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Abstract 

In this paper, we present an efficient algorithm for 
managing replicated data. We impose a logical tree 
structure on the set of copies of an object. In a failure- 
free environment the protocol executes read operations 
by reading one copy of an object while guaranteeing 
fault-tolerance of write operations. It also exhibits the 
property of graceful degradation, i.e., communication 
costs are minimal in a failure-free environment but may 
increase as failures occur. This approach in designing 
distributed systems is desirable since it provides fault- 
tolerance without imposing unnecessary costs on the 
failure-free mode of operations. 

1 Introduction 

In a distributed database system, data is replicated 
to achieve fault-tolerance. One of the most important 
advantages of replication is that it masks and tolerates 
failures in the network gracefully. In particular, the 
system remains operational and available to the users 
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despite failures. However, complex and expensive 
synchronization protocols [Giffg, BG87, ES83, DB85, 
JM87, PL88] are needed to maintain the replicas. 
There has been a considerable research effort to re- 
duce the cost of executing operations while maintain- 
ing data availability in replicated databases. A com- 
mon approach is to use network configuration informa- 
tion [ESC85, Her87, ET89]. This information is used 
to allow operations to adapt to changes in the network 
configuration. 

In this paper, we present a replica control protocol 
that reduces the cost of executing operations without 
the need for reconfiguration. This is achieved by im- 
posing a logical tree structure on the set of copies of 
each object. We describe a protocol that operates by 
reading one copy of an object while guaranteeing fault- 
tolerance of write operations and still does not require 
any reconfiguration on account of a failure and sub- 
sequent recovery. The protocol provides a compara 
ble degree of data availability as other replica control 
protocols [GiflS] at substantially lower costs. Further- 
more our approach is fault-tolerant, and exhibits the 
property of graceful degradation [MS85]. In a failure- 
free environment, the communication costs are mini- 
mal and as failures occur the cost of replica control 
may increase. However, when failures are repaired the 
protocol reverts to its original mode without undergo- 
ing any reconfiguration. 

In the next section, we present the model of a dis- 
tributed replicated database. Section 3 motivates the 
usefulness of logical structures for replica control. The 
tree quorum protocol, which incorporates these ideas, 
is presented in Section 4. Analysis of the tree quorum 
protocol and its comparison with other protocols are 
presented in Sections 5 and 6. We conclude with a 
discussion of our results. 
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2 Model 

A distributed system consists of a set of distinct sites 
that communicate with each other by sending messages 
over a communication network. No assumptions are 
made regarding the speed, connectivity, or reliability of 
the network. We assume that sites are faiJ-slop [SSSZ] 
and communication links may fail to deliver messages. 
Combinations of such failures may lead to partilioning 
failures [DGMS85], h w ere sites in a partition may com- 
municate with each other, but no communication can 
occur between sites in different partitions. A site may 
become inaccessible due to site or partitioning failures. 

A distributed database consists of a set of objects 
stored at several sites in a computer network. Users 
interact with the database by invoking transaclion pre 
grams. A transaction is a partially ordered sequence 
of read and write operations that are executed atom- 
ically. The execution of a transaction must appear 
atomic, i.e., a transaction either commits or aborts. A 
commonly accepted correctness criteria in distributed 
databases is the serializable execution of transactions 
[EGLT76]. The serializable execution is guaranteed by 
employing a concurrency control mechanism, e.g., two- 
phase locking, timestamp ordering, or an optimistic 
concurrency control protocol. 

In a replicated database, copies of an object may 
be stored at several sites in the network. Multiple 
copies of an object must appear as a single logical ob- 
ject to the transactions. This is termed as one-copy 
equivalence [BG87] and is enforced by the replica con- 
trol protocol. The correctness criteria for replicated 
databases is one-copy serializability [BG87], which en- 
sures one-copy equivalence and serializable execution 
of transactions. 

