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ABSTRACT 
Remote backup copies of databases are often maintained 
to ensure availability of data even in the presence of exten- 
sive failures, for which local replication mechanisms may 
be inadequate. We present two versions of an epoch algo- 
rithm for maintaining a consistent remote backup copy of a 
database. The algorithms ensure scalability, which makes 
them suitable for very large databases. The correctness 
and the performance of the algorithms are discussed, and 
an additional application for distributed group commit is 
given. 

1. Introduction 

A remote backup (or hot standby or hot spare) is a 
rcchnique used in critical applications for achieving truly 
continuous operation of databases. A copy of the primary 
database is kept up-to-date at a geographically remote site 
and takes over transaction processing in case the primary 
site fails. The geographic separation of the two copies 
provides significantly more failure isolation than what is 
available with local replication. The advantages of a 
remote backup are discussed in detail in [5], [ 121. 

We focus on a particular type of remote backup, 
called l-safe [9], [ 121: transactions first commit at the pri- 
mary site, release the resources they hold, and are then 
propagated to the backup and installed in the backup copy. 
This means that in case of disaster, some transactions that 
were executing close to the occurrence of the disaster may 
never reach the backup, although they may have 
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Figure 1. Architectural Framework 

committed at the primary. The other option would be to 
run 2-safe transactions: the primary and the backup run a 
two-phase commit protocol [ 81, [ 131 to ensure that transac- 
tions are either installed at both sites or are not executed at 
all. The commit protocol increases the response time of 
transactions by at least one round trip delay. For this and 
for other reasons [ 121, [5] many systems prefer to use l- 
safety and lose some transactions in case of disaster rather 
than pay the overhead for 2-safety. 

Existing l-safe remote backup systems (e.g., Tan- 
dem RDF [ 151) usually address only the simple case, with 
one primary and one backup computer. Data logs are pro- 
pagated from the primary to the backup to enable the latter 
to install the same changes that were installed at the 
former. Even when multiple computers are allowed in 
existing systems, the situation is similar, because the logs 
are merged (implicitly or explicitly) into a single ,Jog 
stream. A single log scheme is undesirable, because the 
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merging of the logs may eventually become a bottleneck in 
the performance of the system.’ Instead, we would like to 
have many computers at each site, with multiple indepen- 
dent log streams from the primary to the backup (as shown 
in Fig. l), so that the system can scale up to very large 
databases. In this figure, the log at each primary computer 
records the actions that take place there, just like in any 
system. The writes in this log are then transmitted and 
replayed at the corresponding backup computer. 

When multiple logs are used, as in Figure 1, we 
actually need a distributed commit process at the backup to 
decide when the writes for a given transaction can be 
safely installed. In other words, it is not possible to simply 
install the writes at each backup computer as they arrive. 

To illustrate this, consider three transactions, Ti Tz. 
and T3, Assume transaction T1 wrote data at primary 
computer Pi. Then Tz wrote at primary computers Pi and 
Pj, while later T3 wrote at Pj and Pk. All three transac- 
tions commit at the primary. As the logs are being pro- 
pagated, a disaster hits, and only the log records shown in 
Fig. 2 make it to the backup. (The tail of the logs is at the 
bottom.) BPi is the hot standby for Pi, BPj for Pi, and SO 

on. The prepare record for a transaction T, is represented 
by P(T,) and the commit record by C(T,), while the nota- 
tion write T, is used for a write action made by transaction 
T,. Backup computer BP, receives the write records for 
T1, but cannot install them because the commit record, 
C( T t ), was not received. (It does not know whether T1 
committed or not at the primary.) Site BP, does see the 
C(T2) record, but it is still unable to install the T2 writes 
(i.e., unable to commit T2 at the backup). This is because 
the actions of Tz did not arrive at BPi due to the crash. 
(Recall that T2 wrote at Pi and Pje) For example, suppose 

BPi 
write T 1 

BP, 
write T2 
P(T2) 
W2) 
write T3 
W3) 
W3) 

Bh 
write T3 
PU3 1 
W3) 

Figure 2. 

‘It is not necessarily the bandwidth of the single line to the backup 
that is a problem: very high bandwidth lines are available. The bottleneck 
could be the processing load at the multiplexing computer, which needs to 
receive streams of messages from the local computers, merge them (in an 
appropriate order) and repackage them for transmission to the backup. In 
many cases, the telecommunication protocols, both local and wide-area to 
the backup, are very high overhead. 

T2 is a funds transfer transaction, with the write at Pi 
being the withdrawal from Accountl and the write at Pi 
being the deposit in Account2. Then we do not want to 
execute only the deposit without the withdrawal. 

Since T2 cannot be installed, it may also be impossi- 
ble to install T3. It is possible that T3 read data produced 
by T2, so installing T3 may compromise the consistency of 
the database, even though all of the write and commit 
records of T3 arrived at the backup site. Not installing T3 
introduces a divergence from the real world, but seems the 
lesser of two evils. Transactions that cannot commit at the 
backup because they would violate consistency can be 
saved and fixed “manually” (by a human operator or a 
special program). 

