
The Magic

Inderpal Singh Mumick*
Computer Science Department

Stanford University

Stanford, CA 94305, USA.

mumickOcs.stanford.edu

Abstract

of Duplicates and Aggregates

Hamid Pirahesh
IBM Almaden Research Center

650 Harry Road. K55/801

San Jose, CA 9;.’ ‘?, USA.

piraheshOibm., n

We present a formal treatment of multi-
sets (that arise when duplicates are not elim-
inated) and aggregate operators for deduc-
tive and relational databases. We define the
semantics rigorously and extend the Magic-
Sets technique to programs containing multi-
sets and aggregates. The work presented here
is an important step in demonstrating the ap-
plicability of the Magic-Sets technique for opti-
mizing queries in commercial query languages
such as SQL.

1 Introduction

Previous treatments of Datalog and proposed extensions
have treated a program as a collection of definitions of
sets of facts (tuples). On the other hand, commercial
query languages such as SQL typically support the def-
inition of sets and multisets of tuples, and provide ag-
gregate operators such as SUM and COUNT over sets
and multisets. The ability to deal with multisets has
significance from both the standpoint of a user and an
implementer. For the former, multisets often provide
the more natural semantics; for the latter, computing
with multisets - possibly in intermediate stages of a

*Part of this work was done at the IBM Almaden Re-
search Center. Work at Stanford was supported by an NSF
grant IRI-87-22886, an Air Force grant AFOSR-88-0266, and
a grant of IBM Corporation.

‘Part of this work was done while the author was visiting
IBM Almaden Research Center. Work at Wisconsin was
supported by an IBM Faculty Development Award and an
NSF grant IRI-88-04319.

Permission. to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 199Q

Raghu Ramakrishnant
Computer Science Department

University of Wisconsin at Madison

Madison, WI 53706, USA.

raghuOcs.wisc.edu

computation - may be the more efficient alternative,
and a rigorous semantics for multiset definitions offers
a sound theoretical basis for certain program optimiza-
tions. Aggregate operators offer limited second-order
capabilities, and their utility is widely recognized.

Our contributions are in two areas. First, we provide
a simple and intuitive semantics for logic programs con-
taining predicates whose extensions are multisets, and
show that this semantics can be supported efficiently.
Second, we consider how the aggregate functions and
the group-by construct of SQL can be introduced into
recursive programs. Here again, we give an intuitive se-
mantics, and show that the semantics can be computed
efficiently. We provide an overview of our work in the
following subsections.

Our work contributes to the definition and develop-
ment of relational systems also. Duplicates and Ag-
gregates have been present in relational systems from
the days of System R ([ABC+7G]), but their semantics
has never been defined formally. A formal semantics is
required for a precise language definition, more so af-
ter the introduction of recursion into relational systems
and with the increasing importance of query rewrite op-
timization ([Pir89]).

1.1 Duplicates1 (Multisets)

The work on duplicates has three parts:

1. The central property of a “declarative” semantics
is that it allows programs to be understood intu-
itively, without reference to how they are to be eval-
uated. Using proof-theoretic notions, in contrast to
the usual model-theoretic approach, we develop a
formal semantics that enjoys this important prop-
erty. Models cannot describe multiset semantics
since a model is a set of atoms.

2. While a declarative semantics is necessary to pro-
vide the user with an intuitive, non-operational
query language, efficient evaluation techniques
must rest upon an equivalent operational seman-
tics. We show that a straightforward extension of

‘Here, and in the rest of the paper, we use duplicates to
mean multiple copies, not necessarily two copies.

264

Semi-Naive - but not Naive! - fixpoint evalua-
tion provides an equivalent operational semantics.

3. An important contribution is the adaptation of
the Magic-Sets approach ([BMSU86, BR87]) to
work on such extended programs, thereby outlin-
ing an efficient computation method for realizing
the declarative semantics.

Our treatment of duplicates and multisets can be un-
derstood intuitively as follows: If duplicates are not
eliminated in evaluating rules defining a predicate, say
p, then p may have several occurrences of a given tu-
ple, say t. Thus, p is a multiset of tuples, rather than
a set. The corresponding set of tuples in p is easily un-
derstood by ignoring duplicates; the subtle part is in
understanding the cardinality of each tuple in the mul-
tiset p. Intuitively, a tuple t appears as often as it is
derived. The number of times that a tuple is derived
in SQL is not arbitrary: it is derived exactly once for
each derivation tree that supports it. This intuition can
be formalized for recursive programs as well, as we will
demonstrate.

We use a device called coloring to distinguish dif-
ferent occurrences of a tuple in a multiset. Does this
mean that we support some form of object ids? The
answer is that we do not: Coloring is merely a tech-
nique that allows us to make the semantics precise, and
to explain it intuitively. The formal semantics rests pri-
marily upon the number of occurrences of elements in
a multiset; different occurrences of a given element are
indistinguishable. Note that coloring is not visible to
either the user or to the implementer. Indeed, imple-
mentation of multisets is particularly efficient, since we
simply omit duplicate checks. Several systems often do
this for the sake of efficiency, even when the multiset
semantics is not required. Our results provide a for-
mal basis for reasoning about optimization techniques
when multisets are generated as intermediate relations,
independently of whether the user desires a multiset se-
mantics.

We consider range-restricted programs in this paper,
but provide a brief summary of how these results may
be extended to non-range-restricted programs.

1.2 Aggregates and the Group-By Construct

Our second contribution is to consider the use of ag-
gregate operators and the group-by construct of SQL.
These constructs add a limited form of second-order
quantification to logic programs in the form of a rich set
of aggregate operators. We wish to emphasize that our
use of second-order quantification is restricted greatly
for the sake of efficiency: We do not allow explicit quan-
tification over variables ranging over predicate names,
nor do we allow set-valued variables. The only sets (or
multisets) in our approach are conventional relations,
which are sets (or multisets) of tuples. The limited
second-order querying that we permit allows us to pose
aggregate queries, such as SUM and COUNT, over tu-
ples in a given (base or derived) relation, or over a subset

of such tuples partitioned by the values in some set of
fields. In this respect, our treatment of sets and second-
order operations differs markedly from approaches such
as LDL ([BNR+87]) and HiLog ([CKW89]). The re-
quirement that aggregation be used whenever grouping
is done is novel to our work, and makes it difficult to use
the first-order semantics advocated in HiLog ([KM89]).
In essence, we have extended the facilities provided by
SQL to relations that are defined recursively; our treat-
ment ensures efficient evaluation, without the need for
set-unification.

However, as with previous approaches to aggregate
operations ([BNR+87, Kup87]), there are some diffi-
culties in such an extension due to the combination of
the group-by construct with recursive rules. We show
that a stratification-based approach again yields an in-
tuitive semantics, similar to perfect models for programs
with negation. We also identify two interesting classes
of non-stratified programs that have a perfect model:
the first uses a notion of rule monotonicity, and the
second, magical stratification, uses a dependency order-
ing between groups to give semantics to programs that
may not be locally stratified or even modularly strati-
fied ([RosSO]). As in the case of programs with multi-
sets, we show how the Magic-Sets transformation can be
extended to programs with grouping and aggregation,
thereby establishing the basis for efficient evaluation of
such programs.

1.3 Summary of Our Contributions

We provide formal semantics for programs that con-
tain multisets, aggregate operators, and the group-
by construct, and provide a basis for efficient evalu-
ation by extending the Magic-Sets technique to such
programs. The results of this paper, along with those
of [MFPRgOa] (w h ere we extend the Magic-Sets tech-
nique to propagate restrictions in the form of condi-
tions, such as X > 5) are critical in demonstrating
that the magic-set transformation is applicable to pro
grams in full SQL ([MFPRSOb]). As is demonstrated
through performance results in [MFPRSOb], the gains
of set-oriented information passing using Magic-Sets can
be significant in terms of a simplified architecture and
an efficient, stable performance over a wide range of
queries.

Further, our uniform treatment of the “non-
relational” features of a commercial language, such as
SQL, in the presence of recursion demonstrates that de-
ductive databases, in acquiring the power of recursion,
need not sacrifice the powerful and practical features
of standard relational systems. Our work shows how
to introduce either or both of the two “non-relational”
features discussed - multisets and aggregation - into a
deductive database system. It appears that introduc-
tion of multisets increases the power of some query lan-
guages, as the following example illustrates:

EXAMPLE 1.1 Consider the following bill-of-materials
query. You are given a subpart relation that lists for each
part P all its direct subparts 5’. P may use more than one

265

copy of S, and you are free to choose a representation for
this. The aim is to define a contains relation that gives
for each part P all the subparts S used in constructing P,
directly or indirectly, along with an indication as to how
many copies of S are used.

