
Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash Join
Method for Data Skew in the Super Database Computer @DC)

Masaru Kitsuregawa
Institute of Industrial Science,

University of Tokyo
7-22-l Roppongi, Minato-ku,

Tokyo 106, Japan

Abstract

The Super Database Computer (SDC) is a high-
performance relational database server for a join-
intensive environment under development at Univer-
sity of Tokyo. SDC is designed to execute a join in
a highly parallel way. Compared to other join algo-
rithms, a hash-based algorithm is quite efficient and
easily parallelieed, and has been employed by many
database machines. However, in the presence of data
skew, it’s hard to distribute load equally among pro-
cessing modules (PMs) by statically allocating buckets
to PMs, as in the conventional parallelieing strategy.
Thus, performance is severly degraded.

In this paper, we propose a new parallel hash join
method, the bucket spreading strategy, which is ro-
bust for data skew. During partitioning relations,
each bucket is again divided into fragments of the
same sise and these fragments are temporarily placed
on PMs one by one. Then each bucket is dynami-
cally allocated to a PM which actually carries out the
join of the bucket, and all fragments of the bucket
are collected in the corresponding PM. In this way,
the bucket spreading strategy evenly distributes the
load among the PMs and parallelism is always fully
exploited. The architecture of SDC is designed to
support the bucket spreading strategy; a mechanism
which distributes the buckets flatly among the PMs
is embedded in the hardware of the interconnection
network. Simulation results confirm that the bucket
spreading strategy is robust for data skew and attains
very good scalability.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to rcpuhlish. requires a kc

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

Yasushi Ogawa
Research and Development Center,

RICOH Co., Ltd.
16-l Shinei-cho, Kohoku-ku,

Yokohama 223, Japan

1 Introduction

Once relational database systems became widely
used, considerable research has been focused on paral-
lel relational database machines [Kit83,DeW86,Ter88,
Tan88,Bra89]. The Super Database Computer (SDC)
is a high-performance relational database server for
a join-intensive environment which is under develop-
ment based on our previous researches: the database
machine GRACE[Kit83,Kit84], the Functional Disk
System[Kit87,Kit89], and the high-speed hardware
sorter[Kit87b,Kit89b]. SDC is designed to execute a
join efficiently by introducing highly parallel process-
ing. Since a join is one of the most expensive and
complicated operations among the relational opera-
tions, many algorithms have been proposed. Hash-
based algorithms, such as GRACE [Kit83], Simple or
Hybrid [DeW84], partition a relation into a number
of clusters called buckets. Because a join operation
is divided into small joins of buckets, hash-based al-
gorithms perform much better than other algorithms
such as nest-loop or sort-merge [Sha86]. Following the
trend of applying parallelism to database processing,
many have proposed efficient parallel join methods
[Kit83,Bra84,Val84,DeW85,Omi89]. Since each small
join of buckets can be carried out independently, hash-
based join algorithms are suitable for parallel process-
ing [Kit83]. In [Kit83], the author classified the possi-
ble database machine architecture for hash based rela-
tional processing. So far, a straightforward strategy is
used to make a hash join parallel in such as GAMMA
[Ger86] and T&data DBC/1012 [Ter88]. The pro-
cessing module (PM) for each bucket is determined
statically based on its bucket ID before partitioning
relations. Because relations are horizontally parti-
tioned across the PMs, relations are divided in paral-
lel and each bucket is gathered into the corresponding
PM through the interconnection network. Each PM
then conducts the joins of all allocated buckets. This
method is referred to as a bucket converging strcrtegy
[Kit83].

In parallel systems, data skew deteriorates the per-
formance severely without a load balancing mech-

210

anism. Database processing, including join, is no
exception, and conventional parallelized hash-based
methods face performance degradation [Kit83,Lak88,
Lak89J. When using the bucket converging strategy,
performance is degraded as parallelism is decreased
due to a heavy load unbalance which results from a
large portion of the processing load being concentrated
in only a few PMs. This is because the data is skewed
by static bucket allocation before partitioning.

In this paper, we propose an alternative parallel
hash join method to solve the problem caused by data
skew. If one allocates buckets to PMs dynamically
based on their bucket size, the PM bucket volume can
be maintained equally for all PMs. Thus, the load
of a join is evenly distributed across PMs, and conse-
quently a join operation can be processed efficiently
despite an unbalanced data distribution. To allocate
buckets to PMs dynamically, each bucket is divided
into nearly equal fragments, which are temporarily
placed on different PMs. In order to efficiently col-
lect the fragments during a subsequent bucket join,
the PMs gather buckets simultaneously by using a IO-
tational scheduling. Because a bucket is spread out
among the PMs we call this method a bucket spmad-
ing strategy [Kit83].

The architecture of SDC is designed to support ef-
ficient execution of a bucket spreading parallel hash
join. Compared to the bucket converging strategy,
the bucket spreading strategy requires additional con-
trol to distribute buckets flatly among the.PMs. To
decrease the effect of overhead which could slow down
performance considerably, the interconnection net-
work of SDC embeds the hardware function which dis-
tributes the buckets evenly across the PMs. Therefore
the PMs are not subjected to unnecessary additional
processing. This highly-functional network is also ad-
dressed in this paper.

