
Advanced Query Processing in Object Bases 
Using 

Access Support Relations 

Alfons Kernper Guido Moerkotte 

Universit Bt Karlsruhe 
FakultSt fiir Informatik 

D-7500 Karlsruhe, F. R. G. 
Netmail: kemper,/moer@ira.uka.de 

Abstract 

Even though the large body of knowledge of relational 
query optimization techniques can be utilized as a start- 
ing point for object-oriented query optimization the full 
exploitation of the object-oriented paradigm requires 
new, customized optimization techniques-not merely the 
assimilation of relational methods. This paper describes 
such an optimization strategy used in the GOM (Generic 
Object Model) project which combines established rela- 
tional methods with new techniques designed for object 
models. The optimization method unites two concepts: 
(1) access support relations and (2) rule-bused query op- 
timization. Access support relations constitute an in- 
dex structure that is tailored for accessing objects along 
reference chains leading from one object to another via 
single-valued or set-valued attributes. The idea is to re- 
dundantly maintain frequently traversed reference chains 
separate from the object representation. The rule-based 
query optimizer generates for a declaratively stated query 
an evaluation plan that utilizes as much as possible the ex- 
isting access support relations. Thii makes the exploita- 
tion of access support relations entirely transparent to the 
database user. The rule-based query optimizer is particu- 
larly amenable to incorporating search heuristics in order 
to prune the search space for an optimal (or near-optimal) 
query evaluation plan. 
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1 Introduction 

Object-oriented database systems are emerging as the 
next generation DBMSs for the non-standard application 
domains. However, these systems are still not adequately 
optimized: for applications which involve a lot of asso- 
ciative searching for objects on secondary memory they 
still have problems even to keep up with the performance 
achieved by, for example, relational DBMSs. Yet it is es- 
sential that the object-oriented systems will yield at least 
the same performance that relational systems achieve; 
otherwise their acceptance in the engineering field is jeop- 
ardized even though they provide higher functionality 
by type extensibility and type-associated operations that 
model the context-specific behavior. Engineers are gener- 
ally not willing to trade performance for extra function- 
ality and expressive power. Therefore, we conjecture that 
the next few years will show an increased interest in opti- 
mization issues in the cont,ext of object-oriented DBMSs. 
The contribution of this paper can be seen as one im- 
portant piece in the mosaic of performance enhancement 
methods for object-oriented database applications. 

Of course-as some aut,hors point out, e.g., [9]--there 
are vast similarities between query processing in rela- 
tional DBMSs and object bases. Therefore, the large 
body of knowledge of relational optimization techniques 
(e.g., [8, IS]) can serve as a basis. However, the full po- 
tential of the object-oriented paradigm can only be ex- 
ploited for optimization if new access support techniques 
are tailored specifically for the object-oriented model(s)- 
and not merely assimilated from the relational model. 
The access support relations (ASRs)-first introduced in 
[lo]---constitute one such approach. Access support re- 
lations form the basis of the query optimization strategy 
in the GOM (Generic Object Model) database system. 
They are a generalization of an indexing technique for 
path expressions first proposed for the Gemstone data 
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model [15] and, later, applied to ORION in [l]. Whereas 
the Gemstone (and ORION) path expressions were lim- 
ited to only single-valued attributes the access support 
relations allow also set-valued attributes along the path. 
Also, access support relations can be maintained in four 
different extensions, determining the amount of reference 
information that is kept in the index structure. Further- 
more, an access support relation can be decomposed into 
arbitrary large partitions, which allows to adjust the in- 
dexing scheme to particular application profiles. 

After briefly reviewing the access support relations the 
second part of this paper describes the essential parts of a 
rule-based query optimizer which-unlike the Gemstone 
system-makes the exploitation of existing access sup- 
port relations entirely transparent to the database user. 
Rule-based query optimization is not an entirely new idea: 
it is borrowed from relational query optimization, e.g., 
[5, 8, 13, 141. [6] reports on a rule-based query opti- 
mizer generator, which was designed for their database 
generator EXODUS [2]. In the present work the idea 
of rule-based query optimization is utilized as a power- 
ful tool to integrate the new index structure based on 
access support relations in object-oriented query evalua- 
tion. It is shown that the rule-based approach leads to 
a very modular design of such a complex transformation 
system. This enables the designer to experiment with dif- 
ferent search heuristics to limit the number of transforma- 
tions that have to be considered to derive a near-optimal 
evaluation plan. 

Related work on object-oriented query processing is re- 
ported in [9, 121 h w ere a graph-based approach was cho- 
sen for optimizing a limited class of queries, i.e., only 
queries that correspond to an acyclic graph are consid- 
ered. Also, the cited work does not take general access 
support relations into account-it is based solely on (bi- 
nary) indexes as known in relational DBMSs. 

The remainder of this paper is organized as follows. 
In Section 2 we review the access support relations as a 
means for access support along reference chains. Then in 
Section 3 we introduce a QUEL-like query language, for 
which a term representation is developed. The transfor- 
mation rules are discussed in Section 4. In order to reduce 
the search costs we develop heuristics for the sequence of 
applying the transformation rules in Section 5. Section 6 
concludes the paper with a summary and a discussion of 
future developments. 

2 Access Support Relations 

In an earlier paper [lo] we introduced access support re- 

&ions as an index structure to support the evaluation of 
path expressions. They are briefly reviewed here. 

