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We present a formal treatment of multi- 
sets (that arise when duplicates are not elim- 
inated) and aggregate operators for deduc- 
tive and relational databases. We define the 
semantics rigorously and extend the Magic- 
Sets technique to programs containing multi- 
sets and aggregates. The work presented here 
is an important step in demonstrating the ap- 
plicability of the Magic-Sets technique for opti- 
mizing queries in commercial query languages 
such as SQL. 

1 Introduction 

Previous treatments of Datalog and proposed extensions 
have treated a program as a collection of definitions of 
sets of facts (tuples). On the other hand, commercial 
query languages such as SQL typically support the def- 
inition of sets and multisets of tuples, and provide ag- 
gregate operators such as SUM and COUNT over sets 
and multisets. The ability to deal with multisets has 
significance from both the standpoint of a user and an 
implementer. For the former, multisets often provide 
the more natural semantics; for the latter, computing 
with multisets - possibly in intermediate stages of a 
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computation - may be the more efficient alternative, 
and a rigorous semantics for multiset definitions offers 
a sound theoretical basis for certain program optimiza- 
tions. Aggregate operators offer limited second-order 
capabilities, and their utility is widely recognized. 

Our contributions are in two areas. First, we provide 
a simple and intuitive semantics for logic programs con- 
taining predicates whose extensions are multisets, and 
show that this semantics can be supported efficiently. 
Second, we consider how the aggregate functions and 
the group-by construct of SQL can be introduced into 
recursive programs. Here again, we give an intuitive se- 
mantics, and show that the semantics can be computed 
efficiently. We provide an overview of our work in the 
following subsections. 

Our work contributes to the definition and develop- 
ment of relational systems also. Duplicates and Ag- 
gregates have been present in relational systems from 
the days of System R ([ABC+7G]), but their semantics 
has never been defined formally. A formal semantics is 
required for a precise language definition, more so af- 
ter the introduction of recursion into relational systems 
and with the increasing importance of query rewrite op- 
timization ([Pir89]). 

1.1 Duplicates1 (Multisets) 

The work on duplicates has three parts: 

1. The central property of a “declarative” semantics 
is that it allows programs to be understood intu- 
itively, without reference to how they are to be eval- 
uated. Using proof-theoretic notions, in contrast to 
the usual model-theoretic approach, we develop a 
formal semantics that enjoys this important prop- 
erty. Models cannot describe multiset semantics 
since a model is a set of atoms. 

2. While a declarative semantics is necessary to pro- 
vide the user with an intuitive, non-operational 
query language, efficient evaluation techniques 
must rest upon an equivalent operational seman- 
tics. We show that a straightforward extension of 

‘Here, and in the rest of the paper, we use duplicates to 
mean multiple copies, not necessarily two copies. 
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Semi-Naive - but not Naive! - fixpoint evalua- 
tion provides an equivalent operational semantics. 

3. An important contribution is the adaptation of 
the Magic-Sets approach ([BMSU86, BR87]) to 
work on such extended programs, thereby outlin- 
ing an efficient computation method for realizing 
the declarative semantics. 

Our treatment of duplicates and multisets can be un- 
derstood intuitively as follows: If duplicates are not 
eliminated in evaluating rules defining a predicate, say 
p, then p may have several occurrences of a given tu- 
ple, say t. Thus, p is a multiset of tuples, rather than 
a set. The corresponding set of tuples in p is easily un- 
derstood by ignoring duplicates; the subtle part is in 
understanding the cardinality of each tuple in the mul- 
tiset p. Intuitively, a tuple t appears as often as it is 
derived. The number of times that a tuple is derived 
in SQL is not arbitrary: it is derived exactly once for 
each derivation tree that supports it. This intuition can 
be formalized for recursive programs as well, as we will 
demonstrate. 

We use a device called coloring to distinguish dif- 
ferent occurrences of a tuple in a multiset. Does this 
mean that we support some form of object ids? The 
answer is that we do not: Coloring is merely a tech- 
nique that allows us to make the semantics precise, and 
to explain it intuitively. The formal semantics rests pri- 
marily upon the number of occurrences of elements in 
a multiset; different occurrences of a given element are 
indistinguishable. Note that coloring is not visible to 
either the user or to the implementer. Indeed, imple- 
mentation of multisets is particularly efficient, since we 
simply omit duplicate checks. Several systems often do 
this for the sake of efficiency, even when the multiset 
semantics is not required. Our results provide a for- 
mal basis for reasoning about optimization techniques 
when multisets are generated as intermediate relations, 
independently of whether the user desires a multiset se- 
mantics. 

We consider range-restricted programs in this paper, 
but provide a brief summary of how these results may 
be extended to non-range-restricted programs. 

1.2 Aggregates and the Group-By Construct 

Our second contribution is to consider the use of ag- 
gregate operators and the group-by construct of SQL. 
These constructs add a limited form of second-order 
quantification to logic programs in the form of a rich set 
of aggregate operators. We wish to emphasize that our 
use of second-order quantification is restricted greatly 
for the sake of efficiency: We do not allow explicit quan- 
tification over variables ranging over predicate names, 
nor do we allow set-valued variables. The only sets (or 
multisets) in our approach are conventional relations, 
which are sets (or multisets) of tuples. The limited 
second-order querying that we permit allows us to pose 
aggregate queries, such as SUM and COUNT, over tu- 
ples in a given (base or derived) relation, or over a subset 

of such tuples partitioned by the values in some set of 
fields. In this respect, our treatment of sets and second- 
order operations differs markedly from approaches such 
as LDL ([BNR+87]) and HiLog ([CKW89]). The re- 
quirement that aggregation be used whenever grouping 
is done is novel to our work, and makes it difficult to use 
the first-order semantics advocated in HiLog ([KM89]). 
In essence, we have extended the facilities provided by 
SQL to relations that are defined recursively; our treat- 
ment ensures efficient evaluation, without the need for 
set-unification. 

However, as with previous approaches to aggregate 
operations ([BNR+87, Kup87]), there are some diffi- 
culties in such an extension due to the combination of 
the group-by construct with recursive rules. We show 
that a stratification-based approach again yields an in- 
tuitive semantics, similar to perfect models for programs 
with negation. We also identify two interesting classes 
of non-stratified programs that have a perfect model: 
the first uses a notion of rule monotonicity, and the 
second, magical stratification, uses a dependency order- 
ing between groups to give semantics to programs that 
may not be locally stratified or even modularly strati- 
fied ([RosSO]). As in the case of programs with multi- 
sets, we show how the Magic-Sets transformation can be 
extended to programs with grouping and aggregation, 
thereby establishing the basis for efficient evaluation of 
such programs. 

1.3 Summary of Our Contributions 

We provide formal semantics for programs that con- 
tain multisets, aggregate operators, and the group- 
by construct, and provide a basis for efficient evalu- 
ation by extending the Magic-Sets technique to such 
programs. The results of this paper, along with those 
of [MFPRgOa] ( w h ere we extend the Magic-Sets tech- 
nique to propagate restrictions in the form of condi- 
tions, such as X > 5) are critical in demonstrating 
that the magic-set transformation is applicable to pro 
grams in full SQL ([MFPRSOb]). As is demonstrated 
through performance results in [MFPRSOb], the gains 
of set-oriented information passing using Magic-Sets can 
be significant in terms of a simplified architecture and 
an efficient, stable performance over a wide range of 
queries. 

Further, our uniform treatment of the “non- 
relational” features of a commercial language, such as 
SQL, in the presence of recursion demonstrates that de- 
ductive databases, in acquiring the power of recursion, 
need not sacrifice the powerful and practical features 
of standard relational systems. Our work shows how 
to introduce either or both of the two “non-relational” 
features discussed - multisets and aggregation - into a 
deductive database system. It appears that introduc- 
tion of multisets increases the power of some query lan- 
guages, as the following example illustrates: 

EXAMPLE 1.1 Consider the following bill-of-materials 
query. You are given a subpart relation that lists for each 
part P all its direct subparts 5’. P may use more than one 
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copy of S, and you are free to choose a representation for 
this. The aim is to define a contains relation that gives 
for each part P all the subparts S used in constructing P, 
directly or indirectly, along with an indication as to how 
many copies of S are used. 

