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Abstract 

The Super Database Computer (SDC) is a high- 
performance relational database server for a join- 
intensive environment under development at Univer- 
sity of Tokyo. SDC is designed to execute a join in 
a highly parallel way. Compared to other join algo- 
rithms, a hash-based algorithm is quite efficient and 
easily parallelieed, and has been employed by many 
database machines. However, in the presence of data 
skew, it’s hard to distribute load equally among pro- 
cessing modules (PMs) by statically allocating buckets 
to PMs, as in the conventional parallelieing strategy. 
Thus, performance is severly degraded. 

In this paper, we propose a new parallel hash join 
method, the bucket spreading strategy, which is ro- 
bust for data skew. During partitioning relations, 
each bucket is again divided into fragments of the 
same sise and these fragments are temporarily placed 
on PMs one by one. Then each bucket is dynami- 
cally allocated to a PM which actually carries out the 
join of the bucket, and all fragments of the bucket 
are collected in the corresponding PM. In this way, 
the bucket spreading strategy evenly distributes the 
load among the PMs and parallelism is always fully 
exploited. The architecture of SDC is designed to 
support the bucket spreading strategy; a mechanism 
which distributes the buckets flatly among the PMs 
is embedded in the hardware of the interconnection 
network. Simulation results confirm that the bucket 
spreading strategy is robust for data skew and attains 
very good scalability. 
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1 Introduction 

Once relational database systems became widely 
used, considerable research has been focused on paral- 
lel relational database machines [Kit83,DeW86,Ter88, 
Tan88,Bra89]. The Super Database Computer (SDC) 
is a high-performance relational database server for 
a join-intensive environment which is under develop- 
ment based on our previous researches: the database 
machine GRACE[Kit83,Kit84], the Functional Disk 
System[Kit87,Kit89], and the high-speed hardware 
sorter[Kit87b,Kit89b]. SDC is designed to execute a 
join efficiently by introducing highly parallel process- 
ing. Since a join is one of the most expensive and 
complicated operations among the relational opera- 
tions, many algorithms have been proposed. Hash- 
based algorithms, such as GRACE [Kit83], Simple or 
Hybrid [DeW84], partition a relation into a number 
of clusters called buckets. Because a join operation 
is divided into small joins of buckets, hash-based al- 
gorithms perform much better than other algorithms 
such as nest-loop or sort-merge [Sha86]. Following the 
trend of applying parallelism to database processing, 
many have proposed efficient parallel join methods 
[Kit83,Bra84,Val84,DeW85,Omi89]. Since each small 
join of buckets can be carried out independently, hash- 
based join algorithms are suitable for parallel process- 
ing [Kit83]. In [Kit83], the author classified the possi- 
ble database machine architecture for hash based rela- 
tional processing. So far, a straightforward strategy is 
used to make a hash join parallel in such as GAMMA 
[Ger86] and T&data DBC/1012 [Ter88]. The pro- 
cessing module (PM) for each bucket is determined 
statically based on its bucket ID before partitioning 
relations. Because relations are horizontally parti- 
tioned across the PMs, relations are divided in paral- 
lel and each bucket is gathered into the corresponding 
PM through the interconnection network. Each PM 
then conducts the joins of all allocated buckets. This 
method is referred to as a bucket converging strcrtegy 
[Kit83]. 

In parallel systems, data skew deteriorates the per- 
formance severely without a load balancing mech- 
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anism. Database processing, including join, is no 
exception, and conventional parallelized hash-based 
methods face performance degradation [Kit83,Lak88, 
Lak89J. When using the bucket converging strategy, 
performance is degraded as parallelism is decreased 
due to a heavy load unbalance which results from a 
large portion of the processing load being concentrated 
in only a few PMs. This is because the data is skewed 
by static bucket allocation before partitioning. 

In this paper, we propose an alternative parallel 
hash join method to solve the problem caused by data 
skew. If one allocates buckets to PMs dynamically 
based on their bucket size, the PM bucket volume can 
be maintained equally for all PMs. Thus, the load 
of a join is evenly distributed across PMs, and conse- 
quently a join operation can be processed efficiently 
despite an unbalanced data distribution. To allocate 
buckets to PMs dynamically, each bucket is divided 
into nearly equal fragments, which are temporarily 
placed on different PMs. In order to efficiently col- 
lect the fragments during a subsequent bucket join, 
the PMs gather buckets simultaneously by using a IO- 
tational scheduling. Because a bucket is spread out 
among the PMs we call this method a bucket spmad- 
ing strategy [Kit83]. 

