
An Adaptive Hash Join Algorithm for Multiuser Environments

Hansjiirg Zeller, Jim Gray

TANDEM
10100 N. Tantau Avenue, LOC 251-05

Cupertino, CA 95014

Summary. As main memory becomes a cheaper
resource, hash joins are an alternative to the traditional
methods of performing equi-joins: nested loop and
merge joins. This paper introduces a modified, adaptive
hash join method that is designed to work with dynamic
changes in the amount of available memory. The
general idea of the algorithm is to regulate resource
usage of a hash join in a way that allows it to run con-
currently with other applications. The algorithm
provides good performance for a broad range of
problem sizes, allows to join large tables in a small main
memory, and uses advanced I/O controllers with track-
size I/O transfers. It has been implemented as a
prototype in Nonstop SQL, a DBMS running on Tan-
dem machines.

1. Introduction

A variety of hash join implementations has shown that
hash joins are the method of choice for equi-joins, if no
indices are available on join columns and if the join
result does not need to be sorted on the join columns.
Most of these implementations have been done on
database machines or in research environments. This
paper addresses the problem of performing hash join
algorithms in a multiuser environment on a multi-pur-
pose computer. In such an environment it is very dif-
ficult to assign a static amount of memory to a process
performing a join, especially if this process needs sub-
stantial amounts of memory. In addition to this, over-
flow handling is a problem area in hash join algorithms.

Permission to copy without kc all or part OT this material i\

granted provided that the topics are not made or distrihutcd fat

direct commercial advantage. the VLDB copyright notiu and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to rcpuhlish. rcquirc\ ;I l'w

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

Ovefflow of a hash table can result from an incorrect
estimate of the query optimizer or from a lack of
memory at rnntime. By introducing dynamic decisions
about bucket partitioning (as done in the GRACE join
[Kits83]), better performance for overflow cases can be
achieved. Finally, acceptable performance should be
possible in the worst case, where data are extremely
skewed.

The paper develops the algorithm as follows: Section 2
expresses join cost in terms of CPU cycles, I/O opera-
tions and main memory consumption. Section 3 discus-
ses hash access strategies for main memory hash tables,
and section 4 introduces the adaptive hash join algo-
rithm.

2. Execution Cost for Different Join Algorithms

It is well known, that simple nested loop joins on un-
clustered attributes have CPU cost in the order of u2
and that sort/merge joins reduce this cost to n log n. To
be able to be more precise, we will make the following
assumptions:

9 Let R, S be base relations, containing n tuples each,
stored in b blocks each on a disk. The block size is
B.

l In the following we assume a join of R and S which
could be expressed in SQL as

SELECT *
FROM R, S
WHERE R.r = S.s;

The join result consists of n tuples, where each
tuple of R is joined with exactly one tuple of S. Only
equi-joins are considered in this paper, since hash
algorithms are not efficient for arbitrary joins.

l Assume that there are no indices (and no cluster-
ing) for R.r and S.S.

These assumptions describe a join which cannot make
use of index structures and which is not a degenerated
case, where the join result consists of either 0 or n2

186

tuples. R and S are of the same size to make the cost
formulae simpler.

A Simple Nested Loop Join will scan the outer relation
sequentially and will do a full scan of the inner relation
for each tuple read from the outer relation. This results
in n + n2 read operations (n for the outer, n2 for the
inner relation). This formula expresses the cost in terms
of CPU cycles. In a simple algorithm, this would need
b + n * b disk I/O operations. This can be reduced
substantially by adding a loop over the blocks of the
tables and by performing a set of nested loop joins for
each pair of blocks in the inner and outer table. This
reduces the number of I/O operations to b + b2.
However, any ordering in the inner and outer table is
destroyed.

In its simplest form, the algorithm uses a constant
amount of main memory, it needs just two block buffers,
one for the inner and one for the outer relation. Intro-
ducing a database bulgr could reduce the I/O opera-
tions to 2 b, if b + 1 block buffers (1 for the outer, b for
the inner relation) are available. The number of CPU
cycles remains unchanged.

The minimum amount of main memory needed by
Sort/Merge is three disk block buffers, because in the
sort phase, two input buffers and one output buffer are
needed. The CPU cost for a sort/merge join is deter-
mined by the sort cost for the participating tables plus a
linear cost for performing the actual merging. Depen-
dam on the memory size, it may be possible to keep one
or both participating tables in main memory after they
have been sorted and therefore to save I/O operations
for writing temporary files. Fig. 1 shows a qualitative
cost function for disk accesses as a function of the
amount of memory available.

j A simple hash join is performed in two phases. In the
building phase, the inner relation is hashed into main
memory. The join attributes are used as a hash key. For
now, assume a very simple algorithm with no overflow
handling, requiring that the entire inner relation fits in
main memory. After this, the second phase called prob-
ingphzse is performed. In the probing phase, the outer
relation is read sequentially and for each record in the
outer relation the matching records in the inner relation
are retrieved. Probing can be done at a constant cost,
because the inner relation is now in memory and has a
hash access path on the join attributes.