In the next section, we briefly explain SDC. Section
3 describes the conventional bucket converging strat-
egy and restates its problems caused by data skew.
In Section 4, we show that dynamic bucket allocation
solves the problems. Then, in Section 5, we propose
the bucket spreading strategy which actualizes the dy-
namic bucket allocation. Section 6 explains the archi-
tecture support of the bucket spreading strategy in
SDC. Performance evaluation of the bucket spreading
strategy is presented in Section 7. Finally, we present
our concluding remarks in Section 8.

2 Architecture of SDC

This section is a brief explanation of the architec-
ture of the Super Database Computer (SDC). SDC

is a parallel relational database server under devel-
opment at University of Tokyo based on our ear-
lier researches: the database machine GRACE[Kit83,
Kit84], the Functional Disk System[Kit87,Kit89], and
the high-speed hardware sorter[Kit87b,Kit89b]. The
basic architecture of SDC is shared-nothing [Sto86],
and relations are horizontally patiitioned [Rie78].
SDC’s features are summarized as follows (for details,
please refer to [HirSO]):

I Highly-Functional Omega Network
I

i Dz Memory CPUs \ i DiZi Memory CPUs t
PM1 PMl

Figure 1: Architecture of Super Database Computer

Hybrid Parallel Architecture
Figure 1 illustrates the architecture of SDC. SDC
consists of several processing m

K
dules (PMs) con-

nected to each other through t e message-passing
interconnection network. In order to realize on
the fly processing of the data stream from disk,
each PM itself is designed as a tightly coupled
multiprocessor system which has strong compu-
tational power. Thus the architecture is hy-
brid of tightly coupled multiprocessor (shared ev-
erything) and the message-passing architecture
(shared nothing).

Integration of the Processing and Storage Sys-
tems

Each PM consists of a processing system (mul-
tiprocessor) and a storage system (hard disks),
which is of the same configuration as the Func-
tional Disk System (FDS) [Kit87,Kit89]. FDS
was proposed to provide an optimal I/O envi-
ronment for data intensive applications, to solve
the impedance mismatch between the operating
system and the DBMS, and to provide hardware
support for relational processing.

Highly-functional Interconnection Network
SDC employs a highly-functional omega network
for the interconnection network. Flat bucket dis-
tribution, required by the bucket spreading strat-
egy, is actualized by the network hardware with-

211

out creating an additional load for the PMs. The
network is detailed in Section 6.

High-Speed Hardware Sorter
Each PM has a hardware sorter composed of LSI
sort chips [Kit87b,Kit89b11. Because a sort is
performed in linear time by the sorter, high-speed
database processing can be realized. The memory
for the sorter is b&nodal; the sort memory can
be accessed as ordinary RAM by the processors.
Thus the total memory space of PM is shadowed
on the sort memory.

Separation of Data and Control Passes
When the number of PMs is large, much more
control information, such as synchronization both
between PMs and between processors in a PM,
becomes necessary. So as not to obscure the data
stream, control passes are completely separate
from data passes. SDC has two interconnection
networks between the PMs, and there are two in-
ternal busses in each PM.

All parameters, such as the bandwidth of the inter-
nal bus in PM, the aggregate performance of proces-
sors and the performance of the sorter, are designed
to match the data transfer rate from the disk. That
is, all relational operations can be performed keeping
up the data stream from the disk. Furthermore, data
processing and data transfer is overlapped as much as
possible.

3 Problems with Conventional
Parallel Hash Join Methods

In this section, we explain conventional parallel
hash join methods and clarify ‘their problems of data
skew. The two source relations of a join will be re-
ferred to as R and S, where S is larger than R. Each
relation is assumed to be larger than the aggregate
memory capacity, which is the sum of the memory
capacity across all PMs.

Because tuples of a relation in one bucket are never
joined with tuples of the other relation in another
bucket, corresponding buckets can be handled inde-
pendently. Thus, the hash join method is suitable
for parallel processing [Kit83,DeW85]. In the archi-
tecture considered here, relations are partitioned into
buckets in parallel because relations are horizontally
partitioned. Joins of buckets are also executed in par-
allel. In the conventional parallel hash join method,
each bucket is statically allocated to a PM based on
its bucket ID at the beginning of the join operation
[Ger86,Sch89]. During partitioning, every tuple in a
bucket is collected to the corresponding PM through
the interconnection network, and each bucket is con-
verged in a single PM. Figure 2 illustrates the case
when the number of PMs is 4.

In the following discussion, the GRACE hash algo-
rithm [Kit831 is assumed to be a hash join algorithm to
simplify the explanation, although the following study
can be applied to other algorithms including the popu-
kr Hybrid hash algorithm [DeW84] which is a combi-
nation of the GRACE hash and the Simple hash algo-
rithms. The GRACE hash algorithm consists of two

A GRACE hash join is executed straightforwardly
in parallel az described below. In the split phase, R is
first partitioned in parallel. Each PM independently
divides a portion of the relation stored therein. If a
tuple belongs to buckets allocated to the PM, it is
written back to the PM’s local disk. Otherwise, it
is transferred to the PM corresponding to its bucket
ID through the interconnection network, and stored
in that disk. When all of the PMs have finished
partitioning, the whole relation has been partitioned.
The partitioning of S is carried out in the same way.
Bucket size is tuned after partitioning the relations.
Each PM can tune the size of the allocated buckets in-
dependently because they are already converged there.