We conjecture that this query cannot be written in 
Datalog extended with stratified aggregation (Section 3.3), 
though the truth of this conjecture is not critical to our mo- 
tivation. lf we treat subpart and contains as multisets, 
then under the semantics that we propose, the program 

contains(P, S) :- subpart(P, S). 
contains(P, S) :- subpart(P,T) & contains(T, S). 

count-contains( P, S, C) :- 
groupby (contains(P, S), [P, S], [C = CNT()]). 

computes the correct answer. The last rule is interpreted 
as follows: Group together all tuples of contains(P, S) that 
have the same P,S values, and count the number of tu- 
ples in the group. Each group thus generates a tuple in 
count-contains(P, S, C). 

The above example can be written in an SQL version that 
has been extended with recursion. Using SBSQL, as de- 
scribed in [MFPRSOb], we would write 

CREATE VIEW contains (P, S) AS 
((SELECT P, s FROM subp.3xt) 

UNION 
(SELECT s.P, c.S FROH subpart S, contains c 

UHEEE s.S = C-P)) 

SELECT P, S, COUNT(*) FROM contains GROUP BY P, S. 
0 

This paper is organized as follows. Section 1.4 gives 
definitions related to multisets. Duplicates are intro- 
duced in Section 2, and Section 3 discusses grouping 
and aggregation. Related work is presented in Section 4. 
Examples are written in a language similar to Datalog. 
The equivalent SBSQL queries can easily be derived. 

1.4 Notation and Definitions 
The language considered in this paper is an extension of 
Horn clause logic. Specifically; we use Datalog (without 
negation), and extend it to allow duplicates and aggre- 
gation. We define multisets and operations on them 
in some detail, since we use them extensively and also 
use some non-standard operations (such as col). We 
follow [MR89]; except in the definition of multiset dif- 
ference. 

Definition 1.1 “Multisets”: A multiset is a collection 
of elements that are not necessarily distinct. The number of 
occurrences of an element z in a multiset M is its multiplicity 
in the multiset, and is denoted by mult(z, M). The cardinal- 
ity card(M) of a multiset M is the sum of the multiplicities 
of each element of M. We define z E M iff mull(z,M) > 0. 
Given a multiset M, set(M) is the set of elements of llf, 
that is, set(M) = {z 1 z E M}. The difference of two mul- 
tisets MI and Mz, denoted as Ml - M2, is a multiset in 
which the multiplicity of an element z is maz(mdt(z, MI) 
- mult(z, Mz), 0). 0 

When a multiset is enumerated we use square brack- 
ets. For example, A4 = [a, b, b, c] is a multiset with 
mzllt(b, M) = 2. In this paper we do not care about the 
representation of multisets. They could be represented 
by counts, or by storing multiple copies of a tuple. We 
now introduce a “coloring” operation on multisets that 
is useful for providing constructive definitions of multi- 
sets in terms of a defining property. 

Definition 1.2 “Colored Sets”: Let M be a multiset, 
and let C be an (infinite) ordered list of colors cl, ~2,. . . . 
For every element, say a, with multiplicity n > 0, color 
the copies of a with cl, 122,. . . c,,, and denote these distinct 
colored elements as al, as,. . . , a,. The set of all elements 
obtained by thus coloring elements of M is a colored set, 
called col(M). 

The inverse operation, col-l(S), is defined to yield a mul- 
tiset M in which the multiplicity of an element a is equal to 
the number of colored copies of a in the colored set S. For 
a colored element ai, coi-‘(a;) = a. •I 

Definition 1.3 “Multiset Constructor [. . .I”: Let R 
be a set of n-tuples. Then [R] is a multiset with multiplicity 
one for each element of set R. 0 

Finally, we introduce the multiset equivalents of 
the Select, Project and Join operators that are 
normally defined for sets. We use the symbols 
(+?t ) pul, +et, pul and Wset , Mm”’ for the set and mul- 
tiset operators, dropping the superscript where the type 
of the operator can be determined from the operand. 

Definition 1.4 “Multiset Projection 7r;R”: Let R 
be a multiset of n-tuples, and let 5 be a vector of k inte- 
gers in the range 1.. . n. For every n-tuple t E R, con- 
sider the k-tuple (til,. . . ,2i,). The multiset M, denoted 
by n;Ry is defined to contain every such k-tuple m, with a 
multiplicity equal to the number of tuples i of R such that 
m = (ti,, . . . , tik)+ 0 

amu and Wmu’ can be defined similarly. 

2 Duplicates 

In this section, we consider programs in which pred- 
icates can be specified to be sets or multisets of tu- 
ples (we use the word relation in both cases). We de- 
velop a declarative semantics for such programs, based 
upon a proof-theoretic approach that determines the 
multiplicity of a tuple in a multiset predicate using 
the number of distinct proof-trees for that tuple. We 
present a procedural fixpoint semantics, extending the 
well-known Semi-Naive fixpoint evaluation technique to 
allow for multiset predicates. Finally, we show how to 
use the Magic-Sets transformation on such programs. 

We have already seen an example that motivates the 
introduction of multiset predicates. Queries involving 
aggregates or multiset difference provide further .exam- 
ples where multisets are useful. We begin this section 
with another type of example, which appeared in the 
Usenet newsgroup comp.databases, and underlines the 
utility of such an extension to logic programs. 
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EXAMPLE 2.1 Telephone companies record for each 
call the source number, the called number, the start time 
of the call (with 1 minute granularity), and the length of 
the call (in multiples of 1 minute). Multiple calls of same 
length (1 minute) can certainly be placed between two num- 
bers within a minute, leading to duplicates. The duplicates 
are important for countin 

9 
the number of calls or computing 

the average cost of a call. 
It may be argued that duplicates could be avoided by 

using a unique ID number other than timestamp with each 
call, or by using a finer timestamp granularity. However 
duplicates are rare under this timestamping granularity, and 
it is more convenient just to deal with them than to have a 
unique id. [7 

The need and importance of having duplicates in a 
realistic implementation is widely recognized. Dupli- 
cates have been incorporated into the ISO-ANSI stan- 
dard ([ISO89]), and implementations of the relational 
model have extended the model to allow for dupli- 
cates. The System R prototype also dealt with dupli- 
cates ([ABC+76]). A mongst the prototype implemen- 
tations of the logic data model based on Datalog type 
languages, NAIL! ([MUVG86], and LDL ([NT88]) are 
well-known. Neither has dealt with duplicates, choos- 
ing to stay with the traditional least Herbrancl model 
semantics. We believe that such a limitation restricts 
the usability of systems based on the logic data model. 
Logic programming languages would be more useful as 
query languages if they supported the concept of dupli- 
cates. 

While we want to allow duplicates for some predi- 
cates, we do not want to force every predicate to have 
duplicates. We therefore have two types of predicates: 
set predicates that are to be interpreted as a set of tu- 
ples, and multiset predicates that are to be interpreted 
as a multiset of tuples. The user specifies the desired 
interpretation using the following naming convention: 
The name of a set predicate begins with the keyword 
set- (the default), and the name of a multiset precli- 
cate begins with the keyword all-. Thus, p and set-p 
are set predicates and all-p is a multiset predicate. 

2.1 A (Proof-Theoretic) Declarative 
Semantics 

We now give the proof-theoretic semantics of logic pro- 
grams without negation containing set, and multiset 
predicates. The semantics is an extension of the tra- 
ditional proof-theoretic semantics, where the number of 
proofs is now important. The multiplicity of an atom 
is the number of proofs for that atom. We use cleriva- 
tion trees, similar to the trees introduced in [MR89], to 
count, the number of proofs of an atom. The semantics 
used in SQL and Prolog is functionally similar to the 
proof-theoretic semantics we give. 
Definition 2.1 “Derivation Trees”: Let P be a logic 
program without negation containing set and multiset pred- 
icates. The derivation trees of P, with respect to an edb E, 
DT(P, E), are defined as: 

2Yes, bills at IBM indicate the average cost! 

l 

0 

0 

For every edb relation Q of a multiset predicate, ev- 
ery tuple h of col(Q) generates a derivation tree for 
COI-‘(h), consisting of a single node with label h. For 
every edb relation Q of a set predicate, every tuple h 
of Q generates a derivation tree for h, consisting of a 
single node with label h. 
For each rule r of the form (h :- bl,bz,...,bk),t > 0, 
and for each tuple (tl, t2, . . . , tk) of derivation trees for 
atoms (dl,dz,..., dk) that unify with &,&,...,bk) 
with 0 as the mgu, generate a derivation tree for h0, 
with h0 as the root label, and (11, t2,. . . , tk) as the chil- 
dren, in that order, and r as the edge label from the 
root to the children. 