A path expression has the form 

where o is a tuple structured object containing the at- 
tribute Al and o.Al. . . . .Ai refers to an object or a set 
of objects, all of which have an attribute Ai+l. Thus, 
the result of the path expression is the set R,, which is 
recursively defined as follows: 

Ro := (0) 

& := u v.A; for 1 5 i.5 n 
UERi-1 

Thus, R,, is a set of OIDs of objects of type t, or a set 
of atomic values of type t, if t, is an atomic data type, 
such as INT. 

It is also possible that the path expression origi- 
nates in a collection C of tuple-structured objects, i.e., 
C.Al:... A,. Then the definition of the set Ro has to be 
revised to: Ro := C. 

Formally, a path expression or attribute chain is defined 
as follows: 

Definition 2.1 (Path Expression) Let to,. . _, t, be 
(not necessarily distinct) types. A path expression on to 
is an expression to.Al. . . . .A, iff for each 1 5 i 5 n one 
of the following conditions holds: 

l Type ti-1 is defined US type ti-1 is [. . . , Ai : ti, . . .], 
i.e., ti-1 is a tuple with an attribute Ai of type ti’. 

l Type ti-1 is defined as type tie1 is [. . _, A; : t:, . . .] 
and the type t: is defined as type t: is {t;}, i.e., t: is 
a set type whose elements are instances of ti. In this 
case we speak of a set occurrence at Ai in the path 
to.A1.....A,. 

The second part of the definition is useful to support 
access paths through sets (note, however, that we do not 
permit powersets). If it does not apply to a given path 
the path is called linear. An access path that contains at 
least one set-valued, attribute is called set-valued. 

For simplicity we require each path expression to orig- 
inate in some type to; alternatively we could have chosen 
a particular collection C of elements of type to as the 
anchor of a path. 

Since an access path can be seen as a relation we will 
use relation extensions to represent access paths. The 
next definition maps a given path expression to the un- 
derlying access support relation declaration. 

Definition 2.2 (Access Support Relation) 
Let to,. . . , t, be types, to.Al.. . . .A, be a path expression. 

‘meaning t.hat the attribuk A, can be associated with objects 
of type ti ~r any subtype t.hereof 
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Then the access support relation [to.Al.. . .Anl 2s of arity 
n + 1 and has the following form: 

[Ito.A1. . . . .A,,TJ : [So, , S,J 

The domain of the attribute Si is the set of identifiers 
(OIDs) of objects of type t; for (0 5 i 5 n). If t, 2s an 
atomic type then the domain of S, is t,, i.e., values are 
directly stored in the access support relation. 

We distinguish several possibilities for the extension 
of such relations. To define them for a path expression 
to.Al.. . . .A,, we need n temporary relations El,. . . , En. 

Definition 2.3 (Temporary Binary Relations) 
For each Aj (1 5 j 5 n) we construct the tempo- 
rary binary relation Ej. Relation Ej contains the tuples 

(id(oj-i), id(oj)) f or every object oj-1 of type tj-1 and 
oj of type tj such that 

l oj-l.Aj = Oj f j i A is a single-valued attribute2. 

l oj E oj-l.Aj if Aj is a set-valued attribute. 

Example 2.1 Consider the following database schema: 

type EMP is [Name: STRING, WorksIn: DEPT, 
Cars: CARSET, Salary: INT] 

type DEPT is [Name: STRING, Mgr: EMP, 
Profit: INT] 

type CARSET is { CAR} 
type CAR is [License: STRING, Make: STRING, 

Horsepower: INT] 

Complex attributes in GOM are-like in almost all 
other object models-maintained uni-directionally. For 
example, in an extension of the above schema there exists 
a reference in the form of a stored OID from an EMPloyee 
to his DEPT, but not vice versa. 

A path expression on this schema is: 

EMP. WorksIn.Mgr.Cars.Make 

The binary relations El, . . . , Ed may have the following 
extensions: 

El E2 

‘If t,, is an atomic type then id(o”) corresponds to the value 
on-1 .A,,. 

The idj for j = { 1,2,3,. .} denote object identifiers 
which are system-wide unique. 0 

Let us now introduce different possible extensions of the 
access support relation [to.Al. . . . .A”]. We distinguish 
four extensions: 

the canonical extension, denoted [to.Al. . . .A,],,, 
contains only information about complete paths, i.e., 
paths originating in to and leading to t,. Therefore, 
it can only be used to evaluate queries that originate 
in an object of type to and “go all the way” to t,. 

the left-complete extension [to.Al. . . . .A,&.ft con- 
tains all paths originating in to but not necessarily 
leading to t,, but possibly ending in a NULL. 

the right-complete extension [to .Al. . .A&,sbt, 
analogously, contains paths leading to t,, but pos- 
sibly originating in some object oj of type tj which 
is not referenced by any object of type tj-1 via the 
Aj attribute. 

finally, the full extension [to.Al. . . . .A,BIU,, contains 
all partial paths, even if they do not originate in to 
or do end in a NULL. 

Definition 2.4 (Extensions) Let W ‘( 3f, 31, WI) de- 
note the natural (outer, left outer, right outer) join on 
the last column of the first relation and the first column 
of the second relation. Then the different extensions are 
obtained as follows: 

[to.A1. 1. . .A&,, := El W . . . W En 

~to.Al.....A,nfu,, := E12K...wE,, 

[to&. . . . .A&t := (...(E11WE2)31 . ..IwE.) 

[to A. . . . .An]right := (Elm& wI(En-lKEn)...) 

Example 2.2 For our example path of Example 2.1 the 
canonical extension [[EMP. WorksIn.Mgr.Cars.Makej,., 
looks as follows: 

[EMP.WorksIn.Mgr.Cars.Make]can 
0IDc~p OZDmpT OIDEM~ OIDCAR STRING 

id2 ids id7 *dll “Jaguar” 
id2 id5 ad7 id12 “BMW” 

. . 