We conjecture that this query cannot be written in
Datalog extended with stratified aggregation (Section 3.3),
though the truth of this conjecture is not critical to our mo-
tivation. lf we treat subpart and contains as multisets,
then under the semantics that we propose, the program

contains(P, S) :- subpart(P, S).
contains(P, S) :- subpart(P,T) & contains(T, S).

count-contains(P, S, C) :-
groupby (contains(P, S), [P, S], [C = CNT()]).

computes the correct answer. The last rule is interpreted
as follows: Group together all tuples of contains(P, S) that
have the same P,S values, and count the number of tu-
ples in the group. Each group thus generates a tuple in
count-contains(P, S, C).

The above example can be written in an SQL version that
has been extended with recursion. Using SBSQL, as de-
scribed in [MFPRSOb], we would write

CREATE VIEW contains (P, S) AS
((SELECT P, s FROM subp.3xt)

UNION
(SELECT s.P, c.S FROH subpart S, contains c

UHEEE s.S = C-P))

SELECT P, S, COUNT(*) FROM contains GROUP BY P, S.
0

This paper is organized as follows. Section 1.4 gives
definitions related to multisets. Duplicates are intro-
duced in Section 2, and Section 3 discusses grouping
and aggregation. Related work is presented in Section 4.
Examples are written in a language similar to Datalog.
The equivalent SBSQL queries can easily be derived.

1.4 Notation and Definitions
The language considered in this paper is an extension of
Horn clause logic. Specifically; we use Datalog (without
negation), and extend it to allow duplicates and aggre-
gation. We define multisets and operations on them
in some detail, since we use them extensively and also
use some non-standard operations (such as col). We
follow [MR89]; except in the definition of multiset dif-
ference.

Definition 1.1 “Multisets”: A multiset is a collection
of elements that are not necessarily distinct. The number of
occurrences of an element z in a multiset M is its multiplicity
in the multiset, and is denoted by mult(z, M). The cardinal-
ity card(M) of a multiset M is the sum of the multiplicities
of each element of M. We define z E M iff mull(z,M) > 0.
Given a multiset M, set(M) is the set of elements of llf,
that is, set(M) = {z 1 z E M}. The difference of two mul-
tisets MI and Mz, denoted as Ml - M2, is a multiset in
which the multiplicity of an element z is maz(mdt(z, MI)
- mult(z, Mz), 0). 0

When a multiset is enumerated we use square brack-
ets. For example, A4 = [a, b, b, c] is a multiset with
mzllt(b, M) = 2. In this paper we do not care about the
representation of multisets. They could be represented
by counts, or by storing multiple copies of a tuple. We
now introduce a “coloring” operation on multisets that
is useful for providing constructive definitions of multi-
sets in terms of a defining property.

Definition 1.2 “Colored Sets”: Let M be a multiset,
and let C be an (infinite) ordered list of colors cl, ~2,. . . .
For every element, say a, with multiplicity n > 0, color
the copies of a with cl, 122,. . . c,,, and denote these distinct
colored elements as al, as,. . . , a,. The set of all elements
obtained by thus coloring elements of M is a colored set,
called col(M).

The inverse operation, col-l(S), is defined to yield a mul-
tiset M in which the multiplicity of an element a is equal to
the number of colored copies of a in the colored set S. For
a colored element ai, coi-‘(a;) = a. •I

Definition 1.3 “Multiset Constructor [. . .I”: Let R
be a set of n-tuples. Then [R] is a multiset with multiplicity
one for each element of set R. 0

Finally, we introduce the multiset equivalents of
the Select, Project and Join operators that are
normally defined for sets. We use the symbols
(+?t) pul, +et, pul and Wset , Mm”’ for the set and mul-
tiset operators, dropping the superscript where the type
of the operator can be determined from the operand.

Definition 1.4 “Multiset Projection 7r;R”: Let R
be a multiset of n-tuples, and let 5 be a vector of k inte-
gers in the range 1.. . n. For every n-tuple t E R, con-
sider the k-tuple (til,. . . ,2i,). The multiset M, denoted
by n;Ry is defined to contain every such k-tuple m, with a
multiplicity equal to the number of tuples i of R such that
m = (ti,, . . . , tik)+ 0

amu and Wmu’ can be defined similarly.

2 Duplicates

In this section, we consider programs in which pred-
icates can be specified to be sets or multisets of tu-
ples (we use the word relation in both cases). We de-
velop a declarative semantics for such programs, based
upon a proof-theoretic approach that determines the
multiplicity of a tuple in a multiset predicate using
the number of distinct proof-trees for that tuple. We
present a procedural fixpoint semantics, extending the
well-known Semi-Naive fixpoint evaluation technique to
allow for multiset predicates. Finally, we show how to
use the Magic-Sets transformation on such programs.

We have already seen an example that motivates the
introduction of multiset predicates. Queries involving
aggregates or multiset difference provide further .exam-
ples where multisets are useful. We begin this section
with another type of example, which appeared in the
Usenet newsgroup comp.databases, and underlines the
utility of such an extension to logic programs.

266

EXAMPLE 2.1 Telephone companies record for each
call the source number, the called number, the start time
of the call (with 1 minute granularity), and the length of
the call (in multiples of 1 minute). Multiple calls of same
length (1 minute) can certainly be placed between two num-
bers within a minute, leading to duplicates. The duplicates
are important for countin

9
the number of calls or computing

the average cost of a call.
It may be argued that duplicates could be avoided by

using a unique ID number other than timestamp with each
call, or by using a finer timestamp granularity. However
duplicates are rare under this timestamping granularity, and
it is more convenient just to deal with them than to have a
unique id. [7

The need and importance of having duplicates in a
realistic implementation is widely recognized. Dupli-
cates have been incorporated into the ISO-ANSI stan-
dard ([ISO89]), and implementations of the relational
model have extended the model to allow for dupli-
cates. The System R prototype also dealt with dupli-
cates ([ABC+76]). A mongst the prototype implemen-
tations of the logic data model based on Datalog type
languages, NAIL! ([MUVG86], and LDL ([NT88]) are
well-known. Neither has dealt with duplicates, choos-
ing to stay with the traditional least Herbrancl model
semantics. We believe that such a limitation restricts
the usability of systems based on the logic data model.
Logic programming languages would be more useful as
query languages if they supported the concept of dupli-
cates.

While we want to allow duplicates for some predi-
cates, we do not want to force every predicate to have
duplicates. We therefore have two types of predicates:
set predicates that are to be interpreted as a set of tu-
ples, and multiset predicates that are to be interpreted
as a multiset of tuples. The user specifies the desired
interpretation using the following naming convention:
The name of a set predicate begins with the keyword
set- (the default), and the name of a multiset precli-
cate begins with the keyword all-. Thus, p and set-p
are set predicates and all-p is a multiset predicate.

2.1 A (Proof-Theoretic) Declarative
Semantics

We now give the proof-theoretic semantics of logic pro-
grams without negation containing set, and multiset
predicates. The semantics is an extension of the tra-
ditional proof-theoretic semantics, where the number of
proofs is now important. The multiplicity of an atom
is the number of proofs for that atom. We use cleriva-
tion trees, similar to the trees introduced in [MR89], to
count, the number of proofs of an atom. The semantics
used in SQL and Prolog is functionally similar to the
proof-theoretic semantics we give.
Definition 2.1 “Derivation Trees”: Let P be a logic
program without negation containing set and multiset pred-
icates. The derivation trees of P, with respect to an edb E,
DT(P, E), are defined as:

2Yes, bills at IBM indicate the average cost!

l

0

0

For every edb relation Q of a multiset predicate, ev-
ery tuple h of col(Q) generates a derivation tree for
COI-‘(h), consisting of a single node with label h. For
every edb relation Q of a set predicate, every tuple h
of Q generates a derivation tree for h, consisting of a
single node with label h.
For each rule r of the form (h :- bl,bz,...,bk),t > 0,
and for each tuple (tl, t2, . . . , tk) of derivation trees for
atoms (dl,dz,..., dk) that unify with &,&,...,bk)
with 0 as the mgu, generate a derivation tree for h0,
with h0 as the root label, and (11, t2,. . . , tk) as the chil-
dren, in that order, and r as the edge label from the
root to the children.

Lemma 2.1 No two derivation trees in DT(P, E) are
identical. DT(P, E) is thus a set. 0

Proof: By induction on the height of derivation trees,
using the lemma as the inductive hypothesis. 0

Each derivation tree is a representation of a proof for
the atom labeling its root. (This is a slight simplifi-
cation: the root, label of a tree for an EDB fact may
actually be a colored copy of the fact.)