In summary, before a transaction can commit at the 
backup, the backup computers must run a commit protocol 
that detects the problems illustrated in our example. This 
protocol is in essence a two-phase commit among the 
backup computers. When a computer involved in a tram 
saction T knows it is feasible to install T’s writes (because 
T’s commit record has been received, and all transactions 
that T could depend on have committed), then it sends a 
message to a coordinator backup computer. Once the 
coordinator gets acknowledgments from all participants in 
T, it can send a commit message telling them to actually 
install the writes. 

The backup commit protocol can be run for each 
transaction individually (as done in [4], [6]), or instead, it 
can be run for a batch of transactions. This is the approach 
we follow here. Our method makes a commit decision for 
a group of transactions at a time, amortizing the cost over 
them. 

The rest if the paper is organized as follows: in sec- 
tion 2 we give our framework and in sections 3-6 we 
present two versions of our algorithm and prove their 
correcmess. In section 7 we discuss the features of the 
algorithms, and in section 8 we give a related application 
to distributed group commit for large memory computers. 

2. Our Framework 

2.1. Architecture 
In our model there are two sites (primary and 

backup) with multiple computers each. (It is possible to 
have multiple backups for a single primary, but for ease of 
explanation we assume just one backup. The extension to 
multiple backups is straightforward.) Each computer has 
one or multiple processors, holds part of the (local) data- 
base and runs a DBMS. All of the computers at each site 
can communicate with each other through shared memory 
or through a local network or bus. This makes our method 
applicable to shared memory architectures as well as to 
more loosely coupled systems. Running between the two 
sites are several communication lines, which let computers 
at the primary site send copies of operations being 
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performed to the backup computers. Control messages are 
also exchanged over these lines. No particular assumption 
is made about the delays in the network, but the bandwidth 
is assumed sufficient for the propagation of the logs. We 
assume an one-to-one correspondence between primary 
and backup computers. (This is again for ease of explana- 
tion. See section 9.) As in our example, we use the nota- 
tion Pi for a processor at the primary and BPj for its peer 
at the backup. 

As failures occur at the primary, the system tries to 
recover and reconfigure (possibly using some local 
mechanisms). However, multiple and/or significant 
failures may slow down the primary site or even stop it 
entirely. At this point, a primary disaster is declared and 
the backup attempts to take over transaction processing. 
The declaration of the disaster will in all likelihood be 
done by a human administrator. This is mainly because it 
is very hard for the backup site to distinguish between a 
catastrophic failure at the primary and a break in the com- 
munication lines. In addition, the input transactions must 
now be routed to the backup site. (In practice, user “ter- 
minals” keep two open connections, one to the primary 
and one to the backup. The backup connection is on 
standby until a disaster occurs.) 

Our failure model for this paper only considers 
disasters of the primary. That is, the computers at the 
backup never fail. During normal processing, they receive 
and process logs from the primary. When a disaster is 
declared, the backup computers finish installing the avail- 
able logs, and then go into primary mode and process tran- 
sactions. Our algorithms can be extended to cope with 
other failure scenarios (e.g., a backup computer fails and 
its duties are taken over by another one, or a single pri- 
mary computer fails and its backup takes over its duties 
only). Due to space limitations, we do not address such 
failure scenarios here. 

Regardless of the backup strategy used, a local two- 
phase commit protocol must be used at the primary to 
ensure atomicity. The coordinator for a transaction T 
notifies the participants that the end of the transaction has 
been reached. Those participants that have executed their 
part of T successfully make a prepare entry in their logs 
(we use the notation P(T) for prepare entries) and send a 
positive acknowledgement (participant - ready message) 
to the coordinator. We assume that the P(T) entry includes 
the identity of the coordinator. Participants that were not 
able to complete their part of T successfully write an abort 
entry in their logs and send a negative acknowledgement 
to the coordinator. If a positive acknowledgement is 
received from all participants, the coordinator makes a 
commit -coordinator entry in its log (we use the notation 
CC(T) for this) and sends a commit message to all partici- 
pants. The participants make a commit -participant entry 
in their logs (symbolically CP( T)) and send an ack- 
nowledgement to the coordinator. Sometimes we use the 
notation C(T) for a commit entry written in a log when we 

do not want to specify if it was written by the coordinatar 
or a participant. 

A concurrency control mechanism ensures that the 
transaction execution schedule at the primary is serializ- 
able. We say a dependency TX-T,, exists between two 
transactions T, and T, if both transacctions access a corn- 
mon data item and at least one of them writes it [ 11, [lo]. 

