 
pute tuples for other predicates in the same iteration. 
Therefore, the order of the rules in a loop has no effect 
in the number of iterations needed. In this section we 
shall show how to manage with the incremental rela- 
tions, i.e. A’s, in the loops of a program implementing 
the semi-naive evaluation so that the termination of 
the loop can be correctly determined and, apart from 
that, the tuples found during an iteration can imme- 
diately be used in other rules to generate new tuples. 
The implementation also includes the use of incremen- 
tal relations in the case of nested loops. (In the con- 
ventional implementation, there are loops only at one 
level.) 

We shall now explain the details of the implemen- 
tation of the loop at level 1 1 1 of the loop structure 
determined by the algorithm of Section 2. Let S be the 
set of predicates that appear in the rules to be evalu- 
ated in the loop and in the higher level loops enclosed 
by it. We divide S into two sets, P and Q, where P is 
the set of predicates that appear in the head of some 
rule to be evaluated in the loop and Q is the set of 
other predicates. 

For each head predicate P E P we introduce two 
temporary incremental relations, denoted by AlP and 
A{P. The invariant for ArP is that it is the set of tu- 
ples inserted into P during the most recent completed 
iteration of the loop. The invariant for A{P is that it 
is the set consisting of ArP and of the tuples inserted 
into P earlier at the present iteration. Notice that the 
invariant for AI P is the same as that for the incremen- 
tal relation in the conventional implementation. The 
relation A,P will be used to control the termination 
of the loop, and Ai P will be used for the termination 
control and to compute new tuples in the loop. We 
always have Al P C Ai P G P. 

Before the loop, the relation AlP is initialized 
to 0 and A{P to A{-,P or, if 1 = 1, to P. In 
the beginning of each iteration, AlP and AiP are 

initialized to contain the same set of tuples, i.e., the 
tuples inserted into P during the most recent iteration. 
These tuples are obtained as the difference A; P- Alp. 

During the iteration, new tuples are inserted into 
Ai P but not into Al P. Thus the termination condition 
for the loop, “no new tuples are found during the 
iteration”, is AiP = AIP for all P E P. 

In the conventional implementation new tuples are 
computed by using the whole relations and the incre- 
ments from the most recent iteration. More specifi- 
cally, let 

P:-s1,s*,...,s, (1) 
be a rule to be evaluated in the loop, and ki, k2, . . , , k, 
be the indices of the predicates of P in its body. In the 
conventional implementation, the code generated for 
rule (1) consists of the statements 

insert EVALUATE(P :- S1,. . . , Skisl, AiS,,, 

ski+17e”>sm)-p 

into P and AiP 

for i = l,... ,n, where EVALUATE(r) denotes the tu- 
ples obtained by evaluating the argument rule r (with- 
out the assignment to the head). 

In our modified implementation weshall use the or- 
der of rules as computed by the algorithm of Section 2. 
We must use the incremental relations already in the 
iteration in which increments are found. As defined 
above, the A; relations contain these increments and 
those from the most recent completed iteration. On 
the first loop level we therefore simply replace the re- 
lations Ai& of the conventional implementation by 
the relations AiSki. 

Let us assume that we are generating code for the 
rule 

P:-s1,s2,...,sm (2) 
in a loop of level 1 > 1. Let k1, ka, . . . , k, be the 
indices of the predicates in the body of (2) for which 
Ski is the head of a rule in the present loop, in the 
loops enclosed by it (level> 1), or in the loops that 
enclose it (level< I). Let maxc., denote 1 if Sk; is the 
head of a rule to be evaluated in the present loop or 
a loop enclosed by it and, otherwise, the level of the 
highest loop that enclose the present one and where 
Sk, appears as a head predicate. The rule (2) could 
now be implemented by the statements 

insert EVALUATE( P :- SI, S2, . . . , Sk,-1, Al,,,,, Sk,, 

Sk,+1 > . . .,s”)- P 
into P,AiP,A’,P,. . . , and AiP, 

for i= l,...,n. 
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P:=O;Q:=O;R:=0;S:=0; 
P:-.4: 

insert EVALUATE(P :- A) - P into P; 
P :- A, P, B : 