The architecture of SDC is designed to support ef- 
ficient execution of a bucket spreading parallel hash 
join. Compared to the bucket converging strategy, 
the bucket spreading strategy requires additional con- 
trol to distribute buckets flatly among the.PMs. To 
decrease the effect of overhead which could slow down 
performance considerably, the interconnection net- 
work of SDC embeds the hardware function which dis- 
tributes the buckets evenly across the PMs. Therefore 
the PMs are not subjected to unnecessary additional 
processing. This highly-functional network is also ad- 
dressed in this paper. 

In the next section, we briefly explain SDC. Section 
3 describes the conventional bucket converging strat- 
egy and restates its problems caused by data skew. 
In Section 4, we show that dynamic bucket allocation 
solves the problems. Then, in Section 5, we propose 
the bucket spreading strategy which actualizes the dy- 
namic bucket allocation. Section 6 explains the archi- 
tecture support of the bucket spreading strategy in 
SDC. Performance evaluation of the bucket spreading 
strategy is presented in Section 7. Finally, we present 
our concluding remarks in Section 8. 

2 Architecture of SDC 

This section is a brief explanation of the architec- 
ture of the Super Database Computer (SDC). SDC 

is a parallel relational database server under devel- 
opment at University of Tokyo based on our ear- 
lier researches: the database machine GRACE[Kit83, 
Kit84], the Functional Disk System[Kit87,Kit89], and 
the high-speed hardware sorter[Kit87b,Kit89b]. The 
basic architecture of SDC is shared-nothing [Sto86], 
and relations are horizontally patiitioned [Rie78]. 
SDC’s features are summarized as follows (for details, 
please refer to [HirSO]): 

I Highly-Functional Omega Network 
I 

i Dz Memory CPUs \ i DiZi Memory CPUs t 
PM1 PMl 

Figure 1: Architecture of Super Database Computer 

Hybrid Parallel Architecture 
Figure 1 illustrates the architecture of SDC. SDC 
consists of several processing m 

K 
dules (PMs) con- 

nected to each other through t e message-passing 
interconnection network. In order to realize on 
the fly processing of the data stream from disk, 
each PM itself is designed as a tightly coupled 
multiprocessor system which has strong compu- 
tational power. Thus the architecture is hy- 
brid of tightly coupled multiprocessor (shared ev- 
erything) and the message-passing architecture 
(shared nothing). 

Integration of the Processing and Storage Sys- 
tems 

Each PM consists of a processing system (mul- 
tiprocessor) and a storage system (hard disks), 
which is of the same configuration as the Func- 
tional Disk System (FDS) [Kit87,Kit89]. FDS 
was proposed to provide an optimal I/O envi- 
ronment for data intensive applications, to solve 
the impedance mismatch between the operating 
system and the DBMS, and to provide hardware 
support for relational processing. 

Highly-functional Interconnection Network 
SDC employs a highly-functional omega network 
for the interconnection network. Flat bucket dis- 
tribution, required by the bucket spreading strat- 
egy, is actualized by the network hardware with- 
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out creating an additional load for the PMs. The 
network is detailed in Section 6. 

High-Speed Hardware Sorter 
Each PM has a hardware sorter composed of LSI 
sort chips [Kit87b,Kit89b11. Because a sort is 
performed in linear time by the sorter, high-speed 
database processing can be realized. The memory 
for the sorter is b&nodal; the sort memory can 
be accessed as ordinary RAM by the processors. 
Thus the total memory space of PM is shadowed 
on the sort memory. 

Separation of Data and Control Passes 
When the number of PMs is large, much more 
control information, such as synchronization both 
between PMs and between processors in a PM, 
becomes necessary. So as not to obscure the data 
stream, control passes are completely separate 
from data passes. SDC has two interconnection 
networks between the PMs, and there are two in- 
ternal busses in each PM. 

All parameters, such as the bandwidth of the inter- 
nal bus in PM, the aggregate performance of proces- 
sors and the performance of the sorter, are designed 
to match the data transfer rate from the disk. That 
is, all relational operations can be performed keeping 
up the data stream from the disk. Furthermore, data 
processing and data transfer is overlapped as much as 
possible. 

3 Problems with Conventional 
Parallel Hash Join Methods 

In this section, we explain conventional parallel 
hash join methods and clarify ‘their problems of data 
skew. The two source relations of a join will be re- 
ferred to as R and S, where S is larger than R. Each 
relation is assumed to be larger than the aggregate 
memory capacity, which is the sum of the memory 
capacity across all PMs. 

Because tuples of a relation in one bucket are never 
joined with tuples of the other relation in another 
bucket, corresponding buckets can be handled inde- 
pendently. Thus, the hash join method is suitable 
for parallel processing [Kit83,DeW85]. In the archi- 
tecture considered here, relations are partitioned into 
buckets in parallel because relations are horizontally 
partitioned. Joins of buckets are also executed in par- 
allel. In the conventional parallel hash join method, 
each bucket is statically allocated to a PM based on 
its bucket ID at the beginning of the join operation 
[Ger86,Sch89]. During partitioning, every tuple in a 
bucket is collected to the corresponding PM through 
the interconnection network, and each bucket is con- 
verged in a single PM. Figure 2 illustrates the case 
when the number of PMs is 4. 