The logs, including the P(T), C(T) and the write 
entries (giving the new values written by the transactions) 
are propagated to the backup site, where the writes have to 
be installed in the database. The backup will in general 
execute a subset of the actions executed at the primary. 
Read actions do not modify the database, so they need not 
be propagated to the backup. We also assume that write 
actions at the backup install the same value that was 
installed by the corresponding write actions at the primary. 
We use the notation W(T, d) to represent the write at the 
backup of data item d by transaction T. 

2.2. Correctness criteria 
Before we proceed with our solution, let us define 

more precisely what a “correct” backup is. Our first 
requirement ,for the backup is transaction atomicky, the 
second one is consistency. 

Requirement 1: Atomicity. If W(T,, d) appears in the 
backup schedule, then all of the TX’s write actions must 
appear in the backup schedule. 

Requirement 2: Consistency.2 Consider two transactions 
Ti and Tj such that at the primary Ti + Tj. Transaction Tj 
may be installed at the backup only if Tj is also installed 
(local consistency: dependencies are preserved). Further- 
more, if they both write data item d, W(Tj, d) must occur 
before W(Tj, d) at the backup (mutual consistency: the 
direction of dependencies is preserved). 

Finally, we would like the backup to be as close to 
the primary as possible. This is formally stated in the fol- 
lowing requirement, which guards against a backup that 
trivially satisfies all of the previous requirements by throw- 
ing away all transactions: 
Requirement 3: Minimum Divergence. If a transaction is 
not missing at the backup and does not depend on a miss- 
ing transaction, then its changes should be installed at the 
backup. 

3. Overview of the Epoch Algorithm 
The general idea is as follows: periodically, special 

markers are written in the logs by the primary computers. 
These markers serve as delimiters of groups of transac- 
tions (epochs) that can be committed safely by the backup. 

*This consistency criterion is stronger than the one in [4], [6]. Only 
the weaker criterion is actually necessary, but our algorithm guarantees 
this stronger version. 

224 



The primary computers must write these markers in their 
logs in some synchronized way. Each backup computer 
waits until all backup computers have received the 
corresponding portion of the transaction group, i.e., all 
backup computers have seen the next delimiter. Then, each 
computer starts installing from its log the changes for the 
transaction group. This installation phase is performed 
(almost) independently from other processors. 

In the log, each delimiter includes an integer that 
identifies the epoch that is ending. We represent the delim- 
iter as a small circle with the epoch number as a subscript, 
e.g., 0, is the delimiter at the end of epoch n. At the pri- 
mary, each computer i keeps track of the current epoch 
number in a local counter E(i). One computer is desig- 
nated as the master and periodically makes a 0, entry in 
its log (where n is the current epoch number), increments 
its epoch counter from n to n + 1 and broadcasts an 
end -epoch(n) message to all nodes at the primary. All 
recipient nodes also make a 0, entry in their logs, incre- 
ment their epoch counters and send an acknowledgement 
to the master. The master receives acknowledgements 
from all other nodes before it repeats the above process to 
terminate another epoch.3 

It is important to note that simply writing circles 
does not solve the problem, i.e., there is more that has to 
be done. As we have described it, transactions can strad- 
dle the end-epoch markers, as shown in the sample logs of 
Fig. 3 (again, the last record received at the backup is at 
the bottom). If epoch n is committed at the backup, the 
updates of Tt at BPj are installed. However, the updates 
of Tt at BP i appear after the end-epoch marker and will 
not be installed. This violates atomic@. 

There are two ways to avoid the undesirable situa- 
tion described above. The first way is to let transaction 
processing proceed normally and place the delimiters more 
carefully with respect to the log entries for actions of tran- 
sactions. The second way is to write the delimiters asyn- 
chronously but to delay some actions of some transactions, 

BPi BPj 
0, write T, 
write T 1 WI) 
W-1) WT,, 
CPU-,, 0, 

Figure 3 

3This is not necessary in one algorithm, the single mark algorithm, 
to be described. However, we make the assumption to simplify the discus- 
sion. 

so that the log entries for these actions will be placed more 
carefully with respect to the delimiters. These two options 
give rise to two versions of the epoch algorithm, which are 
described in sections 4 and 6 respectively, 

In what follows, when we want to specify the pro- 
cessor where an event took place and a log entry was writ- 
ten, we add an extra argument to the log entry. For exam- 
ple, the notation O,(Pi) denotes the event when Pi writes 
a 0, entry in its log. Similarly, C( T, Pi) denotes the event 
when processor Pi writes a commit entry for transaction T 
in its log. 