‘Currently this hardware sorter is made into com- In the join phase, each PM performs small joins of
mercial product of Mitsubishi Electric Corp. [Mit89], the allocated buckets. Because the PM already stores
attached to office processor. the allocated buckets in its local disk, there is no need

distinct stages: a split phase and a join phase. During
the split phase, relations R and S are partitioned into
clusters called buckets. Joins of corresponding buck-
ets, i.e., buckets from the two relations which share
the same bucket ID, are performed in the join phase.

In hash-based join algorithms, the size of each
bucket should be smaller than the memory. However,
data skew occasionally generates bucket overflow, in
which buckets are larger than the memory. Perfor-
mance is diminished, because bucket overflow requires
extra I/O to repartition buckets to be smaller than the
memory. The performance diminish can be avoided by
bucket size tuning; the number of buckets in the split
phase is set to a large number so as not to generate
bucket overflow, and then several small buckets are
combined into one bucket to fit the memory capacity
[Kit83,Kit89c].

3.1 Bucket Converging Strategy

212

PM1 PbQ PM3 FM4

Figure 2: Parallel Hash Join Using Bucket Converging
Strategy --

avoided by bucket size tuning due to the fact that the
static bucket allocation creates the skew. The skew
reduces the degree of parallelism, resulting in severe
degradation of the total processing performance.

Bucket Size

to communicate with other PMs. Thus each PM con-
ducts its join independent of other PMs in the same
way as a single PM system. Until all allocated buckets
are processed a PM repeats the following procedure;
the PM reads a pair of the corresponding buckets from
its local disk and joins them. The whole join operation
is finished when all the PMs have finished their joins.
Because each bucket is stored in a single PM after
the partition, this method is named bucket converging
hategy [Kit83].

3.2 Problems of Data Skew

In parallel systems, data skew degrades the perfor-
mance severely unless there is a load balancing mech-
anism. A join operation also faces the performance
degradation by data skew [Kit83,Lak88,Lak89]. Since
the source relations usually result from earlier opera-
tions such as selection or projection, data distribution
is hard to predict. So buckets tend to vary in size
(bucket size fluctuation).

Although hash-based join algorithms are easily
made parallel using the bucket converging strategy,
performance is greatly slowed down by data skew.
There are two possible major reasons for the poor per-
formance. The first is bucket overflow, and the other
is a skew of total PM bucket volume. A skew of total
PM bucket volume, which leads to load unbalancing
as illustrated in Figure 3, means an imbalance in the
total volume of data among the PMs. Bucket overflow
is almost avoided by employing bucket size tuning in
the same way as a single processor system ‘. How-
ever, a skew of the total PM bucket volume cannot be

zAlthough bucket size tuning is quite effective, it is

PM1 PM2 PM3 Pk.44

Figure 3: Load Unbalancing Caused by Data Skew

Data skew further degrades performance in the fol-
lowing way. During the split phase, a PM whose to-
tal bucket volume is very large has to gather a lot of
tuples from other PMs. That is, because the source
relations are partitioned to buckets in parallel by the
PMs, every PM has to gather tuples which come from
the other PMs and belong to the bucket allocated to
that PM. When a bucket is very large, tuples from
the bucket are transferred concentratedly to the corre-
sponding PM, resulting in network hot spot. Hot spots
further degrade performance. In addition, data skew
causes problem in disk space. When joining large rela-
tions using hash-based algorithms, buckets are written
once to disk. When bucket sizes are highly unbal-
anced, some PMs, which are allocated huge buckets,
cannot hold the buckets in their local disks even if the
total disk space over the PMs is enough to hold all
of the buckets. Such a situation creates extra data
transfer between PMs which decreases performance.

4 Dynamic Bucket Allocation

As described in the above section, static bucket allo-
cation causes an imbalances on the PM bucket volume
among the PMs and degrades performance. However,
if a bucket is dynamically allocated to a PM based on
its size, the PM bucket volume can be controlled so
that it is equal for all PMs. As a result, performance
is not decreased despite data skew.

impossible to guarantee the avoidance of bucket over-
flow. So we again consider the problem of bucket over-
flow in Section 5.5.

213

If bucket size is tuned before allocating buckets to
PMs, bucket sizes become nearly uniform. In this case,
fairly good performance is expected simply by allocat-
ing buckets in rotation; the ith bucket (1 5 i < B’)
is allocated to the (((i - 1) mod N) + I)th PM and is
processed in the [i/N] th cycle. Here B’ is the num-
ber of buckets after bucket size tuning. It may seem
that buckets are being allocated according to bucket
ID since the scheduling method is cyclic just as in
the bucket converging strategy. However, because the
buckets are already tuned on size, the buckets are ac-
tually allocated according to their size. That is, by
introducing bucket size tuning prior to allocation, the
cyclic method balances the PM bucket volume, i.e.
the processing load, among PMs. Figure 4 illustrates
how buckets are dynamically allocated.

Bucket Sue

+ Bucket Sue Tuning ,

Dynamic
Bucket
Allocation

5.1 Spreading Buckets among PMs

To dynamically allocate buckets we must consider
the place storing each bucket during the partition of
the relations. That is, in the bucket converging strat-
egy, because a bucket was allocated to a PM before
partitioning, which PM stores which tuple was deter-
mined simply from the tuple’s bucket ID. However,
when buckets are to be dynamically allocated, the
destination of a tuple cannot be determined during
the partition because which PM handles the tuple has
not been determined yet. Where should the buckets
be placed to store temporarily ?