In the following discussion, the GRACE hash algo- 
rithm [Kit831 is assumed to be a hash join algorithm to 
simplify the explanation, although the following study 
can be applied to other algorithms including the popu- 
kr Hybrid hash algorithm [DeW84] which is a combi- 
nation of the GRACE hash and the Simple hash algo- 
rithms. The GRACE hash algorithm consists of two 

A GRACE hash join is executed straightforwardly 
in parallel az described below. In the split phase, R is 
first partitioned in parallel. Each PM independently 
divides a portion of the relation stored therein. If a 
tuple belongs to buckets allocated to the PM, it is 
written back to the PM’s local disk. Otherwise, it 
is transferred to the PM corresponding to its bucket 
ID through the interconnection network, and stored 
in that disk. When all of the PMs have finished 
partitioning, the whole relation has been partitioned. 
The partitioning of S is carried out in the same way. 
Bucket size is tuned after partitioning the relations. 
Each PM can tune the size of the allocated buckets in- 
dependently because they are already converged there. 

‘Currently this hardware sorter is made into com- In the join phase, each PM performs small joins of 
mercial product of Mitsubishi Electric Corp. [Mit89], the allocated buckets. Because the PM already stores 
attached to office processor. the allocated buckets in its local disk, there is no need 

distinct stages: a split phase and a join phase. During 
the split phase, relations R and S are partitioned into 
clusters called buckets. Joins of corresponding buck- 
ets, i.e., buckets from the two relations which share 
the same bucket ID, are performed in the join phase. 

In hash-based join algorithms, the size of each 
bucket should be smaller than the memory. However, 
data skew occasionally generates bucket overflow, in 
which buckets are larger than the memory. Perfor- 
mance is diminished, because bucket overflow requires 
extra I/O to repartition buckets to be smaller than the 
memory. The performance diminish can be avoided by 
bucket size tuning; the number of buckets in the split 
phase is set to a large number so as not to generate 
bucket overflow, and then several small buckets are 
combined into one bucket to fit the memory capacity 
[Kit83,Kit89c]. 

3.1 Bucket Converging Strategy 
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PM1 PbQ PM3 FM4 

Figure 2: Parallel Hash Join Using Bucket Converging 
Strategy -- 

avoided by bucket size tuning due to the fact that the 
static bucket allocation creates the skew. The skew 
reduces the degree of parallelism, resulting in severe 
degradation of the total processing performance. 

Bucket Size 

to communicate with other PMs. Thus each PM con- 
ducts its join independent of other PMs in the same 
way as a single PM system. Until all allocated buckets 
are processed a PM repeats the following procedure; 
the PM reads a pair of the corresponding buckets from 
its local disk and joins them. The whole join operation 
is finished when all the PMs have finished their joins. 
Because each bucket is stored in a single PM after 
the partition, this method is named bucket converging 
hategy [Kit83]. 

3.2 Problems of Data Skew 

In parallel systems, data skew degrades the perfor- 
mance severely unless there is a load balancing mech- 
anism. A join operation also faces the performance 
degradation by data skew [Kit83,Lak88,Lak89]. Since 
the source relations usually result from earlier opera- 
tions such as selection or projection, data distribution 
is hard to predict. So buckets tend to vary in size 
(bucket size fluctuation). 

Although hash-based join algorithms are easily 
made parallel using the bucket converging strategy, 
performance is greatly slowed down by data skew. 
There are two possible major reasons for the poor per- 
formance. The first is bucket overflow, and the other 
is a skew of total PM bucket volume. A skew of total 
PM bucket volume, which leads to load unbalancing 
as illustrated in Figure 3, means an imbalance in the 
total volume of data among the PMs. Bucket overflow 
is almost avoided by employing bucket size tuning in 
the same way as a single processor system ‘. How- 
ever, a skew of the total PM bucket volume cannot be 

zAlthough bucket size tuning is quite effective, it is 

PM1 PM2 PM3 Pk.44 

Figure 3: Load Unbalancing Caused by Data Skew 

Data skew further degrades performance in the fol- 
lowing way. During the split phase, a PM whose to- 
tal bucket volume is very large has to gather a lot of 
tuples from other PMs. That is, because the source 
relations are partitioned to buckets in parallel by the 
PMs, every PM has to gather tuples which come from 
the other PMs and belong to the bucket allocated to 
that PM. When a bucket is very large, tuples from 
the bucket are transferred concentratedly to the corre- 
sponding PM, resulting in network hot spot. Hot spots 
further degrade performance. In addition, data skew 
causes problem in disk space. When joining large rela- 
tions using hash-based algorithms, buckets are written 
once to disk. When bucket sizes are highly unbal- 
anced, some PMs, which are allocated huge buckets, 
cannot hold the buckets in their local disks even if the 
total disk space over the PMs is enough to hold all 
of the buckets. Such a situation creates extra data 
transfer between PMs which decreases performance. 