Definition 2 2 “atoms”. . . For a derivation tree 2,
atoms(t) is either the label or the col-’ of the label on the
root of tree 1. For a set of derivation trees T, atoms(T) is
the multiset of atoms that includes, for every tree 2 E T, a
copy of the atom atoms(t). 0

If a = atoms(t), we say that tree t is for the atom a.
The set of all derivation trees for atom a in a program
P with respect to an edb E is denoted by DT(P, E, a).

We define the semantics of programs containing mul-
tiset predicates by a collection of derivation trees that
have the following property.

Definition 2.3 “Duplicate Correctness Proper-
ty”: A set of derivation trees D c DT(P, E) of a range-
restricted program P and an edb E satisfies the Duplicate
Correctness Property iff all of the following hold:

1. For every pair of nodes in D (possibly in different
derivation trees), if they are both labeled with the same
atom a of a set predicate, then the trees or subtrees
rooted at these nodes are identical.

2. There is no set D’ > D that is a subset of DT(P, E)
and yet satisfies Condition 1.

0

We define the predicate dcp(D, P, E) to be true for
a set, of derivation trees D that has the Duplicate Cor-
rectness Property with respect to a program P and an
edb E.

Condition 1 ensures that a unique tree represents each
atom of a set predicate, and Condition 2 ensures that
all possible derivations subject to this constraint are in-
cluded in the set of trees. Note that the restriction to
one unique derivation tree is for set predicates alone.
All derivation trees of multiset predicates are included
in D, and are considered in building larger derivation
trees.

267

Given a program P and an edb E, there may be multi-
ple sets D that have the Duplicate Correctness Property.
Two such sets will differ in the choice of the derivation
tree for an atom of a set that happens to have multiple
derivation trees.

Theorem 2.1 For every program P and edb E, there
exists Q set D of derivation trees such that dcp(D, P, E).
Further, if D1 and Dz are two distinct sets such
that dcp(D1, P, E) A dcp(D2, P, E), then atoms(Dr) =
atoms(D2). •I

Proof: Let Dlfh)(P, E) be all derivation trees in
DT(P,E) of height 5 h. We can construct a set Dch) s
D7fh)(P,E), and prove, by induction on h, that

1. dcp(Dch), P, E) (we modify Definition 2.3 of dcp slightly
to consider maximal subsets of Dflh)(P,E), rather
than maximal subsets of DT(P, E) in Condition 2), and

2. If there exists another set D’ch) c Dfih)(P) such that
dcp(D’ch), P, E), then atoms(Dch)) = atoms(D’(h)).

17

Definition 2.4 “Dup,licate Semantics”: Given a
logic program P without negation, with set and multiset
predicates, let D C DT(P, E) be a set of derivation trees
having the Duplicate Correctness Property. The duplicate
semantics of the logic program P with respect to edb E is
the multiset da(P, E) = atoms(D). 0

Definition 2.5 “Duplicate Equivalence”: Pro-
grams PI and Pz are duplicate equivalent iff da(Pr, E) =
da(Pz, E) for every edb E. 0

2.2 Computational Semantics

A program with set and multiset predicates may be
evaluated by a combination of Semi-Naive and Not-So-
Naive ([MR89]) evaluation techniques, the former work-
ing on set predicates, and the latter working, in paral-
lel, on multiset predicates.

Definition 2.6 “Rule Application”:
IncrEval(p, P, D, A) is the multiset of facts derivable from
the database D (a multiset of atoms) and an incremental
database A (that has not yet been included in D) through
a single application of the rules for predicate p in program
P, using at least one fact from A.

IncrEval(p, P, D, A) =
$$q{(h~, r,&, d2,. . . , dk) 1
T is a rule for predicate p in program P of the form

(h :- bl, b2 , . . . , bk), I; > 0, and
(dly d2,. . * 9 dk) E COI(D U A) A (!li),<i<k(di E col(A)), and
(19 i;]the mgu of (bl, b2,. . . ,a,) and (6, d2,. . . , dk))

0

The above formula is read as follows: For every rule
r for predicate p, and for every tuple (di, da, . . . , dk)3
of elements of col(D U A) that unifies with the subgoals

3Note: Each di is an atom, a tuple of a relation.

of rule T in that order, such that at least one of the
dis also appears in col(A), add hB to the result, where
0 is the mgu of (dl,dl,. . .,dk) and the body literals.
An element appearing several times in D U A can thus
contribute multiple copies of hB to the result, as the
various copies of the element will appear as differently
colored elements of col(D U A).

For a set T of predicates, define an iteration as
IncrEval(T, P, D, A) = &&Incr_Eval (p, P, D, A)).

We now define the Duplicate Semi-Naive (DSN) eval-
uation technique. DSN is similar to Semi-Naive eval-
uation, except that duplicates for multiset predicates
are not eliminated. Let PS and PM be the set and
multiset predicates in program P, and let M and S
denote their respective extensions. 2) = M U [S] is the
database. Given a program P and an edb E, DSN gen-
erates a multiset 2) = dsn(P, E).

Definition 2.7 “Duplicate Semi-naive (DSN) Al-
gorit hm” :

1. Vs = 0; 6l&, = E.
2. s”+l = S,, u SS,,; M,+I = M, u 6M,.
3. 6SS+r = set(Incr_Eval(Ps, P,V,, 6V,)) - &+I;

,,+I = hCr-bIal(PM, p, 2),, 62),).
4. Vntl = [Sntl] U Mn+l; SVntl = [6S,tl] u 6Mntl.
5. dsn(P, E) = V = lim,,, V,

q

DSN terminates (at Step n + 1) when ‘D,,+r = V,.
DSN may not terminate for some programs where Semi-
Naive does terminate. An example is the multiset
transitive closure of a cyclic graph, where the answer
is, by definition, infinite.

The DSN algorithm can alternatively be viewed as op-
erating on derivation trees instead of atoms. Each atom
derived by DSN corresponds to a derivation tree con-
structed for that atom. The relationship can be made
explicit by defining a function Incr-Tree that does in-
cremental computation on derivation trees, mimicking
the computation of Incr-Eval on atoms. We omit the
details here, but the equivalence helps us to establish
the following result:

Theorem 2.2 The DSN algorithm correctly computes
the duplicate semantics of a logic program P. That is,
dsn(P, E) = ds(P, E). 0

DSN evaluation without coloring
The definition of IncrEval suggests a computation

where each iteration is preceded by a coloring phase.
A simpler computation, without any coloring, is pos-
sible. We use multiset versions of join, selection, and
projection, and extend the ATOV (argument to variable)
and VTOA (variable to argument) functions of [U1189]
to multisets.

ATOV(q(q, Q) maps the relation & for predicate q to
a relation on variables in the goal q(f).
zzfinition 2.8 “AT?V ([Ull89])“: Given the goal

, . . . , t,,,) and a relation Q for predicate Q, define a rela-
tion Q’ over the variables X1,. . , , X, appearing in tr, . . . , t,
as follows:

268

Q' = 0;
for each tuple q(sl, . . . , sm) in Q do

if there is a term matching r for tuple q(s1,. . . , sm)
and goal q(tl, . . . , t-) then

..add to Q’ the tuple (r(X,), . . . ,7(X,))

ATOV(q(‘i), Q) = Q’. •I

VTOA is the complement of ATOV. VTOA(q(q,Q’)
takes a relation Q’ on the variables appearing in s, and
produces a relation for predicate q.
Definition 2.9 “Incr_Eval2”: Let r be a rule for
predicate p in program P of the form (h :- b1, b2,. . . , bk),

k > 0, let (Di,Ds ,..., Dk) be the relations for the pred-
icates of subgoals (bl, b2, . . . , bk) in a database D, and let
(A,, As, . . . , A,) be the corresponding relations in an incre-
mental database A. As before, we assume that the incremen-
tal relations have not been included in the main database.
Let 0: = ATOV(bi, Di), Ai = ATOV(bi, Ai), and let 6; be
given by either of the following two equivalent joins:

D; W... w D;wl w A; W (D;+1 u A;+l). . . W (Dl, U A;)

or

(D:uA:)W... w (Dim1 u A;-l) w Aj W D;+l . . . W D;

Define

IncrEvalZ(p, r, D,A) = VTOA(h, U 6,)
l<j<k

IncrEvaIJ(p, P, D, A) = U IncrEvalS(p, r, D, A)
r

0

Let DSN-2 be the version of the DSN algorithm using
Incr_Evall2 instead of Incr-Eval.

Theorem 2.3 Algorithms DSN and DSN-2 are equiv-
alent. That is, dsn(P,E) = dsnJ(P,E). 0

By building common subexpressions carefully,
Incr_EvalZ can be evaluated using 3k - 4 joins.