In order to ensure one-copy equivalence, a replicated 
object z may be read by reading a read quorum of 
copies, and it may be written by writing a write quo- 
rum of copies. The following restriction is placed on 
the choice of quorum assignments: 
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Quorum Intersection Property: For any two operations 
O[Z] and o’[zJ on an object 2, where at least one 
of them is a write, the quorums must have a non- 
empty intersection. 

Version numbers or timestamps are used to identify 
the current copy in a quorum. When timestamps are 
used intersection of write operations is not necessary 
[Her86]. 

3 Motivation 

The simplest example of a protocol for managing repli- 
cated data is one where read operations are allowed to 
read any copy, and write operations are required to 
write all copies of the object. The read-one write-all 
protocol provides read operations with a high degree 
of availability at a very low cost: a read operation ac- 
cesses a single copy. On the other hand, this protocol 
severely restricts the availability of write operations 
since they cannot be executed after the failure of any 

COPY. 
Two main approaches have been used to address 

the issue of increasing the fault-tolerance of the read- 
one write-all protocol. The voting approach, both 
static [GiffS] and dynamic [DB85, JM87, PL88], does 
not require write operations to write all copies, and 
thus increases their fault-tolerance. The price paid 
is that read operations must, in general, read several 
copies, rendering read operations more costly than in 
the read-one write-all protocol. The second approach 
[ESC85, ET89, Her871 uses configuration information 
to provide fault-tolerant operations without requiring 
read operations to access several cop&. In particular, 
each site maintains some information about its commu- 
nication capabilities, and may use that to ensure that 
read operations access a single copy. This improved 
performance is, however, attained by requiring a spe- 
cial reconfiguration protocol to be executed whenever 
a change in the network configuration occurs. 

In this paper we present a new protocol that achieves 
the main advantage of the read-one write-all protocol, 
i.e., a read operation accesses a single copy, when there 
are no failures in the system. As failures occur read op- 
erations may be required to access more copies. Write 
operations, on the other hand, tolerate failures, and 
no reconfiguration protocol is used. This behavior is 
attained by imposing a logical tree structure on the set 
of copies of the object. This structure is used by op- 
erations to determine the copies that must be read or 
written. In Figure 1, an example of a ternary tree with 
thirteen copies of an object is presented. We note that 
this structure is logical, and does not have to corre- 
spond to the actual physical structure of the network 
connecting the sites storing the copies. We will use 
this tree structure to motivate the protocol. 

A straight forward replica control protocol that uses 
the tree structure is one where a write operation is 
required to write a majority of copies at all levels of 



Figure 1: A tree organization of 13 copies of an object 

the tree, e.g., in the tree of Figure 1, any set consisting 
of the root, and any two copies from {2,3,4} as well as 
a majority from {5,6,7,8,9,10,11,12,13}. In this case a 
read operation can be executed by accessing a majority 
of copies at any single level of the tree. For example, 
any of the following sets could form a read quorum: 
the set consisting of the root, or any set containing two 
copies from {2,3,4}, or any set containing a majority 
from {5,6,7,8,9,10,11,12,13}. It is clear that any read 
operation must have at least one copy in common with 
any write operation, and hence the protocol ensures 
one-copy equivalence. 

The simple protocol has similar performance for 
read operations as the read-one write-all but has bet- 
ter fault-tolerance for write operations. In particular, 
when the root is accessible, read operations can always 
be executed by accessing a single copy. Furthermore, 
write operations can be executed after the failure of 
several copies at different levels (for example, the fail- 
ure of copies 4, 7, 8, 11 and 12 does not prohibit write 
operations). The protocol is therefore similar to the 
read-one write-all protocol in that when there are no 
failures read operations access a single copy. As fail- 
ures occur, this protocol may still allow write and read 
operations to execute but at a higher cost. In par- 
ticular, read operations can tolerate the failure of all 
except a majority of copies at some level, and write 
operations can tolerate the failure of a minority’ of 
copies at all levels. 