4 Dynamic Bucket Allocation 

As described in the above section, static bucket allo- 
cation causes an imbalances on the PM bucket volume 
among the PMs and degrades performance. However, 
if a bucket is dynamically allocated to a PM based on 
its size, the PM bucket volume can be controlled so 
that it is equal for all PMs. As a result, performance 
is not decreased despite data skew. 

impossible to guarantee the avoidance of bucket over- 
flow. So we again consider the problem of bucket over- 
flow in Section 5.5. 
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If bucket size is tuned before allocating buckets to 
PMs, bucket sizes become nearly uniform. In this case, 
fairly good performance is expected simply by allocat- 
ing buckets in rotation; the ith bucket (1 5 i < B’) 
is allocated to the (((i - 1) mod N) + I)th PM and is 
processed in the [i/N] th cycle. Here B’ is the num- 
ber of buckets after bucket size tuning. It may seem 
that buckets are being allocated according to bucket 
ID since the scheduling method is cyclic just as in 
the bucket converging strategy. However, because the 
buckets are already tuned on size, the buckets are ac- 
tually allocated according to their size. That is, by 
introducing bucket size tuning prior to allocation, the 
cyclic method balances the PM bucket volume, i.e. 
the processing load, among PMs. Figure 4 illustrates 
how buckets are dynamically allocated. 

Bucket Sue 

+ Bucket Sue Tuning , 

Dynamic 
Bucket 
Allocation 

5.1 Spreading Buckets among PMs 

To dynamically allocate buckets we must consider 
the place storing each bucket during the partition of 
the relations. That is, in the bucket converging strat- 
egy, because a bucket was allocated to a PM before 
partitioning, which PM stores which tuple was deter- 
mined simply from the tuple’s bucket ID. However, 
when buckets are to be dynamically allocated, the 
destination of a tuple cannot be determined during 
the partition because which PM handles the tuple has 
not been determined yet. Where should the buckets 
be placed to store temporarily ? 

We solve this problem by distributing each bucket 
among the PMs. A bucket is again partitioned into as 
many fragments as there are PMs and each fragment 
is placed into a PM. Figure 5 illustrates the spreading 
placement strategy. The portion of a bucket stored in 
each PM is referred to as a subbucket. We name this 
new method a bucket spreading strategy betause each 
bucket is apread out among PMs. 

i-l . . . . . . . I--l . . . . . . . 

PM1 PM PM3 PM4 

Figure 4: Load Balancing By Dynamic Bucket Allo- 
cation 

Even after bucket size tuning, however, the buck- 
ets vary slightly in size. To reduce the effect of this 
nonuniformity, we sort the buckets according to size. 
Then the ith bucket (1 5 a 5 B’) is processed in the 
[i/Nlth cycle by: 

The (((i - 1) mod N) + 1)th PM 
: when [i/NJ = odd 

The (JV - ((i - 1) mod N))th PM 
: when [i/N] = even 

5 Bucket Spreading Strategy 

In this section, we explain how dynamic bucket al- 
location can be realized using our proposed bucket 
spreading shtegy. 

FM1 PM? PM3 PM4 

Figure 5: Spreading Placement of Bucket 

5.2 Rotational Bucket Collection 

In the bucket spreading strategy, the whole bucket 
is not placed in the PM which processes the bucket 
but spread out over the PMs. Thus, during the join 
phase, the PM has to gather the fragments of the 
bucket which are stored in other PMs. At that time, 
if all PMs gather buckets arbitrarily, an access con- 
flict can occur and reduce performance. To avoid this 
conflict, some scheduling is necessary for bucket col- 
lection. Here we show how a simple rotational scheme 
can be used to avoid access conflict. 