2.3 Magic-Sets Transformation

We first show that the process of adorning a program,
using any adornment pattern (see [U1189] for an intro-
duction to adornments. More complex adornments are
discussed in [MFPRSOa]) whatsoever, preserves the du-
plicate semantics of a program. We then show that a
magic-sets transformation ([BMSU86, BR87, UllSS]) on
an adorned program, preserving its duplicate semantics,
can be defined.

2.3.1 Adorning a Program
Definition 2.10 “Predicate Copying”: Given a set
or a multiset predicate p in a program P, create another
predicate pa of the same type as p, using the rules for pred-
icate p in the program P. pa has exactly the same rules as
p, except that the head of these rules are for predicate pa
rather than for p. p” and p are called predicate copiesof each
other. The set of predicate copies of a predicate p forms a
predicate class. 0

Lemma 2.2 Let P be a program obtained by one or
more predicate copying operations. If pQl and paa -are
members of the same predicate class in P, then the re-
lations for pal and paa in ds(P, E), for any edb E, are
identical. •I

Theorem 2.4 Let a rule of a program P be modified
by replacing an occurrence of a subgoal pal(S) by paa@)
where pal and paa are members of the same predicate
class, to get a program P’. Then P and P’ are duplicate
equivalent. 0

Corollary 2.1 Let program P’ be obtained from P by
doing one or more predicate copies followed by one or
more replacement operations as defined in Theorem 2.4.
(Programs such as P’ are called adorned progmms). Let
predicate p appear in both P’ and P. Then the relation
G;, i;)d$P, E) is identical to the relation for p in

1 *

2.3.2 Magic-Sets

Given an adorned program query pair (P, Q), define
the magic-sets transformation for programs with multi-
set predicates in two steps:

1. Let P’ be the magic-sets transformed program ob-
tained without regard to duplicate semantics.

2. Define each magic predicate to be a set predicate.
Call the program P”.

The following theorem is significant in that it ensures
the correctness of the magic-sets transformation under
duplicate semantics, and thereby demonstrates that the
declarative duplicate semantics can be efficiently evalu-
ated, without irrelevant computation.

The magic-sets transformation is known to preserve
equivalence with respect to the minimal model seman-
tics (for programs without duplicates). In other words,
a fact has a derivation tree in the transformed pro-
gram P’ or P” iff it has a derivation tree in the original
program P. We must additionally prove that, with the
adaptation above, a fact in P” is supported by exactly
the same number of derivation trees as in P.

Theorem 2.5 Program P and the magic-sets trans-
formed program P” are duplicate equivalent to with re-
spect to the query predicate Q. 0

Proof: For a derivation tree 2’ of a program containing
magic predicates, let magred(t’) denote the derivation tree
obtained by removing from 1’ all nodes labeled by an atom of
a magic predicate. Let D C DT(P, E) be a set of derivation
trees such that dcp(D, P, E) holds. We prove, by induction
on the height of derivation trees in D, that there is a set
of trees D” E DT(P”, E) such that dcp(D”, P”, E) holds,
and:

1. For every tree t in D for p(a), one of the following two
conditions holds:

. There is exactly one tree t” in D” for p(a) such
that magred(t”) = t, OR

269

. There is no tree in D” for setm-p(ra),” and hence
there is no tree for m-p(xa) in DT(P’, E).

2. For every tree t” in D”, there is a derivation tree t in
D such that magred(t”) = t.

Intuitively, the first condition ensures that every deriva-
tion tree for a relevant fact is computed in the transformed
program, and that no such tree is computed twice. The sec-
ond condition ensures that no spurious facts are established.
cl

An important consequence of the Magic-Sets adapta-
tion is the following: For programs that are duplicate-
free [MR89], we need not perform any form of dupli-
cate elimination on non-magic predicates. Thus, the
result has significance even for programs in which mul-
tiset predicates are not explicitly used, since it indicates
how a special property of the original program can be
exploited in evaluating the transformed program, even
though the transformed program may not enjoy this
property.

2.4 Duplicate Semantics for
Non-Range-Restricted Programs

Computation with non-range-restricted programs in-
volves storing non-ground tuples. In addition to sets
and multisets of non-ground tuples, we introduce a new
data structure: An irrset is a set in which no element
subsumes another.

The presence of non-ground tuples raises the possi-
bility that a tuple may be subsumed by another that
is generated in a later iteration. This seriously com-
plicates the computation, and we require stratification
with respect to the use of irrset predicates. We can
extend the declarative and computational semantics to
irrset-stratified programs.

3 Grouping and Aggregation

The amount of data kept in databases is frequently large
and is expected to grow significantly. User queries of-
ten involve some form of data reduction, and the query
language must provide operations to support this. For
example, SQL supports a set of aggregate functions such
as average and sum. First-order logic does not deal with
grouping and aggregation since variables range over one
tuple or one component of one tuple. To be able to do
grouping, we need to have a single variable range over
a property of a subset of columns and/or rows of a rela-
tion. The logic data model using Datalog and its various
extensions does not include grouping and aggregation.
LDL ([BNR+87]) 11 a ows us to construct set-terms by
“grouping” all instantiations of a term in a rule body,
but it does not support aggregation.

The extension to grouping and aggregation extension
that we discuss can be used both with and without sup-
port for multisets in the system.

‘set3-p is the magic predicate for p. *Q denotes the
projection of a onto the arguments of set-m-p.

3.1 Syntax
We define a special second order predicate,
group&y (T(T), GL, AL), that takes as arguments a goal
T with its attribute list ?, a grouping list GL of variables
appearing in i, and an aggregation list AL of aggregate
functions. The general form of a group-by subgoal is:

(G): groupby (r(I), [K, y2,. . . , Y,],
[Z, = Al(.%(El)),...,Zn = An(Sn(En))l).

The predicate r is called the grouping predicate. The
arguments, 5 of T can be general terms: constants, vari-
ables, or complex terms. However, any variables in i: are
local to the groupby, unless they also appear in the
grouping list. The grouping list consists of zero or more
distinct variables that must appear in ?. The list of Z’s
is called the aggregation list. Each 2 is a new variable,
E is an expression that uses variables of i, S is optional
- the keyword set can be used to remove duplicates
before aggregation, and A is an aggregate operator that
maps a monadic relation to a single value (such as SUM,
CNT). -Within the rule body, a group-by subgoal rep-
resents a relation over variables F in the grouping list
and variables ‘z in the aggregation list. .

For an expression E and tuple s, let E(s) be the result
of applying the expression E to tuple s. The operation
is well-defined since the variables in E refer to attributes
of s. For a set or multiset relation U, let E(U) be the
multiset [E(s)ls E U].

If a rule for predicate p has the groupby subgoal G in
the body, we say that p depends on r through a grouping

operation, and insert the edge r 2 p in the dependency
graph. gb is the label of the dependency edge.

3.2 Semantics

3.2.1 Semantics of a group-by Subgoal
An ordinary subgoal p(s) of a rule defines an ATOV

mapping from a relation P for predicate p to a relation
over the variables in 5. Satisfiability of a rule in an in-
terpretation requires testing the satisfiability of each of
the subgoals for each substitution of the variables of the
rule. For the subgoal p(f), checking satisfiability for a
substitution u simply involves checking whether the tu-
plep(S)a is in the relation P. (Or, for a negated subgoal,
it involves checking that the tuple is not in the relation
P). Equivalently,,satisfiability can be tested by doing
the ATOV(p@, P) mapping, and checking whether the
tuple corresponding to the substitution 0 is in the map-
ping.

Within a rule we give the group-by subgoal a seman-
tics similar to any other subgoal. The group-by subgoal
G defines an ATOV mapping from the grouping relation
R to a relation over the variables (y,q.

Definition 3.1 “ATOV of group-by”:

ATOV(group_by (r(t), [Yl, Yz, . . . , Y,],
= T [z, = Al(Sl (El)), . . . Zn = An(Sn(En))l), R)

where T is defined as follows:

270

1. Let R’ = ATOV(@, R). R’ is a relation over the vari-
ables in t.

2. Let G = x;ff+.,.,y,,,(R’). We use a set projection in
this step even d multisets are present. If m = 0, G
is-a relation with no attributes, having either a single
empty tuple (if R is not empty), or no tuples (if R is
empty).’

3. For each tuple ,U in G, define a tuple f(p) as follows:

l Let Rh = R’ W p. RL is thus the maximal subset
of R’ having the same values for the attributes
K,yz,..., Y, as the tuple p. If m = 0,~ will be
the empty tuple, and R’ W p = R’.

s Compute the multisets Rb-1 = El(RL), RL-2 =
E2(R:),..., R;A = &(R;).

l If Si = set, let Rli = set(Rli).
l Compute Zr = At(RLl), Z2 = Az(Rh2),

Z, = A,,(RLB). Each Zi wilI be a single value.
l Let f(p) = p x Zr x Zs x . . . x Zn

4. Let T = {f(k) 1 p E G}. Note that T is always a set.

Theorem 3.1 ATOV of a group-by subgoal is non-
mono2onic. 0

Proof: Adding a tuple to the grouping relation R can
change the number of tuples in a group (RL). As a re-
sult, an aggregate value previously derived may no longer
be derivable. 0

--
Definition 3.2 “group”: A group of a relation R(X, Y)
with respect to the grouping list y and values v, written as -- -
group(R(X, Y), Y,$, is defined to be the relation u -
II is the grouping value of the group. 0

pkg.