We solve this problem by distributing each bucket
among the PMs. A bucket is again partitioned into as
many fragments as there are PMs and each fragment
is placed into a PM. Figure 5 illustrates the spreading
placement strategy. The portion of a bucket stored in
each PM is referred to as a subbucket. We name this
new method a bucket spreading strategy betause each
bucket is apread out among PMs.

i-l I--l

PM1 PM PM3 PM4

Figure 4: Load Balancing By Dynamic Bucket Allo-
cation

Even after bucket size tuning, however, the buck-
ets vary slightly in size. To reduce the effect of this
nonuniformity, we sort the buckets according to size.
Then the ith bucket (1 5 a 5 B’) is processed in the
[i/Nlth cycle by:

The (((i - 1) mod N) + 1)th PM
: when [i/NJ = odd

The (JV - ((i - 1) mod N))th PM
: when [i/N] = even

5 Bucket Spreading Strategy

In this section, we explain how dynamic bucket al-
location can be realized using our proposed bucket
spreading shtegy.

FM1 PM? PM3 PM4

Figure 5: Spreading Placement of Bucket

5.2 Rotational Bucket Collection

In the bucket spreading strategy, the whole bucket
is not placed in the PM which processes the bucket
but spread out over the PMs. Thus, during the join
phase, the PM has to gather the fragments of the
bucket which are stored in other PMs. At that time,
if all PMs gather buckets arbitrarily, an access con-
flict can occur and reduce performance. To avoid this
conflict, some scheduling is necessary for bucket col-
lection. Here we show how a simple rotational scheme
can be used to avoid access conflict.

Collecting one bucket consists of N steps of N sub-
bucket reads, where Nis the number of PMs. N buck-
ets are collected simultaneously during one cycle. The
ith PM (1 5 i <_ N) reads the subbucket of the ith
bucket in the (((i + j - 2) mod N) + I)th PM at the

214

jth step (1 5 j < N). This kind of simultaneous con-
nections between PMs is referred to as a circular shifl
and a series of small reads, a bucket collection cycle. It
should be noted that, because ((i - 1) mod N) + 1 = i
when j = 1, a PM reads a subbucket from its local
disk at the first step. Figure 6 illustrates one bucket
collection cycle. At each step, subbuckets surrounded
by the bold line are read out from the disk.

interconnection Network I

(c) 3rd Step

(d) 4th Step

Figure 6: Bucket Collection Cycle

5.3 Flat Bucket Distribution

The time required for one bucket collection cycle
is largely affected by a bucket distribution 3, since
the time for a given step is determined by the size
of the largest subbucket collected in that step. Al-
though bucket size is nearly uniform after bucket size
tuning, one bucket collection cycle takes much time
if subbucket size of the buckets varies (Figure 7 (a)).
Thus subbucket size should be uniform to minimize
the time for one bucket collection cycle. That is, the
buckets need to be distributed flatly among the PMs
for efficient processing (Figure 7 (b)). We call this
kind of bucket distribution a pat bucket distribution.

Since relations are horizontally partitioned, each
PM divides a relation’s portion stored in its local disk

3The distribution of subbuckets of one bucket
among PMs is referred to as a bucket distribution.
Note that it is different from the distribution of buck-
ets of one relation.

PM4 PM4

1st step 3rd step
2nd step 4th step

1st step 3rd step
2nd step 4th step

(a) Nonflat Bucket Distrbution (b) Flat Bucket Distribution

PM1 m

Figure 7: Effect of Bucket Distribution on a Collection
Cycle

and writes buckets back to the disk. This implemen-
tation is very simple and does not use the interconnec-
tion network during the split phase. However, because
data distribution normally differs in PMs as illustrated
in Figure 8 (a), a flat bucket distribution cannot be
realized using this simple implementation. To attain a
flat bucket distribution (Figure 8 (b)), it is necessary
to exchange tuples between PMs.

F’“9_.. 3 n I ,,.,,,,

*.>:: . . .
g

PM1 PM? PM3 PM4
(a) Nonflat Bucket Distribution (Without Flattening)

1 1
PM1 PM2 PM3 PM4

(b) Flat Bucket Distribution (With Flattening)

Figure 8: Flat Bucket Distribution

For a flat bucket distribution, basically each tuple
is sent to the PM containing the smallest subbucket
among all the subbuckets of its bucket. Thus, to deter-
mine the destination of a tuple, each PM has to keep
track of data distribution on every PM. This requires
a high volume of data transfer between PMs, resulting
in considerable performance degradation. SDC avoids
the problem by using a highly-functional omega net-
work to interconnect the PMs, as explained in Section
6, so that no additional processing is required of the
PMs.

5.4 Bucket Size Tuning

As described in Section 4, buckets can be allocated
dynamically by tuning bucket size before allocation.

Compared to the bucket converging strategy where
each PM independently tunes the size of the buckets
assigned to it, the PMs must cooperate to tune bucket
sizes because each bucket is spread out. Such bucket
size tuning becomes a major task when the number of
PMs is large. However, bucket size tuning can be car-
ried out more simply. Since buckets are distributed
flatly among the PMs, the distribution of subbuck-
ets in each PM is representative of the distribution of
buckets among all PMs. That means one master PM
can decide how to tune the size of buckets based on its
local distribution of subbuckets. Slave PMs can follow
the bucket size tuning determined by the master PM.

