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Summary. As main memory becomes a cheaper 
resource, hash joins are an alternative to the traditional 
methods of performing equi-joins: nested loop and 
merge joins. This paper introduces a modified, adaptive 
hash join method that is designed to work with dynamic 
changes in the amount of available memory. The 
general idea of the algorithm is to regulate resource 
usage of a hash join in a way that allows it to run con- 
currently with other applications. The algorithm 
provides good performance for a broad range of 
problem sizes, allows to join large tables in a small main 
memory, and uses advanced I/O controllers with track- 
size I/O transfers. It has been implemented as a 
prototype in Nonstop SQL, a DBMS running on Tan- 
dem machines. 

1. Introduction 

A variety of hash join implementations has shown that 
hash joins are the method of choice for equi-joins, if no 
indices are available on join columns and if the join 
result does not need to be sorted on the join columns. 
Most of these implementations have been done on 
database machines or in research environments. This 
paper addresses the problem of performing hash join 
algorithms in a multiuser environment on a multi-pur- 
pose computer. In such an environment it is very dif- 
ficult to assign a static amount of memory to a process 
performing a join, especially if this process needs sub- 
stantial amounts of memory. In addition to this, over- 
flow handling is a problem area in hash join algorithms. 
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Ovefflow of a hash table can result from an incorrect 
estimate of the query optimizer or from a lack of 
memory at rnntime. By introducing dynamic decisions 
about bucket partitioning (as done in the GRACE join 
[Kits83]), better performance for overflow cases can be 
achieved. Finally, acceptable performance should be 
possible in the worst case, where data are extremely 
skewed. 

The paper develops the algorithm as follows: Section 2 
expresses join cost in terms of CPU cycles, I/O opera- 
tions and main memory consumption. Section 3 discus- 
ses hash access strategies for main memory hash tables, 
and section 4 introduces the adaptive hash join algo- 
rithm. 

2. Execution Cost for Different Join Algorithms 

It is well known, that simple nested loop joins on un- 
clustered attributes have CPU cost in the order of u2 
and that sort/merge joins reduce this cost to n log n. To 
be able to be more precise, we will make the following 
assumptions: 

9 Let R, S be base relations, containing n tuples each, 
stored in b blocks each on a disk. The block size is 
B. 

l In the following we assume a join of R and S which 
could be expressed in SQL as 

SELECT * 
FROM R, S 
WHERE R.r = S.s; 

The join result consists of n tuples, where each 
tuple of R is joined with exactly one tuple of S. Only 
equi-joins are considered in this paper, since hash 
algorithms are not efficient for arbitrary joins. 

l Assume that there are no indices (and no cluster- 
ing) for R.r and S.S. 

These assumptions describe a join which cannot make 
use of index structures and which is not a degenerated 
case, where the join result consists of either 0 or n2 
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tuples. R and S are of the same size to make the cost 
formulae simpler. 

A Simple Nested Loop Join will scan the outer relation 
sequentially and will do a full scan of the inner relation 
for each tuple read from the outer relation. This results 
in n + n2 read operations (n for the outer, n2 for the 
inner relation). This formula expresses the cost in terms 
of CPU cycles. In a simple algorithm, this would need 
b + n * b disk I/O operations. This can be reduced 
substantially by adding a loop over the blocks of the 
tables and by performing a set of nested loop joins for 
each pair of blocks in the inner and outer table. This 
reduces the number of I/O operations to b + b2. 
However, any ordering in the inner and outer table is 
destroyed. 

In its simplest form, the algorithm uses a constant 
amount of main memory, it needs just two block buffers, 
one for the inner and one for the outer relation. Intro- 
ducing a database bulgr could reduce the I/O opera- 
tions to 2 b, if b + 1 block buffers (1 for the outer, b for 
the inner relation) are available. The number of CPU 
cycles remains unchanged. 