Definition 3.3 “groupset”: The groupset of a re-
lation with respect to a grouping list F, written as -- -
groupset(R(X,Y),Y), is defined to be the set of groups -- -
krw(R(X, Y), Y,Vl I5 E ryYR)l. 0

Several properties exist between groups and t& rela-
tions R’, RL, and T of Definition 3.1. group(R’, Y,p) =

RL. Each group g in groupset(R’,y) contributes ex-
actly one tuple to T, so that the number of tuples in T
is equal to the cardinality of groupset(R’,n. We can
then derive the following important theorem.

Theorem 3.2 ATOV of a group&y subgoal is mono-
tonic with respect to new groups. That is, for

‘SQL does not permit m = 0 when using groupby. How-
ever SQL allows the aggregation operators to be used with-
out grouping. The semantics of the aggregation without
grouping in SQL is identical to our grouping with m = 0 if
R # 0, but differs when R = 0. SQL assumes that a group
consisting of the full relation R always exists when group-
ing is not done, and the aggregate operators are applied to
this one group. With R = 0, an empty group is generated,
while grouping with m = 0 according to our definition will
generate no groups. To make grouping with m = 0 equiv-
alent to SQL aggregation without grouping, we would need
to define G to have the single empty tuple when m = 0 and
R = 0. Special boundary cases in some of the properties and
theorems will be required as a consequence.

the group-by subgoal G, if R:! = RI U A, and
groupset(Ri, q = groupset(Ri, 7) U groupset(A’, n,
thenTz_>Tl. •I

3.2.2 Model Theoretic Semantics
Definition 3.4 “Model”: A model of a logic program
with grouping and aggregation is an interpretation that in-
terprets each edb predicate as the given edb relation and
satisfies all the rules. A rule is satisfied if for every substi-
tution that satisfies each of the subgoals, the corresponding
head atom is in the interpretation. A substitution u satisfies
the groupby subgoal G

(G): groupby (r(T)), [K, 5,. . . , Ll,
[ZI = AI(SI(EI)), . . . , Zn = An&(L))]).

if the tuple (Fcr,rc) is in
--

ATOV(grwJv(r(% Iv, fz = A@)I, RI),
where R is the relation for predicate r in the interpretation.
0

Several observations are in order: There are non-
recursive programs that have multiple minimal models;
if the domain provides an infinite number of constants,
even range-restricted programs without function sym-
bols may not have a finite minimal model - the ag-
gregate operators behave like function symbols, so that
every minimal model is infinite; the union of two min-
imal models may not even be a model of the program;
and there are programs that have no intuitive minimal
model.

We identify classes of programs for which the model-
theoretic semantics can be defined in terms of a per-
fect model. Aggregate Stratification is similar to Strati-
fied Negation ([UllSS]), and disallows recursions through
groupby. A local stratification analog (Group Strati-
fication) can also be defined. Monotonic Programs and
Magical Stratified programs are two interesting classes of
non-stratified programs that are closed under the magic-
set transformation. Non-stratified programs involve re-
cursion through the grouping operator.

It is straightforward to extend the results of this sec-
tion to provide a (proof-theoretic) declarative seman-
tics for programs that allow multiset predicates and ag-
gregate operations. We call such programs SqLog pro-
grams.

3.2.3 Computational Semantics
In the following subsections we provide computational

semantics separately for each of the classes of programs
we consider.

3.3 Aggregate Stratified Programs

The programs that have no intuitive minimal model all
involve a recursion through a group-by subgoal. That
is, such programs have mutually recursive predicates,
p and q (not necessarily distinct), such that q is the
grouping relation of a group-by subgoal in a rule for p.

Therefore, a sufficient syntactic condition for the ex-
istence of an intuitive model is the absence of recursions

271

through group-by. The resulting class of programs is
said to be aggregate stratified. A stratification of an ag-
gregate stratified program can be defined in a manner
similar to the stratification of a negation stratified pro-
gram ([UllSS]). Th e semantics of an aggregate stratified
program is given by an intuitive perfect model, similar to
the perfect model of a program with stratified negation.

Definition 3.5 “Perfect Model of Aggregate St-
ratified Programs”: Given an aggregate stratified pro-
gram P, define its perfect model, M, as the minimal model
of P that has the following properties:

1. If M’ is another model (minimal or not) of P, then for
every predicate p of stratum 1, the relation for p in M
is a subset of the relation for p in M’.

2. If M’ is another model of P that agrees with M on all
predicates of stratum i and less, then for every predicate
p of stratum i + 1, the relation for p in M is a subset
of the relation for p in M’.

0

Theorem 3.3 Every aggregate stratified program has a
unique perfect model. 0

Proof: Let Pi be the subprogram of an aggregate stratified
program P consisting of predicates of stratum i or less. We
prove, by induction on i, that Pi has a unique perfect model.
0

We can extend the bottom-up computational seman-
tics to aggregate stratified programs using a straightfor-
ward layer-by-layer approach (similar to the computa-
tional semantics for stratified negation), and prove that
it is equivalent to the perfect model semantics.

There are examples that involve recursion through
grouping and yet have an intuitive minimal model se-
mantics. The magic-sets transformation of aggregate
stratified programs often leads to programs that are not
aggregate stratified, though they do have an intuitive
minimal model. In the following subsections we will
define semantics for some of the interesting recursive
examples, and give a class of programs that is closed
under the magic-sets transformation.

3.3.1 Group Stratified Programs
In an aggregate stratified program, a predicate cannot

be defined by grouping over itself. Since group&y is
monotonic across groups (Theorem 3.2), what we really
want is that a group of the predicate should not depend
on itself; it may well depend on another group of the
same predicate. Programs having this property are said
to be group stratified. The idea is analogous to local
stratification for negation. The perfect model for group
stratified programs can be defined using a prioritized
minimization of groups.

The following program was suggested by a referee as a
way to express the query of Example 1.1 without using
multisets:

(Tl): contains(P, S, null, C) :- subpart(P, S, C).
(T2): contains(P, S, U, C) :- subpart(P, U, Cl) &

count-contains(U, S, C2) 8.5 C = Cl * Cz.

(T3): count-contains(P, S, C) :- group-by (
contains(P, S, U, M), [P,S], [C = SUM(M)]).

contains(P, S, U, C) means that P has C units of S
by virtue of having U as a direct subpart. Program
T is not aggregate stratified. However, if the subpart
relation is acyclic, program T is group stratified, with an
ordering between the (P, S) groups of contains defined
by a topological sort on the subpart relation. If the
group ordering is known, the preferred model of T can
be computed by a semi-naive evaluation where rule T3
is fired for groups in the given order.

3.4 Monotonic Programs

We now consider a class of non-stratified programs for
which an intuitive model exists. The following example
is illustrative.
EXAMPLE 3.1 (Corporate Takeovers): We are
given a relation set-ouns(C,,,, C,, S) with the interpretation
that company C,,, directly owns S% of the stock of company
C*.

A company C,,, is said to have bought another company
C, if C,,, controls more than 50% of the stock of C,. C,,,
controls the stock it directly owns. C,,, also controls stock
controlled by any other company C,,, has bought. Consider
the program

(Cl): alLcontrols(C,, C,, S) :- set-ovns(C,, C,, S).
(C2): all-controls(C,,,, C,, S) :- set-bought(C,, Ci)

& C, # Ci & all-controls(C,, C,, S).

(C3): set-bought(C,, C,) :- group-by (
all-controls(C,, C,, S), [Cm, C,], [A = SUM(S)])

& A > 50.
0

The above program is not aggregate stratified. (It
is not even group stratified.) However, it has an in-
tuitive minimal model, and a bottom-up evaluation will
compute the intuitive model. We thus need a weaker re-
striction than group stratification on S&Log programs.
A semantic condition satisfied here is that if a group
derives another tuple in the same group, thereby pos-
sibly changing the ATOV of the group-by subgoal for
that group, the head atom derived earlier from the rule
is still derivable. We formalize this semantic condition.