Lemma 2.1 No two derivation trees in DT(P, E) are 
identical. DT(P, E) is thus a set. 0 

Proof: By induction on the height of derivation trees, 
using the lemma as the inductive hypothesis. 0 

Each derivation tree is a representation of a proof for 
the atom labeling its root. (This is a slight simplifi- 
cation: the root, label of a tree for an EDB fact may 
actually be a colored copy of the fact.) 

Definition 2 2 “atoms”. . . For a derivation tree 2, 
atoms(t) is either the label or the col-’ of the label on the 
root of tree 1. For a set of derivation trees T, atoms(T) is 
the multiset of atoms that includes, for every tree 2 E T, a 
copy of the atom atoms(t). 0 

If a = atoms(t), we say that tree t is for the atom a. 
The set of all derivation trees for atom a in a program 
P with respect to an edb E is denoted by DT(P, E, a). 

We define the semantics of programs containing mul- 
tiset predicates by a collection of derivation trees that 
have the following property. 

Definition 2.3 “Duplicate Correctness Proper- 
ty”: A set of derivation trees D c DT(P, E) of a range- 
restricted program P and an edb E satisfies the Duplicate 
Correctness Property iff all of the following hold: 

1. For every pair of nodes in D (possibly in different 
derivation trees), if they are both labeled with the same 
atom a of a set predicate, then the trees or subtrees 
rooted at these nodes are identical. 

2. There is no set D’ > D that is a subset of DT(P, E) 
and yet satisfies Condition 1. 

0 

We define the predicate dcp(D, P, E) to be true for 
a set, of derivation trees D that has the Duplicate Cor- 
rectness Property with respect to a program P and an 
edb E. 

Condition 1 ensures that a unique tree represents each 
atom of a set predicate, and Condition 2 ensures that 
all possible derivations subject to this constraint are in- 
cluded in the set of trees. Note that the restriction to 
one unique derivation tree is for set predicates alone. 
All derivation trees of multiset predicates are included 
in D, and are considered in building larger derivation 
trees. 
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Given a program P and an edb E, there may be multi- 
ple sets D that have the Duplicate Correctness Property. 
Two such sets will differ in the choice of the derivation 
tree for an atom of a set that happens to have multiple 
derivation trees. 

Theorem 2.1 For every program P and edb E, there 
exists Q set D of derivation trees such that dcp(D, P, E). 
Further, if D1 and Dz are two distinct sets such 
that dcp(D1, P, E) A dcp(D2, P, E), then atoms(Dr) = 
atoms(D2). •I 

Proof: Let Dlfh)(P, E) be all derivation trees in 
DT(P,E) of height 5 h. We can construct a set Dch) s 
D7fh)(P,E), and prove, by induction on h, that 

1. dcp(Dch), P, E) ( we modify Definition 2.3 of dcp slightly 
to consider maximal subsets of Dflh)(P,E), rather 
than maximal subsets of DT(P, E) in Condition 2), and 

2. If there exists another set D’ch) c Dfih)(P) such that 
dcp(D’ch), P, E), then atoms(Dch)) = atoms(D’(h)). 

17 

Definition 2.4 “Dup,licate Semantics”: Given a 
logic program P without negation, with set and multiset 
predicates, let D C DT(P, E) be a set of derivation trees 
having the Duplicate Correctness Property. The duplicate 
semantics of the logic program P with respect to edb E is 
the multiset da(P, E) = atoms(D). 0 

Definition 2.5 “Duplicate Equivalence”: Pro- 
grams PI and Pz are duplicate equivalent iff da(Pr, E) = 
da(Pz, E) for every edb E. 0 

2.2 Computational Semantics 

A program with set and multiset predicates may be 
evaluated by a combination of Semi-Naive and Not-So- 
Naive ([MR89]) evaluation techniques, the former work- 
ing on set predicates, and the latter working, in paral- 
lel, on multiset predicates. 

Definition 2.6 “Rule Application”: 
IncrEval(p, P, D, A) is the multiset of facts derivable from 
the database D (a multiset of atoms) and an incremental 
database A (that has not yet been included in D) through 
a single application of the rules for predicate p in program 
P, using at least one fact from A. 

IncrEval(p, P, D, A) = 
$$q{(h~, r,&, d2,. . . , dk) 1 
T is a rule for predicate p in program P of the form 

(h :- bl, b2 , . . . , bk), I; > 0, and 
(dly d2,. . * 9 dk) E COI(D U A) A (!li),<i<k(di E col(A)), and 
(19 i;]the mgu of (bl, b2,. . . ,a,) and (6, d2,. . . , dk)) 

0 

The above formula is read as follows: For every rule 
r for predicate p, and for every tuple (di, da, . . . , dk)3 
of elements of col(D U A) that unifies with the subgoals 

3Note: Each di is an atom, a tuple of a relation. 

of rule T in that order, such that at least one of the 
dis also appears in col(A), add hB to the result, where 
0 is the mgu of (dl,dl,. . .,dk) and the body literals. 
An element appearing several times in D U A can thus 
contribute multiple copies of hB to the result, as the 
various copies of the element will appear as differently 
colored elements of col(D U A). 

For a set T of predicates, define an iteration as 
IncrEval(T, P, D, A) = &&Incr_Eval (p, P, D, A)). 

We now define the Duplicate Semi-Naive (DSN) eval- 
uation technique. DSN is similar to Semi-Naive eval- 
uation, except that duplicates for multiset predicates 
are not eliminated. Let PS and PM be the set and 
multiset predicates in program P, and let M and S 
denote their respective extensions. 2) = M U [S] is the 
database. Given a program P and an edb E, DSN gen- 
erates a multiset 2) = dsn(P, E). 

Definition 2.7 “Duplicate Semi-naive (DSN) Al- 
gorit hm” : 

1. Vs = 0; 6l&, = E. 
2. s”+l = S,, u SS,,; M,+I = M, u 6M,. 
3. 6SS+r = set(Incr_Eval(Ps, P,V,, 6V,)) - &+I; 

,,+I = hCr-bIal(PM, p, 2),, 62),). 
4. Vntl = [Sntl] U Mn+l; SVntl = [6S,tl] u 6Mntl. 
5. dsn(P, E) = V = lim,,, V, 

q 

DSN terminates (at Step n + 1) when ‘D,,+r = V,. 
DSN may not terminate for some programs where Semi- 
Naive does terminate. An example is the multiset 
transitive closure of a cyclic graph, where the answer 
is, by definition, infinite. 

The DSN algorithm can alternatively be viewed as op- 
erating on derivation trees instead of atoms. Each atom 
derived by DSN corresponds to a derivation tree con- 
structed for that atom. The relationship can be made 
explicit by defining a function Incr-Tree that does in- 
cremental computation on derivation trees, mimicking 
the computation of Incr-Eval on atoms. We omit the 
details here, but the equivalence helps us to establish 
the following result: 

Theorem 2.2 The DSN algorithm correctly computes 
the duplicate semantics of a logic program P. That is, 
dsn(P, E) = ds(P, E). 0 

DSN evaluation without coloring 
The definition of IncrEval suggests a computation 

where each iteration is preceded by a coloring phase. 
A simpler computation, without any coloring, is pos- 
sible. We use multiset versions of join, selection, and 
projection, and extend the ATOV (argument to variable) 
and VTOA (variable to argument) functions of [U1189] 
to multisets. 