Although correct, the performance of this protocol 
can be improved by further exploiting the tree struc- 

‘A majority is [(n+l)/21 copies and a minority is [(n-1)/2J 
copies. 

ture. Instead of requiring a write operation to write a 
majority of copies at all levels, consider a write oper- 
ation that writes the root, a majority of its children, 
and a majority of their children, and so forth. Hence 
for the tree of Figure 1, a write operation could be 
executed by writing the following set of copies only: 

~WV,6,8,9~, h’ h w ic is smaller than the set required 
by the simple protocol. To ensure the quorum inter- 
section property, a read operation must try and access 
the root, if the root is inaccessible, the read tries to 
access a majority of the root’s children. For each inac- 
cessible copies in this majority set, the read operation 
tries to access a majority of its children. For example, 
consider a network configuration where copies 1 (the 
root), 2, and 3 are inaccessible. In this case the read 
may form a quorum by accessing copy 4 and a major- 
ity of copy 2’s children, e.g., 5 and 7. Alternatively, 
the quorum may be formed from copy 4 and a major- 
ity of copy 3’s children, e.g., 9, 10. A read quorum 
could also have been formed by selecting a majority 
of children of copies 2, 3, and 4. All read quorums 
have a non-empty intersection with any write quorum, 
e.g., {1,2,3,5,6,8,9}1 In the next section, we formally 
develop the protocol and argue its correctness. 

4 The Tree Quorum Protocol 

In this section we present the tree quorum protocol for 
accessing objects in a distributed replicated database. 
The standard approach for implementing quorums as- 
sociates with each copy a vote (often this vote is one). 
The read quorum for an object z is any set of copies 
with qr votes, and a write quorum is any set with qw 
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votes. TO ensure the quorum intersection property, the 
sum of qr and qw must be greater than the total num- 
ber of copies of z. A simple protocol would require 
that both read and write quorums contain a major- 
ity of copies. Our approach for implementing quorums 
imposes a logical tree structure on the copies of an ob- 
ject 2. Instead of counting votes, a special tree-based 
protocol is used to construct quorums. 

Given a set of n copies of an object t, we logically 
organize them into a tree of height h, and degree 2d+ 1, 
i.e., each node has 2d + 1 children, and the maximum 
height is h. We will assume the standard tree termi- 
nology, i.e., root, child, parent, leaf, level, etc. We also 
assume that the tree is complete, i.e., it has the max- 
imum number of nodes. The logical tree organization 
may be viewed simply as an ordering of the name di- 
rectory of copies maintained at each site for location 
purposes. Extending it to a tree does not impose any 
extra or special complications. 

In Figure 2, we present a protocol for constructing 
a valid write quorum. We assume that the tree has a 
well defined root, and that a transaction attempting 
to construct a write quorum calls the recursive func- 
tion WriteQuorum with the root of the tree, CO, as 
parameter. The protocol tries to construct a quorum 
by selecting the root and a majority of its children. For 
each selected child, the protocol adds a majority of its 
children to the quorum. This process continues until 
the leaves are reached. If successful, this set of copies 
constitutes a write quorum. If the function is unable 
to collect the required majority at any level, it returns 
the empty set to indicate that the write quorum could 
not be formed. Note that depending on the failures in 
the system a write operation may construct different 
write quorums. 

In Figure 3, we present a protocol for constructing a 
valid read quorum. A transaction attempting to con- 
struct a read quorum calls the recursive function Read- 

Quorum with the root of the tree, CO, as parameter. 
The protocol tries to construct the quorum by select- 
ing the root co. If successful, this node constitutes the 
read quorum. If it fails, it tries to access a majority of 
the root’s children. Again if successful this set consti- 
tutes the read quorum, otherwise, for each copy, which 
is inaccessible, the protocol tries to replace it with a 
majority of its children. This process is repeated re- 
cursively until a set of copies is included in the read 
quorum, or no such copies are accessible. In this case, 
the function returns the empty set and the operation 
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is aborted. 