Since base relations are read only once and no tem-
porary relations are needed, this algorithm uses 2 b disk
accesses. It also needs b + 1 block buffers (size B, not
counting the fragmentation overhead of the hash table)
in main memory to keep the whole inner relation and

one buffer for the outer relation. This is similar to a
nested loop join, when the inner relation is in the
database buffer, but it needs less CPU cycles, because a
hash access is done to the inner table rather than a se-
quential search. Since hash methods work - nearly - in-
dependant of the size of the hash table, the join cost
contains four linear components for reading the inner
table, hashing it, reading the outer table and probing
into the hash table:

O(COSt Simple Hash Join Cost) = O(4n) = O(n) (1)

In the world of Hash Joins, there are many different
methods of coping with insufficient memory. The
methods we would like to introduce here are GraceJoin
and Hybrid Hush Join. In a Grace join, the inner &a-
tion is divided into buckefs, each of them small enough
to fit in main memory. The outer relation is divided in
the same way, however, the size of the outer buckets
does not matter. The buckets are stored in disk files and
then processed sequentially. Because inner and outer
relation are written into a temporary file once, 6b disk
accesses are needed (read R, S, store Rtemp, Stem,, read
Rem,, Stemp 1.

If k + 1 represents the number of disk blocks that will
fit in memory, then a bucket cannot be larger than k
blocks and the optimal partitioning of the inner and
outer relations in the building phase is to partition them
into b/k buckets. This will require b/k input and output
buffers. Given the fact that b/k blocks are needed in the
fist phase, and k blocks are needed in the second phase
of the join, the challenge is to find the value for k, where
the memory consumption max(b/k,k) is minimal :

Memory needed = min(max($, k)) =J/$ (2)

The CPU cost is independant of the actual amount of
memory available, if the overhead of switching between
pairs of buckets is neglected.

The Hybrid algorithm, described by Dewitt and Gerber
[DeWi851, introduces a dynamic decision between
Grace and Simple Hash Join. For memory sizes be-
tween fl+ 1 and b + 1, the Hybrid join performs a
continuous transition between Grace and Simple Hash
Join. This is achieved by using the excess memory not
needed by the disk buffers to store a variable number of
tuples (this becomes the first bucket) in main memory
rather than in a disk file and therefore reducing the
number of disk I/O operations continuously, as seen in
Fig. 1.

187

In a Hybrid Join, main memory is split into n block buf-
fers for creating II buckets on disk and in an area of size
r (in blocks) to build the hash table for the fmt bucket.
This changes when the temporary files on disk have
been built and buckets 2 . . . n + 1 are processed. Then
one bucket is hashed in main memory (using up to k
blocks) and one input buffer for the outer relation is
used. If we assume optimal memory utilization, the first
bucket has the maximal size of r = k - n and the n
other buckets are also of maximal size k. In this con-
figuration, the number of disk I/OS is the number of
reads for the participating tables plus the I/OS for writ-
ing and reading the buckets 2 . . . n+l to a temporary
file:

#DiskYOs=2b+4(b-r) (3)

The r blocks of the first bucket (assuming that buckets
in inner and outer relation are of the same size) are not
written to the temporary file. Using the equations
n k = b - r (the II last buckets are each as big as the
available memory and have a total of b - r blocks) and

needed by the output buffers for buckets 2 . . n+l), the
number of disk I/Os in a hybrid join can be expressed as

Disk I/OS =6b-4k+4= (4)

for values of fl I k I b. It should be mentioned,
that - because the number of buckets must be a whole
number - it is not always possible to achieve an ideal
bucket partitioning.

2.1. Comparison

A comparison between Simple Nested Loop,
Sort/Merge, Simple Hash, Grace, and Hybrid Hash
Joins shows that hash joins are the algorithms of choice
if a minimum of main memory is available for the opera-
tion. The minimum amount of memory just grows as a
square root function, so it is not too hard to meet the
condition. Table 1 lists CPU cost, I/O cost and memory
consumption for the different join algorithms and indi-

r+n = k (the first bucket occupies all the space not

Disk I/O
Operations

b + b*

8b

8b

4b

2b

.

@ Nested Loop (Disk Cache)

n Sort/Merge

Cl Hybrid Hash

I
I I I I I

.