A;P:=P;ArP:=:& {Initialize A’s} 
repeat 

ArP:=A;P-ArP; {Tuples from the most recent iteration.] 
A;P := ArP; {Tuples from this and the most recent iteration.} 
insert EVALUATE( P :- A, A; P, B) - P into P and A; P; 

until A’,P = ArP; {No more new tuples.} 
s-:-c: 

insert EVALUATE(S:- c)- S into S; 

for X E {Q, R,S} do begin A;X := X; ArX := 0 end; 
{Initialize A’s for all head predicates 
of the rules in the following loop} 

repeat 
for X E {Q, R, S} do ArX := A.;X - ArX; 

{Tuples from the most recent iteration.} 
for X E {Q, R, S) do A{X := ArX; {Tuples from this and the most recent iteration.) 

Q:-S: 
insert EVALUATE(Q :- A;S) - Q into Q and A’,Q; 

R:-Q,P: 
insert EVALUATE(R :- Al,Q, P) - R into R and A;R; 

R I-- Q, R : 
insert EVALUATE(R :- A;Q, R) - R into R and A; R; 

{The statements moved from the following loop.} 
A’,R:=A’,R;A2R:=0; {Initialize A’s for the inner loop.} 
repeat 

APR:=A;R-A2R; 
A;R := AsR; 
insert EVALUATE(R :- Q, A; R) - R into R, A; R, and A; R 

{Update A’,R (the outer loop), too.} 
until Al,R = A2R; 

S:-C,Q,R: 
insert EVALUATE(S :- C, A;Q, R) - S into S and AiS; 
insert EVALUATE(S :- C, Q, A; R) - S into S and A;S; 

until Al,Q = ArQ and A; R = Ar R and A;S = ArS. 

Fig. 2. The modified semi-naive evaluation program for the example of Section 2. The order structure of the program is 
p :- A, (J’ :- A, P, B), S :- C, (Q :- S, R :- Q, P, (R :- Q, R), S :- C, Q, R). 

The incremental relations AL,. Ski remain con- 
stant inside the loop whenever rnaxkl < 1. Therefore, 
these statements can more efficiently be computed out- 
side the loop. They are moved onto the level where 
A’ max,i&, changes, that is, onto the level maxgi. On 
that level, the statements are placed immediately be- 
fore the loop where (2) is to be evaluated. 

In conclusion, a rule is, in general, evaluated by 
several insert statements of the above type. The level 
on which a statement is placed is the same as the index 
of the A’ on the right hand side of the argument of 
the corresponding EVALUATE function. The relations 
into which the new tuples are inserted are the head 
of the rule and all lower level A’ relations for the 
head. The following program fragment demonstrates 

the initialization of the incremental relations and the 
overall structure of a loop. 

The statements moved from the loop to level I- 1; 
for X E P do begin AiX := A{-,X; AIX := 8 end; 

repeat 
for X E P do AlX := A;X - A/X; 
for X E P do A;X := AIX; 
The code for the rules and the subloops in the 
order indicated by the algorithm of Section 2; 

until AjX = AIX for all X E P. 

The code for the example program of Section 2 is 
shown in Figure 2. 
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4. Experimental Results 

In this,section we present experimental results ob- 
tained by applying our evaluation strategy to the “non- 
linear same generation problem” [S]. This problem 
is expressed as how to compute the predicate Query, 
when the datalog program is: 

sg(X,Y):-jfal(X,Y). 

SdX,Y) :- uP(X,Xl),sg(Xi,Xz),P4t(Xz,Y2), 

s!7(Y2Jl)Jowfq5,q. 
Query(Y) :- sg(a, Y). 