ATOV(q(q, Q) maps the relation & for predicate q to 
a relation on variables in the goal q(f). 
zzfinition 2.8 “AT?V ([Ull89])“: Given the goal 

, . . . , t,,,) and a relation Q for predicate Q, define a rela- 
tion Q’ over the variables X1,. . , , X, appearing in tr, . . . , t, 
as follows: 
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Q' = 0; 
for each tuple q(sl, . . . , sm) in Q do 

if there is a term matching r for tuple q(s1,. . . , sm) 
and goal q(tl, . . . , t-) then 

..add to Q’ the tuple (r(X,), . . . ,7(X,)) 

ATOV(q(‘i), Q) = Q’. •I 

VTOA is the complement of ATOV. VTOA(q(q,Q’) 
takes a relation Q’ on the variables appearing in s, and 
produces a relation for predicate q. 
Definition 2.9 “Incr_Eval2”: Let r be a rule for 
predicate p in program P of the form (h :- b1, b2,. . . , bk), 

k > 0, let (Di,Ds ,..., Dk) be the relations for the pred- 
icates of subgoals (bl, b2, . . . , bk) in a database D, and let 
(A,, As, . . . , A,) be the corresponding relations in an incre- 
mental database A. As before, we assume that the incremen- 
tal relations have not been included in the main database. 
Let 0: = ATOV(bi, Di), Ai = ATOV(bi, Ai), and let 6; be 
given by either of the following two equivalent joins: 

D; W... w D;wl w A; W (D;+1 u A;+l). . . W (Dl, U A;) 

or 

(D:uA:)W... w (Dim1 u A;-l) w Aj W D;+l . . . W D; 

Define 

IncrEvalZ(p, r, D,A) = VTOA(h, U 6,) 
l<j<k 

IncrEvaIJ(p, P, D, A) = U IncrEvalS(p, r, D, A) 
r 

0 

Let DSN-2 be the version of the DSN algorithm using 
Incr_Evall2 instead of Incr-Eval. 

Theorem 2.3 Algorithms DSN and DSN-2 are equiv- 
alent. That is, dsn(P,E) = dsnJ(P,E). 0 

By building common subexpressions carefully, 
Incr_EvalZ can be evaluated using 3k - 4 joins. 

2.3 Magic-Sets Transformation 

We first show that the process of adorning a program, 
using any adornment pattern (see [U1189] for an intro- 
duction to adornments. More complex adornments are 
discussed in [MFPRSOa]) whatsoever, preserves the du- 
plicate semantics of a program. We then show that a 
magic-sets transformation ([BMSU86, BR87, UllSS]) on 
an adorned program, preserving its duplicate semantics, 
can be defined. 

2.3.1 Adorning a Program 
Definition 2.10 “Predicate Copying”: Given a set 
or a multiset predicate p in a program P, create another 
predicate pa of the same type as p, using the rules for pred- 
icate p in the program P. pa has exactly the same rules as 
p, except that the head of these rules are for predicate pa 
rather than for p. p” and p are called predicate copiesof each 
other. The set of predicate copies of a predicate p forms a 
predicate class. 0 

Lemma 2.2 Let P be a program obtained by one or 
more predicate copying operations. If pQl and paa -are 
members of the same predicate class in P, then the re- 
lations for pal and paa in ds(P, E), for any edb E, are 
identical. •I 

Theorem 2.4 Let a rule of a program P be modified 
by replacing an occurrence of a subgoal pal(S) by paa@) 
where pal and paa are members of the same predicate 
class, to get a program P’. Then P and P’ are duplicate 
equivalent. 0 

Corollary 2.1 Let program P’ be obtained from P by 
doing one or more predicate copies followed by one or 
more replacement operations as defined in Theorem 2.4. 
(Programs such as P’ are called adorned progmms). Let 
predicate p appear in both P’ and P. Then the relation 
G;, i;)d$P, E) is identical to the relation for p in 

1 * 

2.3.2 Magic-Sets 

Given an adorned program query pair (P, Q), define 
the magic-sets transformation for programs with multi- 
set predicates in two steps: 

1. Let P’ be the magic-sets transformed program ob- 
tained without regard to duplicate semantics. 

2. Define each magic predicate to be a set predicate. 
Call the program P”. 

The following theorem is significant in that it ensures 
the correctness of the magic-sets transformation under 
duplicate semantics, and thereby demonstrates that the 
declarative duplicate semantics can be efficiently evalu- 
ated, without irrelevant computation. 

The magic-sets transformation is known to preserve 
equivalence with respect to the minimal model seman- 
tics (for programs without duplicates). In other words, 
a fact has a derivation tree in the transformed pro- 
gram P’ or P” iff it has a derivation tree in the original 
program P. We must additionally prove that, with the 
adaptation above, a fact in P” is supported by exactly 
the same number of derivation trees as in P. 

Theorem 2.5 Program P and the magic-sets trans- 
formed program P” are duplicate equivalent to with re- 
spect to the query predicate Q. 0 

Proof: For a derivation tree 2’ of a program containing 
magic predicates, let magred(t’) denote the derivation tree 
obtained by removing from 1’ all nodes labeled by an atom of 
a magic predicate. Let D C DT(P, E) be a set of derivation 
trees such that dcp(D, P, E) holds. We prove, by induction 
on the height of derivation trees in D, that there is a set 
of trees D” E DT(P”, E) such that dcp(D”, P”, E) holds, 
and: 

1. For every tree t in D for p(a), one of the following two 
conditions holds: 

. There is exactly one tree t” in D” for p(a) such 
that magred(t”) = t, OR 
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. There is no tree in D” for setm-p( ra),” and hence 
there is no tree for m-p(xa) in DT(P’, E). 

2. For every tree t” in D”, there is a derivation tree t in 
D such that magred(t”) = t. 

Intuitively, the first condition ensures that every deriva- 
tion tree for a relevant fact is computed in the transformed 
program, and that no such tree is computed twice. The sec- 
ond condition ensures that no spurious facts are established. 
cl 

An important consequence of the Magic-Sets adapta- 
tion is the following: For programs that are duplicate- 
free [MR89], we need not perform any form of dupli- 
cate elimination on non-magic predicates. Thus, the 
result has significance even for programs in which mul- 
tiset predicates are not explicitly used, since it indicates 
how a special property of the original program can be 
exploited in evaluating the transformed program, even 
though the transformed program may not enjoy this 
property. 

2.4 Duplicate Semantics for 
Non-Range-Restricted Programs 

Computation with non-range-restricted programs in- 
volves storing non-ground tuples. In addition to sets 
and multisets of non-ground tuples, we introduce a new 
data structure: An irrset is a set in which no element 
subsumes another. 

The presence of non-ground tuples raises the possi- 
bility that a tuple may be subsumed by another that 
is generated in a later iteration. This seriously com- 
plicates the computation, and we require stratification 
with respect to the use of irrset predicates. We can 
extend the declarative and computational semantics to 
irrset-stratified programs. 

3 Grouping and Aggregation 

The amount of data kept in databases is frequently large 
and is expected to grow significantly. User queries of- 
ten involve some form of data reduction, and the query 
language must provide operations to support this. For 
example, SQL supports a set of aggregate functions such 
as average and sum. First-order logic does not deal with 
grouping and aggregation since variables range over one 
tuple or one component of one tuple. To be able to do 
grouping, we need to have a single variable range over 
a property of a subset of columns and/or rows of a rela- 
tion. The logic data model using Datalog and its various 
extensions does not include grouping and aggregation. 
LDL ([BNR+87]) 11 a ows us to construct set-terms by 
“grouping” all instantiations of a term in a rule body, 
but it does not support aggregation. 

The extension to grouping and aggregation extension 
that we discuss can be used both with and without sup- 
port for multisets in the system. 

‘set3-p is the magic predicate for p. *Q denotes the 
projection of a onto the arguments of set-m-p. 

3.1 Syntax 
We define a special second order predicate, 
group&y (T(T), GL, AL), that takes as arguments a goal 
T with its attribute list ?, a grouping list GL of variables 
appearing in i, and an aggregation list AL of aggregate 
functions. The general form of a group-by subgoal is: 

(G): groupby (r(I), [K, y2,. . . , Y,], 
[Z, = Al(.%(El)),...,Zn = An(Sn(En))l). 