Collecting one bucket consists of N steps of N sub- 
bucket reads, where Nis the number of PMs. N buck- 
ets are collected simultaneously during one cycle. The 
ith PM (1 5 i <_ N) reads the subbucket of the ith 
bucket in the (((i + j - 2) mod N) + I)th PM at the 
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jth step (1 5 j < N). This kind of simultaneous con- 
nections between PMs is referred to as a circular shifl 
and a series of small reads, a bucket collection cycle. It 
should be noted that, because ((i - 1) mod N) + 1 = i 
when j = 1, a PM reads a subbucket from its local 
disk at the first step. Figure 6 illustrates one bucket 
collection cycle. At each step, subbuckets surrounded 
by the bold line are read out from the disk. 

interconnection Network I 

(c) 3rd Step 

(d) 4th Step 

Figure 6: Bucket Collection Cycle 

5.3 Flat Bucket Distribution 

The time required for one bucket collection cycle 
is largely affected by a bucket distribution 3, since 
the time for a given step is determined by the size 
of the largest subbucket collected in that step. Al- 
though bucket size is nearly uniform after bucket size 
tuning, one bucket collection cycle takes much time 
if subbucket size of the buckets varies (Figure 7 (a)). 
Thus subbucket size should be uniform to minimize 
the time for one bucket collection cycle. That is, the 
buckets need to be distributed flatly among the PMs 
for efficient processing (Figure 7 (b)). We call this 
kind of bucket distribution a pat bucket distribution. 

Since relations are horizontally partitioned, each 
PM divides a relation’s portion stored in its local disk 

3The distribution of subbuckets of one bucket 
among PMs is referred to as a bucket distribution. 
Note that it is different from the distribution of buck- 
ets of one relation. 

PM4 PM4 

1st step 3rd step 
2nd step 4th step 

1st step 3rd step 
2nd step 4th step 

(a) Nonflat Bucket Distrbution (b) Flat Bucket Distribution 

PM1 m 

Figure 7: Effect of Bucket Distribution on a Collection 
Cycle 

and writes buckets back to the disk. This implemen- 
tation is very simple and does not use the interconnec- 
tion network during the split phase. However, because 
data distribution normally differs in PMs as illustrated 
in Figure 8 (a), a flat bucket distribution cannot be 
realized using this simple implementation. To attain a 
flat bucket distribution (Figure 8 (b)), it is necessary 
to exchange tuples between PMs. 

F’“9 ...._.. 3 ....... n ....... . I ,,.,,,, 

*.>:: . . . 
$g$ 

PM1 PM? PM3 PM4 
(a) Nonflat Bucket Distribution (Without Flattening) 

1 . . . . . . 1 . . . . . . . 
PM1 PM2 PM3 PM4 

(b) Flat Bucket Distribution (With Flattening) 

Figure 8: Flat Bucket Distribution 

For a flat bucket distribution, basically each tuple 
is sent to the PM containing the smallest subbucket 
among all the subbuckets of its bucket. Thus, to deter- 
mine the destination of a tuple, each PM has to keep 
track of data distribution on every PM. This requires 
a high volume of data transfer between PMs, resulting 
in considerable performance degradation. SDC avoids 
the problem by using a highly-functional omega net- 
work to interconnect the PMs, as explained in Section 
6, so that no additional processing is required of the 
PMs. 

5.4 Bucket Size Tuning 

As described in Section 4, buckets can be allocated 
dynamically by tuning bucket size before allocation. 



Compared to the bucket converging strategy where 
each PM independently tunes the size of the buckets 
assigned to it, the PMs must cooperate to tune bucket 
sizes because each bucket is spread out. Such bucket 
size tuning becomes a major task when the number of 
PMs is large. However, bucket size tuning can be car- 
ried out more simply. Since buckets are distributed 
flatly among the PMs, the distribution of subbuck- 
ets in each PM is representative of the distribution of 
buckets among all PMs. That means one master PM 
can decide how to tune the size of buckets based on its 
local distribution of subbuckets. Slave PMs can follow 
the bucket size tuning determined by the master PM. 

5.5 Other Advantages 

Here, we mention two other advantages of the 
bucket spreading strategy: repartitioning of over- 
flowed buckets and disk space conservation. 

Even introducing bucket size tuning, some buckets 
may exceed the available memory space. An over- 
flowed bucket has to be repartitioned into small frag- 
ments so that each fits memory. Thus a bucket which 
overflows requires extra I/O equal to twice the size 
of the bucket. In the bucket converging strategy, 
the extra I/O is concentrated in the PM holding it. 
Contrastly, since the overflowed bucket is spread out 
among PMs, the additional I/O is also distributed on 
them. Thus the efficiency of the bucket spreading 
strategy is not so severely affected by bucket overflow 
as the bucket converging strategy. 

Next, we consider the disk space problem. As men- 
tioned in Section 3.2, if data is skewed, some PMs 
could lack enough disk space to hold the buckets allo- 
cated to them in the bucket converging strategy. How- 
ever, in the bucket spreading strategy, because buckets 
are distributed equally among all PMs, the disk space 
required of each PM to hold all allocated subbuckets 
is equal across all PMs. In other words, the disk space 
required to hold buckets is also evenly divided among 
PMs, so disk problem rarely occurs and the disk space 
allocation can be simplified. 