0
2 3 fc+ 1 b+l 2 b

Available Main Memory
(in disk block units)

Fig. 1: Disk I/O vs. Memory Consumption (Qualitative)

188

cates whether temporary relations on disks have to be
created:

Join Type Memory CPU I/O Temp.

ww Tables
Simple 2 tin’) b2 no
Nested loop b tin*) 2b no
Sort/Merge o(n log n) 6b+4b log b yes

& o(n log n) 8b yes
b o(n log n) 4b yes
2b o(n log n) 2b no

Simple Hash b 000 2b no
Grace Hash fl o(n) 6b yes
Hybrid Hash fl...b o(n) 6b . . . 2b yes

Table 1: Cost Functions of Join Algorithms

2.2. Parallel, Hash Partitioned Joins

Until now we always assumed that the join was per-
formed by one processor. On a multiprocessor system,
it is desirable to have several processors and probably
several disks working on a join query. This is achieved
by hash partitioning data between these processors
[Gerb86]. Hash partitioning is independent of the join
algorithm itself, but it is restricted to equi-joins. The
principle of hash partitioning is to split a large join into
p smaller joins. The p joins are independent of each
other and can be executed in different processors. Ap-
plied to the cost functions in the last section, the num-
ber of records and blocks has to be divided by p to get
the cost for one partition. The part of reading base relt-
tions, however, cannot be done in parallel, unless the
base relations reside on several disks (probably served
by several processors). For algorithms with a fast grow-
ing cost function, like simple nested loop, the gains with
parallel execution are most visible. This is because
dividing the problem into smaller problems of size l/p
makes each smaller join run more than p times faster, or
in other words, two processors may perform more than
twice as fast than a single processor. Hash joins seem
not to be accelerated as much by parallel execution, due
to their linear cost function. They are, however, able to
take advantage of multiprocessor systems in another
way: if the main memory in one processor is not sufli-
cient. hash partitioning between several processors can
use more memory and thus reduce disk I/O. This can
also result in a more than linear speedup.

Common problems with parallel algorithms are conten-
tion on shared resources and communication costs. In

so-called Shared Nothing Systems (Tandem, Teradata,
GAMMA), communication costs mainly determine the
overhead for parallelism. Contention is not a big
problem, because after the partitioning phase, every
processor works on its local copy of the data. As men-
tioned, the partitioning phase can only be done in paral-
lel, if data are stored on several disks. The amount of
data to be sent is less or equal to the size of the base
relations (some projections and selections may be ap-
plied before sending the. data). lf we assume blocks of
equal length for messages and disk I/OS, then the com-
munication overhead depends on the selectivity factors
and the quotient of message cost and disk l/O cost. In
typical Shared Nothing Systems this quotient is low
(elapsed time / message c 0.3 * elapsed time / I/O) and
therefore the overhead is acceptable.

2.3. Influence of Join Selectivity and Skew

Until now, the model was restricted to a join of two
relations of equal size with a 1:l relationship between
their records. Cost functions change if 1:n and n:m
relationships are used and if relations of inequal size
are introduced. Generally, for asymmetric algorithms
like Hash Joins it is advantageous to have a small and a
large relation. This is obvious because. only the smaller
relation has to be kept in main memory and the size of
the larger relation does not influence the amount of
memory needed. Hence, even extremely large joins can
be done very efficiently if the inner relation is small
enough. On the other hand, merge joins perform worse
under such circumstances because it is expensive to sort
a very large relation. Nested loop joins are not very sen-
sible to different sizes of inner and outer relation as
long as the inner relation does not fit entirely in main
memory.

The kind of relationship in the join also determines the
number of its result tuples. If join attributes am a key in
at least one of the participating relations (1:l and 1:n
relationships), there cannot be more result tuples than
base tuples. If this is not the case (n:m), then the num-
bcr of result tuples can grow quadratically, as a car-
tesian product. In this case, it is impossible to compute
join results in linear CPU time. Such a situation is often
used as a strong argument against hash joins, because
hash access methods am not designed to cope with
highly skewed key distributions. On the other hand, a
merge join will gradually degenerate into a nested loop
join in such extreme cases. With an appropriate over-
flow technique a hash join may actually be the most ef-
ficient algorithm for highly skewed data distributions. In
general, a merge join will be better, if the join selectivity
is low, and a hash join will be better for high join selec-
tivities. This is because for low selectivities a merge join

189

will need few repositionings in the participating files,
while hash collisions can cause substantial overhead in a
hash join. For skewed attribute values and low join
select&es, bit vector filtering can be a big advantage
and it can reduce the disadvantages of hash joins in
these configurations. In [Schn89] it is stated that bit vec-
tor filtering is also beneficial in most other cases.