The predicate r is called the grouping predicate. The 
arguments, 5 of T can be general terms: constants, vari- 
ables, or complex terms. However, any variables in i: are 
local to the groupby, unless they also appear in the 
grouping list. The grouping list consists of zero or more 
distinct variables that must appear in ?. The list of Z’s 
is called the aggregation list. Each 2 is a new variable, 
E is an expression that uses variables of i, S is optional 
- the keyword set can be used to remove duplicates 
before aggregation, and A is an aggregate operator that 
maps a monadic relation to a single value (such as SUM, 
CNT). -Within the rule body, a group-by subgoal rep- 
resents a relation over variables F in the grouping list 
and variables ‘z in the aggregation list. . 

For an expression E and tuple s, let E(s) be the result 
of applying the expression E to tuple s. The operation 
is well-defined since the variables in E refer to attributes 
of s. For a set or multiset relation U, let E(U) be the 
multiset [E(s)ls E U]. 

If a rule for predicate p has the groupby subgoal G in 
the body, we say that p depends on r through a grouping 

operation, and insert the edge r 2 p in the dependency 
graph. gb is the label of the dependency edge. 

3.2 Semantics 

3.2.1 Semantics of a group-by Subgoal 
An ordinary subgoal p(s) of a rule defines an ATOV 

mapping from a relation P for predicate p to a relation 
over the variables in 5. Satisfiability of a rule in an in- 
terpretation requires testing the satisfiability of each of 
the subgoals for each substitution of the variables of the 
rule. For the subgoal p(f), checking satisfiability for a 
substitution u simply involves checking whether the tu- 
plep(S)a is in the relation P. (Or, for a negated subgoal, 
it involves checking that the tuple is not in the relation 
P). Equivalently,,satisfiability can be tested by doing 
the ATOV(p@, P) mapping, and checking whether the 
tuple corresponding to the substitution 0 is in the map- 
ping. 

Within a rule we give the group-by subgoal a seman- 
tics similar to any other subgoal. The group-by subgoal 
G defines an ATOV mapping from the grouping relation 
R to a relation over the variables (y,q. 

Definition 3.1 “ATOV of group-by”: 

ATOV(group_by (r(t), [Yl, Yz, . . . , Y,], 
= T [z, = Al(Sl (El)), . . . Zn = An(Sn(En))l), R) 

where T is defined as follows: 
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1. Let R’ = ATOV(@, R). R’ is a relation over the vari- 
ables in t. 

2. Let G = x;ff+.,.,y,,,(R’). We use a set projection in 
this step even d multisets are present. If m = 0, G 
is-a relation with no attributes, having either a single 
empty tuple (if R is not empty), or no tuples (if R is 
empty).’ 

3. For each tuple ,U in G, define a tuple f(p) as follows: 

l Let Rh = R’ W p. RL is thus the maximal subset 
of R’ having the same values for the attributes 
K,yz,..., Y, as the tuple p. If m = 0,~ will be 
the empty tuple, and R’ W p = R’. 

s Compute the multisets Rb-1 = El(RL), RL-2 = 
E2(R:),..., R;A = &(R;). 

l If Si = set, let Rli = set(Rli). 
l Compute Zr = At(RLl), Z2 = Az(Rh2), . . . . 

Z, = A,,(RLB). Each Zi wilI be a single value. 
l Let f(p) = p x Zr x Zs x . . . x Zn 

4. Let T = {f(k) 1 p E G}. Note that T is always a set. 

Theorem 3.1 ATOV of a group-by subgoal is non- 
mono2onic. 0 

Proof: Adding a tuple to the grouping relation R can 
change the number of tuples in a group (RL). As a re- 
sult, an aggregate value previously derived may no longer 
be derivable. 0 

-- 
Definition 3.2 “group”: A group of a relation R(X, Y) 
with respect to the grouping list y and values v, written as -- - 
group(R(X, Y), Y,$, is defined to be the relation u - 
II is the grouping value of the group. 0 

pkg. 

Definition 3.3 “groupset”: The groupset of a re- 
lation with respect to a grouping list F, written as -- - 
groupset(R(X,Y),Y), is defined to be the set of groups -- - 
krw(R(X, Y), Y,Vl I5 E ryYR)l. 0 

Several properties exist between groups and t& rela- 
tions R’, RL, and T of Definition 3.1. group(R’, Y,p) = 

RL. Each group g in groupset(R’,y) contributes ex- 
actly one tuple to T, so that the number of tuples in T 
is equal to the cardinality of groupset(R’,n. We can 
then derive the following important theorem. 

Theorem 3.2 ATOV of a group&y subgoal is mono- 
tonic with respect to new groups. That is, for 

‘SQL does not permit m = 0 when using groupby. How- 
ever SQL allows the aggregation operators to be used with- 
out grouping. The semantics of the aggregation without 
grouping in SQL is identical to our grouping with m = 0 if 
R # 0, but differs when R = 0. SQL assumes that a group 
consisting of the full relation R always exists when group- 
ing is not done, and the aggregate operators are applied to 
this one group. With R = 0, an empty group is generated, 
while grouping with m = 0 according to our definition will 
generate no groups. To make grouping with m = 0 equiv- 
alent to SQL aggregation without grouping, we would need 
to define G to have the single empty tuple when m = 0 and 
R = 0. Special boundary cases in some of the properties and 
theorems will be required as a consequence. 

the group-by subgoal G, if R:! = RI U A, and 
groupset(Ri, q = groupset(Ri, 7) U groupset(A’, n, 
thenTz_>Tl. •I 

3.2.2 Model Theoretic Semantics 
Definition 3.4 “Model”: A model of a logic program 
with grouping and aggregation is an interpretation that in- 
terprets each edb predicate as the given edb relation and 
satisfies all the rules. A rule is satisfied if for every substi- 
tution that satisfies each of the subgoals, the corresponding 
head atom is in the interpretation. A substitution u satisfies 
the groupby subgoal G 

(G): groupby (r(T)), [K, 5,. . . , Ll, 
[ZI = AI(SI(EI)), . . . , Zn = An&(L))]). 

if the tuple (Fcr,rc) is in 
-- 

ATOV(grwJv(r(% Iv, fz = A@)I, RI), 
where R is the relation for predicate r in the interpretation. 
0 

Several observations are in order: There are non- 
recursive programs that have multiple minimal models; 
if the domain provides an infinite number of constants, 
even range-restricted programs without function sym- 
bols may not have a finite minimal model - the ag- 
gregate operators behave like function symbols, so that 
every minimal model is infinite; the union of two min- 
imal models may not even be a model of the program; 
and there are programs that have no intuitive minimal 
model. 

We identify classes of programs for which the model- 
theoretic semantics can be defined in terms of a per- 
fect model. Aggregate Stratification is similar to Strati- 
fied Negation ([UllSS]), and disallows recursions through 
groupby. A local stratification analog (Group Strati- 
fication) can also be defined. Monotonic Programs and 
Magical Stratified programs are two interesting classes of 
non-stratified programs that are closed under the magic- 
set transformation. Non-stratified programs involve re- 
cursion through the grouping operator. 

It is straightforward to extend the results of this sec- 
tion to provide a (proof-theoretic) declarative seman- 
tics for programs that allow multiset predicates and ag- 
gregate operations. We call such programs SqLog pro- 
grams. 

3.2.3 Computational Semantics 
In the following subsections we provide computational 

semantics separately for each of the classes of programs 
we consider. 

3.3 Aggregate Stratified Programs 

The programs that have no intuitive minimal model all 
involve a recursion through a group-by subgoal. That 
is, such programs have mutually recursive predicates, 
p and q (not necessarily distinct), such that q is the 
grouping relation of a group-by subgoal in a rule for p. 

Therefore, a sufficient syntactic condition for the ex- 
istence of an intuitive model is the absence of recursions 
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through group-by. The resulting class of programs is 
said to be aggregate stratified. A stratification of an ag- 
gregate stratified program can be defined in a manner 
similar to the stratification of a negation stratified pro- 
gram ([UllSS]). Th e semantics of an aggregate stratified 
program is given by an intuitive perfect model, similar to 
the perfect model of a program with stratified negation. 

Definition 3.5 “Perfect Model of Aggregate St- 
ratified Programs”: Given an aggregate stratified pro- 
gram P, define its perfect model, M, as the minimal model 
of P that has the following properties: 

1. If M’ is another model (minimal or not) of P, then for 
every predicate p of stratum 1, the relation for p in M 
is a subset of the relation for p in M’. 