5.6 Parallel GRACE Hash Join Using 
Bucket Spreading Strategy 

In the split phase, R and then S are partitioned in 
parallel. While a PM sends out all tuples to the inter- 
connection network, the PM stores tuples, which are 
sent from other PMs through the network, on its local 
disk. When all PMs have completed their partitions, 
because the network itself has a function to distribute 
buckets flatly among the PMs, the buckets are spread 

out flatly without any destination control by PMs. Af- 
ter partitioning both relations, buckets are allocated 
dynamically to the appropriate PMs: buckets are al- 
located cyclicly after bucket size tuning. 

During the join phase, each PM performs small 
joins of corresponding buckets. Buckets distributed 
among the PMs are gathered by employing rotational 
bucket collection as explained in Section 5.2. Al- 
though each PM performs joins of buckets indepen- 
dently in the bucket converging strategy, all the PMs 
are synchronized with bucket collection cycles in the 
bucket spreading strategy. PMs repeat this procedure 
until all the buckets have been joined. 

6 Bucket Flattening Omega 
Network: Architectural Sup- 
port of Bucket Spreading 
Strategy in SDC 

In SDC, the architecture is designed to support ef- 
ficient processing of a bucket spreading parallel hash 
join. If the interconnection network embeds a hard- 
ware function to distribute buckets flatly among the 
PMs, the PMs are not required to perform additional 
processing to flatten bucket distribution. Thus we’ve 
developed a bucket flatteing omega network for SDC. 

The topology of the network is the same as that 
of an omega network, a kind of multi-stage network 
[Law75]. An N x N omega network4 consists of identi- 
cal n = log, N stages, and each stage has N/2 switch- 
ing units (SUs). Figure 9 illustrates 8 x 8 omega net- 
work. Each SU is a 2 x 2 crossbar switch with either 
of two states, Crossed (Figure 10(a)) or Straight (Fig- 
ure 10(b)). Although an omega network is a type of 
blocking network, it can allow circular shift connec- 
tions without blocking required in the join phase of 
the bucket spreading strategy. 

output Ports 

Input Ports 

Figure 9: Omega Network 

‘N is usually a power of two. 
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(a) Crossed State (b) Straight State 

Figure 10: Two States of Switching Unit 

6.1 Distributed Control Method of 
Bucket Flattening Omega Net- 
work 

There could be two bucket flattening methods: cen- 
tralized and distributed. In the centralized control 
method, one central control module keeps track of 
bucket distribution among the PMs and determines 
the destinations of tuples. However, when the network 
is large, the control module becomes a bottle neck and 
throughput is reduced. Conversely, in the distributed 
control method, each SU is somewhat intelIigenl and 
decides its state autonomously based on local informa- 
tion. Thus it is applicable to larger networks. There- 
fore we adopt the distributed control and, in the fol- 
lowing, explain the state determination algorithm of 
su. 

Each SU is equipped with the same number of coun- 
ters as buckets. D(X), the value of a counter for 
bucket X, keeps the difference of the number of tu- 
ples in bucket X output from the left output port 
(LOP) and the right output port (ROP) of the SU. 
All counters are initially set to 0. The value of a 
counter for a bucket is incremented if the tuple of 
the bucket is output from LOP, and decremented if 
from ROP. D(X) p re resents the skew of the distribu- 
tion of tuples in a bucket as seen from its SU. When 
D(X) > 0, the SU sends more tuples in bucket X 
from LOP than from ROP, and vice versa. Xl,,, and 
Xright refer to buckets of tuples input to the left in- 
put port (LIP) and the right input port (RIP). The 
difference between counter values of Xr,jt and X+ight: 
Dif = D(Xlejt) - D(X,;,ht) represents the relative 
skew of distributions of tuples in the bucket Xl+ and 
the bucket Xright. Therefore, to distribute a bucket 
flatly among PMs, the state of the SU is set to Crossed 
when Dif > 0, and Straight when Dif < 0. The state 
of the SU can be arbitrarily determined if Dif = 0. 

An example of the determination of a state in a 
SU is shown in Figure 11. The SU receives tuples 
belonging to bucket m and n from LIP and RIP re- 
spectively (Figure 1 l(a)). Because the value Di f is 
positive, the SU is set to Crossed (Figure 11(b)). As 
a result, the tuple of bucket m leaves ROP and the 
counter for bucket m is decremented, while the tuple 
of bucket n leaves LOP and the counter for bucket n 

is incremented (Figure 11(c)). 
It should be noted that, in the above algorithm, 

each SU always takes one of two possible states and 
never blocks tuples. That means there are neither 
network conflicts nor hot spots. 