Definition 2.5 (Decomposition) 
Let [to.Al.. . . .A& be an (n + 1)-ary access support re- 
lation with attributes So,. . . , S,, under extension X, for 
X E {can, full, left, right}. Then the relations 

I[to.Al. ... .Anny: : [So,. . . , Si,] for O < il i n 

[[~o.A~:...A~IJ~“~ : [Si,,...,Si,] foril < i2 <n 

[l;.Al. . . . .A,]t;tsn : [Si, y . . . , Sn] for ik < n 
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are called a decomposition ofI[ta.Al.. . . .A&. The rela- 

tions [to.Al. 1. . .An];“j+l for (1 ,< j < k), called parti- 
tions, are materialized by projecting the corresponding at- 
tributes’ of [to.Al. . . . .An]x. If every partition is a binary 
relation the decomposition is called binary. The above de- 
composition is denoted by (0, il, il, . . . , ik, n). 

The storage structure of access support relations is bor- 
rowed from the binary join index proposal by Valduriez 
[17]. Each partition is redundantly stored in two B+- 
trees: the first being clustered (keyed) on the left-most 
attribute and the second being clustered on the right- 
most attribute. This storage scheme is well suited for 
traversing paths from left-to-right (forward) as well as 
from right-to-left (backward) within the access support 
relations even if they span over several partitions. 

The different decompositions and extensions provide 
the database designer a large spectrum of design choices 
to tune the access support relations for particular applica- 
tion characteristics ([lo] and, in more detail, [ll] contain 
cost models that can be used to determine the best con- 
figuration for a given load profile). 

The next definition states under what conditions an 
existing access support relation can be utilized to evaluate 
a path expression that originates in an object (or a set 
of objects) of type s. The predicate is essentially the 
formalization of the characteristics of the four extensions 
described on the previous page. 

Definition 2.6 (Applicability) An access support re- 
lation [to.Al. . . . .A,]x under extension X is applicable 
for a path s.Ai. ... .Aj under the following condition- 
depending on the extension X: 

Applicable( [to .Al. . . . .A,lx , s.Ai. . . . .Aj) = 

i 

x = full A Slti-1 A l<i<j<n 
X = left A S<ti-l A l=i<j<n 
X = right A s<ti-1 A 1 <i 5 j = n 
X = can A S<ti-l A l=i<j=n 

Here s 5 ti- 1 denotes that type s has to be identical to 
type ti-1 or a subtype thereof. 

3 The Query Language and bhe 
Term Expressions 

3.1 The Query Language 

For our object model we developed a QUEL-like query 
language along the lines of the EXCESS object query lan- 
guage [31. 

Let Xi be variables, Ti set typed expressions or type 
names (which represent the types’ extension), and S a 
selection predicate. Then, a query has the following form: 

range X1 : Tl,. . . ,X, : T, 
retrieve Xi 
where S 

Of course, the selection predicate S may itself contain a 
retrieve statement. 

Example 3.1 The following example query will be used 
throughout the remainder of this paper to illustrate our 
optimization techniques. The query is based on the type 
definitions of Example 2.1 and has the following seman- 
tics: aetrieve the managers of departments which gener- 
ate losses and, at the same time, pay at least one of their 
employees an exorbitant sala y exceeding 2OOK. V 

range e: EMP,m: EMP 
retrieve m 
where m = e. WorksIn. Mgr and 

e.Salary > 200000 and 
e.WorksIn.Profit < 0 

3.2 The Term Language 

One of the main arguments for the term language used 
here is that every term corresponds to a query evaluation 
plan. The second argument is the simplicity of the first 
translation step of translating the user’s query language 
into the term representation. Of course’, this step may be 
more complicated for other query languages than the one 
used in GOM. But then at least the independence of the 
term language from the query language guarantees that 
only the preprocessing phase of the query optimizer has 
to be redesigned. 

The first “high level” operator of the term language is 
the retrieve operator with the following parameters: 

(retrieve :B BINDING :S SELPRED :P PROJ) 

It represents a nested loop evaluation of the query spec- 
ified by the parameters. The variables are bound from 
left to right to every possible value of the correspond- 
ing set in the :B clause which consists of pairs of range 
variable and type names or set valued expressions. On 
each binding the selection predicate following the label 
:S is evaluated, and in the case of success the binding of 
the variable corresponding to the one in the :P clause is 
gathered. Of course, different permutations of the pairs in 
the :B clause show different performance. But since this 
problem has already been excessively treated elsewhere 
we do not concern ourselves herewith. 

The “low level” operators which are utilized in the op- 
timization in order to increase performance by accessing 
the a.ccess support relations are: 

1. (getasr ASR :R RESTR :S SELPRED :P PROJ) 
This operator retrieves tuples (projected onto the at- 
tributes in the PROJ list) from an access support 
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relation ASR, for which RESTR A SELPRED is sat- 
isfied. The :R clause is used t,o give explicit entries 
into the B+ tree used t,o guarantee fast access to the 
tuples in the access support relations. Thus, the RE- 
STR predicate can only refer to attributes at the left 
and/or right of an access support relation partition. 

(mkasr TYPE PATH :S SELPRED :P PROJ) 
This operator materializes a new temporary access 
support relation 

(appendasr ASR PATH :S SELPRED :P PROJ) 
The appendasr operator is utilized to extend an 
existing access support relation beyond the originally 
defined attribute chain 

Each of the three latter operators returns an internal 
main memory representation of an access support rela- 
tion, ASR. Besides those new operators dealing with ac- 
cess support relations there exist some useful operators 
from relational algebra, e.g., join, union, etc. 