2. If M’ is another model of P that agrees with M on all 
predicates of stratum i and less, then for every predicate 
p of stratum i + 1, the relation for p in M is a subset 
of the relation for p in M’. 

0 

Theorem 3.3 Every aggregate stratified program has a 
unique perfect model. 0 

Proof: Let Pi be the subprogram of an aggregate stratified 
program P consisting of predicates of stratum i or less. We 
prove, by induction on i, that Pi has a unique perfect model. 
0 

We can extend the bottom-up computational seman- 
tics to aggregate stratified programs using a straightfor- 
ward layer-by-layer approach (similar to the computa- 
tional semantics for stratified negation), and prove that 
it is equivalent to the perfect model semantics. 

There are examples that involve recursion through 
grouping and yet have an intuitive minimal model se- 
mantics. The magic-sets transformation of aggregate 
stratified programs often leads to programs that are not 
aggregate stratified, though they do have an intuitive 
minimal model. In the following subsections we will 
define semantics for some of the interesting recursive 
examples, and give a class of programs that is closed 
under the magic-sets transformation. 

3.3.1 Group Stratified Programs 
In an aggregate stratified program, a predicate cannot 

be defined by grouping over itself. Since group&y is 
monotonic across groups (Theorem 3.2), what we really 
want is that a group of the predicate should not depend 
on itself; it may well depend on another group of the 
same predicate. Programs having this property are said 
to be group stratified. The idea is analogous to local 
stratification for negation. The perfect model for group 
stratified programs can be defined using a prioritized 
minimization of groups. 

The following program was suggested by a referee as a 
way to express the query of Example 1.1 without using 
multisets: 

(Tl): contains(P, S, null, C) :- subpart(P, S, C). 
(T2): contains(P, S, U, C) :- subpart(P, U, Cl) & 

count-contains(U, S, C2) 8.5 C = Cl * Cz. 

(T3): count-contains(P, S, C) :- group-by ( 
contains(P, S, U, M), [P,S], [C = SUM(M)]). 

contains(P, S, U, C) means that P has C units of S 
by virtue of having U as a direct subpart. Program 
T is not aggregate stratified. However, if the subpart 
relation is acyclic, program T is group stratified, with an 
ordering between the (P, S) groups of contains defined 
by a topological sort on the subpart relation. If the 
group ordering is known, the preferred model of T can 
be computed by a semi-naive evaluation where rule T3 
is fired for groups in the given order. 

3.4 Monotonic Programs 

We now consider a class of non-stratified programs for 
which an intuitive model exists. The following example 
is illustrative. 
EXAMPLE 3.1 (Corporate Takeovers): We are 
given a relation set-ouns(C,,,, C,, S) with the interpretation 
that company C,,, directly owns S% of the stock of company 
C*. 

A company C,,, is said to have bought another company 
C, if C,,, controls more than 50% of the stock of C,. C,,, 
controls the stock it directly owns. C,,, also controls stock 
controlled by any other company C,,, has bought. Consider 
the program 

(Cl): alLcontrols(C,, C,, S) :- set-ovns(C,, C,, S). 
(C2): all-controls(C,,,, C,, S) :- set-bought(C,, Ci) 

& C, # Ci & all-controls(C,, C,, S). 

(C3): set-bought(C,, C,) :- group-by ( 
all-controls(C,, C,, S), [Cm, C,], [A = SUM(S)]) 

& A > 50. 
0 

The above program is not aggregate stratified. (It 
is not even group stratified.) However, it has an in- 
tuitive minimal model, and a bottom-up evaluation will 
compute the intuitive model. We thus need a weaker re- 
striction than group stratification on S&Log programs. 
A semantic condition satisfied here is that if a group 
derives another tuple in the same group, thereby pos- 
sibly changing the ATOV of the group-by subgoal for 
that group, the head atom derived earlier from the rule 
is still derivable. We formalize this semantic condition. 

Definition 3.6 “Monotonic Rule”: We call a rule 
monotonic if adding new tuples to the relations for its ordi- 
nary subgoals, or to the grouping relations of its group_by 
subgoals, can only add tuples to the head (that is, cannot 
invalidate a deduction) regardless of the relations for other 
subgoals in the rule. 0 

Definition 3.7 “Monotonic Program”: A program 
is monotonic if every rule in it is monotonic. 0 

Clearly, a rule without a groupby subgoal is mono- 
tonic. A rule will not be monotonic if any variable from 
the aggregation list is used in the head or in an ordi- 
nary subgoal in the body, because adding tuples to the 
grouping relation will change the aggregate value. How- 
ever, consider an element 2 = A(E) in the aggregation 
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list. We can state a sufficient condition for the rule to 
be monotonic in terms of the literals in which Z ap- 
pears, assuming that the range of the expression E is 
known. For Datalog rules the condition is necessary and 
sufficient. 

Definition 3.8 “Monotonic Literal”: Let a rule r 
have as subgoals the literal 1(Z) containing variable Z and 
the groupby literal G, with the element Z = A(E) in the 
aggregation list. I(Z) is said to be monotonic with respect 
to a domain D and the element (Z = A) if l(Z) is built- 
in and adding tuples to the grouping relation never changes 
the truth value of I(Z) from true to false, provided that the 
range of expression E is a subset of domain D. 0 

EXAMPLE 3.2 The literals S > c, where c is a constant, 
is monotonic with respect to (S = SUM, R+), where Rt is 
the domain of positive reals. S > c is not monotonic with 
respect to (S = SUM, R), where R is the domain of all reals. 

Similarly, M > c is monotonic with respect to (M = 
MAX, R+), (M = MIN, R-) and (M = COUNT, R). M < c 
is monotonic with respect to (M = MIN, R+). 0 

Theorem 3.4 Let a rule r contain a group-by subgoal 
with element Z = A(E) in the aggregation list, and let 
D be the range of expression E. Then, a suficient (and, 
for Datalog rules with >, 2, <, -C, =, # as the only built- 
in predicates, necessary) condition for the rule P to be 
monotonic is that Z must only appear in body literals 
that are monotonic with respect to (Z = A, D). (This 
condition must hold for all elements of the aggregation 
list.) 0 

By Theorem 3.4, the Corporate Takeover example 
is monotonic, assuming that the domain of S in the 
relation set-ouns(C,,C,,S) is limited to positive re- 
als. However, if we change the condition in rule C3 to 
S < 50, rule C3 is no longer monotonic since S < c is 
not monotonic with respect to (S = SUM, I??). 

Theorem 3.5 Every monotonic program has a perfect 
model that can be computed by a bottom-up evaluation. 
0 

Proof: We use the following idea: If we add new tuples to 
a relation q we are grouping on, any deductions made in’the 
previous iteration from a rule r doing a groupby on q will be 
repeated in the next iteration since r is monotonic. •I 

Stratified Monotonic Programs 

The ideas of monotonicity and stratification can be 
combined to define a perfect model for a class of strati- 
fied monotonic programs. We consider the strongly con- 
nected components of a program P. Let q be the group- 
ing relation in a groupby subgoal G of a rule r for rela- 
tion p, and let p and q be mutually recursive (in the same 
strongly connected component). For P to be stratified 
monotonic, we require that the rule r be monotonic with 
respect to the groupby subgoal G. The perfect model 
of such a program can be defined by a prioritized mini- 
mization of the strongly connected components. 

3.5 Magical Stratified Programs 

We consider another class of recursions through groupby 
for which a perfect model can be defined. We define 
the class of Magical Stratified Programs by a semantic 
condition (unlike the syntactic conditions used to de- 
fine aggregate stratified and monotonic programs). The 
following example motivates the magical stratified class: 

EXAMPLE 3.3 (Magical Stratification) 

(Ml): p(X, Y) :- m-p(X) & t(x, Y). 
(M2): p(X, Y) :- m-p(X) & 

~F-F~~;W, W [Xl, [Z = SWWI) 
, . 

(M3): r-(X, Y) :- m-r(X) & u(X, Z) & v(Z, Y). 

(M4): m-p(Z) :- m-p(X) & 
groWv(r(X, W), [Xl, [Z = SUM(Wl). 

(M5): m-p(5). 

(M6): m-r(X) :- m-p(X). 