We use the symbol “+j” to denote the “occurs 
before” relation, i.e., A 3 B means that event A occurred 
before event B [l 11. When using a relation A 3 B, we do 
not distinguish whether A and B are the actual events or 
the corresponding entries in the log; we assume the log 
preserves the relative order of events (within the same 
computer). Do not confuse the “a” symbol with the 
symbol “+” used for transaction dependencies. Suppose 
a dependency T, + T, exists at processor P, between two 
transactions TX and T,. Transactions T, and T, were coor- 
dinated by processors P, and P,. (Note that Pd, P, and P, 
need not all be different processors.) We assume the fol- 
lowing property relates the two symbols “d” and “+“: 

If T, + T, at Pd, then CC(T,, P,) 3 CP(T,, Pd) 
* P(T,, Pd) * CC&, py) (fiOP=-Q 1) 
We prove the property in the case when strict two- 

phase locking is used for concurrency control. Transaction 
TX does not release its locks until it commits, and transac- 
tion T, cannot commit before TX releases its locks, 
because the two transactions access some common data in 
conflicting modes and therefore ask for incompatible 
locks. Thus, P, writes the commit message for T, in its 
log, then Pd (if different from P,) writes the commit mes- 
sage for T,, the locks are released, T, runs to completion, 
Pd writes the prepare entry for T,, and finally P, writes 
the commit message for T,. Thus, the property holds for 
strict two-phase locking. Other concurrency control 
mechanisms also satisfy this property, but we will not dis- 
cuss them here. 

4. The Single Mark Algorithm 
In this section we describe the first version of the 

epoch algorithm, where we place circles in the log more 
carefully. Circles are still generated as described in the 
previous section, but some additional processing rules are 
followed. When a participant processor i writes a prepare 
entry in its log and sends a participant -ready message to 
the coordinator of a transaction, the local epoch number 
E(i) is included in the message. Similarly, the epoch 
number is included in the commit message sent by the 
coordinator to the participants of ‘a transaction. When a 
message containing an epoch number n arrives at its desti- 
nation j, it is checked against the local epoch counter. If 
E(j) c n, it is inferred that the master has broadcast an 
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end -epoch( n - 1) message which has not arrived yet. 
Thus, the computer acts as if it had received the 
end - epoch(n - 1) message directly: it makes a 0, _ t 
entry in its log, sets E(j) to n, sends an acknowledgement 
to the master and rhen processes the incoming message. If 
the end - epoch(n - 1) message is received later directly 
from the master (when E(j) > n - l), it is ignored. The 
idea of bumping an epoch when a message with a larger 
epoch number is received is similar in principle to bump- 
ing logical clocks [ 111. 

The logs (including the circle entries) are pro- 
pagated to the backup site. As the logs arrive at a backup 
processor, they are saved on .stable storage. The backup 
processor does not process them immediately. Instead, it 
waits until a 0, mark has been seen by all backup comput- 
ers in their logs. This can be achieved in various ways. For 
example, when a computer receives a 0, mark, it broad- 
casts this fact to other computers and waits until it receives 
similar messages from everybody else. Alternatively, 
when a computer sees a 0, in its log, it notifies a master at 
the backup site. The local master collects such 
notifications from all computers and then lets everyone 
know that they can proceed with installing the logs for 
epoch n. 

To install the transactions in epoch n, BPi examines 
the newly arrived log entries from 0 n _ i to 0 n. However, 
there can also be entries pending from previous epochs 
(before 0, _ t ) that need to be examined. These entries 
correspond to transactions that did not commit in previous 
epochs. Thus, at the end of epoch n, BPi examines all of 
the log records appearing before 0 ,, corresponding to tran- 
sactions that have not been installed at BPi. The following 
rules are used to decide which new transactions will com- 
mit as part of epoch n: 

l For a transaction T, if C(T) 3 0, in the log, a decision 
to commit T is made. 

l If a transaction T does not fall in the above category but 
P(T) 3 0, in BPi’S log (P(T) could possibiy be in 
some previous epoch), the decision whether to commit 
T depends on whether Pi was the coordinator for T at 
the primary. (Recall from the model section that the 
coordinator is included with every P(T) log entry.) If 
Pi was the coordinator, T does not commit at the 
backup during this epoch. If some other processor Pj 
was the coordinator at the primary, a message is sent to 
BP, requesting its decision regarding T. (BPj will reach 
a decision using the rules we are describing, i.e., if BPj 
finds CC(T) 3 0, it says T committed.) If BPj says T 
committed, BPi also commits T, otherwise T is left 
pending (updates not installed). 
Transactions for which none of the above rules applies 
do not commit during this epoch. 

After having made the commit decisions, BP; reex- 
amines its log. Again, it starts with the oldest pending 
entry (which may occur before 0, _ i ) and checks the 

entries in the order in which they appear in the log. If an 
entry belongs to a transaction for which a commit decision 
has been reached, the corresponding change is installed in 
the database and the log entry is discarded. If no commit 
decision has been made for this transaction, the entry is 
skipped and will be examined again during the next epoch. 

Note that during the first scan of the log (to deter- 
mine which transactions can commit) the only information 
from previous epochs that is actually necessary is for 
which transactions a P(T) entry without a matching C(T) 
entry has been seen. If this information is maintained 
across epochs and updated accordingly as commit and 
prepare messages are encountered in the log, the first scan 
can ignore pending entries from previous epochs and start 
from 0 ,, _ i . It is still necessary for the second scan (instal- 
ling the updates) to examine all pending entries. 