5.5 Other Advantages

Here, we mention two other advantages of the
bucket spreading strategy: repartitioning of over-
flowed buckets and disk space conservation.

Even introducing bucket size tuning, some buckets
may exceed the available memory space. An over-
flowed bucket has to be repartitioned into small frag-
ments so that each fits memory. Thus a bucket which
overflows requires extra I/O equal to twice the size
of the bucket. In the bucket converging strategy,
the extra I/O is concentrated in the PM holding it.
Contrastly, since the overflowed bucket is spread out
among PMs, the additional I/O is also distributed on
them. Thus the efficiency of the bucket spreading
strategy is not so severely affected by bucket overflow
as the bucket converging strategy.

Next, we consider the disk space problem. As men-
tioned in Section 3.2, if data is skewed, some PMs
could lack enough disk space to hold the buckets allo-
cated to them in the bucket converging strategy. How-
ever, in the bucket spreading strategy, because buckets
are distributed equally among all PMs, the disk space
required of each PM to hold all allocated subbuckets
is equal across all PMs. In other words, the disk space
required to hold buckets is also evenly divided among
PMs, so disk problem rarely occurs and the disk space
allocation can be simplified.

5.6 Parallel GRACE Hash Join Using
Bucket Spreading Strategy

In the split phase, R and then S are partitioned in
parallel. While a PM sends out all tuples to the inter-
connection network, the PM stores tuples, which are
sent from other PMs through the network, on its local
disk. When all PMs have completed their partitions,
because the network itself has a function to distribute
buckets flatly among the PMs, the buckets are spread

out flatly without any destination control by PMs. Af-
ter partitioning both relations, buckets are allocated
dynamically to the appropriate PMs: buckets are al-
located cyclicly after bucket size tuning.

During the join phase, each PM performs small
joins of corresponding buckets. Buckets distributed
among the PMs are gathered by employing rotational
bucket collection as explained in Section 5.2. Al-
though each PM performs joins of buckets indepen-
dently in the bucket converging strategy, all the PMs
are synchronized with bucket collection cycles in the
bucket spreading strategy. PMs repeat this procedure
until all the buckets have been joined.

6 Bucket Flattening Omega
Network: Architectural Sup-
port of Bucket Spreading
Strategy in SDC

In SDC, the architecture is designed to support ef-
ficient processing of a bucket spreading parallel hash
join. If the interconnection network embeds a hard-
ware function to distribute buckets flatly among the
PMs, the PMs are not required to perform additional
processing to flatten bucket distribution. Thus we’ve
developed a bucket flatteing omega network for SDC.

The topology of the network is the same as that
of an omega network, a kind of multi-stage network
[Law75]. An N x N omega network4 consists of identi-
cal n = log, N stages, and each stage has N/2 switch-
ing units (SUs). Figure 9 illustrates 8 x 8 omega net-
work. Each SU is a 2 x 2 crossbar switch with either
of two states, Crossed (Figure 10(a)) or Straight (Fig-
ure 10(b)). Although an omega network is a type of
blocking network, it can allow circular shift connec-
tions without blocking required in the join phase of
the bucket spreading strategy.

output Ports

Input Ports

Figure 9: Omega Network

‘N is usually a power of two.

216

(a) Crossed State (b) Straight State

Figure 10: Two States of Switching Unit

6.1 Distributed Control Method of
Bucket Flattening Omega Net-
work

There could be two bucket flattening methods: cen-
tralized and distributed. In the centralized control
method, one central control module keeps track of
bucket distribution among the PMs and determines
the destinations of tuples. However, when the network
is large, the control module becomes a bottle neck and
throughput is reduced. Conversely, in the distributed
control method, each SU is somewhat intelIigenl and
decides its state autonomously based on local informa-
tion. Thus it is applicable to larger networks. There-
fore we adopt the distributed control and, in the fol-
lowing, explain the state determination algorithm of
su.

Each SU is equipped with the same number of coun-
ters as buckets. D(X), the value of a counter for
bucket X, keeps the difference of the number of tu-
ples in bucket X output from the left output port
(LOP) and the right output port (ROP) of the SU.
All counters are initially set to 0. The value of a
counter for a bucket is incremented if the tuple of
the bucket is output from LOP, and decremented if
from ROP. D(X) p re resents the skew of the distribu-
tion of tuples in a bucket as seen from its SU. When
D(X) > 0, the SU sends more tuples in bucket X
from LOP than from ROP, and vice versa. Xl,,, and
Xright refer to buckets of tuples input to the left in-
put port (LIP) and the right input port (RIP). The
difference between counter values of Xr,jt and X+ight:
Dif = D(Xlejt) - D(X,;,ht) represents the relative
skew of distributions of tuples in the bucket Xl+ and
the bucket Xright. Therefore, to distribute a bucket
flatly among PMs, the state of the SU is set to Crossed
when Dif > 0, and Straight when Dif < 0. The state
of the SU can be arbitrarily determined if Dif = 0.