3. Hashing Strategies for Hash Joins

3.1. Main Memory Hash Tables with Duplicate Keys

Although they are relatively easy to implement, hashing
strategies are an important aspect of hash joins. In the
literature, several modifications of a standard hashing
algorithm are proposed, giving a variety of methods
with different time and space requirements. The
general problems with hashing are non-uniform key
value distributions and dynamic reorganization, if the
number of records in a hash table increases or
decreases significantly. Most of the proposed strategies
assume that the hash method is used to create a primary
access path on a disk file. For hash joins, neither the
hash key is unique nor are the records stored in disk
blocks’. While it is a big disadvantage to have duplicate
key values, having all data in main memory can help
make the implementation efficient.

Fig. 2 shows the different stages of hashing in a parallel
Grace or Hybrid Hash Join. First, the base relation is
split into several partitions using a hash function to
determine the partition number. Each partition is as-
signed to a processor. For each partition, data records
are again hash partitioned into buckets and stored on
disk. Then one or more buckets at a time are read from
disk and moved into an in-memory hash table. This is
the third stage of hashing and the critical one because
data are actually stored in main memory. The partition-
ing into buckets is done for the purpose of avoiding an
overflow of the main memory table. If two or more
buckets are combined, because they lit into main
memory simultaneouslyi this is called bucket tuning.

In main memory, a certain number of hash chains are
created. Tuples are assigned to exactly one chain by

their hash values. Therefore, two tuples with the same
key or the same hash value will always be in the same
chain, while one chain can contain tuples with different
key values and even different hash values2. With a good
hash function and a uniform key value distribution, all
chains will have approximately the same length.

!Source Relation !Source Relation
(may be partitioned) (may be partitioned)

Partitions

I
Buckets
1 Tuned Buckets

I I I Hash Chains ---

Hash chains are created for
the inner relation only

Fig. 2: Stages of Hashing and Bucket Tuning

In a disk file with a hash access path, one disk block is
usually used for storing the records of a hash chain. If
the block overflows, different techniques may be ap-
plied (e. g. to store the overflowing tuples in the next
block). In main memory, however, it is not necessary to
reserve a fixed amount of space for each hash chain be-
cause there are no block accesses to be minimized. The
tuples of a hash chain may be connected by a linked list
instead, if a pointer field is attached to each record.
Tuples can then be stored adjacent in a heap in their se-
quence of arrival. However, to access the head of a hash
chain, an array of chain anchors has to be allocated.

1) The bucket files used by Grpce and Hybrid Joins are not hash tables. They just contain all the tuples belonging to one
bucket in an arbitrary sequemx. When a bucket fde is read back into main memory. the actual hash table is built.

2) In all pattitioniog stages. the same HASH function can be used, while three different SPLIT furwtioos can be used to
generate partition. bucket and chain numbers in the appmpriatc raoges. Usually, the modulus operator is used as a split
function.

190

With this technique, the hash structure becomes less
sensitive to skewed data because hash chains may be of
arbitrary length without any overflow handling. The
portion of the hash table used to store tuples is a com-
pact section growing linearly as more and more tuples
are inserted. Only the table as a whole can overflow if
its size exceeds the memory size.

Another critical parameter is the number of hash
chains, because this also determines their length. Since
only one pointer is needed per hash chain, it may be
economical to make the chain anchor array relatively
large, so that chains have only a few records. A typical
chain anchor array might use from 1 95 to 10 % of the
hash table (4 byte/anchor, 100 byte&cord, 4
records/chain).

The transfer of tuples from main memory to the tem-
porary bucket file should not involve record-by-record
moves. Instead, it is desirable to have the same data
representation in the bucket file and in main memory.
Since records are kept in linked lists, they can be stored
anywhere. Fig. 3 shows a hash table using block buffers
for both resident and non-resident buckets’.

records

output buffer to bucket file
(shared by several buckets)

block header
I .

disk block
I

Fig. 3: Using Block Buffers as Memory Allocation Unit

This storage method allows buckets to be swapped out
dynamically, if it becomes necessary. Also, it is not
necessary to write any buffers to the bucket file, until
the available memory is exhausted. Up to that point, all

buckets are kept memory-resident in linked lists of
block buffers. While a bucket is swapped out to the
bucket file, the link pointers between buffers am
replaced with tile positions. This allows storage of buf-
fers in random order on the bucket tile, or to share one
file among many buckets.

Fig. 3 also shows, that several buckets may share one
buffer. This refers to the algorithm described later in
this paper.

3.2. Hashing in Virtual Memory

In a multiuser system, it may not be desirable to reserve
large amounts of main memory exclusively for hash join
purposes. Therefore, the hash table must reside in vir-
tual memory and may be partially written out to a swap
file. Generally, the performance of a hashing strategy
will suffer dramatically from page faults, because the
access patterns in the hash table do not show locality
and therefore no replacement algorithm (like LRU) for
main memory pages will work satisfactorily with hash
tables. So, only a small number of page faults can be ac-
cepted. If hash chains are stored in linked lists, many
memory pages may be accessed while following one
hash chain. This can increase page fault rates, if main
memory is scarce.