Definition 3.6 “Monotonic Rule”: We call a rule
monotonic if adding new tuples to the relations for its ordi-
nary subgoals, or to the grouping relations of its group_by
subgoals, can only add tuples to the head (that is, cannot
invalidate a deduction) regardless of the relations for other
subgoals in the rule. 0

Definition 3.7 “Monotonic Program”: A program
is monotonic if every rule in it is monotonic. 0

Clearly, a rule without a groupby subgoal is mono-
tonic. A rule will not be monotonic if any variable from
the aggregation list is used in the head or in an ordi-
nary subgoal in the body, because adding tuples to the
grouping relation will change the aggregate value. How-
ever, consider an element 2 = A(E) in the aggregation

272

list. We can state a sufficient condition for the rule to
be monotonic in terms of the literals in which Z ap-
pears, assuming that the range of the expression E is
known. For Datalog rules the condition is necessary and
sufficient.

Definition 3.8 “Monotonic Literal”: Let a rule r
have as subgoals the literal 1(Z) containing variable Z and
the groupby literal G, with the element Z = A(E) in the
aggregation list. I(Z) is said to be monotonic with respect
to a domain D and the element (Z = A) if l(Z) is built-
in and adding tuples to the grouping relation never changes
the truth value of I(Z) from true to false, provided that the
range of expression E is a subset of domain D. 0

EXAMPLE 3.2 The literals S > c, where c is a constant,
is monotonic with respect to (S = SUM, R+), where Rt is
the domain of positive reals. S > c is not monotonic with
respect to (S = SUM, R), where R is the domain of all reals.

Similarly, M > c is monotonic with respect to (M =
MAX, R+), (M = MIN, R-) and (M = COUNT, R). M < c
is monotonic with respect to (M = MIN, R+). 0

Theorem 3.4 Let a rule r contain a group-by subgoal
with element Z = A(E) in the aggregation list, and let
D be the range of expression E. Then, a suficient (and,
for Datalog rules with >, 2, <, -C, =, # as the only built-
in predicates, necessary) condition for the rule P to be
monotonic is that Z must only appear in body literals
that are monotonic with respect to (Z = A, D). (This
condition must hold for all elements of the aggregation
list.) 0

By Theorem 3.4, the Corporate Takeover example
is monotonic, assuming that the domain of S in the
relation set-ouns(C,,C,,S) is limited to positive re-
als. However, if we change the condition in rule C3 to
S < 50, rule C3 is no longer monotonic since S < c is
not monotonic with respect to (S = SUM, I??).

Theorem 3.5 Every monotonic program has a perfect
model that can be computed by a bottom-up evaluation.
0

Proof: We use the following idea: If we add new tuples to
a relation q we are grouping on, any deductions made in’the
previous iteration from a rule r doing a groupby on q will be
repeated in the next iteration since r is monotonic. •I

Stratified Monotonic Programs

The ideas of monotonicity and stratification can be
combined to define a perfect model for a class of strati-
fied monotonic programs. We consider the strongly con-
nected components of a program P. Let q be the group-
ing relation in a groupby subgoal G of a rule r for rela-
tion p, and let p and q be mutually recursive (in the same
strongly connected component). For P to be stratified
monotonic, we require that the rule r be monotonic with
respect to the groupby subgoal G. The perfect model
of such a program can be defined by a prioritized mini-
mization of the strongly connected components.

3.5 Magical Stratified Programs

We consider another class of recursions through groupby
for which a perfect model can be defined. We define
the class of Magical Stratified Programs by a semantic
condition (unlike the syntactic conditions used to de-
fine aggregate stratified and monotonic programs). The
following example motivates the magical stratified class:

EXAMPLE 3.3 (Magical Stratification)

(Ml): p(X, Y) :- m-p(X) & t(x, Y).
(M2): p(X, Y) :- m-p(X) &

~F-F~~;W, W [Xl, [Z = SWWI)
, .

(M3): r-(X, Y) :- m-r(X) & u(X, Z) & v(Z, Y).

(M4): m-p(Z) :- m-p(X) &
groWv(r(X, W), [Xl, [Z = SUM(Wl).

(M5): m-p(5).

(M6): m-r(X) :- m-p(X).

The dependencies r 2 m-p - m-r - r make r and m-p
mutually recursive. Thus, program P has recursion through
grouping and is not aggregate stratified. Program P is not
even monotonic; the rules M2 and M4 are not monotonic.

Program P does have an intuitive model. Consider a vari-
ant of the bottom-up evaluation technique where application
of rules M2 and M4 that do a grouping over r is delayed
until no new tuples can be derived in an iteration. Let us a%
sume that u and v are edb’s. Then, after m-r(5) is derived,
all tuples of r(X, Y) in the group X = 5 can be deduced in
one iteration. At this point, no new tuples for any relation
can be derived. We therefore activate rules M2 and M4 and
do the grouping on r. The grouping may recursively derive
new tuples of m-r, and hence new tuples in r. If m-r(S) is
derived recursively, the new tuples derived for r wilI all be
in a new group X = 6. If m-r(5) is recursively derived, no
new tuples will be derived for r, since all r tuples in group
X = 5 were derived in a previous iteration. In either case,
the grouping operation done earlier for the group X = 5 is
not invalidated by recursively derived r tuples.

The reader can probably recognize program M as the re-
sult of a magic-sets transformation. If we add another base
rule for m-r, M will no longer be a magic-sets transforma-
tion, but it will continue to have an intuitive semantics. 0

[RosSO] gives. semantics for modular stratified pro-
grams in which each strongly connected component is
locally stratified once all instantiated rules with a false
subgoal that is defined in a lower component are re-
moved. The definition is given for programs with nega-
tion, but can be extended to programs with grouping in
a natural way, requiring that a group not determine a
tuple in the same group through the grouping operation,
once all instantiated rules with a false subgoal that is
defined in a lower component are removed. In the above
program M, the group X = 5 of r can derive the tuple
r(5,5) in the same group through the grouping opera-
tion; so it4 is not modularly stratified. However, there
is also a derivation for the same tuple r(5,5) without

the grouping operation, and this allows M to have an
intuitive model.

If every ground tuple in a program has at least one
derivation from the ‘Llower” ground tuples, regardless
of any additional cyclic derivations, we could define a
perfect model for the program. The program M above
has this important property.

We identify a subclass (Magical Stratified) of pro-
grams that have such a property. A component of a
magical stratified program may have a relation p de-
fined recursively in terms of grouping over p. To avoid
incorrect derivations due to grouping over an incomplete
relation, we require that the grouping operation be ap-
plied to a group of p only after the full group has been
computed. It can be difficult to test whether a group
has been computed fully. We therefore require that each
group of p either be fully derivable without using the
grouping operation, or no tuple of the group be deriv-
able without using the grouping operation. Then, if we
suspend the grouping operation until no tuples for p can
be derived without it, we can be sure that the grouping
operation will be correct.

An attribute of a predicate p is a grouping attribute if
the attribute is used in the grouping list of any groupby
operation on relation p. We define derivation trees for
programs with grouping, in a manner similar to deriva-
tion trees for Datalog programz. A ground groupby sub-
goal groupby (p(S), [ijl, [F = A(@]) is supported by all
tuples in the group P = 5 of p that have a derivation
tree.

Definition 3.9 “Magical Stratification”: A pro-
gram P is magical stratified if every strongly connected com-
ponent S of P either does not have a gb edge, or it satisfies
the following property:

In the dependency graph of component S, let there be a
cycle with a groupby edge p 2 t, and let x be the grouping
attributes of p. If there are more than one groupby edges
out of p in component. S, let X be the intersection (maybe
empty) of the grouping lists of each groupby. Then, there
is a predicate m-p (set-m-p, if duplicate semantics is used)
with attributes P c I? such that

1. (Syntactic Condition) Every rule for p has mp as a
subgoal, and

2. (Semantic Condition) All tuples of p in the perfect
model of S that match with a given tuple p of m-p
should have a derivation tree that does not use the
grouping operation over p, provided we consider m-p(p)
to be a base fact.

m-p is called the magical predicate of p. •I

Program M of Example 3.3 is magical stratified. The
predicates P, mp, and m-r are in one strongly connected

component, and P 2 m-p is the groupby edge. m-r sat-
isfies the syntactic condition for a magical predicate of
T. If we initialize m-r to the tuple m-T(5), all match-
ing P tuples can be derived by one application of rule
M3 (without using rule M4). The semantic condition is
thus satisfied. Note that M will remain magical strati-
fied if we add a base rule for m-r.

Due to the semantic condition, it may not be decid-
able to determine whether a program is magical strat-
ified or not. However, aggregate stratification implies
magical stratification. In Section 3.6 we show that the
class of magical stratified progr:ams is closed under the
magic-sets transformation. At the very least, this al-
lows us to do the magic-sets transformation on aggre-
gate stratified programs written, by the user. We give a
perfect model semantics of magical stratified programs
and outline an evaluation strategy, Table Queue Eval-
uation (T&E), that computes the perfect model of a
magical stratified program.