An example of the determination of a state in a
SU is shown in Figure 11. The SU receives tuples
belonging to bucket m and n from LIP and RIP re-
spectively (Figure 1 l(a)). Because the value Di f is
positive, the SU is set to Crossed (Figure 11(b)). As
a result, the tuple of bucket m leaves ROP and the
counter for bucket m is decremented, while the tuple
of bucket n leaves LOP and the counter for bucket n

is incremented (Figure 11(c)).
It should be noted that, in the above algorithm,

each SU always takes one of two possible states and
never blocks tuples. That means there are neither
network conflicts nor hot spots.

Tuple in Tuple in
Bucket m Bucket n Counter

(a) Tuples arrive SU

Dif=!5-(-2)=7>0

(b) State Determination

Tuple in Tuple in
Bucket n Bucket m

(c) Tuples leave SU

Figure 11: State Determination in Switching Unit

6.2 Performance Evaluation of the
Bucket Flattening Network

We examine the effectiveness of the bucket flatten-
ing algorithm described above. Flatness of bucket
distribution is measured as follows: first the stan-
dard deviation of bucket distribution is calculated for
each bucket, and the mean is taken over all buckets.
This value is referred to as mean standard deviation
(MSD). We compared MSDs before and after flatten-
ing using simulations. Bucket ID is randomly deter-
mined following uniform distribution in the simula-
tions.

Figure 12, in which the horizontal axis indicates the
number of tuples and the vertical axis denotes MSD,
shows a simulation result when N = 8, B = 128,
and ‘I’ varies from 512 to 16K tuples. N, B and T
represent the number of PMs, the number of buckets
and the number of tuples per PM. The high initial
MSD shows the need for flattening. The MSD after
flattening by the network is very low indicating that
bucket distribution is almost flat across the PMs. The
MSD after flattening is almost constant regardless of
the number of tuples. Figure 13 shows the variation
due to the number of PMs. Simulation for the case,
in which B = 128,T = 8k and N varies from 2 to 64,
indicates that the network flattens bucket distribution
very well.

217

Alter
Fbltmning
bv the Network

0.14 1
512 IK 2K 4K 6K 16K

Number d Tupla

Figure 12: Effect of Flattening (N=8, B=128)

E
s ’ c
I

B

Figure 13: Effect of Flattening (B=128, T=8k tuples)

6.3 Implementation Issues

Here we briefly examine two issues on network im-
plementation. First, the logic needed to determine
SU’s state is very simple, the additional hardware for
SU is a comparator and counters for the same number
of buckets. The control mechanism is implemented in
a LSI chip. Secondly, not to become a bottle neck of
the processing, we designed the SU chip so that the
bandwidth of the network matches the data trans-
fer rate of the disk. Such bandwidth can be easily
achieved using the current technology; for instance,
the bandwidth of each line is 6 MB/s in the Teradata
DBC/1012 where the network embeds the sort func-
tion [Nec88,Tan88].

7 Performance Evaluation of
the Bucket Spreading Strat-
egy in SDC

In this section, we present the performance evalu-
ation of the bucket spreading strategy using simula-
tions.

7.1 Simulation Model

Simulations followed the model described hereafter.
The two source relations are the same size, i.e.]R] =
IS] = 128K tuples, and they are horizontally parti-
tioned so that the number of tuples in each PM is
equal to that in the others. In addition, both of the
relations are assumed to follow the same distribution,
which means l&l =]Si] (R; and S; represent the ith
bucket of relation R and S). The size of each bucket
is determined by a Zipf-like distribution [Tur87]. The
size of each bucket is given by:

PiI= Id
i’ . B 1

c F
b=l

When z = 1 this equals a Zipf distribution, and when
z = 0 it is a uniform distribution. Distribution of
income is known to follow a Zipf-like distribution of
z = 0.5. Bucket sizes are illustrated in Figure 14 when
B(the number of buckets) = 256.

0 32 64 66 126 160 162 224 26%

suokel IsI

Figure 14: Bucket Size Distribution (Zipf-like Distri-
bution)

The capacity of each PM’s memory is 4K tuples.
Bucket size tuning is carried out as described in
[Nak88,Kit89c]. The bucket flattening omega net-
work, as explained in Section 6, is used for the in-

218

terconnection network. Although the network func-
tions as an ordinary omega network when the bucket
converging strategy is adopted, the bucket spread-
ing strategy utilizes the bucket flattening mechanism.
The transfer rates for both modes are assumed to be
equal. When data conflict in the network occurs in the
bucket converging strategy, one tuple is randomly se-
lected to be transferred, and the others are discarded
and retransmitted. It should be remembered that
there is no conflict in the bucket spreading strategy
described in Section 6.1.

Performance is measured by the number of tuple
I/OS. Tuple I/OS for storing the result relation are not
counted because they are the same for both strategies.
In the bucket converging strategy, because overall pro-
cessing time is determined by the PM which has the
largest number of tuples, the I/O is counted for all
PMs and the maximum is used as the resultant count.
In these simulations, because selectivity and joinabil-
ity are assumed to be 1.0, all tuples are read twice and
written once in a GRACE join.

7.2 Effects of Data Skew

We first measure the effect of data skew where the
number of PMs is set to 8. The size of the source
relations is 128K tuples, so every PM stores 16k tuples
from each relation. Thus, the minimum of I/O count
is 96K(= 2 + 3 * 16K) tuples. The number of buckets
is fixed at 256.