The dense packaging due to hash chains implemented
as linked lists is a very desirable property for main
memory hash tables. It is also helpful, that the linked
hash chains do not need to be contiguous, because no
address computations are ma& in them, except for the
chain anchor array. Big gaps inside a hash table may in
some operating systems cause large swap files to be al-
located, wasting disk space resources. To determine the
amount of paging disk I/OS acceptable for a hash join, it
should be considered that paging I/OS are random aces-
ses on the paging disk, while file I/OS of sort/merge and
hybrid joins have sequential access patterns. For this
reason, join file ID can make use of large block tmns-
fers to disks, while paging IJO usually uses blocks of
small or medium size only (0.5 . . . 16 KB).

In many operating systems, there is no safe way to
determine the current amount of ‘free’ main memory.
So, it would be desirable to have a join algorithm being
able to dynamically adjust the hash table size. while the
join is already in progress. This adjustment can be

1) Fii. 3 does not show the actual hash chains (the linkages between records and the pointer array). The shown array c4 budc-
et pointen has one entry per bucket and is therefare much smaller than the chain anchor array.

191

driven by a measurement of the number of page faults
during the join process. The next section of this paper
describes an extension to the Hybrid Join algorithm
which is designed to cope with this and other problems.

4. An Adaptive Hash Join Algorithm

There are two principal input parameters to a hash join
algorithm: the size of the inner relation and the avail-
able memory. Unfortunately, these parameters cannot
always be determined exactly at the time the join starts.
Memory availability in a multiuser environment changes
continuously, if no memory can be locked by the
process, and the size of the input relation often depends
on selectivity factors of predicates. Therefore, the algo-
rithm described in the following reacts dynamically to
changes of these input parameters. Possible reactions
are:

4 swapping some memory-resident buckets out to the
bucket file,

b)

cl

dynamically splitting buckets into smaller ones,

changing the transfer size (and therefore the buffer
size) of temporary file reads and writes.

In a Hybrid Join, data are hash partitioned three times
as shown in Fig. 2. However, no bucket tuning takes
place. This is, because a Hybrid Join is designed to use
only a few disk buffers for partitioning the data into
buckets. The rest of the memory is used in this phase to
build the hash chains for the first bucket (which may be
of different size than the others). If enough main
memory is available to hold all the data, no bucket files
on disk are created and the bucket partitioning phase is
skipped completely.

The Adaptive Hash Join differs from a Hybrid Join in
the following way:

l All buckets have the same size. Initially, all buckets
are memory-resident. If not enough memory is
available during the process of building the inner
hash table, buckets are written out to the bucket
file, until enough memory is freed up. Therefore,
several buckets may be memory-resident at the
same time.

l Initially, a multiple of the number of buckets that is
presumably needed is allocated. This allows bucket
tuning. However, to save buffer space, several
buckets share one block buffer. Recall that block
buffers are used to hold memory-resident tuples as
well as to serve as output buffers to the bucket file.

Allocation of an excess of buckets and sharing buf-
fers outweigh each other, so that the total nwnber
of buffers is approximately the same as in a Hybrid
Join. In the following, a set of buckets that share a
buffer will be called a clusrer. Clusters may be split
dynamically, if they receive more than the estimated
number of records.

. The hash table is allocated in virtual memory. The
algorithm continuously determines a maximum size
M of its working set to avoid excessive page faults.
This can be done by monitoring the number of page
faults that are caused by the process. Initially, M is
set to a value depending on the global CPU load.

We are now able to describe the Adaptive Hash Join
Algorithm:

1. At the beginning of phase 1 of the join, the B buck-
ets are divided into B/C clusters. For each cluster, a
buffer of size S is allocated. The initial values of B,
C and S are determined on estimates made by the
query optimizer. B never changes throughout the
join process, but the number of clusters, the default
buffer size S and the memory size M may vary
during the join. The initial value for M is deter-
mined by the operating system. If B/C l S > M
(there is not enough room for all the buffers), then
S is decreased accordingly. If the minimum for S is
reached (minimum transfer size for a disk I/C), then
B is set to max((M/S),l) and C is set to 1.

2. Records are read from the building relation and
partitioned into buckets. Each record is stored in
the buffer that is allocated for the bucket’s cluster.
This is repeated, until all records are read or a buff-
er becomes full. If all records are mad, the algo-
rithm continues with step 9.

3. If a buffer overfIows, a new value of M is deter-
mined by the operating system. If part of the
bucket’s cluster is already swapped out, then the
buffer is written to the bucket file and cleared and
the algorithm .proceeds with step 7.