Perfect Model
We define the semantics for a single strongly con-

nected component S of a magical stratified program
with recursion through grouping. Extension to the full
program can be made along the lines of Definition 3.5.

We use derivation trees for tuples of the magical pred-
icates, m-p, to define an ordering between the tuples.
The tuple m-p(p) is in level 1 if it can be derived with-
out using a grouping operation on a predicate of com-
ponent S. If the tuple m-p(p) can be derived using
magical tuples of level n or lower, with any grouping
operation being on tuples derived using magical tuples
of level (n - 1) or lower, the tuple m-p(p) is placed in
level n, provided m-p(p) cannot be placed in a lower
level.

A magical tuple m-p(p) defines a group p(p) for the
predicate p that is grouped on. The level of the group
p(p) is the same as the level of m-p(p). The perfect
model of component S can be defined by a prioritized
minimization of the groups, with lower levels getting
higher priority.

Definition 3.10 “Perfect Model of a Strongly
Connected Component of Magical Stratified
Programs”: Given a strongly connected component S of
a magical stratified program P, define the perfect model,
M of S as the minimal model of S that has the following
properties:

1. If M’ is another model (minimal or not) of S, then for
every group p(p) of level 1, the relation for the group
p(p) in M is a subset of the relation for the same group
in M’.

2. If M’ is another model of S that agrees with M on all
groups of level i and less, then for every group p(p) of
level i + 1, the relation for the group p(p) in M is a
subset of the relation for the same group in M’.

0

Computational Semantics
One can evaluate the strongly connected components

of a magical stratified program in a bottom-up fashion,
computing lower components before starting computa-
tion of higher components. Evaluation of each strongly
connected component is however difficult, since a com-
ponent can have recursion through grouping, and we
want to ensure that a grouping operation is never ap-
plied until a full group has been evaluated.

274

We use the Table Queue Evaluation (TQE, [MP90])
method to evaluate each component of a magical strat-
ified program. T&E is the standard evaluation strat-
egy in Starburst, and is a natural generalization of
the bottom-up technique for components that have re-
cursion through grouping (on components that do not
involve recursion through grouping, bottom-up evalua-
tion and T&E are identical). T&E works top-down in
the sense that evaluation of relations is demand driven.
However no information (bindings/selections) is passed
top-down. The basic idea is to delay evaluation of a
rule R with a groupby over a relation in the same com-
ponent until all other rules have been evaluated and no
more tuples can be derived without evaluating rule R.
Example 3.3 explained TQE of program M. To see how
TQE differs from the usual bottom-up evaluation, let
program M be modified by defining r to be the transi-
tive closure of U, so that we have the rules:

(M3’): 7(X, Y) :- In-T(X) t u(X, Y).
(M3”): 7(X, Y) :- In-T(X) & u(X, Z) & T(Z, Y).

(M7’): m-T(Z) :- m-r(X) & u(X, Z).

Bottom-up evaluation may compute the groupby on
T before all the T tuples in group X = 5 are computed.
TQE will not apply the groupby on T until the rules
M7’, M3’ and M3” have been iterated on and all P
tuples in group X = 5 have been computed.

Theorem 3.6 Given a strongly connected component S
of a magical stratified program, Table Queue Evaluation
correctly computes the perfect model of S. 0

Proof: By induction on level 1 of groups in the compo-
nent S, with the inductive hypothesis that TQE correctly
computes the groups of level 1. 0

3.6 Magic-Sets Transformation

The aim of the magic-sets transformation is to push in-
formation down into the lower strongly connected com-
ponents, so that a bottom-up evaluation of the query
will be able to use the information normally available
to a top-down goal driven evaluator. The groupby sub-
goal is a second order predicate that cannot use the
bindings on rule variables directly, but program evalu-
ation can benefit if the bindings are pushed “through”
the groupby subgoal into the predicate being grouped
upon.

We use the magic-sets transformation to push infor-
mation through a groupby subgoal into the grouping
predicate. The groupby subgoal defines a relation over
the grouping and aggregation variables, and the infor-
mation available for passing down may be over any of
these variables. Our magic-sets transformation will only
pass down bindings on the grouping variables. We do
not attempt to pass down bindings on the aggregation
variables. Thus, for the query:

6TQE was chosen in Starburst even before we discovered
its usefulness in computing with magical stratified programs.

(Q): ?-A=5&B=5&p(A,B).

(Pl): p(A, B) :- groupby(q(A, C), [A], B = SUM(C)).

we want to use only the binding on A to limit compu-
tation of q (assuming q is an idb predicate) in order to
evaluate p ” by rule Pl. If we knew that the second
attribute of q is a positive integer, we could conceivably
use the binding SUM(C) = 5 as an early termination
test during the grouping operation; terminating if the
partial sum exceeded 5. However, such a use of the bind-
ing SUM(C) = 5 is beyond the scope of the magic-sets
transformation.

The magic-sets transformation on programs with ag-
gregation and grouping is essentially the same as the
transformations discussed in [BR87, MFPRSOa]. A
slight modification is needed to handle the groupby sub-
goal - instead of generating magic-sets for the groupby
subgoal, we generate magic-sets for the grouping rela-
tions, pushing only the bindings on grouping variables.
As an example, for the query & and program P above,
magic transformation gives us the program M

(MQ): ?- A = 10 & B = 10 & pbb(A, B).

(Ml): p**(A, B) :- mq**(A, B) &
group-by (qbf (A, C), [Al, LB = SUM(C)]).

(M2): m-pbb(10,lO).
(M3): m-qbf(A) :- m-p**(A, B)).

with rn-q”f (A) being used as a subgoal in the rules for
qbf .

3.6.1 Magic-Sets Transformation of
Monotonic Programs

Theorem 3.7 Let P be a monotonic program, and let
M be the magic-sets transformation of P. Then M is
monotonic. 0

Proof: An original rule r for predicate p gets no new
groupby subgoal during magic-sets transformation. The
magic predicate m-p added to r cannot refer to an aggre-
gation variable, because no aggregation variable appears in
the head of r (since r is monotonic). T will thus remain
monotonic after magic-sets transformation..

A groupby subgoal G in a new rule T' for a magic predicate
mp must appear in the original rule T where p is used. Since
T is monotonic with respect to G, T' must also be monotonic
with respect to G. 0

3.6.2 Magic-Sets Transformation of Aggregate
Stratified Programs

It is well known from work on stratified negation and
stratified sets ([BNR+87]) that the magic-sets transfor-
mation of a stratified program may not be stratified.
The following theorem allows us to apply the magic-sets
transformation to aggregate stratified programs.

Theorem 3.8 Let P be an aggregate stratified program,
and let M be the magic-sets transformation of P. Then
M is magical stratified. 0

275

Proof: The magic predicate m-p for a grouping predi-
cate p serves as the magical predicate for p. The syntactic
condition for M to be a magical stratified program is satis-
fied as the attributes of magic predicate m-p are a subset of
the grouping attributes of p. That the semantic condition
is satisfied can be proven using the fact that (1) the origi-
nal program is aggregate stratified, and (2) the magic-sets
transformation preserves relevant derivation trees. 0

We have an even stronger result:

Theorem 3.9 Let P be a magical stratified program,
and let M be the magic-sets transformation of P. Then
M is magical stratified. 0

EXAMPLE 3.4 The program P

(Pl): p(X, Y) :- qx, Y).
(P2): p(x, Y) :- group-by (

G, W, [Xl, [Z = SUM(W)]) &
P(Z, Y)-

(P3): r(X, Y) :- u(X, Z) 8.5 v(Z, Y).

is aggregate stratified. Its magic-sets transformation, pro
gram M of Example 3.3, is magical stratified. 0

To evaluate an aggregate stratified program P effi-
ciently, we do a magic-sets transformation to get a pro-
gram M, and evaluate M using TQE.

4 Related Work

In defining the semantics of programs with duplicates,
we have used the notion of derivation trees extensively,
and we have followed the treatment in [MR89]. Un-
like [KW89], we do not introduce object-ids, and copies
of a tuple are indistinguishable to the user and imple-
menter .

[Klu82] extends relational algebra and calculus with
aggregates, and shows that in absence of recursion, du-
plicates are not needed for expressivity. In working
with recursive queries, we have borrowed the idea of
stratification, introduced in [CH85, ABW88] to deal
with negation, to define a class of programs that re-
stricts the use of groupby so as to ensure the exis-
tence of a preferred minimal model, in the spirit of
the “perfect” model for programs with negation. At
the same time we have identified two classes of non-
stratified programs that have a perfect model. Mono
tonicity of programs in absence of stratification has not
been discussed before. Magical Stratification is a re
finement of the notions of local stratification ([Prz88])
and modular stratification ([RosSO]). Our treatment
of grouping and aggregation differs from the approach
taken in [OOM87, BNR+87, Kup87, CKW89], where
constructs such as “set grouping” are used to construct
set-valued terms. We have chosen to adopt the SQL ap
preach, in which terms cannot be set-valued since every
grouping must be followed by an aggregation.