Consider a replicated object with thirteen copies. 
We superimpose a ternary tree on the copies as illus- 
trated in Figure 1, with the sites numbered as shown. 
In this case 2d + 1 = 3 and h = 2. According to the 
protocol any write quorum must include the root. In 
addition, it must include a majority of copies 2, 3, and 
4 and for each such pair it must include a majority 
of their children. For example the following sets form 
a write quorum: {1,2,3,5,6,8,9}, {1,2,4,6,7,12,13}, etc. 
A read quorum, in the best case, is required to access 
only the root. However, as a result of the failure of the 
root, a read quorum can be formed from any majority 
of the root’s children, i.e., {2,3} or {2,4} or {3,4}. If 
a majority or more of the root’s children have failed, 
then each such copy can be replaced by a majority of 
its children. Hence, if copies 1, 2, and 3 are inacces- 
sible, then a quorum can be formed from copy 4 and 
a majority of either copy 2 or copy 3’s children, e.g. 
the sets {4,5,6} and {4,8,10} form quorums. Similar 
quorums can be formed if copies 3 and 4 are inacces- 
sible or copies 2 and 4. Finally, if copies 1, 2, 3, and 4 
are inaccessible, then a majority of the children of any 
two of copies 2, 3 and 4 form a quorum. For example 
the following sets are candidate quorums: {5,6,8,9}, 
{6,7,12,13}, {8,10,11,13}, etc. 

We now present a discussion of the upper and lower 
bounds on the sizes of quorums generated by the tree 
quorum protocol. In the static voting scheme [GiflS], 
quorum sizes are fixed although the membership in a 
quorum may vary. In our approach the sizes of the read 
quorums vary while the choice of members is relatively 
less flexible. Consider a tree with n nodes, height h and 
each node is of degree 2d + 1. In the case of read op- 
erations the protocol exhibits, the property of graceful 
degradation [MS85]. In the absence of failures the cost 
of forming a quorum is minimal, and this cost increases 
as failures occur in the system. In the best case, a read 
operation is executed by accessing a single copy: the 
root. However, if the root fails, the cost of forming 
a quorum increases to d + 1, a majority of the root’s 
children. As more failures occur, the quorum size in- 
creases up to a maximum of (d + 1))‘. Note that, in 
general, (d + l)h < n/2. A read operation may toler- 
ate the failure of n - 1 specific copies, and can tolerate 
the failure of any [(d + l)h+’ - l]/d - 1 copies. Write 
operations, on the other hand, are all of the same size: 
[(d + l)h+’ - II/d. Different failures, however, effect 
write operations in different ways. In the worst case, 



FUNCTION WriteQuorum(Tree : TREE) : QUORUM: 
VAR 

SubTrees, Majority: QUORUM; 
BEGIN 

IF Empty(Tree) THEN 
RETURN({)); 

ELSE IF Tree 1 Boot is w&e accessible THEN 
(* Collect majority of subtrees to be included with the root of the subtree *) 

SubTrees = Ui~Ma.jority WriteQuosum(Tree 1 .SubTree[i]); 

IF Unable to collect a majority THEN 
RETURN({)); 

ELSE 
RETURN(Tree 1 .Root u SubTrees); 

END; (* IF l ) 
ELSE 

RETURN({)); 
END; (’ IF l ) 

END WriteQuorum; 

Figure 2: The Algorithm for constructing a Write Quorum on a Tree of Copies 

FUNCTION ReadQuorum(Tree : TREE) : QUORUM; 
VAR 

MajorityQuorum, Majority: QUORUM; 
BEGIN 

IF Empty(Tree) THEN 
RETURN({)); 

ELSE IF Tree T Boot is read accessible THEN 
RETURN(TTee T .Root); 

ELSE 
(* Collect majority of subtrees to substitute for the root of the subtree *) 
MajorityQuorum = UiEMajority ReadQuorum(Tsee T .SubTree[zj); 

IF Unable to collect a majority THEN 
RETURN({)); 

ELSE 
RETURN(MajorityQuorum); 

END; (* IF l ) 
END; (* IF ‘) 

END ReadQuorum. 