The dependencies r 2 m-p - m-r - r make r and m-p 
mutually recursive. Thus, program P has recursion through 
grouping and is not aggregate stratified. Program P is not 
even monotonic; the rules M2 and M4 are not monotonic. 

Program P does have an intuitive model. Consider a vari- 
ant of the bottom-up evaluation technique where application 
of rules M2 and M4 that do a grouping over r is delayed 
until no new tuples can be derived in an iteration. Let us a% 
sume that u and v are edb’s. Then, after m-r(5) is derived, 
all tuples of r(X, Y) in the group X = 5 can be deduced in 
one iteration. At this point, no new tuples for any relation 
can be derived. We therefore activate rules M2 and M4 and 
do the grouping on r. The grouping may recursively derive 
new tuples of m-r, and hence new tuples in r. If m-r(S) is 
derived recursively, the new tuples derived for r wilI all be 
in a new group X = 6. If m-r(5) is recursively derived, no 
new tuples will be derived for r, since all r tuples in group 
X = 5 were derived in a previous iteration. In either case, 
the grouping operation done earlier for the group X = 5 is 
not invalidated by recursively derived r tuples. 

The reader can probably recognize program M as the re- 
sult of a magic-sets transformation. If we add another base 
rule for m-r, M will no longer be a magic-sets transforma- 
tion, but it will continue to have an intuitive semantics. 0 

[RosSO] gives. semantics for modular stratified pro- 
grams in which each strongly connected component is 
locally stratified once all instantiated rules with a false 
subgoal that is defined in a lower component are re- 
moved. The definition is given for programs with nega- 
tion, but can be extended to programs with grouping in 
a natural way, requiring that a group not determine a 
tuple in the same group through the grouping operation, 
once all instantiated rules with a false subgoal that is 
defined in a lower component are removed. In the above 
program M, the group X = 5 of r can derive the tuple 
r(5,5) in the same group through the grouping opera- 
tion; so it4 is not modularly stratified. However, there 
is also a derivation for the same tuple r(5,5) without 



the grouping operation, and this allows M to have an 
intuitive model. 

If every ground tuple in a program has at least one 
derivation from the ‘Llower” ground tuples, regardless 
of any additional cyclic derivations, we could define a 
perfect model for the program. The program M above 
has this important property. 

We identify a subclass (Magical Stratified) of pro- 
grams that have such a property. A component of a 
magical stratified program may have a relation p de- 
fined recursively in terms of grouping over p. To avoid 
incorrect derivations due to grouping over an incomplete 
relation, we require that the grouping operation be ap- 
plied to a group of p only after the full group has been 
computed. It can be difficult to test whether a group 
has been computed fully. We therefore require that each 
group of p either be fully derivable without using the 
grouping operation, or no tuple of the group be deriv- 
able without using the grouping operation. Then, if we 
suspend the grouping operation until no tuples for p can 
be derived without it, we can be sure that the grouping 
operation will be correct. 

An attribute of a predicate p is a grouping attribute if 
the attribute is used in the grouping list of any groupby 
operation on relation p. We define derivation trees for 
programs with grouping, in a manner similar to deriva- 
tion trees for Datalog programz. A ground groupby sub- 
goal groupby (p(S), [ijl, [F = A(@]) is supported by all 
tuples in the group P = 5 of p that have a derivation 
tree. 

Definition 3.9 “Magical Stratification”: A pro- 
gram P is magical stratified if every strongly connected com- 
ponent S of P either does not have a gb edge, or it satisfies 
the following property: 

In the dependency graph of component S, let there be a 
cycle with a groupby edge p 2 t, and let x be the grouping 
attributes of p. If there are more than one groupby edges 
out of p in component. S, let X be the intersection (maybe 
empty) of the grouping lists of each groupby. Then, there 
is a predicate m-p (set-m-p, if duplicate semantics is used) 
with attributes P c I? such that 

1. (Syntactic Condition) Every rule for p has mp as a 
subgoal, and 

2. (Semantic Condition) All tuples of p in the perfect 
model of S that match with a given tuple p of m-p 
should have a derivation tree that does not use the 
grouping operation over p, provided we consider m-p(p) 
to be a base fact. 

m-p is called the magical predicate of p. •I 

Program M of Example 3.3 is magical stratified. The 
predicates P, mp, and m-r are in one strongly connected 

component, and P 2 m-p is the groupby edge. m-r sat- 
isfies the syntactic condition for a magical predicate of 
T. If we initialize m-r to the tuple m-T(5), all match- 
ing P tuples can be derived by one application of rule 
M3 (without using rule M4). The semantic condition is 
thus satisfied. Note that M will remain magical strati- 
fied if we add a base rule for m-r. 

Due to the semantic condition, it may not be decid- 
able to determine whether a program is magical strat- 
ified or not. However, aggregate stratification implies 
magical stratification. In Section 3.6 we show that the 
class of magical stratified progr:ams is closed under the 
magic-sets transformation. At the very least, this al- 
lows us to do the magic-sets transformation on aggre- 
gate stratified programs written, by the user. We give a 
perfect model semantics of magical stratified programs 
and outline an evaluation strategy, Table Queue Eval- 
uation (T&E), that computes the perfect model of a 
magical stratified program. 

Perfect Model 
We define the semantics for a single strongly con- 

nected component S of a magical stratified program 
with recursion through grouping. Extension to the full 
program can be made along the lines of Definition 3.5. 

We use derivation trees for tuples of the magical pred- 
icates, m-p, to define an ordering between the tuples. 
The tuple m-p(p) is in level 1 if it can be derived with- 
out using a grouping operation on a predicate of com- 
ponent S. If the tuple m-p(p) can be derived using 
magical tuples of level n or lower, with any grouping 
operation being on tuples derived using magical tuples 
of level (n - 1) or lower, the tuple m-p(p) is placed in 
level n, provided m-p(p) cannot be placed in a lower 
level. 

A magical tuple m-p(p) defines a group p(p) for the 
predicate p that is grouped on. The level of the group 
p(p) is the same as the level of m-p(p). The perfect 
model of component S can be defined by a prioritized 
minimization of the groups, with lower levels getting 
higher priority. 

Definition 3.10 “Perfect Model of a Strongly 
Connected Component of Magical Stratified 
Programs”: Given a strongly connected component S of 
a magical stratified program P, define the perfect model, 
M of S as the minimal model of S that has the following 
properties: 

1. If M’ is another model (minimal or not) of S, then for 
every group p(p) of level 1, the relation for the group 
p(p) in M is a subset of the relation for the same group 
in M’. 

2. If M’ is another model of S that agrees with M on all 
groups of level i and less, then for every group p(p) of 
level i + 1, the relation for the group p(p) in M is a 
subset of the relation for the same group in M’. 

0 

Computational Semantics 
One can evaluate the strongly connected components 

of a magical stratified program in a bottom-up fashion, 
computing lower components before starting computa- 
tion of higher components. Evaluation of each strongly 
connected component is however difficult, since a com- 
ponent can have recursion through grouping, and we 
want to ensure that a grouping operation is never ap- 
plied until a full group has been evaluated. 
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We use the Table Queue Evaluation (TQE, [MP90]) 
method to evaluate each component of a magical strat- 
ified program. T&E is the standard evaluation strat- 
egy in Starburst, and is a natural generalization of 
the bottom-up technique for components that have re- 
cursion through grouping (on components that do not 
involve recursion through grouping, bottom-up evalua- 
tion and T&E are identical). T&E works top-down in 
the sense that evaluation of relations is demand driven. 
However no information (bindings/selections) is passed 
top-down. The basic idea is to delay evaluation of a 
rule R with a groupby over a relation in the same com- 
ponent until all other rules have been evaluated and no 
more tuples can be derived without evaluating rule R. 
Example 3.3 explained TQE of program M. To see how 
TQE differs from the usual bottom-up evaluation, let 
program M be modified by defining r to be the transi- 
tive closure of U, so that we have the rules: 

(M3’): 7(X, Y) :- In-T(X) t u(X, Y). 
(M3”): 7(X, Y) :- In-T(X) & u(X, Z) & T(Z, Y). 

(M7’): m-T(Z) :- m-r(X) & u(X, Z). 