5. Why the Epoch Algorithm Works 
In this section we show the correctness of the epoch 

algorithm. In particular, we prove that the first two correct- 
ness criteria mentioned in section 3 are satisfied. 

Atomicity. To prove atomicity, we use the following two 
lemmas. 

Lemma 1: If C(T) + 0 ,, in the log of a processor Pi, then 
CC(T) q 0 ,, in the log of the coordinator P c of T. 
Proof. If Pi = P,, the lemma is trivially satisfied. Now 
suppose that Pi + P,, that CP(T) * 0, in the log of Pi 
and that 0 n 3 CC(T) in the log of P c. The commit mes- 
sage from P, to Pi includes the current coordinator epoch 
n + 1. Upon receipt of this message, Pi will write 0, if it 
has not already done so. Thus, 0, * CP(T), a contradic- 
tion. 

Lemma 2: If CC(T) * 0, in the log of the coordinator 
for T, then P(T) 3 0, in the logs of the participants. 
Proof. Suppose 0 n + P(T) at some participant. When the 
coordinator received the acknowledgement (along with the 
epoch) from that participant, it bumped its epoch (if neces- 
sary) and then wrote the CC(T) entry. In either case, 0, 
* CC(T), a contradiction. 

Let us now see why atomicity holds. Suppose the 
changes of a transaction are installed by a backup proces- 
sor BP i after the logs for epoch n are received. If C(T) 3 
0, in the log of BPi and the transaction was coordinated 
by P, at the primary, by lemma 1 CC(T) + 0, in the log 
of BP c. If BP i does not encounter a C(T) entry before 0 “, 
it must have committed because the coordinator told it to 
do so, which implies that in the log of the coordinator 
CC(T) 3 0,. Thus, in any case, in the coordinator’s log 
CC(T) =j 0,. According to lemma 2, in the logs of all 
participants P(T) * 0,. The participants for which 
CP(T) -0, will commit T anyway. The rest of the par- 
ticipants will ask BP, and will be informed that T can 

commit. Thus, if the changes of T are installed by one pro- 
cessor, they are installed by all participating processors. 
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Consistency. We prove the first part of the consistency 
requirement by showing that if T, + T, at the primary and 
T, is installed at the backup during epoch n, T, is also 
installed during the same epoch or an earlier one. Suppose 
the dependency T, + T, is induced by conflicting 
accesses to a data item d at a processor Pd. By property 1 
we get C(T,, Pd) * P(T,, Pd). Since T, committed at 
the backup during epoch n, P(T,, Pd) + O,(Pd), which 
implies that C(T,, Pd) j O,(P,). Thus, TX must com- 
mit during epoch n or earlier (see lemmas 1, 2). For the 
second part of consistency: suppose Ti + Tj and they both 
write data item d. As we have shown in the first part, if T, 
+ T, at the primary, T, commits at the same epoch as Ty 
or at an earlier one. If TX is installed in an earlier epoch, rt 
writes d before TY does, i.e., W(T,, d) + W(T,,, d). If 
they are both installed during the same epoch, the writes 
are executed in the order in which they appear in the log, 
which is the order in which they were executed at the pri- 
mary. Since T, + T, at the primary, the order must be 
W(T,, d) j W(T,, d), which is exactly what we want. 

6. The Double Mark Epoch Algorithm 
In the single mark algorithm, participant -ready 

and commit messages must include the current epoch 
number. The overhead, in terms of extra bits transmitted, 
is probably minimal. However, the commit protocol does 
have to be modified to incorporate the epoch numbers. 
This may be a problem if one wishes to add the epoch 
algorithm to an existing database management system. 
The double mark algorithm that we now present does not 
require any such modifications to the primary system. The 
double mark version works by positioning transactions 
more carefully in the log (with respect to delimiters). 

At the primary there is again a master that periodi- 
cally writes a 0, entry in its log (E(masfer) =n), sets 
E(muster) to n + 1 and sends an end -epoch(n) message 
to all nodes. Recipients make a 0, entry in their logs, stop 
committing new transactions and send an acknowledge- 
ment to the master. Note that commit processing does not 
cease entirely. Transactions can still be processed; only 
new commit decisions by coordinators cannot be made, 
i.e., after writing the 0, entry in its log, a processor cannot 
write a CC(T) entry for a transaction T for which it is the 
coordinator (receiving and processing prepare and commit 
messages for transactions for which it is not the coordina- 
tor is still permissible). Note that except for the master, 
nodes do not need to remember the current epoch in the 
double mark version. 