[CM901 defines a class of Closed Semiring programs
that includes program T of Section 3.3.1. However,
no syntactic or semantic characterization of the closed

semiring class is given. An ordering between the groups
is not determined, so that a semi-naive evaluation
cannot be carried out. The computation is defined
through Naive evaluation. The treatment of aggregates
in [CM901 is similar to ours, with differences in the syn-
tax (grouping is specified in the head of a rule) and
computational semantics (Naive Evaluation is required).
Multiset predicates are not allowed. The EKS system
at ECRC ([VBKLSO]) implements program T of Sec-
tion 3.3.1 by a top-down evaluation.

In adapting the Magic-Sets approach, we have
extended the transformation algorithms developed
in [BMSU86, BR87] to handle both duplicates and ag-
gregates. Several other optimization algorithms for logic
programs have been proposed, based on the perfect
model semantics of logic programs. Unfortunately,
none of these optimizations is likely to be directly ap-
plicable to programs with multiset predicates and ag-
gregate operations. An important area for further re-
search is to identify under what conditions these op-
timizations can be adapted to such programs, and to
develop optimization techniques tailored to such pro-
grams. [RosSO] g’ Ives a magic-sets algorithm for modu-
larly stratified (that includes aggregate stratified) pro
grams, but the transformed program is not modularly
stratified, and several meta-predicates as well as the
concept of iterations are built into the magic program.

The ground magic-sets transformation of [MFPRgOa]
extends magic-sets to push conditions as well as bind-
ings. [MFPRSOb] uses the results of this current paper
to (1) adapt the ground magic-sets algorithm to work
in presence of duplicates, and (2) to develop a magic-
sets transformation that works in SQL based relational
systems.

5 Acknowledgements

Yehoshua Sagiv made the suggestion that we look at
the number of proof trees for an atom in defining the
duplicate semantics. We have benefited from comments
and discussions with Mariano Consens, She1 Finkelstein,
Ashish Gupta, HQkan Jakobsson, Michael Kifer, Albert0
Mendelzon, Ken Ross, Yehoshua Sagiv, Ulf Schreier,
Jeff Ullman and Moshe Vardi. We thank the referees
for their insightful comments. The Starburst project at
IBM Almaden Research Center and the NAIL! project
at Stanford University provided a stimulating environ-
ment for this work.

References

[ABC+761 M. Astrahan, M. Blasgen, D. Chamberlin,
K. Eswaran, J. Gray, P. Griffiths, W. King,
R. Lorie, P. McJones, J. Mehl, G. Put-
zolu, I. Traiger, B. Wade, and V. Wat-
son. System R: Relational approach to
Database Management. ACM Transactions on
Database Systems, l(2), June 1976.

[ABW88] K. Apt, H. Blair, and A. Walker. Towards
a Theory of Declarative Knowledge. In

276

[BMSU86]

[BNR+87]

[BR87]

[CH85]

[CKW89]

[CM901

[IS0891

[Klu82]

[KM891

WUP871

[KW89]

[MFPRgOa]

J. Minker, editor, Foundations of Deductiue
Databases and Logic Programming, pages 89-
148, Washington D.C., 1988. Morgan Kauf-
mann.

Francois BanciIhon, David Maier, Yehoshua Sa-
giv, and Jeffrey D. UIIman. Magic Sets and
other Strange Ways to Implement
Logic Programs. In Proceedings of the Fifth
Symposium on Principles of Database Systems
(PODS), Cambridge, MA, pages l-15. March
1986.

Catriel Beeri, Shamim Naqvi, Raghu Ramakr-
ishnan, Oded Shmueli, and Shalom Tsur. Sets
and Negation in a Logic Database
Language (LDLl). In Proceedings of the S&h
Symposium on Principles of Database Systems
(PODS), San Diego, CA, pages 21-37. March
1987.

Catriel Beeri and Raghu Ramakrishnan. On
the Power of Magic. In Proceedings of the
Sixth Symposium on Principles of Database
Systems (PODS), San Diego, CA, pages 269-
283. March 1987.

Ashok Chandra and D. Harel. Horn Clause
queries and Generalizations. Journal of
Logic Programming, 2(1):1-15, 1985.

Weidong Chen, Michael Kifer, and David S.
Warren. HiLog: A First Order Semantics
for Higher-Order Logic Programming
Constructs. In Second International Workshop
on Database Programming Languages. Morgan-
Kaufmann, San Mateo, CA, June 1989.

Mariano P. Consens and Albert0 0. Men-
delzon. Low Complexity Aggregation in
Graphlog and Datalog. Unpublished Manu-
script, 1990.

ISO-ANSI. ISO-ANSI Working Draft:
Database Language SQL2 and SqL3; X3H2;
ISO/IEC JTCl/SC21/UG3,1989.

A. Klug. Equivalence of Relational
Algebra and Relational Calculus query
Languages Having Aggregate Functions.
Journal of the ACM, 29(3):699-717, July 1982.

Michael Kifer and Inderpal Singh Mumick.
Personal Communications, December 1989.

Gabriel M. Kuper. Logic Programming with
Sets. In Proceedings of the Sixth Symposium on
Principles of Database Systems (PODS), San
Diego, CA, pages 11-20. March 1987.

Michael Kifer and James Wu. A Logic
for Object-Oriented Logic Programming. In
Proceedings of the Eighth Symposium on Prin-
ciples of Database Systems (PODS), Philadel-
phia, PA, 1989.

Inderpal Singh Mumick, Sheldon J. Finkelstein,
Hamid Pirahesh, and Raghu Ramakrishnan.
Magic Conditions. In Proceedings of the Ninth
Symposium on Principles of Database Systems
(PODS), Nashville, TN, pages 314-330. April
2-4 1990.

[MFPRSOb]

IMP901

[MR89]

[MUVG86]

[NT881

[OOM87]

[Pir89]

[Prz88]

[RosSO]

[UII88]

[UII89]

[VBKLSO]

Inderpal Singh Mumick, Sheldon J. Finkel-
stein, Hamid Pirahesh, and Raghu Ramakrish-
nan. Magic is Relevant. In Proceedings of
ACM SIGMOD 1990 International Conference
on Management of Data, Atlantic City, NJ,
pages 247-258, May 23-25 1990.

John McPherson and Hamid Pirahesh. Table
Queue Evaluation Strategy. Research report,
to be published, IBM Research Division, Com-
puter Science, Almaden Research Center, San
Jose, California 95120-6099, 1990.

Michael Maher and Raghu Ramakrishnan.
De’jirVu in Fixpoints of Logic Programs. In
North American Conference on Logic Program-
ming (NACLP), Cleveland, Ohio, October 16-
20 1989.

Katherine A. Morris, Jeffrey D. Ullman, and
Allen Van Gelder. Design Overviev of the
NAIL! System. In Logic Programming: Pro-
ceedings of the Third International Conference,
London, pages 554-568, 1986.

Shamim Naqvi and Shalom Tsur. A Logic
Language for Data ,a”d Knovledge Bases.
Computer Science Press, 1988.

G. ~zsoyoglu, M. ~zsoyoglu, and V. Matos.
Extending Relational Algebra and
Relational Calculus uith Set-Valued
Attributes and Aggregate Functions. ACM
Transactions on Database Systems, 12(4):566-
592, December 1987. .

Hamid Pirahesh. Early experience vith
rule-based query revrite optimization. In
Optimization workshop, SIGMOD, May 1989.

T. C. Przymusinski. On the declarative
semantics of deductive
databases and logic programs. In J. Minker,
editor, Foundations of Deductive Databases and
Logic Programming, pages 89-148, Washington
D.C., 1988. Morgan Kaufmann.

Kenneth A. Ross. Modular Stratification
and Magic Sets for Datalog Programs
vith Negation. In Proceedings of the Ninth
Symposium on Principles of Database Systems
(PODS), Nashville, TN, pages 161-171. April
2-4 1990.

Jeffrey D. Ullman. Principles of Database
and Knovledge-Base Systems, Volume 1.
Computer Science Press, 1988.

Jeffrey D. UIIman. Principles of Database
and Knowledge-Base Systems, Volume 2.
Computer Science Press, 1989.

L. Vieille, P. Bayer, V. Kiichenhoff, and A.
Lefebvre. EKS-VI, A Short Overviev. Unpub-
lished Manuscript, distributed at SIGMOD 90
Technical Exhibition, May 23-25 1990.

277