Figure 15: Effect of Data Skew (1)

Figure 15 and Figure 16 show the simulation re-
sults, where the horizontal axis indicates the value of
z of the Zipf-like distribution and the vertical axis de-
notes the number of I/OS. In Figure 15, we use the
bucket converging strategy of the worst case scenario,
in that buckets are allocated as follows: the ith bucket
is allocated to the the [(i x N)/Bl th PM. When the

spreading
.-WY

”
0.0 0.2 0.4 0.6 0.6 1.0

a

Figure 16: Effect of Data Skew (2)

two relations are distributed uniformly (z = O.O), both
strategies show nearly the same performance, that is,
almost equals to the minimum number of I/OS. When
the distribution becomes unbalanced, the number of
I/OS steeply increases in bucket converging, because
most large buckets concentrate on one PM, becoming
a bottleneck. Conversely, the bucket spreading strat-
egy attains almost the same performance for every dis-
tribution. In Figure 16, the degree of skew in bucket
converging is decreased as follows; the ith bucket is
allocated to the the (((i - 1) mod iv) + 1)th PM. Al-
though the performance of bucket converging is im-
proved, as a distribution becomes skewed, the number
of I/OS is still increased and much more than that
for bucket spreading. These results confirm that the
bucket spreading strategy is quite effective for data
skew.

7.3 Effects of the Number of PMs

Next, we examine the effect of increasing the num-
ber of PMs. In simulations, we change the number
of PMs from 1 to 64 ‘. When the number of PMs
increase, the number of buckets should be increased.
However, the size of the portion of the relation stored
in each PM is decreased conversely, which means the
number of buckets can be decreased. So the number
of buckets is set to the same number, 256, for all sim-
ulations.

Figure 17 and Figure 18, where the horizontal axis
is the number of PMs and the vertical is the speed up
rate, show simulation results for z = 1.0. In these fig-
ures, the bucket spreading strategy realizes an almost
linear increase of the speed up to the number of PMs

51n the current version of SDC, because each PM
has 4 processors, the actual number of processors
varies from 4 to 256.

219

1 2 4 a 16 32 64

P&mb@rol Ph

BUdwl
Spreading
Sbat*y

Figure 17: Comparison of Speed Up (1)

conventional
BUdc4l
Conwqing

f-WY

2 4 6 16 32 64

Number d pu

Figure 18: Comparison of Speed Up (2)

for both cases, confirming that the bucket spreading
strategy is quite robust for data skew. On the other

’ hand, the speed up is not linear in the bucket con-
verging strategy (Figure 17 is for the worst case, and
Figure 18 is for the improved one). The speed up is
saturated at the level where the number of PMs is 8
or 16, because, when data is highly skewed, one huge
bucket virtually determines the overall performance.
In Zipf distribution, the largest bucket holds 21401
tuples (about l/6 of whole relation), and other buck-
ets allocated to the same PM become negligible when
the number of PMs is large. Therefore the speed up
is saturated in bucket converging.

8 Conclusion

In this paper, we proposed a parallel hash join
method which is robust for data skew. In the conven-
tional method, based on the bucket converging strat-
egy in which a bucket is statically allocated to a PM
according to its bucket ID, the performance is severely
affected by data distribution. To solve this problem,

we have proposed the bucket spreading strategy. Each
bucket is partitioned evenly into subbuckets which are
placed across all the PMs, and then these subbuckets
are collected to the appropriate PM, Since buckets are
dynamically allocated to PMs after bucket sire tun-
ing, we expect efficient processing against data skew.
In SDC, because the bucket flattening omega network
carries out bucket partitioning and flattening, PMs
are not burdened with additional overhead necessary
for flat bucket distribution.

We evaluated the performance of the bucket spread-
ing strategy using simulations. When data distribu-
tion is uniform, there is no significant difference be-
tween the bucket converging strategy and the bucket
spreading strategy. However, when data distribu-
tion becomes unbalanced, the bucket spreading strat-
egy showed almost the same performance as with a
balanced distribution, while the performance of the
bucket converging strategy was severely degraded.
Furthermore, almost linear speed up was observed for
the bucket spreading strategy. Simulation results con-
firmed the effectiveness of the bucket spreading strat-
egy-

Application of the bucket spreading strategy to
other hash join methods such as Hybrid hash [DeW84]
and Dynamic Hybrid GRACE hash [Nak88,Kit89c] is
being simulated, and we will present the results in an
upcoming paper. SDC now is operational as a single
PM system. Performance measurement based on real
data will be presented in the near future.

References

[Bra841 K. Bratbergsengen. Hashing Methods and
Techniques for Main Memory Database Systems.
In Proc. of the 10th Int. Conf. on VLDB, pp. 323-
333, 1984.

[Bra891 K. Bratbergsengen and T. Gjelsvik. The De-
velopment of the CROSS8 and HC16 - 186 Par-
allel Computers. In Proc. of the 6th Int. Conf.
on Database Machines, pp. 359-372, 1989.

[DeW84] D. J. Dewitt, et. al. Implementation Tech-
niques for Main Memory Database Systems. In
ACM SIGMOD ‘84, pp. l-8, 1984.

[Dew851 D. J. Dewitt and R. Gerber. Multiproces-
sor Hash-based Join Algorithms. In PTUC. of the
11th Int. Conf. on VLDB, pp. 151-164, 1985.