Terms as used for the selection predicate, SELPRED 
and RESTR, are of the form (op tl t2) where tl and t2 
are constants, variables, or path expressions of the form 
(pathvAl...A,)f or a variable ZJ and attributes Ai, and 
op is a comparator. A selection predicate can be built 
from terms using the usual boolean connectors. In a pre- 
processing step negations are eliminated in the usual way 
using de Morgan’s law and reverting the comparators. 

3.3 Translation of Queries into Term 
Representation 

The initial translation of a user query into a term is 
straight forward. The range clause is translated into a 
binding list, marked :B, the retrieve clause into a projec- 
tion list :P, and the where clause into a selection predi- 
cate prefixed with :S. 

Example 3.2 To make things more concrete we give the 
translation of the example query into terms: 

(retrieve :B ((e EMP) (m EMP)) 
:S (and (= m (path e WorksIn Mgr)) 

(< (path e WorksIn Profit) 0) 
(> (path e Salary) 200000)) 

:P m) 

This not yet optimized term expression yields a very sim- 
plistic evaluation: the nested loop evaluation. The strat- 
egy is to convert the terms of the binding list into nested 
loops and for each binding of the range variables sepa 
rately evaluate the :S clause. 

4 Transformation Rules to Opti- 
mize Term Representation 

The query optimization steps are described as transfor- 
mation rules or rewriting rules [7]. A rule is given in the 
form 

1 47. 

which specifies that expression 1 is replaced by expression 
r. The expressions 1 and r themselves may contain meta 
variables standing for a term or a list of terms which are 
denoted by a prefix ‘I!” or “!!“, respectively. 

Example 4.1 The next transformation rule demon- 
strates the use of me&variables. 

(and (!!lO true !!ll)) - (and (!!lO !!ll)) 

This transformation rule denotes that a constant irue can 
be removed from a list of conjuncts. 0 

Further meta variables are as follows: 

l e, f, g, V, ee, ei, etc. denote range variables 

l Al, AZ, . . . , Bi, Bz, . . , Di, . .denote attribute 
names 

l 0, \Ir denote comparison operators, e.g., =, in, <, 
etc. 

l c denotes a constant, i.e., an atomic value or an ob- 
ject, and C denotes a constant set of objects or val- 
ues. 

In the remainder of this section we represent the main 
rule groups used in our implementation of the query op- 
timizer. For each group we choose one representative 
member which, whenever possible, is illustrated by ap- 
plication to our running example. The optimization is 
separated into three main phases. The first is a prepro- 
cessing phase introduced in the next subsection. In the 
main optimization phase the different rules are applied 
(subsequent subsections) which is followed by the pol- 
ishing phase as described in the last subsection of this 
section. 

4.1 Preprocessing and Preliminaries 

First the negations are eliminated. Further there exist 
two sets of rules which serve to simplify expressions. One 
is for the simplification of Boolean expressions, the other 
serves to simplify set expressions. These rule groups.stand 
somewhat outside the regular rule system and are applied 
whenever necessary (cf. Section 5). 

For commutative operators the possible transformation 
rules for rearranging predicates are built-into the rules 
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whenever they are useful. This is needed to arrange terms 
in the order that is required to match the left-hand side 
of the transformation rules. 

(retrieve :B ((e EMP)) 
:S (and (in ‘Jaguar’ (path e Cars Make)) 

(in 150 (path e Cars Horsepower))) 
:P e) 

4.2 Prolonging Path Expressions 

In order to utilize an existing access support relation 
[to.Al.. . . .A,& t o evaluate a query it may be necessary 
to first prolong the path expressions contained in the :S 
clause. This may be essential to make the access support 
relation applicable (cf. Definition 2.6)-depending on the 
extension X of the respective ASR. 

4.2.1 Prolonging a Linear Path Expression 

Let T be a retrieve term in which the :S clause contains 
a linear path expression of the following form: 

(retrieve :B ((e !b) !!bl) . 

T_= :S (and (= e (path v Ai . . . A,)) 
!!sl) 

:P !p) 

Then the following transformation can be applied 
throughout T, not affecting nested retrieves where e is 
not free: 

The left-hand retrieve term finds all EMPloyees who 
own a ‘Jaguar’ with 150 Horsepower. The right-hand 
term, however, retrieves the EMPloyees who own one 
CAR made by ‘Jaguar’ and one CAR (the same one or 
another one) that has 150 HorsePower. 

Therefore, the rule Tl for prolonging has to be re- 
stricted for set-valued path expressions because only spe- 
cial cases guarantee semantic equivalence after prolonging 
a path expression involving a set-valued attribute. For 
example, a prolonging is-at least-possible if the inter- 
mediate range variable is qualified only once in the :S 
clause: 

(retrieve :B ((e !b) !!bl) 
:S (and (in e (path v Ai . . . A,)) 

(in !s (path e Aj+l . . . AI)) - [T3] 
!!sl) 

:P !p) 

(retrieve :B (!!bl) 
:S (and (in !s (path v Ai . . . Al)) 

!!sl) 
:P !p) 

(path e A,+.1 . . . Al) - (path v Ai.. . A, A,+1 . . . Al) [Tl] The rule may be applied if e does not occur free in !!sl, 
!s, and !p. 