Here a is a constant and flat, up, and down are base 
predicates. Figure 3 shows two samples of data for the 
predicates flat, up, and down. We shall present results 
for data A,, with n = 4,6,8,10 and for data B, with 
n = 4,16,64,256. 

First we consider our evaluation strategy in con- 
nection with the magic sets optimization [3, 61. Using 
“supplementary magic sets” [6], the above program is 
rewritten as: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

magic-q(a). 

supm4gic2(X, X,) :- magic-sg(X), up(X, XI). 

supm4gic3(X, X2) :- supm4gic2(X,Xl),sg(Xl,X2). 

supmagic.+(X, Yz) :- Supm4giCs(x, X2),jht(&,Y2). 

sg(X, Y) :- magic-sg(X),flot(X,Y). 

w(X, Y) :- svw7ic4(X, y2), w(Y2, YI), 
down(Y1, Y). 

magic-sg(X1) :- supm4gic2(X, Xl). 

magic-sg(Y2) :- supmagic,(X, Y2). 

Query(Y) :- sg(a, Y). 

For simplicity, we have left out the adornment (bf) of 
the predicates sg and magic-sg. 

In the conventional semi-naive evaluation, rules 1 
to 9 are evaluated in the order 

1,(2,3,4,5,6,7,8),9, 

where the order within the strongly connected compo- 
nent {2,3,. . . ,8} is irrelevant (new tuples obtained for 
a predicate during an iteration are not used to com- 
pute new tuples for other relations until succeeding 
iterations). 

The results for conventional semi-naive evaluation 
are shown in Table 1. The column “# tuples” gives 
the total number of tuples in the base relations up, 
Pat, and down. The column “# iterations” gives 
the number of iterations of the loop for the strongly 
connected component {2,3,. . . ,8}. The column “# 
joins” gives the total number of joins performed during 

A: 1 0 Lo 

(4 

” -n 

n-l u 
I 

I ;; -; n-l 

0,: 

(b) 

Fig. 3. Two sets of test data for the nonlinear same 
generation problem. The arrows going up denote tuples in 
the base relation up, the arrows going to the right denote 
tuples in the base relation fiat, and the arrows going down 
denote tuples in the base relation down. Data A, is defined 
inductively on n. 

the evaluation. The column “join size” gives the total 
number of tuples in the input and output relations of 
all the join operations. 

Table 2 shows the results for semi-naive evaluation 
implemented using our strategy. The results of Table 2 
have been obtained by using the evaluation order 

1,(2,7,5,(3,4,6),8),9. 

This is the order produced by the algorithm given in 
Section 2. In Table 2, the subcolumn “outer” gives the 
number of iterations of the loop for (2,7,5, (. . .), 8) and 
the subcolumn “inner” gives the number of iterations 
of the loop for (3,4,6). 

Comparing the figures in Table 1 with those in 
Table 2 indicates that the appropriate ordering of the 
evaluation of a set of mutually recursive rules may lead 
to a significant reduction in the number of joins as well 
as in the number of tuples involved in joins. 
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Next we consider our evaluation strategy in con- 
nection with the “regular envelopes” optimization pre- 
sented in [ll]. As regards the amount of database 
facts consulted, this strategy is less efficient than the 
magic sets strategy because the restricting “envelopes” 
computed may be larger than the true magic sets. 
However, the predicates computing these envelopes are 
never mutually recursive with the other predicates, so 
that their computation becomes effectively a prepro- 
cessing task. 

Ato 1 4,090 1 3,579 1 32,211 1 18,282;255 
B4 80 1 26 1 234 [ 2,735 
B16 344 50 450 23,255 
B64 1,400 146 1,314 275,255 
B256 5,624 530 4,770 4,001,975 

Using regular envelopes, our example program is 
rewritten as: 

Table 1. Conventional semi-naive implementation of the 
magic sets optimized query. 

1. in-q(a); 

2. in-sg(X1) :- in-q(X), up(X,Xl). 