Tuple in Tuple in 
Bucket m Bucket n Counter 

(a) Tuples arrive SU 

Dif=!5-(-2)=7>0 

(b) State Determination 

Tuple in Tuple in 
Bucket n Bucket m 

(c) Tuples leave SU 

Figure 11: State Determination in Switching Unit 

6.2 Performance Evaluation of the 
Bucket Flattening Network 

We examine the effectiveness of the bucket flatten- 
ing algorithm described above. Flatness of bucket 
distribution is measured as follows: first the stan- 
dard deviation of bucket distribution is calculated for 
each bucket, and the mean is taken over all buckets. 
This value is referred to as mean standard deviation 
(MSD). We compared MSDs before and after flatten- 
ing using simulations. Bucket ID is randomly deter- 
mined following uniform distribution in the simula- 
tions. 

Figure 12, in which the horizontal axis indicates the 
number of tuples and the vertical axis denotes MSD, 
shows a simulation result when N = 8, B = 128, 
and ‘I’ varies from 512 to 16K tuples. N, B and T 
represent the number of PMs, the number of buckets 
and the number of tuples per PM. The high initial 
MSD shows the need for flattening. The MSD after 
flattening by the network is very low indicating that 
bucket distribution is almost flat across the PMs. The 
MSD after flattening is almost constant regardless of 
the number of tuples. Figure 13 shows the variation 
due to the number of PMs. Simulation for the case, 
in which B = 128,T = 8k and N varies from 2 to 64, 
indicates that the network flattens bucket distribution 
very well. 
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Figure 12: Effect of Flattening (N=8, B=128) 
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Figure 13: Effect of Flattening (B=128, T=8k tuples) 

6.3 Implementation Issues 

Here we briefly examine two issues on network im- 
plementation. First, the logic needed to determine 
SU’s state is very simple, the additional hardware for 
SU is a comparator and counters for the same number 
of buckets. The control mechanism is implemented in 
a LSI chip. Secondly, not to become a bottle neck of 
the processing, we designed the SU chip so that the 
bandwidth of the network matches the data trans- 
fer rate of the disk. Such bandwidth can be easily 
achieved using the current technology; for instance, 
the bandwidth of each line is 6 MB/s in the Teradata 
DBC/1012 where the network embeds the sort func- 
tion [Nec88,Tan88]. 

7 Performance Evaluation of 
the Bucket Spreading Strat- 
egy in SDC 

In this section, we present the performance evalu- 
ation of the bucket spreading strategy using simula- 
tions. 

7.1 Simulation Model 

Simulations followed the model described hereafter. 
The two source relations are the same size, i.e. ]R] = 
IS] = 128K tuples, and they are horizontally parti- 
tioned so that the number of tuples in each PM is 
equal to that in the others. In addition, both of the 
relations are assumed to follow the same distribution, 
which means l&l = ]Si] (R; and S; represent the ith 
bucket of relation R and S). The size of each bucket 
is determined by a Zipf-like distribution [Tur87]. The 
size of each bucket is given by: 

PiI= Id 
i’ . B 1 

c F 
b=l 

When z = 1 this equals a Zipf distribution, and when 
z = 0 it is a uniform distribution. Distribution of 
income is known to follow a Zipf-like distribution of 
z = 0.5. Bucket sizes are illustrated in Figure 14 when 
B(the number of buckets) = 256. 

0 32 64 66 126 160 162 224 26% 

suokel IsI 

Figure 14: Bucket Size Distribution (Zipf-like Distri- 
bution) 

The capacity of each PM’s memory is 4K tuples. 
Bucket size tuning is carried out as described in 
[Nak88,Kit89c]. The bucket flattening omega net- 
work, as explained in Section 6, is used for the in- 
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terconnection network. Although the network func- 
tions as an ordinary omega network when the bucket 
converging strategy is adopted, the bucket spread- 
ing strategy utilizes the bucket flattening mechanism. 
The transfer rates for both modes are assumed to be 
equal. When data conflict in the network occurs in the 
bucket converging strategy, one tuple is randomly se- 
lected to be transferred, and the others are discarded 
and retransmitted. It should be remembered that 
there is no conflict in the bucket spreading strategy 
described in Section 6.1. 

Performance is measured by the number of tuple 
I/OS. Tuple I/OS for storing the result relation are not 
counted because they are the same for both strategies. 
In the bucket converging strategy, because overall pro- 
cessing time is determined by the PM which has the 
largest number of tuples, the I/O is counted for all 
PMs and the maximum is used as the resultant count. 
In these simulations, because selectivity and joinabil- 
ity are assumed to be 1.0, all tuples are read twice and 
written once in a GRACE join. 