[DeW86] D. J. Dewitt, et. al. GAMMA, A High Per-
formance Dataflow Database Machine. In Pmt.

220

of the 12th Int. Conf. on VLDB, pp. 228-237,
1986.

[Ger86] R. H. Gerber. Dataflow Query Processing Us-
ing Mulliprocessor Hash-partitioned Algorithms.
Technical Report 672, University of Wisconsin,
1986.

[HirSO] S. Hirano, M. Kitsuregawa, et. al. Architec-
ture of SDC, the Super Database Computer. In
Proc. of Ihe JSPP ‘90, pp. 137-144, 1990 (in
Japanese).

[Kit831 M. Kitsuregawa, H. Tanaka, and T. Moto-
oka. Application of Hash to Database Machine
and its Architecture. New Genenation Comput-
ing, 1(1):66-74, 1983.

[Kit841 M. Kitsuregawa, et. al. Architecture and Per-
formance of Parallel Relational Database Ma-
chine GRACE. In Proc. of Ihe 14th Int. Conf.
on Parallel Processing, pp. 241-250, 1984.

[Kit871 M. Kitsuregawa, M. Nakano, L. Harada, and
M. Takagi. Functional Disk System for Relationsl
Database. In Proc. of the 3th Int Conf. on Data
Engineering, pp. 88-95, 1987.

[Kit87b] M. Kitsuregawa, et al. Design and Imple-
mentation of High Speed Pipeline Merge Sorter
with Run Length Tuning Mechanism. In Proc.
of the 5th Int. Workahop on Database Machines,
pp. 144-157, 1987.

[Kit891 M. Kitsuregawa, M. Nakano, and M. Takagi.
Query Execution for Large Relations on Func-
tional Disk System. In Pruc. of the 5th Int. Conf.
on Data Engineering, pp. 159-167, 1989.

[Kit89b] M. Kitsuregawa and W. Yang. Implementa-
tion of LSI Sort Chip for Bimodal Sort Memory.
In Proc. of Ihe Inl. Conf. on VLSI, pp. 285-294,
1989.

[Kit89c] M. Kitsuregawa, et al. The Effect of Bucket
Size Tuning in the Dynamic Hybrid GRACE
Hash Join Method. In Proc. of Ihe 15th Inl. Conf.
on VLDB, pp. 257-266, 1989.

[Lak88] M. S. Lakshmi and P. S. Yu. Effect of Skew
on Join Performlrnce in Parallel Architecture. In
Proc. of Int. Symp. on Databases in Parallel and
Distributed Systems, pp. 107-120, 1988.

[Lak89] M. S. L a s k h mi and P. S. Yu. Limiting Factors
of Join Performance on Parallel Processors. In
Proc. of Ihe 5th Int. Conf. on Data Engineering,
pp. 488-496, 1989.

[Law751 D. H. Lawrie. Access and Alignment of Data
in an Array Processor. IEEE Bansaction on
Compulers, C-24(12):1145-1155, 1975.

[Mit89] Mitsubishi Electric Corp. RDB Processor
GREO. 1989.

[Nak88] M. N a a k y ama, M. Kitsuregawa, and M. Tak-
agi. Hash-partitioned Join Method Using Dy-
namic Destaging Strategy. In Proc. of Ihe 14th
Inl. Conf. on VLDB, pp. 468478, 1988.

[Nec88] P. M. Neches. The Ynet: An Interconnect
Structure for a Highly Concurrent Data Base
Computer System, In Proc. of 2nd Symp. on
Ihe Frontiers of Massively Parallel Computation,
pp. 429-435, 1988.

[Omi89] E. R. Omiecinski and E. T. Lin. Hash-based
and Index-based Join Algorithms for Cube and
Ring Connected Multicomputers. IEEE Transac-
tion on Knowledge and Data Engineering, KDE-
1(3):329-343, 1989.

[Rie78] D. Ries and R. Epstein. Access Path Selec-
tion in a Relalional Database Management Sys-
tem. Technical Report UCB/ERL-M78/22, UC
Berkeley., 1978.

[Sch89] D. A. Schneider and D. J. Dewitt. A per-
formance Evaluation of Four Parallel Join Algo-
rithms in a Shared-nothing Multiprocessor Envi-
ronment . In ACM SIGMOD ‘89, pp. 110-122,
1989.

[Sha86] L. D. Shapiro. Join Processing in Database
Systems with Large Main Memories. ACM
Trrmsadions on Database Systems, 11(3):239-
264, 1986.

[Sto86] M Stonebraker. A Case for Shared-nothing.
IEEE Database Engineering, 9(l), 1986.

[Ter88] Teradata Corp. DBC/lOlZ Data Base Com-
puter Concepls and Facilities. Technical Re-
port CO2-0001-05, Teradata Corp., 1988.

[Tan881 The Tandem Performance Group. A Bench-
mark of Nonstop SQL on the Debit Credit Trans-
action. In ACM SIGMOD ‘88, pp. 337-341, 1988.

[Tur87] C. Turbyfill. Comparalive Benchmark of Re-
lational Database systems. PhD thesis, Cornell
University, September 1985.

[Va184] P. Valduriez and G. Gardarin. Join and Semi-
join Algorithms for a Multiprocessor Database
Machines. ACM Trunsaclions on Database Sys-
tems, 9(1):133-161, 1984.

221