A further simplification is possible if-after the There are other rules which allow prolonging under the 
transformation-the range variable e is not further qual- following conditions: 
ified in T. In this case (e !b) may be dropped from the 
binding clause and the term “(= e (path 2, Ai . . . Aj))” l the intermediate (connecting) range variable e is fur- 

can be dropped from the :S clause, which is formalized ther qualified only in a disjunction, i.e., in a term 

in the following rule: of the form (or !oll !0/2 . . .). In this case e may be 
eliminated even if it occurs in more than one disjunct 
!Oli. 

(retrieve :B ((e !b) !!bl) ,111 1, 
:S (and (= e (path v Ai . . . AJ)) (retr’eve ‘B 

!!sl’) 
- :S (and !!r 

:P !p) 
:P !p) 

(!! 01) 

;I’) [TZ] 
l the term that qualifies the range variable, i.e., 

“(path w Ai . . . Aj)” is linear. For this case an anal- 
ogous rule to Tl can be formulated. 

The rule may only be applied if e does not occur free in 
!!sl’ and !p. 

4.3 Splitting Path Expressions 

Splitting of path expressions may be needed to utilize an 

4.2.2 Prolonging a Set-Valued Path ExpresSion existing access support relation [to.Al. . . . .Anl. We will 
provide the rule for linear paths only-an analogous rule 

The formulation of the rules for prolonging a set-valued exists for set-valued path expressions. 
require some care in order to guarantee that the trans- Let g be a new variable not occurring in the binding 
formation yields a semantically equivalent term. Let us list of the enclosing retrieve expression. 
illustrate the intrinsic problem on the following example: 

(retrieve :B ((e EMP) (c CAR)) (= !s (path v A,. . .A, Bl. Bk)) - P41 
:S (and (in c (path e Cars)) 

(= ‘Jaguar’ (path c Make)) $ (and (= g (path v A, . . . A,)) 
(= 150 (path c Horsepower))) (= !s (path g Bl . Bk))) 

:P e) 
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We have to add (g tj) to the binding list of the directly 
enclosing retrieve. Then g may be substituted for any 
other path prefix “21 Ai Aj”, yielding to the following 
transformation rule: 

(and (= g (path v A, . . . A,)) 
(Q !s (path v A,. A, D, . . . D,))) _* WI 

(and (= g (path v A,. . . AJ)) 
(a !s (path g D, . . . D,))) 

The combination of T4 (splitting) and T5 (substitu- 
tion of path prefix) can be used to factor out common 
path prefixes in order to avoid multiple reference traver- 
sal along the same reference chain. This is built-into the 
search heuristics of the term rewriting system (cf. Sec- 
tion 5). 

Example 4.2 Consider again our running example. In 
the remainder of this section we will transform this exam- 
ple step by step under the assumption that the following 
two access support relations exist: [EMPSalary],,, and 
[EMP.WorksIn.Mgr],,,. 

(retrieve :B ((e EMP) (m EMP)) 
:S (and (= m (path e WorksIn Mgr)) 

(< (path e WorksIn Profit) 0) 
T4,T5 
- 

(> (path e Salary) 200000)) 
:P m) 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (= d (path e WorksIn)) 

(= m (path d Mgr)) 
(< (path d Profit) 0) 
(> (path e Salary) 200000)) 

:P m) 

Note, that this transformation actually results in a less 
efficient retrieve term. This “step backwards”, however, 
is only performed by the optimizer if it leads to a subse- 
quent transformation step that will utilize an access sup- 
port relation which vastly optimizes the evaluation. 

4.4 Utilization of ASRs for Single-Target 
Path Expressions 

A selection predicate based on a path expression for which 
an applicable access support relation exists should be 
transformed into an equivalent operation on the access 
support relation. 

Let c be a constant (object or value), then we can sub- 
stitute 

(in e (getasr [to.Al.. . . .A,]x 

(= c (path e Ai.. . Aj))- 
:R tT%e 
:S (= c #j) 
:P #(; - 1))) 

[‘W 

if Applicable([to.Al.. . . .A,]x, s.Ai. . . . .Aj) is satisfied 
for s = type(e). 

Attributes of the access support relations are referenced 
by their position, e.g., #j references the j+ lnth attribute 
(the first attribute is denoted #O). 

There are similar rules for the in predicate, i.e., set- 
valued path expressions. Note, that we then have to dis- 
tinguish the two cases 

(in c (path e Ai . . . Aj)) and (in(patheA;...Aj)c). 

Example 4.3 Application of the above rule yields for 
our running example: 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (= d (path e WorksIn)) 

(= m (path d Mgr)) 
(< (path d Profit) 0) Z 
(> (path e Salary) 200000)) 

:P m) 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (= d (path e WorksIn)) 

(= m (path d Mgr)) 
(< (path d Profit) 0) 
(in e (getasr [EMPSALARYD,,, 

:R true :S (> #l 200000) 
:p #O))) 

:P m) 

Note, that there is no ASR to evaluate the path expression 
(path d Profit). 

4.5 Multi-Target Expressions 

So far, we have utilized access support relations only for 
path expressions that are involved in a comparison pred- 
icate with a constant (c). Let us now consider compar- 
isons with range variables (or even with other path ex- 
pressions). 

4.5.1 Bi-Connected Expressions 

A two-target expression based on a path expression has 
the form (in e (path v Ai . . . Aj)), where e and v are both 
range variables. The subsequent rule T7 should only be 
applied if the path cannot be prolonged to a predicate 
involving only one range variable and a constant (cf. Sec- 
tion 4.2). 