The minimum amount of main memory needed by 
Sort/Merge is three disk block buffers, because in the 
sort phase, two input buffers and one output buffer are 
needed. The CPU cost for a sort/merge join is deter- 
mined by the sort cost for the participating tables plus a 
linear cost for performing the actual merging. Depen- 
dam on the memory size, it may be possible to keep one 
or both participating tables in main memory after they 
have been sorted and therefore to save I/O operations 
for writing temporary files. Fig. 1 shows a qualitative 
cost function for disk accesses as a function of the 
amount of memory available. 

j A simple hash join is performed in two phases. In the 
building phase, the inner relation is hashed into main 
memory. The join attributes are used as a hash key. For 
now, assume a very simple algorithm with no overflow 
handling, requiring that the entire inner relation fits in 
main memory. After this, the second phase called prob- 
ingphzse is performed. In the probing phase, the outer 
relation is read sequentially and for each record in the 
outer relation the matching records in the inner relation 
are retrieved. Probing can be done at a constant cost, 
because the inner relation is now in memory and has a 
hash access path on the join attributes. 

Since base relations are read only once and no tem- 
porary relations are needed, this algorithm uses 2 b disk 
accesses. It also needs b + 1 block buffers (size B, not 
counting the fragmentation overhead of the hash table) 
in main memory to keep the whole inner relation and 

one buffer for the outer relation. This is similar to a 
nested loop join, when the inner relation is in the 
database buffer, but it needs less CPU cycles, because a 
hash access is done to the inner table rather than a se- 
quential search. Since hash methods work - nearly - in- 
dependant of the size of the hash table, the join cost 
contains four linear components for reading the inner 
table, hashing it, reading the outer table and probing 
into the hash table: 

O(COSt Simple Hash Join Cost) = O(4n) = O(n) (1) 

In the world of Hash Joins, there are many different 
methods of coping with insufficient memory. The 
methods we would like to introduce here are GraceJoin 
and Hybrid Hush Join. In a Grace join, the inner &a- 
tion is divided into buckefs, each of them small enough 
to fit in main memory. The outer relation is divided in 
the same way, however, the size of the outer buckets 
does not matter. The buckets are stored in disk files and 
then processed sequentially. Because inner and outer 
relation are written into a temporary file once, 6b disk 
accesses are needed (read R, S, store Rtemp, Stem,, read 
Rem,, Stemp 1. 

If k + 1 represents the number of disk blocks that will 
fit in memory, then a bucket cannot be larger than k 
blocks and the optimal partitioning of the inner and 
outer relations in the building phase is to partition them 
into b/k buckets. This will require b/k input and output 
buffers. Given the fact that b/k blocks are needed in the 
fist phase, and k blocks are needed in the second phase 
of the join, the challenge is to find the value for k, where 
the memory consumption max(b/k,k) is minimal : 

Memory needed = min(max($, k)) =J/$ (2) 

The CPU cost is independant of the actual amount of 
memory available, if the overhead of switching between 
pairs of buckets is neglected. 

The Hybrid algorithm, described by Dewitt and Gerber 
[DeWi851, introduces a dynamic decision between 
Grace and Simple Hash Join. For memory sizes be- 
tween fl+ 1 and b + 1, the Hybrid join performs a 
continuous transition between Grace and Simple Hash 
Join. This is achieved by using the excess memory not 
needed by the disk buffers to store a variable number of 
tuples (this becomes the first bucket) in main memory 
rather than in a disk file and therefore reducing the 
number of disk I/O operations continuously, as seen in 
Fig. 1. 
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In a Hybrid Join, main memory is split into n block buf- 
fers for creating II buckets on disk and in an area of size 
r (in blocks) to build the hash table for the fmt bucket. 
This changes when the temporary files on disk have 
been built and buckets 2 . . . n + 1 are processed. Then 
one bucket is hashed in main memory (using up to k 
blocks) and one input buffer for the outer relation is 
used. If we assume optimal memory utilization, the first 
bucket has the maximal size of r = k - n and the n 
other buckets are also of maximal size k. In this con- 
figuration, the number of disk I/OS is the number of 
reads for the participating tables plus the I/OS for writ- 
ing and reading the buckets 2 . . . n+l to a temporary 
file: 

#DiskYOs=2b+4(b-r) (3) 

The r blocks of the first bucket (assuming that buckets 
in inner and outer relation are of the same size) are not 
written to the temporary file. Using the equations 
n k = b - r (the II last buckets are each as big as the 
available memory and have a total of b - r blocks) and 

needed by the output buffers for buckets 2 . . n+l), the 
number of disk I/Os in a hybrid join can be expressed as 

# Disk I/OS =6b-4k+4= (4) 

for values of fl I k I b. It should be mentioned, 
that - because the number of buckets must be a whole 
number - it is not always possible to achieve an ideal 
bucket partitioning. 