Figure 3: The Algorithm for constructiug a Read Quorum on a Tree of Copies 
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the failure of the root prohibits a write operation from 
execution, while in the best case, a quorum can still 
be formed after the failure of n - [(d + l)h+l - l]/d 

specific copies. 
The following theorem establishes the correctness of 

the tree quorum protocol. We demonstrate that the 
read and write quorums constructed by the tree pro 
tocol will always have a non-empty intersection. Note 
that two write quorums will always have a non-empty 
intersection. 

Theorem 1 The tree quorum protocol guarantees the 
intersection of read and write quorums. 
Proof. The proof is by induction on the height of the 
trees. 

Basis. The theorem holds for a tree of height zero, 
since there is only one copy in the tree. 

Induction Hypothesis. Assume that the theorem 
holds for trees of height h. 

Induction Step. Consider a tree of height h + 1. The 
read and write quorums constructed for this tree will 
be of the following form: 

1. Read Quorum: {root} OR {majority of read quo 
rums for subtrees of height h}. 

2. Write Quorum: {root} U {majority of write quo- 
rums for subtrees of height h}. 

Now if a read quorum consists of the root of the tree, it 
is guaranteed to have a nonempty intersection with any 
write quorum. If, on the other hand, the read quorum 
consists of a majority of read quorums for subtrees of 
height h, it is guaranteed to have at least one subtree 
in common with any write quorum. Since the subtrees 
are of height h, the induction hypothesis guarantees 
that read and write quorums will have a nonempty 
intersection. 

Hence, by induction, the tree quorum protocol guar- 
antees non-empty intersection between read and write 
quorums. cl 

One of the restrictions imposed by the suggested im- 
plementation for collecting read quorums is that the 
reads are directed to a specific copy: the root. This 
has the advantage that if the root is up, read operations 
accesses a single copy. Read locality may, however, be 
sacrificed and the root may become a bottleneck. To 
solve this problem, it might be more desirable to gather 
a quorum of several relatively-local copies rather than 
one very remote root copy. This approach could also 
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be used for organizing the tree structure of the copies. 
For example, consider a network composed of two rela 
tively distant segments: the root could be placed in one 
of the segments and the second level of the tree in the 
other segment. In such an organization, transactions 
executing in a particular segment will use the quorum 
which is less expensive. If the root is in the trans- 
action’s network segment, the root will be accessed. 
Otherwise, the transaction will access the majority of 
copies at the second level of the tree. The functions 
depicted in Figures 2 and 3 should be appropriately 
modified to enforce this policy. 

5 Analysis of the Tree Protocol 

In this section, we estimate the cost and the avail- 
ability of read and write operations in the tree pro- 
tocol and compare them with the read-one write-all 
(ROWA) and th e voting (VOTE) protocols [Gif79]. 
It is particularly important to demonstrate that the 
availability of write operations is not substantially de- 
graded by the tree quorum protocol’s requirement that 
all writes include the root. 

The message cost of an operation is directly pro 
portional to the size of quorums required to execute 
the operation. Thus in the read-one write-all ap- 
proach, read operations have a cost of one whereas 
write operations have a cost of n. In the voting pro- 
tocol, the quorum size corresponding to a majority is 
[(n + 1)/2]. Th us, read and write operations have a 
cost of [(n + 1)/2]. 

In the case of the tree quorum protocol (TREE), 
the size of read quorums vary from 1 to (d + l)h. On 
the other hand, the cost of write operations is [(d + 

1) h+l - II/d. In order to compute the average cost 
of read operations, we introduce a parameter f that 
indicates the fraction of read operations that will use 
the root of the tree to execute. Let Rck be the average 
cost of executing read operations in a tree of height k. 