(in (v e) (getasr [to.A~. . . . .A,]x 

(in e (path v A, . A,))- 
:R true 
:S true WI 
:p (#(i - 1) #j))) 

Again, the application of this rule requires that 
Applicable( [to.Al . . . . .Anlx, s.Ai. . . . .Aj) is satisfied for 
s = type(v). The “e” could be generalized to a path ex- 
pression originating in a range variable. 
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4.52 Multipily-Connected Paths 4.6.2 Appending Access Support Relations 

The rule T7 can be generalized to multipily-connected 
path expressions. Using the simplification rules cited in 
Section 4.1 the terms of the conjunction are first arranged 
in the desired order. Note that further references to the 
range variables ei for (1 5 i 5 k) may obstacle the pro- 
longing of the interconnected paths on the left-hand side 
of the rule T8. 

If there exists a path for which at least some part-in 
practice, the major or most selective part-is covered by 
an access support relation we may temporarily extend this 
access support relation using the appendasr operator. 

(and (ip, er (path eo Ai,+ . . . Ail)) 
(@2 ez (path el Ail+1 . . . Ai,)) 

- . . . PI 
(@k ek (path ek-1 Aik-,+l . . . Ai,)) 

!!sl) 

(=c(patheA;...Aj Ol...Or)) _* P-91 

(in e (appendasr (getasr[to.A*. . . . .A,] 
:R true :S true 

:P (#(i - 1). . . #j)) 
(path #j DI . . . D,) 
:S (= c #(r +j -i)) 
:p #O)) 

(and (in (eo el . . . ek) 

(getasr [to.A1.. . . .A& 
:R true :S true 

!!sl) 
:p (#iO #;l . . . #ik)))) 

Again, the transformation is only valid if 
Applicable([to.A1.. . . .A&, s.Ai. . . . .Ai) is satisfied for 
s = type(e). 

Application of T8 requires that the predicate 
Applicable([t~.A~. . . . .A,,]*, s.A;,+l.. . . .Aik) is satisfied 
for s = Qpe(ea). Here, the meta symbols ai,. . . , ipk 
stand for = or in. 

4.6.3 Joining Access Support Relations 

Example 4.4 The rule T8 can be applied to our running 
example: 

A predicate based on the comparison of two path expres- 
sions which both have an applicable access support rela- 
tions may be transformed into the join of the two access 
support relations: 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (= d (path e WorksIn)) 

(= m (path d Mgr)) 
(< (path d Profit) 0) TB 

(in e (getasr [EMP.SALARqc(ln - 
:R true :S (> #l 200000) 
:p #O))) 

:P m) 

(= (path e Ai.. . A,) (path f BI . . . Bk)) - P’lol 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (in (e d m) 

(in (e f) (join (getasr r[to.Al.. . . .A,,] 
:R true :S true :P all) 

(getasr [so.B~. . . . .B,] 
:R true :S true :P all) 

:J (= #j #k) 
:S (true) 
:p (#(i - 1) #(n + 1)))) 

(getasr [EMP.WorksIn.Mgr]ean 
:R true :S true 
:P (#O #1 #2))) 

(< (path d Profit) 0) 
(in e (getasr [EMP.SALARY]Jcan 

:R true:S (> #l 200000) 
:p #O))) 

:P m) 

4.6 Further Operators on Access Support 
Relations 

This transformation requires the satisfaction of 
Applicable([to.Al. .. . .A,,lx, s.Ai.. . . .Aj) for s = type(e) 
and Applz’cable([so.&. . . ..B.]jx.r.B~.....Bk) for r = 
type(f). The :J denotes the join predicate. 

Since the join may be a very costly operation one should 
try every other possibility before committing this trans- 
formation TlO. If the enclosing retrieve term contains a 
selective binding for e and f, e.g., 

:B ((e Cl) (f Cx) !!bl) 

4.6.1 Creating Temporary Access Support Rela- 
tions 

If there exists a path for which no access support relation 
is given one may introduce a temporary access support 
relation using the operator rnkasr. The rules of the pre- 
vious sections find their analogous counterpart. 

then these should be propagated into the :S clauses of the 
respective getasr term in order to minimize the number 
of joined tuples. 

There is a similar rule for the comparison operator in, 
i.e., the first path being linear and the second path set- 
valued. 
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4.7 Introduction of Union 

If nothing else works a disjunctive selection predicate may 
be evaluated separately, with the possibility of first trans- 
forming the predicate into disjunctive normal form. 

(retrieve :B !!bl 
:S (or !sl . . !sn) - D-1 11 
:P !p) 

(union (retrieve :B !!bl :S !sl :P!p) 
. . . 
(retrieve :B !!bl :S !sn :P !p)) 

Of course, there exist more rules for disjunctions at a 
deeper level of nesting. 

4.8 Moving Selection Predicates Inwards 

For ‘C’ being any set valued term, e.g., a term with outer 
operator getasr, the following rule can be applied to 
move selection predicates inwards. 

(and ((in (eo . ..e[...ek) 
(getasr [to.Al.. . . .A,]x 

:R !r 
:s !s 
:P (#io . . . #& . . . #ik))))- 

(in el C) 
!!sl) 

PW 

(and ((In (eo . . . el . . ek) 
(getasr [to.A~. . . . .A,Jx 

:R !r 

!!sl) 

:S (and !s (in #ii C)) 
:P (#it,. . . #;I.. . #ik)))) 

If the predicate propagated into the getasr term con- 
stituted the last reference to el within the enclosing re- 
trieve term we may also delete el from the in list and 
concurrently, the projection on column #i, has to be re- 
moved from the :P clause. 