2.1. Comparison 

A comparison between Simple Nested Loop, 
Sort/Merge, Simple Hash, Grace, and Hybrid Hash 
Joins shows that hash joins are the algorithms of choice 
if a minimum of main memory is available for the opera- 
tion. The minimum amount of memory just grows as a 
square root function, so it is not too hard to meet the 
condition. Table 1 lists CPU cost, I/O cost and memory 
consumption for the different join algorithms and indi- 

r+n = k (the first bucket occupies all the space not 

Disk I/O 
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b + b* 

8b 

8b 

4b 

2b 
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. 
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(in disk block units) 

Fig. 1: Disk I/O vs. Memory Consumption (Qualitative) 
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cates whether temporary relations on disks have to be 
created: 

Join Type Memory CPU I/O Temp. 

ww Tables 
Simple 2 tin’) b2 no 
Nested loop b tin*) 2b no 
Sort/Merge o(n log n) 6b+4b log b yes 

& o(n log n) 8b yes 
b o(n log n) 4b yes 
2b o(n log n) 2b no 

Simple Hash b 000 2b no 
Grace Hash fl o(n) 6b yes 
Hybrid Hash fl...b o(n) 6b . . . 2b yes 

Table 1: Cost Functions of Join Algorithms 

2.2. Parallel, Hash Partitioned Joins 

Until now we always assumed that the join was per- 
formed by one processor. On a multiprocessor system, 
it is desirable to have several processors and probably 
several disks working on a join query. This is achieved 
by hash partitioning data between these processors 
[Gerb86]. Hash partitioning is independent of the join 
algorithm itself, but it is restricted to equi-joins. The 
principle of hash partitioning is to split a large join into 
p smaller joins. The p joins are independent of each 
other and can be executed in different processors. Ap- 
plied to the cost functions in the last section, the num- 
ber of records and blocks has to be divided by p to get 
the cost for one partition. The part of reading base relt- 
tions, however, cannot be done in parallel, unless the 
base relations reside on several disks (probably served 
by several processors). For algorithms with a fast grow- 
ing cost function, like simple nested loop, the gains with 
parallel execution are most visible. This is because 
dividing the problem into smaller problems of size l/p 
makes each smaller join run more than p times faster, or 
in other words, two processors may perform more than 
twice as fast than a single processor. Hash joins seem 
not to be accelerated as much by parallel execution, due 
to their linear cost function. They are, however, able to 
take advantage of multiprocessor systems in another 
way: if the main memory in one processor is not sufli- 
cient. hash partitioning between several processors can 
use more memory and thus reduce disk I/O. This can 
also result in a more than linear speedup. 

Common problems with parallel algorithms are conten- 
tion on shared resources and communication costs. In 

so-called Shared Nothing Systems (Tandem, Teradata, 
GAMMA), communication costs mainly determine the 
overhead for parallelism. Contention is not a big 
problem, because after the partitioning phase, every 
processor works on its local copy of the data. As men- 
tioned, the partitioning phase can only be done in paral- 
lel, if data are stored on several disks. The amount of 
data to be sent is less or equal to the size of the base 
relations (some projections and selections may be ap- 
plied before sending the. data). lf we assume blocks of 
equal length for messages and disk I/OS, then the com- 
munication overhead depends on the selectivity factors 
and the quotient of message cost and disk l/O cost. In 
typical Shared Nothing Systems this quotient is low 
(elapsed time / message c 0.3 * elapsed time / I/O) and 
therefore the overhead is acceptable. 

2.3. Influence of Join Selectivity and Skew 

Until now, the model was restricted to a join of two 
relations of equal size with a 1:l relationship between 
their records. Cost functions change if 1:n and n:m 
relationships are used and if relations of inequal size 
are introduced. Generally, for asymmetric algorithms 
like Hash Joins it is advantageous to have a small and a 
large relation. This is obvious because. only the smaller 
relation has to be kept in main memory and the size of 
the larger relation does not influence the amount of 
memory needed. Hence, even extremely large joins can 
be done very efficiently if the inner relation is small 
enough. On the other hand, merge joins perform worse 
under such circumstances because it is expensive to sort 
a very large relation. Nested loop joins are not very sen- 
sible to different sizes of inner and outer relation as 
long as the inner relation does not fit entirely in main 
memory. 