Thus, the cost RCk+r for a tree of height k + 1 is: 

Rck+l = f . 1 + (1 - f)(d + 1)RCk 

where ‘RCo = 1. Note that the first term in the re- 
currence relation corresponds to the fraction of read 
operations, f, that execute using the root of the tree. 
The second term corresponds to the situation when the 
read operations collect a read quorum on a majority of 
subtrees. Thus, f = 0 is the upper bound on the cost 
of read operations which is (d+ l)h for a tree of height 



h and degree 2d + 1, and f = 1 is the lower bound on 
the cost, which is 1, the same as the read-one write-all 
protocol. 

Figure 4 illustrates the cost of executing read and 
write operations in various replica control protocols. 
For the read operations in the tree quorum protocol, 
we indicate the upper and lower bounds on the cost, 
and provide a realistic bound for the read costs which 
corresponds to f = 0.5 (i.e., 50% of read operations 
execute using the root). In fact, for a ternary tree 
if f = 0.5, the above recurrence relation yields the 
read cost to be (h + 1)/2 which is logarithmic in the 
number of copies. The cost of executing read opera 
tions is comparable in both the tree quorum and the 
read-one write-all protocols. Write operations, on the 
other hand, are significantly less costly. When com- 
pared with the voting protocol, both read and write 
operations are less costly. Thus, in terms of cost our 
protocol has definite advantages. However, we need to 
demonstrate that the availability of write operations is 
not seriously compromised. 

Let p be the probability that a copy of an object is 
available for read or write operations. Furthermore, 
assume that there are n copies of the object in the 
system. Since read operations on this object can be 
executed by accessing any copy of the object in the 
read-one write-all protocol, the availability of read op- 
erations is [l - (1 - p)“]. Since all copies ‘are needed 
to execute write operations in this protocol, the avail- 
ability of write operations is p”. 

In the case of the voting protocol, the majority quo- 
rum assignment is optimal for both read and write op- 
erations [AA89]. Thus, the availability of read and 
write operations is: 

= Probability(majority copies are available) 
+ Probability(majority + 1 copies are available) 
. . . 

+ Probability(majority + i copies are available) 
. . . 

+ Probability(al1 copies are available) 

If we let n be equal to 2k + 1 for some non-negative 
constant L, the above probabilities can be represented 
by the following terms, i.e., 

= ( tF=: ) #+I(1 - p)k + . . . + 

+ ( 2;;; )pL+i(l,-p)~-‘+l+...+p’“+l. 
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Note that Rc and Wo is p. Since the above recurrence 
relations involve non-linear terms, we illustrate the op- 
eration availabilities for specific replica configurations 
of an object in Figures 5 and 6. In Figure 5, the ob- 
ject is replicated at four sites. Furthermore, we assume 
that the copies are organized as a tree of degree three 
with height one. In Figure 6, the object is replicated 
at thirteen sites. The tree is assumed to be a ternary 
tree of height two. The availability of read operations 
in all three protocols is almost identical. As expected, 
write availability of the tree quorum protocol is infe- 
rior to the voting protocol. However, it is substan- 
tially superior to the write availability in the read-one 
write all protocol. In particular, for the case of thir- 
teen copies, write availability increases from 25% to 
more than 85%, when p = 0.9. In conclusion, the tree 
quorum protocol achieves the benefits of the read-one 
write-all protocol while significantly improving both 
the cost and the availability of write operations. 

The availability of read and write operations in the 
tree quorum protocol can be estimated by formulating 
recurrence relations for both read and write availabil- 
ities. The recurrence relation is in terms of the avail- 
abilities of these operations in the subtrees of a tree of 
copies of an object. Let Rh be the availability of read 
operations in a tree of height h. Thus, the availability 
for a tree of height h + 1 is given as: 

Rh+l = Probability(Root is up)+ 
Probability( Root is down) x 

[Read Availability of Majority of subtrees] 

Assuming that the degree of each node in the tree is 
2d + 1, where d > 0 and taking p as the probability 
that the root is available and 1 - p as the probability 
that the root is unavailable, we get: 