(and ((in (eo . . . el . . . ek) 
(getasr [lo .AI. . . . .A,]x 

:R !r 
:s !s 

- P’l31 

!!sl) 
:P (#iO . . . #iI . . . #ik)))) 

(and ((In (eo . . .erVl el+l . . . ek) 
(getasr [to.A~. . . . .A,]x 

:R !r 
:s !s 

!!sl) 
:P (#io.. . #iI-1 #iI+1 . . .#ik)))) 

This transformation is valid if the enclosing retrieve 
term (including the shown term list !!sl) does not con- 
tain a free reference to er. Furthermore, the el should be 

removed from the binding list of the enclosing retrieve 
term. 

Analogous rules exist for the other operations like 
mkasr, appendasr, join, and for deeper levels of nest- 
ing. Further, there exist rules to move selections into 
such operator expressions which are already moved to the 
binding list (cf. Section 4.9). 

Example 4.5 Consider the following transformation 
steps which illustrate the full use of T12 in combination 
with T13. 

(retrieve :B ((e EMP) (m EMP) (d DEPT)) 
:S (and (in (e d m) (getasr [EMP.WorksIn.Mgrncan 

:R true :S trve 

:p (#O #l #‘))I 
(< (path d Profit) 0) 
(in e (getasr [EMP.sALARY]~~~ 

:R true :S (> #l 200000) 
:p #O))) 

:P m) 

T12,T13 
- 

(retrieve :B ((m EMP) (d DEPT)) 
:S (and (in (d m) 

(getasr [EMP.WorksIn.Mgr]can 
:R t&e 
:S (in #0 (getasr 

:p (#I #2)) 
(< (path d Profit) 0)) 

:P m) 

[EMP.SALARY],,, 
:R true 
:s (> #l 200000) 
:p #O))) 

Note that the optimization includes the removal of the 
range variable e (by application of T13 from the binding 
and from the projection list of the getasr term because 
e is no longer referenced. 

4.9 Moving Predicates into the Binding 
List 

A predicate that evaluates to a constant, e.g., a predicate 
that is based on the evaluation of a getasr expression 
should be moved into the binding list of the enclosing 
retrieve term. This avoids the nested loop evaluation 
by iterating exhaustively over all elements of the speci- 
fied types. The following general transformation can be 
applied: 
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(retrieve :B ((eo So) .. . (ek Sk) !!bl) 
$3 (and (in (el . . . ek) 

(getasr [to.A~. . . . .A,]x 
:R !r - 
:s !s 
:P (#iO . . . #ik))) 

!sl) 
:P !p) 

(retrieve :B (((eo . . . ek) 

(getasr [t~.Al. 
:R !r 

W41 

.Anllx 

:S (and (in #io SO) 
. . . 
(in #ik Sk) 

!s) 

:P (#iO . . . #ik))) 

!!bl) 
:S (and !sl) 
:P !p 

Example 4.6 The following transformation concludes 
the optimization of our example query: 

(retrieve :B ((m EMP) (d DEPT)) 
:S (and (in (d m) 

(getasr [EMP.WorksIn.Mgrlcon 
:R true 
:S (in #0 (getasr [EMP.SALARY’Jcon 

:R true 
:s (> #l 200000) 
:p #O))) 

:p (#l #2)) 
(< (path d Profit) 0)) 

:P m) T14 
- 

(retrieve 
:B (((d 4 

(getasr [EMP.WorksIn.Mgrlcan 
:R true 
:S (and (in #0 (getasr [EMP.SALARYjcon 

:R true 
:s (> #l 200000) 
:p #O)) 

(in #1 EMP) 
(in #Z DEPT)) 

:p (#I #2)))) 
:S (and (< (path d Profit) 0)) 
:P m) 

4.10 Introduction of Restriction Predi- 
cates 

The following rule introduces restriction predicates. It 
can only be applied once since there is only one restric- 
tion term allowed. Thus this operation is left to the end 
of the term rewriting to choose the most selective term 

for restriction. This rule can be applied if the term !sl 
concerns only the entry attribute of the getasr operation 
(cf. Section 3.2 for the semantics of the :R clause): 

(getasr [&AI.. . . .A,] (getasr [to.A~. . . . .A,,] 
:R true :R !sl 
:S (and !sl !!sll) - :S (and !!sll) W51 
:P !pl) :P !pl) 

4.11 Deletion of the Retrieve Operator 

If the selection predicate is empty and only one variable 
is left in the binding list then we may remove the outer 
retrieve. More formally the following rule is valid: 

(retrieve :B (e !t) :S true :P e) - !t P’161 

4.12 Polishing of Resulting Terms 

4.12.1 Dealing with Access Support Relation 
Partitions 

So far we have only considered access support relations 
under no decomposition, i.e., [to.Al. . . . .A,jx. Accord- 
ing to our convention this should have been denoted more 
precisely as I[to.Al. . . . .Anjy. Introduction of access sup- 
port relation partitions is now straight. forward. This is 
the first step of the polishing phase. 

4.12.2 Isolating Common Subexpressions 

The second step in the post-transformation phase con- 
sists of finding common subterms-analogously to [4]--to 
avoid evaluating them twice. This is especially important 
if some access support relation partitions are shared by 
several access support relations. 

5 The Rule Interpreter 

In this section we introduce the governing strategies and 
mechanisms utilized in our query optimizer. This is a very 
important issue since if the rules were applied in an un- 
ordered and exhaustive manner there would be the prob- 
lem of exponential explosion of the search space. Thus 
guidance is needed to govern the deductive process of 
term rewriting. We have developed a number of technics 
to solve this problem. 