Bottom-up evaluation may compute the groupby on 
T before all the T tuples in group X = 5 are computed. 
TQE will not apply the groupby on T until the rules 
M7’, M3’ and M3” have been iterated on and all P 
tuples in group X = 5 have been computed. 

Theorem 3.6 Given a strongly connected component S 
of a magical stratified program, Table Queue Evaluation 
correctly computes the perfect model of S. 0 

Proof: By induction on level 1 of groups in the compo- 
nent S, with the inductive hypothesis that TQE correctly 
computes the groups of level 1. 0 

3.6 Magic-Sets Transformation 

The aim of the magic-sets transformation is to push in- 
formation down into the lower strongly connected com- 
ponents, so that a bottom-up evaluation of the query 
will be able to use the information normally available 
to a top-down goal driven evaluator. The groupby sub- 
goal is a second order predicate that cannot use the 
bindings on rule variables directly, but program evalu- 
ation can benefit if the bindings are pushed “through” 
the groupby subgoal into the predicate being grouped 
upon. 

We use the magic-sets transformation to push infor- 
mation through a groupby subgoal into the grouping 
predicate. The groupby subgoal defines a relation over 
the grouping and aggregation variables, and the infor- 
mation available for passing down may be over any of 
these variables. Our magic-sets transformation will only 
pass down bindings on the grouping variables. We do 
not attempt to pass down bindings on the aggregation 
variables. Thus, for the query: 

6TQE was chosen in Starburst even before we discovered 
its usefulness in computing with magical stratified programs. 

(Q): ?-A=5&B=5&p(A,B). 

(Pl): p(A, B) :- groupby(q(A, C), [A], B = SUM(C)). 

we want to use only the binding on A to limit compu- 
tation of q (assuming q is an idb predicate) in order to 
evaluate p ” by rule Pl. If we knew that the second 
attribute of q is a positive integer, we could conceivably 
use the binding SUM(C) = 5 as an early termination 
test during the grouping operation; terminating if the 
partial sum exceeded 5. However, such a use of the bind- 
ing SUM(C) = 5 is beyond the scope of the magic-sets 
transformation. 

The magic-sets transformation on programs with ag- 
gregation and grouping is essentially the same as the 
transformations discussed in [BR87, MFPRSOa]. A 
slight modification is needed to handle the groupby sub- 
goal - instead of generating magic-sets for the groupby 
subgoal, we generate magic-sets for the grouping rela- 
tions, pushing only the bindings on grouping variables. 
As an example, for the query & and program P above, 
magic transformation gives us the program M 

(MQ): ?- A = 10 & B = 10 & pbb(A, B). 

(Ml): p**(A, B) :- mq**(A, B) & 
group-by (qbf (A, C), [Al, LB = SUM(C)]). 

(M2): m-pbb( 10,lO). 
(M3): m-qbf(A) :- m-p**(A, B)). 

with rn-q”f (A) being used as a subgoal in the rules for 
qbf . 

3.6.1 Magic-Sets Transformation of 
Monotonic Programs 

Theorem 3.7 Let P be a monotonic program, and let 
M be the magic-sets transformation of P. Then M is 
monotonic. 0 

Proof: An original rule r for predicate p gets no new 
groupby subgoal during magic-sets transformation. The 
magic predicate m-p added to r cannot refer to an aggre- 
gation variable, because no aggregation variable appears in 
the head of r (since r is monotonic). T will thus remain 
monotonic after magic-sets transformation.. 

A groupby subgoal G in a new rule T' for a magic predicate 
mp must appear in the original rule T where p is used. Since 
T is monotonic with respect to G, T' must also be monotonic 
with respect to G. 0 

3.6.2 Magic-Sets Transformation of Aggregate 
Stratified Programs 

It is well known from work on stratified negation and 
stratified sets ([BNR+87]) that the magic-sets transfor- 
mation of a stratified program may not be stratified. 
The following theorem allows us to apply the magic-sets 
transformation to aggregate stratified programs. 

Theorem 3.8 Let P be an aggregate stratified program, 
and let M be the magic-sets transformation of P. Then 
M is magical stratified. 0 
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Proof: The magic predicate m-p for a grouping predi- 
cate p serves as the magical predicate for p. The syntactic 
condition for M to be a magical stratified program is satis- 
fied as the attributes of magic predicate m-p are a subset of 
the grouping attributes of p. That the semantic condition 
is satisfied can be proven using the fact that (1) the origi- 
nal program is aggregate stratified, and (2) the magic-sets 
transformation preserves relevant derivation trees. 0 

We have an even stronger result: 

Theorem 3.9 Let P be a magical stratified program, 
and let M be the magic-sets transformation of P. Then 
M is magical stratified. 0 

EXAMPLE 3.4 The program P 

(Pl): p(X, Y) :- qx, Y). 
(P2): p(x, Y) :- group-by ( 

G, W, [Xl, [Z = SUM(W)]) & 
P(Z, Y)- 

(P3): r(X, Y) :- u(X, Z) 8.5 v(Z, Y). 

is aggregate stratified. Its magic-sets transformation, pro 
gram M of Example 3.3, is magical stratified. 0 

To evaluate an aggregate stratified program P effi- 
ciently, we do a magic-sets transformation to get a pro- 
gram M, and evaluate M using TQE. 

4 Related Work 

In defining the semantics of programs with duplicates, 
we have used the notion of derivation trees extensively, 
and we have followed the treatment in [MR89]. Un- 
like [KW89], we do not introduce object-ids, and copies 
of a tuple are indistinguishable to the user and imple- 
menter . 

[Klu82] extends relational algebra and calculus with 
aggregates, and shows that in absence of recursion, du- 
plicates are not needed for expressivity. In working 
with recursive queries, we have borrowed the idea of 
stratification, introduced in [CH85, ABW88] to deal 
with negation, to define a class of programs that re- 
stricts the use of groupby so as to ensure the exis- 
tence of a preferred minimal model, in the spirit of 
the “perfect” model for programs with negation. At 
the same time we have identified two classes of non- 
stratified programs that have a perfect model. Mono 
tonicity of programs in absence of stratification has not 
been discussed before. Magical Stratification is a re 
finement of the notions of local stratification ([Prz88]) 
and modular stratification ([RosSO]). Our treatment 
of grouping and aggregation differs from the approach 
taken in [OOM87, BNR+87, Kup87, CKW89], where 
constructs such as “set grouping” are used to construct 
set-valued terms. We have chosen to adopt the SQL ap 
preach, in which terms cannot be set-valued since every 
grouping must be followed by an aggregation. 

[CM901 defines a class of Closed Semiring programs 
that includes program T of Section 3.3.1. However, 
no syntactic or semantic characterization of the closed 

semiring class is given. An ordering between the groups 
is not determined, so that a semi-naive evaluation 
cannot be carried out. The computation is defined 
through Naive evaluation. The treatment of aggregates 
in [CM901 is similar to ours, with differences in the syn- 
tax (grouping is specified in the head of a rule) and 
computational semantics (Naive Evaluation is required). 
Multiset predicates are not allowed. The EKS system 
at ECRC ([VBKLSO]) implements program T of Sec- 
tion 3.3.1 by a top-down evaluation. 

In adapting the Magic-Sets approach, we have 
extended the transformation algorithms developed 
in [BMSU86, BR87] to handle both duplicates and ag- 
gregates. Several other optimization algorithms for logic 
programs have been proposed, based on the perfect 
model semantics of logic programs. Unfortunately, 
none of these optimizations is likely to be directly ap- 
plicable to programs with multiset predicates and ag- 
gregate operations. An important area for further re- 
search is to identify under what conditions these op- 
timizations can be adapted to such programs, and to 
develop optimization techniques tailored to such pro- 
grams. [RosSO] g’ Ives a magic-sets algorithm for modu- 
larly stratified (that includes aggregate stratified) pro 
grams, but the transformed program is not modularly 
stratified, and several meta-predicates as well as the 
concept of iterations are built into the magic program. 

The ground magic-sets transformation of [MFPRgOa] 
extends magic-sets to push conditions as well as bind- 
ings. [MFPRSOb] uses the results of this current paper 
to (1) adapt the ground magic-sets algorithm to work 
in presence of duplicates, and (2) to develop a magic- 
sets transformation that works in SQL based relational 
systems. 
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