Rh+l =P+(l-P)X 

(fih)d+l (1 - Rh)d + . . . + (Rh)2d+’ 1 
Similarly, let wh be the availability of write operations 
in a tree of height h. Then: 

wh+r = Probability(Root is up) x 

[Write Availability of Majority of subtrees] 

i.e., 

wh+l = px 

(W,,)d+l (1 - Wh)d + . . . + (Wh)2d+1 1 
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6 Related Work 

In this section we describe different replica control pro- 
tocols and compare them to the proposed tree quorum 
protocol. The simplest replica control protocol is the 
read-one write-all protocol, where a read operation is 
executed by reading any copy and a write writes all 
copies of the object. In a failure free system, read op- 
erations in both protocols access a single copy while 
write operations in the tree quorum protocol do not 
write more than half the copies written by the read-one 
write-all protocol. When failures occur write opera- 
tions can never be executed using the read-one write-all 
protocol. In the tree protocol write operations can be 
executed even after certain failures have occurred and 
the degree of write availability is significantly higher as 
indicated by the results in Section 5. Read operations 
may be required to access several copies, while attain- 
ing a comparable degree of availability in the presence 
of failures. 

In order to increase the fault-tolerance of write op- 
erations, voting protocols were proposed, where write 
operations are not required to write all copies. In 
the static voting protocol [Gif79], a write operation 
writes w copies, and a read operation accesses r copies 
where r + w is greater than the total number of 
copies of the object. In the dynanaic voting protocol 

[DB85, JM87, PL88], both read and write operations 
must access a majority of the copies that were most re- 
cently updated. In a failure free system, both the static 
and the dynamic protocols require read operations to 
access several copies. For write operations to tolerate 
the failure oft copies, a read operation using the static 
approach must always access t+ 1 copies and vice-versa. 
In the dynamic approach, both read and write opera- 
tions must access a majority of the copies. The tree 
protocol, in a failure free system, never requires a read 
operation to access more than one copy. Furthermore, 
write operations access [(d+ l)h+l - 11/d copies, which 
in general is less than a majority of copies. When fail- 
ures occur, in the best case, the static voting protocols 
can tolerate the failure of a minority of copies. This 
improved availability requires that both read and write 
operations access a majority of copies. The dynamic 
voting protocol can tolerate the failure of any number 
of copies. It, however, requires both operations to ac- 
cess several copies (a majority of the copies most re- 
cently written). Using our protocol, read operations 
can tolerate the failure of any [(d + l)h+’ - l]/d - 1 

copies, and n - 1 specific copies. If the root is acces- 
sibk, read operations always access a single copy and 
in the worst case access (d + l)h < n/2 copies. Write 
operations, in the worst case, cannot be executed af- 
ter the failure of the root, but can tolerate the failure 
of n - [(d+ l)h+’ - 11/d specific copies. The analysis 
of Section 5, shows that the read availability provided 
by the tree quorum protocol is comparable to that of 
the static voting protocol and that the degradation of 
write availability is not substantial. The cost of both 
operations is significantly less when the tree quorum 
protocol is used. 

To overcome the problem of expensive read oper- 
ation in the voting protocols, several algorithms have 
been proposed that use network configuration informa- 
tion [ESC85, Her87, ET89]. This information is used 
to allow operations to adapt to changes in the network 
configuration. As a result read operations can always 
be executed by accessing a single copy. To ensure cor- 
rectness, a special protocol must be executed when- 
ever a new network configuration occurs. This protocol 
can be relatively costly since it involves communicat- 
ing with several copies of several different objects. The 
tree quorum protocol tries to achieve the advantages 
of reconfiguration protocols, i.e., low cost operation 
execution, while maintaining availability. However, it 
avoids the cost of reconfiguration by encoding the re- 
configuration information in the logical tree structure. 
If failure patterns are more likely to occur in the levels 
close to the leaves, the tree quorum protocol is ex- 
pected to perform better than reconfiguration based 
protocols. On the other hand, if failure patterns are 
adverse to the tree structure, a reconfiguration based 
approach will have better performance. 