The basis of optimizing the rewriting process consists 
of organizing the rules into groups of rules with similar 
intention. 

For each group of rules a mode of application can be 
given. This mode is either nil or single. If all is de- 
fined, all rules of this mode are applied until no further 
rule of this group is applicable. An example of a rule 
group where all is specified as t,he application mode is 
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the moving selection predicates inwards group. If single 
is specified there will be at most one successful rule ap- 
plication of a member of the respective group every time 
the rule group is visited by a term. Since there are rules 
which may be better in some sense, the rules wit,hin a rule 
group may be ordered. 

The successor group from which the next rules are to be 
applied are declared by defining the rule group net. This 
net of rule groups is described by giving a successor group 
for each rule group for the case that at least one rule ap- 
plied successfully and-a different one-for the case that 
all rules failed to match. To give an example, if there is 
a successful application of a getasr introducing rule, the 
successor is the rule group of moving selection predicates 
inwards. If there is no further possibility to introduce a 
getasr operation the successor group is the one trying 
to move set valued terms into the binding list whenever 
possible. 

Further there are two special rule groups for simplify- 
ing expressions one for simplifying Boolean expressions 
and one for simplifying set expressions. Since applica- 
tion of these rule groups may not interfere with the or- 
der in which the other rule groups are applied, they are 
invoked only if necessary and without change to the suc- 
cessor rule group. This is described by specifying simbool 
and/or simset in the rule group net for each rule group 
where the corresponding set of simplifications might be 
worthwhile to attempt. 

Sometimes it does make sense not to obey the default 
successor rule group given by the net. Instead one might 
want to choose the application of a different rule group, 
or even the application of a certain rule. As an example 
consider the rule group prolonging. The standard succes- 
sor group in the case of successful application of a rule 
is the introduction of a getasr operator. But if the pro- 
longing has been beyond what is covered by an access 
support relation successive splitting is reasonable. Thus, 
with every rule there may be a successor rule group asso- 
ciated or a successor rule. This avoids many useless tests 
for possible rule applications. The applied successor rule 
may also depend on the history of the term considered. 

The first choice for a strategy to process a query term is, 
of course, to first prolong and then split the path expres- 
sions in such a way that the existing access support re- 
lations become applicable. Then to introduce the getasr 
operations, move the selection predicates inwards, then 
move the getasr operations to the binding list and re- 
move the retrieve. If this fails a strategy where new 
access support relations are temporarily created (mkasr) 
or appended (appendasr) is followed. The application of 
joins is delayed to a point where all other strategies failed. 
Since every strategy demands a different rule group net, 
there exists one corresponding net for each strategy. With 
each term the current strategy is associated. The strat- 

egy is changed if there is no more successful rule applica- 
tion within the considered rewriting mode. The successor 
strategy’may depend on the structure of the term and on 
its history. 

We now come to the management of terms which is 
highly interconnected with rule processing. At the begin- 
ning of the optimization process there is only one term. 
This term is put into the list of active terms. After a suc- 
cessful rule application the result replaces the only term 
in the active terms list. This is the default for most of 
the rules. If alternatives have to be considered-as in the 
case of the application of appendasr or mkasr rules- 
the result term of a rule application does not replace the 
original term but is (by default) added to the beginning of 
the list of active terms. This results in a depth first search. 
Other search strategies can be specified as well. This is 
necessary if the optimization is stopped by some criterion 
before all terms are optimized to the normal form where 
no further rule application is possible. If there is a change 
in the rule application strategy, the term is saved in the 
list of optimized terms before starting a new optimization 
phase. The last step of processing is done by polishing the 
resulting terms, e.g., taking care of access support relation 
partitions, eliminating common subexpressions within a 
query term, etc. If the resulting list of optimized terms 
contains more than one term the cost model whose basis 
was developed [ll]) will be applied (not yet integrated) 
and the terms will be ordered accordingly. The cheapest 
term is then chosen according to the recorded database 
characteristics and translated into an executable query 
evaluation plan. 

6 Conclusion 

In this paper we have shown how access support relations 
can be utilized in query evaluation against object bases. 
The access support manager which controls and main- 
tains the access support relations has been implemented 
in C and runs on a DEC station 3100 under Ultrix. We 
described the essential parts-consisting of 16 rules, each 
a representative of a larger rule group-of a rule-based 
query optimizer. The complete query optimizer was real- 
ized in Lisp and consists of a core of about 80 rules deal- 
ing with access support relations-aside from the trivial 
simplification rules. 

Utilizing the rule-based approach we were able to re- 
alize the prototype with relatively modest effort. The 
rule-based design is particularly amenable to 

l incorporating new rules due to revised evaluation 
strategies or new indexing structures 

l researching different search heuristics to find a near- 
optimal evaluation plan without exhaustive search. 
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The performance of the query optimizer is-in the cur- 
rent prototype version-not really sufficient for a produc- 
tion quality system. It took, for example, about a second 
to transform the (simple) example query. However, for ex- 
perimentation and evaluation purposes the performance 
is quite sufficient. In order to gain performance the term 
rewriting rules may be converted to C transformation rou- 
tines. 

Currently we are incorporating the cost model that was 
developed in [ll] for evaluating the usefulness of access 
support relations into the query optimizer. This would 
enable the quantitative comparison of alternative trans- 
formations based on the current object base extension, 
i.e., number of objects, size of access support relations, 
selectivity of restriction predicates, etc. 

In summary, we showed that access support relations as 
an indexing scheme in conjunction with rule-based query 
optimization provide a very promising road to perfor- 
mance enhancement of query processing in object bases. 
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