4. If enough memory is available, and the bucket’s
cluster is not yet swapped out to the bucket file,
then a new buffer of size S is allocated and inserted
into a linked list of buffers for the cluster. If not
enough memory is available to allocate a new buffer,
then clusters are swapped out, until enough space is
available. Swapping out a cluster is done by writing
all its buffers to the bucket file and deallocating the
buffers in memory - except the last one, which will
serve as an output buffer to the bucket fde.

192

5. If all clusters are swapped out and there is still not
enough memory available, the default buffer size S
is decremented. Existing output buffers are shor-
tened to the new size, until enough memory is avail-
able or the minimum size of S is reached. Note that
this indicates, that there is not even enough foam to
hold just the output buffers to the bucket file.

6. If still not enough memory is available, this is ig-
nored. This is possible, because the algorithm per-
forms in virtual memory. Restriction of memory
usage is done for performance reasons only.

7. Then, a cluster overflow check is performed. If the
cluster consists of more than one bucket and if it
contains more records than would fit into memory
of size M, then the cluster is split into two smaller
clusters, using separate buffers. Already existing
buffers of the old cluster (residing on disk) remain
unchanged, they now contain tuples from more than
one cluster. For the allocation of the new buffer, the
same heuristics as described in steps 4,5 and 6 are
applied.

8. If the cluster overflows, but consists of only one
bucket, then the overflow is ignored at this point of
the algorithm. This situation will be solved in step
11. Continue with step 2.

9. After all tuples of the inner relation have been read,
the next phase of the join starts: Read the outer
relation. Partition the outer relation into clusters in
the same way as the inner relation. For each record,
determine the cluster which will contain the match-
ing inner records. If the cluster is memory-resident,
join this record immediately, otherwise store it in
the according bucket file of the outer relation.
Repeat this, until the end of the outer relation is
reached. Note that the outer relation is partitioned
according to the final partitioning of the inner rela-
tion. No dynamic change of the partitioning schema
takes place.

10. Determine the actual value of M. Read as many
clusters from the bucket file as fit in memory.
Create the hash chains for these tuples. If there are
no more clusters, the join is completed.

11. If not even one cluster fits into memory, then read a
part of the next cluster and build the hash chains.
Save the rest of the cluster for the next execution of
step 10.

12. Read the matching cluster from the outer relation
and perform the join (record by record, accessing
the inner relation using the hash chains). Go to step
10.

In cases, where a constant (and sufficient) amount of
memory is available and where the actual size of a buck-
et does not exceed its expected size, steps 2, 3,4,9 and
12 approximately describe a Hybrid Join. Steps 6 and 8
will have to be replaced by another overflow strategy in
a Hybrid Join. Steps 1,3,4,5,6,7,8, 10 and 11 contain
dynamic decisions based on runtime parameters that
can change during the join process. The strategies a), b)
and c) mentioned earlier are implemented by steps 4, 7
and 5.

In the following, a few scenarios will be discussed. The
varying parameter will be the actual number A of tuples
in the building relation, compared to the estimated
number of tuples, E. This will show that acceptable per-
formance will be obtained in all cases, making the algo-
rithm suitable to be used as a standard method, like
Sort/Merge. An estimate of the number of records in
the inner table will be supplied by the query optimizer.
This estimate may be derived from statistical informa-
tion and can therefore be much lower or higher than the
actual number of records in the inner table:

l E >> A:

If the estimate of the record count was much too
high, there will not be enough records in each
cluster to fill one disk buffer. Main memory will be
utilized badly, because many buffers that are f&d
only partly will be allocated. The real effect is not
so bad, however, because main memory is divided
into pages and many pages fit into the unused por-
tions of a large disk buffer. These unused pages do
not occupy physical memory, they only use virtual
memory space. Gn the other hand, it is now pos-
sible to perform bucket tuning and less than the es-
timated number of iterations of steps 10 through 12
are necessary.

193

small table, large memory very large table, large memory

small table, small memory

swapped out to
bucket file

/

large table, small memory

array of bucket block buffers
pointers (of different size)

Fig. 4: Adaptive Configurations

l E>A:

If the estimate was somewhat too high, more
clusters than expected will be kept memory-resi-
dent. Fewer buffers could have been used, there-
fore some memory space was wasted.

duced, hecause the common part of the split
clusters is read several times from disk in step 10. If
this would cause some blocks to be read more than
three times, then it is more efficient to repartition
the shared part of the buckets in a separate step.
The number of disk accesses is still limited to an ac-
ceptable amount.

l E=k l E<<A:

If the estimate was about right, it was not necessary
to allocate more buckets and to build clusters. The
standard Hybrid algorithm avoids this, but the over-
head doing it should be minimal.

l E<A:

If there are more records than expected, but still
less than the maximum that can be handled using
the available buckets, then some clusters will be
split. The split clusters will still be small enough to
fit in memory. However, some overhead is intro-

If the estimate was much too low, then the clusters
will be split, until they have no more than one buck-
et. Even these buckets will be larger than the avail-
able main memory. This will cause step 11 to be ex-
ecuted. It is the only case, w$ere data from the
outer bucket file are read more than once. This
situation is described by [DeWi%S, Naka881 as Harh
Loop Join. Hash Loop Joins w still have better
performance than Sort/Merge gins, but they may
also be more expensive.