When the master collects UN acknowledgements, it 
starts a similar second round: it writes a Cl,, entry in its log 
(the counter is not incremented in this round) and sends a 
close -epoch(n) message to all nodes. The recipients 
make a Cl, entry in their logs, send another acknowledge- 
ment to the master and resume normal processing (i.e., 
new commit decisions can now be made). The master can- 
not initiate a new epoch termination phase (i.e., write a 

new On+1 entry in its log) until all second round ack- 
nowledgements have been received. 

The logs (including circle and square entries) are 
propagated to the backup site, where they are stored on 
stable storage. A backup processor does not process the 
log entries of epoch n until all backup processors have 
seen Cl, in the logs they receive. Then each computer BPi 
examines all of the log entries before 0, (including entries 
pending from previous epochs4) to decide which transac- 
tions can commit after this epoch, according to the follow- 
ing rules: 

l If C(T) 3 0, in the log, a decision to commit T is 
made. 

l If a transaction T does not fall in the above category but 
P(T) * 0, in BPi’S log (P(T) could possibly be in 
some previous epoch), the decision whether to commit 
T depends on whether Pi was the coordinator for T at 
the primary. (Recall from the model section that the 
coordinator is included with every P(T) log entry.) If 
Pi was the coordinator, T does not commit at the 
backup during this epoch. If some other processor Pi 
was the coordinator at the primary, a message is sent to 
BPj requesting its decision regarding T. (BPj will reach 
a decision using the rules we are describing, i.e., if BPj 
finds CC(T) * 0, it says T committed.) If BP, says T 
committed, BPi also commits T; otherwise T is left 
pending (updates not installed). 

l If none of the above rules applies to a transaction T, the 
transaction does not commit during this epoch. 

After the commit decisions have been made, the log 
entries up to 0, are examined and the actions of the com- 
mitted transactions are installed as in the single mark ver- 
sion of the algorithm. 

We now show the correctness of the double mark 
version. In the correctness proofs we use the following 
property, which stems directly from the fact that the mas- 
ter receives all acknowledgements for end -epoch(n) 
before sending close - epoch(n) messages: 

O,(Pi) * q ,(Pj) V Li, n (property 2) 
Lemma I : If C(T) * 0, in the log of a processor Pi, then 
CC(T) + 0, in the log of the coordinator P c of T. 
Proof. If Pi 4 P,, the lemma is trivially satisfied. Now 
suppose that Pi # P c. Then, 

CC(T, P,) 3 CP(T, Pi) (by two-phase commit) 
CP(T, Pi) * O,(Pi) (by hypothesis) 
On(Pi) q q n(Pc) (by property 2) 

By transitivity, we get CC(T, P,) 3 q ,(P,), and since 
no commit decisions are allowed for coordinators between 
the circle and square enties, we conclude that CC(T, P, ) 
* O,(P,). 

?he comment made in the single mark version about avoiding ex- 
amination of entries from previous epochs when making commit deci- 
sions applies to the double mark version as well. 
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Lemma 2: If CC(T) * 0, in the log of the coordinator 
for T, then P(T) + 0, in the logs of the participants. 
Proof. Consider a participant processor Pi. Then, 

P(T, Pi) 3 CC(T, P,) (by two-phase commit) 
CC(T, P,) * O,(P,) (by hypothesis) 
O,(P,) 3 q n(Pi) (by propew 2) 

By transitivity, we get P(T, Pi) 3 q l,(Pi). 

Atomicity. Suppose the changes of a transaction are 
installed by a backup processor BPi after the logs for 
epoch n are received. If C(T) * 0, in the log of BP i and 
the transaction was coordinated by P, at the primary, by 
lemma 1 CC(T) 3 0, in the log of processor BP C. If BP, 
does not encounter a C(T) entry before O,, it must have 
committed because the coordinator told it to do so, which 
implies that in the log of the coordinator CC(T) + 0,. 
Thus, in any case, in the coordinator’s log CC(T) 3 0,. 
According to lemma 2, in the logs of all participants P(T) 
+ Cl,. The participants for which CP( T) j 0, will com- 
mit T anyway. The rest of the participants will ask BP, 
and will be informed that T can commit. Thus, if the 
changes of T are installed by one processor, they are 
installed by all participating processors. 

Consistency. We prove the first part of the consistency 
requirement by showing that if TX + T, at the primary and 
T, is installed at the backup during epoch n, TX is also 
installed during the same epoch or an earlier one. Suppose 
that at the primary the coordinators for TX and TY were P, 
and P, respectively. Since T, + T,, by property 1 we get: 

CC(Tx,P,) * CW,J’,) 
Since T, committed at the backup, we infer from our pro- 
cessing rules that 

CW,,P,)*O,tP,) 
O,(P,) - &(p,) (by property 2) 

From the above by transitivity we get CC(T,, P,) =j 
Cl, (P,) and since no commit decisions are made by coor- 
dinators between circle and square entries, we get 

CUT,, P,> *Oo,V’,) 
This implies that according to our processing rules transac- 
tion T, must commit during epoch n or earlier. The proof 
for the second part of consistency is identical to the proof 
for the single mark version. 