7.2 Effects of Data Skew 

We first measure the effect of data skew where the 
number of PMs is set to 8. The size of the source 
relations is 128K tuples, so every PM stores 16k tuples 
from each relation. Thus, the minimum of I/O count 
is 96K(= 2 + 3 * 16K) tuples. The number of buckets 
is fixed at 256. 

Figure 15: Effect of Data Skew (1) 

Figure 15 and Figure 16 show the simulation re- 
sults, where the horizontal axis indicates the value of 
z of the Zipf-like distribution and the vertical axis de- 
notes the number of I/OS. In Figure 15, we use the 
bucket converging strategy of the worst case scenario, 
in that buckets are allocated as follows: the ith bucket 
is allocated to the the [(i x N)/Bl th PM. When the 

spreading 
.-WY 

” 
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a 

Figure 16: Effect of Data Skew (2) 

two relations are distributed uniformly (z = O.O), both 
strategies show nearly the same performance, that is, 
almost equals to the minimum number of I/OS. When 
the distribution becomes unbalanced, the number of 
I/OS steeply increases in bucket converging, because 
most large buckets concentrate on one PM, becoming 
a bottleneck. Conversely, the bucket spreading strat- 
egy attains almost the same performance for every dis- 
tribution. In Figure 16, the degree of skew in bucket 
converging is decreased as follows; the ith bucket is 
allocated to the the (((i - 1) mod iv) + 1)th PM. Al- 
though the performance of bucket converging is im- 
proved, as a distribution becomes skewed, the number 
of I/OS is still increased and much more than that 
for bucket spreading. These results confirm that the 
bucket spreading strategy is quite effective for data 
skew. 

7.3 Effects of the Number of PMs 

Next, we examine the effect of increasing the num- 
ber of PMs. In simulations, we change the number 
of PMs from 1 to 64 ‘. When the number of PMs 
increase, the number of buckets should be increased. 
However, the size of the portion of the relation stored 
in each PM is decreased conversely, which means the 
number of buckets can be decreased. So the number 
of buckets is set to the same number, 256, for all sim- 
ulations. 

Figure 17 and Figure 18, where the horizontal axis 
is the number of PMs and the vertical is the speed up 
rate, show simulation results for z = 1.0. In these fig- 
ures, the bucket spreading strategy realizes an almost 
linear increase of the speed up to the number of PMs 

51n the current version of SDC, because each PM 
has 4 processors, the actual number of processors 
varies from 4 to 256. 
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Figure 18: Comparison of Speed Up (2) 

for both cases, confirming that the bucket spreading 
strategy is quite robust for data skew. On the other 

’ hand, the speed up is not linear in the bucket con- 
verging strategy (Figure 17 is for the worst case, and 
Figure 18 is for the improved one). The speed up is 
saturated at the level where the number of PMs is 8 
or 16, because, when data is highly skewed, one huge 
bucket virtually determines the overall performance. 
In Zipf distribution, the largest bucket holds 21401 
tuples (about l/6 of whole relation), and other buck- 
ets allocated to the same PM become negligible when 
the number of PMs is large. Therefore the speed up 
is saturated in bucket converging. 

8 Conclusion 

In this paper, we proposed a parallel hash join 
method which is robust for data skew. In the conven- 
tional method, based on the bucket converging strat- 
egy in which a bucket is statically allocated to a PM 
according to its bucket ID, the performance is severely 
affected by data distribution. To solve this problem, 

we have proposed the bucket spreading strategy. Each 
bucket is partitioned evenly into subbuckets which are 
placed across all the PMs, and then these subbuckets 
are collected to the appropriate PM, Since buckets are 
dynamically allocated to PMs after bucket sire tun- 
ing, we expect efficient processing against data skew. 
In SDC, because the bucket flattening omega network 
carries out bucket partitioning and flattening, PMs 
are not burdened with additional overhead necessary 
for flat bucket distribution. 

We evaluated the performance of the bucket spread- 
ing strategy using simulations. When data distribu- 
tion is uniform, there is no significant difference be- 
tween the bucket converging strategy and the bucket 
spreading strategy. However, when data distribu- 
tion becomes unbalanced, the bucket spreading strat- 
egy showed almost the same performance as with a 
balanced distribution, while the performance of the 
bucket converging strategy was severely degraded. 
Furthermore, almost linear speed up was observed for 
the bucket spreading strategy. Simulation results con- 
firmed the effectiveness of the bucket spreading strat- 
egy- 

Application of the bucket spreading strategy to 
other hash join methods such as Hybrid hash [DeW84] 
and Dynamic Hybrid GRACE hash [Nak88,Kit89c] is 
being simulated, and we will present the results in an 
upcoming paper. SDC now is operational as a single 
PM system. Performance measurement based on real 
data will be presented in the near future. 
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