194

l Skew:

In case of attributes with very many duplicate
values (e. g. “M” and “F” for sex), only some buckets
will overflow and cause a Hash Loop Join. Basical-
ly, the same rules apply to this case. The perfor-
mance in comparison with Sort/Merge depends on
the join selectivity. If many output tuples am
generated, the Hash Loop Join will perform better.
If only few tuples match the join condition, a
Sort/Merge Join will need fewer disk accesses and
will be faster.

Fig. 4 is a graphical display of some of the scenarios.
The lower right comer shows the critical configuration,
where a very large relation has to be joined in a relative-
ly small memory. In this case, the advantages of using
large buffers are lost. The necessary cluster splits will
also cause some performance degradation. The upper
right comer shows a large table with sufficient memory.
Buffers remain large and fewer cluster splits are neces-
sary, because bigger clusters can be processed. On the
left side of Fig. 4, the configurations for sufficient (or
even too much) memory are shown. The algorithm will
always try to keep the buffers to the bucket file as large
as possible. This has a higher priority than keeping
clusters memory-resident. Buffers are used for more
than one I/O operation. If memory-resident clusters am
written to the hybrid file, the data is only written once.
Therefore, it is more efficient to keep a larger buffer
space at the cost of less memory-resident clusters. The
only case were space is wasted by output buffers is
where too many clusters are allocated.

An important question is, whether an Ada tive Hash
Join performs with linear cost as long as 8 b buffers in
memory are available, if the inner relation fits in b buf-

fers. This can be easily answered with ‘yes’, if the large
buffer size that is actually used in the algorithm is also
used to compute the value of b. and if it is assumed, that
no cluster splits take place and the amount of available
memory remains constant. Even if the buffer sixe B is
set to its minimum (depending on the actual disk sector
size). linear performance will result, because step 1 of
the algorithm will already decmase the buffer size to its
minimum in this case. Only then it is possible to allocate
all the output buffers. This proves, that the very impor-
tant property of linear performance has not been
sacrificed to get a more flexible overflow mechanism or
to use largex disk blocks.,

On the other hand, an Adaptive Hash Join will also be
able to perform with only two buffers of main memory.
In this case, the number of buckets is set to one in step
1 and the algorithm will perform like a nested loop join,
with the exception, that the inner relation is unneces-
sarily scanned and written to a bucket tile in the first
phase. This is certainly a case that will have bad perfor-
mance like all other algorithms, if the table is large, but
adding very small amounts of memory will show big per-
formance improvements: three buffers will already
allow two buckets and therefore let the join perform
four times faster.

4.1. Performance Measurements

Some preliminary performance evaluations have been
done with an implementation of the adaptive hash join
algorithm in Nonstop SQL, a DBMS running on Tan-
dem computers. Figure 5 shows the results. The query
measured is a join between two Wisconsin-style tables
[Bitt831 on the uncluttered, non-indexed column
uniquel. Each table is 7 MB large and contains 30,000
rows. The parallel query execution feature of Nonstop
SQL is not used. With a default buffer size of 28KI3, and

Disk I/O transfers (MB)
(excluding I/OS on base 28
tables)

n .

n Sort/Merge Join

Fig. 5: Measurement of I/O Overhead

195

an initial allocation of 21 clusters by the query optimizer
the algorithm needs somewhat less than 700 KB to allo-
cate all buffers with their full length. In this case, no
buckets are kept memory-resident after the inner table
has been read.

In the configuration with only .3 MB of memory the buf-
fers need to be shortened to 8 KB and cluster splits
occur. The graphical display shows the amount of data
transferred to and from the disks. In the case where
only .3 MB of memory is available, the block size
decreases by l/3, so that three times more transfers are
necessary. Despite this fact the adaptive join still runs
faster in terms of elapsed time than the merge join (791
vs. 1260 set). Figure 5 also shows a reference point with
a sort/merge join.

CPU time consumption is nearly constant in all cases, as
it is predicted in the first part of this paper. The adap-
tive hash j *

Y
consumes in average 62 percent of the

CPU time o a sort/merge join. Figure 5 does not show
the I/O operations necessary to read the input tables.

Elapsed
.