7. Evaluation of the Epoch Algorithms 
In this section we examine the features of the epoch 

algorithms and discuss their performance. The algorithms 
are scalable: there is no processing component that must 
see all transactions. Each computer only processes transac- 
tions that access the data it holds. This makes the algo- 
rithms appropriate for very large databases. 

The protocols have a low overhead and their cost is 
amortized over an entire epoch. There are three factors 
that contribute to the overhead: the overhead for the termi- 
nation of an epoch at the primary, the overhead for ensur- 
ing reception of an epoch at all backup sites and the over- 
head for resolving the fate of transactions for which a 

P(T) entry without a matching C(T) has been seen. For 
the first two factors, the number of messages required is 
proportional to the number of computers at each site. For 
the third type of overhead, the average number of transac- 
tions for which a computer cannot make a decision by 
itself can be estimated as follows (for the single mark ver- 
sion): the transactions for which a P(T) was written before 
0, and a CP( T) after 0, are those transactions whose 
P(T) entry falls within a time window t, before the 0, 
mark, where t, is the average delay necessary for a 
participant-ready message to reach the coordinator and 
the commit answer to come back. Thus, the expected 
number of transactions for which information must be 
obtained from another computer is wgxt,, where wg is the 
rate at which a computer processes global transactions for 
which it is not the coordinator. If the entire system 
processes global transactions at a rate w,, there are n com- 
puters at each site and a global transaction accesses data at 
m computers on the average, then wg = w, x(m - 1 )ln. 
Note that the number of messages that must be sent could 
be less than the number of transactions in doubt, since 
questions to the same computer can be batched into a sin- 
gle message. Finally, note that all these overheads are 
paid once per epoch. If an epoch contains a large number 
of transactions, then the overhead per transaction is 
minimal. 

Let us now compare the two .versions of the algo- 
rithm. The single mark version requires one less round of 
messages for writing delimiters at the end of each epoch at 
the primary. Also, the single mark version does not 
suspend commits at any point. However, the transaction 
processing mechanism has to be modified to include the 
local epoch number in certain messages and to update the 
epoch accordingly when such a message is received. On 
the other hand, the double mark algorithm may require 
fewer modifications to an existing system: the double mark 
epoch termination protocol can be viewed as the commit 
phase of a special transaction with null body. The 
end-epoch(n) message corresponds to the message tel- 
ling participants to prepare and the close - epoch(n) mes- 
sage corresponds to the message telling participants to 
commit. The only system interaction in the double mark 
protocol is the suspension of coordinator commits. On 
some systems this may be easy to achieve by simply hold- 
ing the semaphore for the commit code. (Typically, only a 
single transaction can commit at a time, and there is a 
semaphore to control this.) Depending on the system, by 
holding a commit semaphore we may disable all commits, 
not just coordinator commits. This may be acceptable if 
the time between the 0, and the 0, is short. If this is not 
acceptable, then a new semaphore can be added. 

As we saw in our proofs, the algorithms satisfy 
atomic@ and consistency, but they do not achieve 
minimum divergence. If a disaster occurs, the last epoch 
may not have been fully received by the backup comput- 
ers. The epoch algorithms will not install any of the 
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transactions in the incomplete epochs, even though some 
of them could be installed. This problem can be addressed 
by running epochs more frequently (to limit the number of 
transactions per epoch) or by having another mechanism 
for dealing with incomplete epochs, e.g., individual tran- 
saction commit or a mechanism like the one in [4], [6]. 

In [41, [63 we have proposed a dependency recon- 
struction algorithm for maintaining a remote backup. It is 
interesting to compare these two algorithms. The epoch 
algorithm induces less overhead, but it does not achieve 
minimum divergence. The dependency reconstruction 
algorithm achieves minimum divergence, which implies 
that the takeover time (i.e., the time between the point 
when a disaster occurs at the primary and the point when 
the backup starts processing new transactions) is shorter. 
We have not presented the. dependency reconstruction 
algorithm here, but we believe that in that algorithm it may 
be easier to have both the primary and the backup run the 
same software than it is with the epoch algorithm. Having 
both sites run the same software is desirable, because it 
may need less effort to maintain it and takeover time is 
reduced further, since no software reloading is necessary. 

Finally, we would like to note that algorithms simi- 
lar to the epoch algorithm have appeared in the literature 
for obtaining snapshots [2] and checkpointing databases 
[14]. The main differences between those approaches and 
the epoch algorithm are: 

l Our algorithm is log based. 
l Minimal modifications to an existing system are neces- 

sary. 
l Minimal overhead is imposed at the primary. 
l Our snapshot is not consistent. Enough information is 

included to allow a consistent snapshot to be extracted 
from the propagated logs, but some work is still neces- 
sary at the backup to clean up P(T) entries with no 
matching C(r). 