3. in-sg(Y2) :- in-sg(X),jlat(X,Yz). 

4. in-sg(Yz) :- ~~~-w(X2),fl4X2, y2). 

5. out-sg(Y) :- in-sg(X), jlat(X, Y). 

6. oui-q(Y) :- oul-sg(X2),flat(X2, Y). 

7. out-q(Y) :- auf-sg(Yl), down(Y1, Y). 

8. sg(X, Y) :- in-sg(X), J&(X, Y). 

9. sg(X, Y) :- in-w(X), UP(X, XI), sg(Xl, X2), 

W(X2, Yz), sg(y2, X), down(K, Y). 

10. Query(Y) :- sg(a, Y). 

The algorithm of Section 2 produces the evaluation 
order 

data # tuples # iterations # joins join size 
outer inner 

A4 58 11 22 190 1,632 
A6 250 47 94 814 27,062 
AS 1,018 191 382 3,310 439,054 
AIO 4,090 767 1,534 13,294 7,060,590 
B4 80 6 14 120 1,365 
Bl6 344 18 43 369 16,380 
B64 1,400 66 163 1,401. 239,976 
BZ56 5,624 258 643 5,529 3,743,640 

1, (2,3,5, (7,6), 4), 8, (9, 10. 

Thus the computation of sg will only begin after the 
“envelope predicates” in-sg and out-sg have been pre- 
computed in the loop for (2,3,5, (. . .),4). Table 3 
shows the results for this order. The subcolumn “1st 
outer” gives the number of iterations of the loop for 
(2,3,5, (. . .),4), the subcolumn “inner” the number of 
iterations of the loop for (7,6) and the subcolumn 
“2nd” the number of iterations of the loop for (9). 

Table 2. Modified semi-naive implementation of the magic 
sets optimized query. 

data # tuples - 
Jom size 

Comparing the figures in Table 3 with those in 
Table 2 shows how the loop structure resulting from 
the rewriting of the program in the optimization phase 
may affect the efficiency of the evaluation. The fact 
that the “envelope predicates” in-sg and out-sg are 
evaluated in a loop separate from that for sg has 
resulted in significant savings in the number of joins. 
On the other hand, the total number of tuples involved 
in joins is somewhat larger; this reflects the fact that 
the regular envelope computed by in-sg and out-sg is 
not so tight as the magic set computed by magic-sg. 

.44 

A6 

A8 
AIO 
B4 

B16 

B64 
B256 

58 
250 

1,018 
4,090 1 768 1 2,046 1 10 1 7,265 

80 1 51 231 31 97 

2,487 
29,163 

400,323 
6,052,971 

2,720 
27,920 

376,400 
5,733,200 

Table 3. Modified semi-naive implementation of the regu- 
lar envelopes optimized query. 
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5. Conclusion 

We have generalized the semi-naive bottom-up eval- 
uation strategy so aa to gain advantage of the entire 
loop structure of the datalog program being evaluated. 
First, we presented an algorithm for determining for 
any datalog program a nested structure of linear or- 
ders in which each substructure represents a sequence 
of rules that will be evaluated within a loop of their 
own in the evaluation algorithm. The algorithm oper- 
ates with the rule-goal graph by repeatedly splitting 
strongly connected components into subcomponents 
and determining an appropriate linear order between 
these subcomponents. 

Secondly, we showed how any order structure can 
be implemented as a modified semi-naive algorithm 
that can manage with nested loops and incremental 
relations corresponding to different levels in the order 
structure. This algorithm includes the optimization 
that loop-invariant factors in rule bodies are identified 
and pushed onto that level in the loop structure in 
which their values really change. 

Finally, we presented experimental results obtained 
by using the above method to evaluate a non-linearly 
recursive datalog program optimized by “magic sets”, 
and one optimized by a similar rewriting strategy but 
leading to a different loop structure. Significant sav- 
ings in join operations were achieved when compared 
to the conventional implementation of the semi-naive 
algorithm. 
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