BOO-

600-

400 -

200-

I
I I I I I I +

min 1 2 3 4
Working Set (MB)

x sort/merge o adaptive hash l simple hash

Fig. 6: Elapsed Time vs. Memory Size

Fig. 6 shows the elapsed time for joining 10,000 rows of
a Wisconsin dation in dependency on the ‘working set’
size in virtual memory (available physical memory for
this process). For working set sizes below 2 MB (the
size of the inner table) the performance of a simple
hash join decreases dramatically, while sort/merge join
and adaptive hash join only show a slight change in
response time. The NonStop SQL implementation does
not behave exactly as described in the previous sections.
Instead, its mininal memory consumption is somewhat
higher than the theoretical minimum. Therefore, a 2MB
relation is not yet big enough to cause a hash loop join.

5. Conclusions

Hash Joins have linear cost, as long as a minimum
amount of memory is available. This minimum is
proportional to the square root of the size of the inner
relation and proportional to the buffer size used for
transfers to the hybrid file. We described an algorithm
that will use large transfers to disks, as long as enough
main memory is available, but will not reduce the maxi-
mum number of tuples, which can be joined in nearly
linear cost. To be able to process relations of any size
with acceptable performance, a set of adaptive overflow
techniques was introduced. To make it possible to run
this algorithm in a multiuser environment without major
interference to other users, the amount of memory
being assigned to a join process can be adjusted
dynamically while the join is executing. This is especial-
ly important, if large join queries are performed concur-
rently . with interactive (OLTP) applications.

6. References

Brat841

[Bitt831

[DeWi84]

[DeWi85]

[DUPp881

K. Bratbergsengen
Hashing Methods and Relational Algebra
Operations
Proc. 10th VLDB, Aug. 1984, pp. 323-332

D. Bitton, D. J. Dewitt, C. Turbyfill
Benchmarking Database System - A Sys-
tematic Approach
Proc. VLDB 1983, pp. 8-19

D. J. Dewitt, R. H. Katz, F. Olken, L. D.
Shapiro, M. Stonebraker, D. Wood
Implementation Techniques for Main
Memory Database Systems
Proc. ACM SIGMOD Conference, 1984,
pp. l-8

D. J. Dewitt, R. H. Gerber
Multiprocessor Hash-Based Join Algo-
rums
Proc. 1985 VLDB, pp. 151-164

N. Duppel, D. Gugel, G. Schiele, H.
Zeller
Progress Report #4 af PROSPECT
Report, University of Stuttgart, Dept. of
Comp. Science, 1988

196

[Gerb86] R. H. Gerber
Datajlow Query Processing Using Multi-
processor Hash-Partitioned Algorithms
Dissertation, University of Wisconsin-
Madison, Computer Sciences Technical
Report #672, Oct.86

[Kits831 M. Kitsuregawa, H. Tanaka, T. Moto-oka
Application of Hash to Data Base Machine
and Its Architecture
New Generation Computing 1, 1983, pp.
63-74

[Nakaw M. Nakayama, M. Kitsuregawa, M. Takagi
Hash-Partitioned Join Method Using
Dynamic Destaging Strategy
Proc. 14th VLDB (1988), pp. 468478

[Pw.@l M. Pong
NonStop SQL Optimizer: Query Optimiza-
tion and User Influence
Tandem Systems Review 42 (1988), pp.
22-38 Tandem Computers, Part No. 13693

[Schn89] D. A. Schneider, D. J. Dewitt
A PeTformance Evaluation of Four Parallel
Join Algorithms in a Shared-Nothing Multi-
processor Environment
Proc. ACM SIGMOD Conference 1989,
Portland, Oregon, pp. 110-121

www L. D. Shapiro
Join Processing in Large Database Systems
with Large Main Memory
ACM TODS 11,3 (Sept 86). pp. 239-264

[Ston89] M. Stonebraker et. al.
Parallelism in XPRS
UC Berkeley, Electronics Research
Laboratory, Report M89/16, February,
1989

ITand Tandem Database Group
NonStop SQL: A Distributed, High-Perfor-
mance. High-Availability Implementation
of SQL
Proc. 2nd Int. Workshop on High Perfor-
mance Transaction Systems, Asilomar, CA
(Lecture Notes in Computer Science 359,
Springer-Verlag, Ed: D. Gawlick, A.
Reuter, M. Haynie)

[Vald84] Patrick Valduriez, Georges Gardarin
Join and Semijoin Algorithms for a Multi-
processor Database Machine
ACM TODS 9,l (1984), pp. 134-161)

[ZelI89] H. Zeller
Parallelisierung von Anfraeen auf
komplexen Objekten durch Hash Joins
Proc. GI/SI Fachtagung: Datenbanksys-
teme in B&o, Technik und Wissenschaft,
IFB 204, Springer-Verlag (in German).

197