Finally, the notion of imposing logical structures on a 
network of sites has been proposed before to solve dif- 
ferent problems. Maekawa [Mae851 proposed imposing 
a logical grid on a set of sites to derive efficient O(fi 
solutions for mutual exclusion. Agrawal and El Ab- 
badi [AESS] proposed imposing a logical tree to solve 
the mutual exclusion problem using O(log n) messages. 
This approach was extended to replica control protc+ 
cols that use several logical structures imposed on a 
set of copies [AEgO]. Kumar [KumSO] constructs a 
logical tree on a set of copies, where the copies actu- 
ally correspond to the leaves of the tree. This results 
in a protocol where read and write quorums are of size 
2“‘ga n. Our protocol draws on many of these ideas, and 
extends them to develop an efficient and fault-tolerant 
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replica control protocol. The distinguishing feature of 
our approach is that we directly address the issue of 
low cost read operations, and unlike other logical struc- 
ture based approaches, the tree quorum protocol, in a 
failure-free system does not require read operations to 
access more than one copy. 

7 Conclusions 

In this paper we have proposed a fault-tolerant pro- 
tocol for managing replicated data. The design of the 
protocol directly addresses one of the main problems of 
replicated data: the necessity of read operations to ac- 
cess several copies in order to ensure the fault-tolerance 
of write operations. Our approach imposes a logical 
tree structure on the set of copies implementing a log- 
ical object. The logical structure will be particularly 
beneficial if it is organized such that the most reliable 
site is chosen as the root and the least reliable sites as 
the leaves. This tree structure is used by transactions 
to determine how to execute read and write operations 
both in failure-free and failure-prone environments. In 
that sense, the structure encodes reconfiguration infor- 
mation. 

In any practical distributed database system, most 
read operations should be executed by an access to a 
single copy. Our approach ensures such performance 
in a failure-free environment, and in particular when 
a specific node, the root, is accessible. This perfor- 
mance is attained without any reconfiguration require- 
ments and without any substantial availability degra- 
dation for write operations. Avoidance of reconfigura- 
tion is especially attractive in systems where failures 
may be frequent, and where the size of the database 
is large and geographically dispersed. Several repli- 
cated databases use the read-one write-all protocol for 
its simplicity, low read costs, and because it does not 
require any reconfiguration protocols. Our approach 
is fairly simple, does not require any reconfiguration, 
and significantly improves the availability of write op- 
erations when compared with the read-one write-all 
approach. 

The tree quorum protocol can be easily extended to 
provide the database designer with the flexibility of de- 
termining the degree of availability as well as the cost 
of different operations. For example, instead of requir- 
ing write operations to write copies residing at all levels 
of the tree, they would be required to write copies at 
all levels except for one. In this case, a write opera- 

tion does not have to write the root copy, if the site 
on which it resides is inaccessible, thus increasing the 
availability of write operations. On the other hand, to 
ensure correctness, read operations would have to read 
copies at two levels, thus increasing the cost of read 
operations. In general a write operation would be re- 
quired to write copies at w levels, and read operations 
would read copies at 1 -w+ 1 levels (where I is the total 
number of levels in the tree). This approach increases 
the availability of write operations, while at the same 
time increasing the cost of read operations. Another 
extension of our protocol is to use a reconfiguration 
protocol [ESC85, ET891 for restructuring the logical 
tree. This approach will be particularly beneficial for 
large distributed databases. 

Finally, the proposed protocol exhibits the property 
of graceful degradation [MS85], which is especially at- 
tractive in distributed systems that may suffer from 
failures. In a failure-free system, the costs imposed by 
the tree quorum protocol are comparable to the sim- 
plest and most efficient replica control protocol, the 
read-one write-all protocol. When failures occur, and 
unlike the read-one write-all protocol, the tree quorum 
protocol continues executing both read and write op- 
erations with a high probability, although at a higher 
cost. This approach in designing distributed systems is 
desirable since it provides fault-tolerance without im- 
posing unnecessary costs on the failure-free mode of 
operations. 
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