8. Another Application of the Epoch Algorithm: Distri- 
buted Group Commit 

Group commit (for a single node) [3], [7] is a tech- 
nique that can be used to achieve efficient commit process- 
ing of transactions in computer systems with a large main 
memory, which can hold the entire database (or a 
significant fraction of it). When the end of a transaction is 
reached, its log entries are written into a log buffer that 
holds the tail of the master log. The locks held by the tran- 
saction are released, but the log buffer is not flushed 
immediately onto non-volatile storage (to avoid synchro- 
nous I/O). When the log buffer becomes full, it is flushed 
and the transactions that are contained in this part of the 
log commit as a group. The updates made by these transac- 
tions are installed in the database after the group commit. 
Care must be taken to ensure that actions of transactions 
that are members of the same group and depend on each 
other are installed in a way that preserves these 

dependencies. 

Under the above scheme transactions are permitted 
to read uncommitted data. However, this presents no 
problem, since a transaction T can only depend on transac- 
tions in the same group or previous groups, which under 
this processing scheme will be installed before or when T 
does. 

It would be desirable to apply the same technique to 
distributed systems. However, in a multicomputer 
environment it is not possible for each individual processor 
to flush its own log independently of other processors, 
since that could violate transaction atomic@ and therefore 
compromise database consistency. A simple example illus- 
trates why: suppose transaction T completes at processors 
P t and Pz, processor P l flushes its log (and commits Tin 
the database) while Pz does not. If a failure occurs and the 
contents of P,‘s log buffer are lost (they are in volatile 
memory), transaction atomic@ is violated and the data- 
base enters an incorrect state. 

To achieve distributed group commit without 
endangering the consistency of the database we can use 
the epoch algorithm. One can think of the main memory as 
being the primary site and of the disks as playing the role 
of the backup in the discussion of section 4. Transactions 
run in a main memory database and their logs are written 
into log buffers, but their changes are not .propagated to the 
disk copy. Distributed transactions still use a two-phase 
commit protocol to achieve atomicity. P(T) and C(T) 
enties are made for all transactions that finish processing 
successfully and their locks are released, but the logs are 
not flushed. 

Periodically, delimiters (e.g., circles) are written by 
all processors in their logs (epoch termination). When the 
delimiter is written, the log buffer is written on stable 
storage, but the group commit does not take place until it is 
confirmed that all processors have saved their log buffers . 
on stable storage. Then, each processor starts to actually 
install the changes of the transactions in the disk copy of 
the database, in the same way way the backup processors 
did in section 4. 

The advantages of group commit are manifold. 
Local transactions that execute only at one node avoid syn- 
chronous I/O and release the resources they hold as soon 
as they finish processing. This, in turn, causes transactions 
to hold resources for a shorter time, thus decreasing con- 
tention and increasing throughput. Furthermore, the cost of 
log I/O is amortized among many transactions. Distri- 
buted transactions still have to pay the cost of the agree- 
ment protocol to ensure atomicity. This cost may actually 
be a little smaller, since the individual prepare and commit 
decisions need not be written on stable storage, and thus 
responses to prepare and commit messages can be sent 
immediately. Distributed transactions can also benefit from 
the amortization of the log I/O cost among several transac- 
tions. 
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9. Conclusions 

We have presented an efficient, scalable algorithm 
for maintaining a remote backup copy of a database. In 
this section we briefly discuss some issues that we left 
open in previous sections. First, the size of the epoch 
counters could be a problem. As time progresses, the 
epoch numbers become bigger and bigger. How big should 
the epoch counters be? If only one epoch can be pending 
at any time, a computer only needs to distinguish between 
its epoch, the epoch of a computer that is possibly one 
epoch ahead and the epoch of a computer that is possibly 
one epoch behind. Thus, a counter with 3 states that cycles 
through these states should be sufficient. In general, if the 
epochs of two nodes can differ by at most k, the epoch 
counter should be able to cycle through 2xk + 1 states. 

In the previous sections we made the implicit 
assumption that the primary and the backup database start 
from the same initial state. When the system is initialized 
or after a site has recovered from a disaster, one of the 
sites will have a valid copy and the other will be null. It is 
necessary to have an algorithm which will bring the null 
copy up-to-date, without impairing the performance at the 
other site. For this purpose, a method like that outlined in 
[6] and detailed in [4] can be used. 

Finally, let us return to the one-to-one correspon- 
dence between primary and backup computers mentioned 
in section 2.1. It is not necessary to have the same number 
of computers at the two sites. If the primary and the 
backup have a different number of computers, one can par- 
tition the data into logical chunks. As long as the logical 
partitions are identical at the two sites, the epoch algo- 
rithms can be applied. One simply needs to keep a log for 
each chunk and to use the notion of a chunk instead of a 
computer in the discussion above. 
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