The kind of relationship in the join also determines the 
number of its result tuples. If join attributes am a key in 
at least one of the participating relations (1:l and 1:n 
relationships), there cannot be more result tuples than 
base tuples. If this is not the case (n:m), then the num- 
bcr of result tuples can grow quadratically, as a car- 
tesian product. In this case, it is impossible to compute 
join results in linear CPU time. Such a situation is often 
used as a strong argument against hash joins, because 
hash access methods am not designed to cope with 
highly skewed key distributions. On the other hand, a 
merge join will gradually degenerate into a nested loop 
join in such extreme cases. With an appropriate over- 
flow technique a hash join may actually be the most ef- 
ficient algorithm for highly skewed data distributions. In 
general, a merge join will be better, if the join selectivity 
is low, and a hash join will be better for high join selec- 
tivities. This is because for low selectivities a merge join 
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will need few repositionings in the participating files, 
while hash collisions can cause substantial overhead in a 
hash join. For skewed attribute values and low join 
select&es, bit vector filtering can be a big advantage 
and it can reduce the disadvantages of hash joins in 
these configurations. In [Schn89] it is stated that bit vec- 
tor filtering is also beneficial in most other cases. 

3. Hashing Strategies for Hash Joins 

3.1. Main Memory Hash Tables with Duplicate Keys 

Although they are relatively easy to implement, hashing 
strategies are an important aspect of hash joins. In the 
literature, several modifications of a standard hashing 
algorithm are proposed, giving a variety of methods 
with different time and space requirements. The 
general problems with hashing are non-uniform key 
value distributions and dynamic reorganization, if the 
number of records in a hash table increases or 
decreases significantly. Most of the proposed strategies 
assume that the hash method is used to create a primary 
access path on a disk file. For hash joins, neither the 
hash key is unique nor are the records stored in disk 
blocks’. While it is a big disadvantage to have duplicate 
key values, having all data in main memory can help 
make the implementation efficient. 

Fig. 2 shows the different stages of hashing in a parallel 
Grace or Hybrid Hash Join. First, the base relation is 
split into several partitions using a hash function to 
determine the partition number. Each partition is as- 
signed to a processor. For each partition, data records 
are again hash partitioned into buckets and stored on 
disk. Then one or more buckets at a time are read from 
disk and moved into an in-memory hash table. This is 
the third stage of hashing and the critical one because 
data are actually stored in main memory. The partition- 
ing into buckets is done for the purpose of avoiding an 
overflow of the main memory table. If two or more 
buckets are combined, because they lit into main 
memory simultaneouslyi this is called bucket tuning. 

In main memory, a certain number of hash chains are 
created. Tuples are assigned to exactly one chain by 

their hash values. Therefore, two tuples with the same 
key or the same hash value will always be in the same 
chain, while one chain can contain tuples with different 
key values and even different hash values2. With a good 
hash function and a uniform key value distribution, all 
chains will have approximately the same length. 

!Source Relation !Source Relation 
(may be partitioned) (may be partitioned) 

Partitions 

I 
Buckets 
1 Tuned Buckets 

I I I Hash Chains --- 

Hash chains are created for 
the inner relation only 

Fig. 2: Stages of Hashing and Bucket Tuning 

In a disk file with a hash access path, one disk block is 
usually used for storing the records of a hash chain. If 
the block overflows, different techniques may be ap- 
plied (e. g. to store the overflowing tuples in the next 
block). In main memory, however, it is not necessary to 
reserve a fixed amount of space for each hash chain be- 
cause there are no block accesses to be minimized. The 
tuples of a hash chain may be connected by a linked list 
instead, if a pointer field is attached to each record. 
Tuples can then be stored adjacent in a heap in their se- 
quence of arrival. However, to access the head of a hash 
chain, an array of chain anchors has to be allocated. 

1) The bucket files used by Grpce and Hybrid Joins are not hash tables. They just contain all the tuples belonging to one 
bucket in an arbitrary sequemx. When a bucket fde is read back into main memory. the actual hash table is built. 

2) In all pattitioniog stages. the same HASH function can be used, while three different SPLIT furwtioos can be used to 
generate partition. bucket and chain numbers in the appmpriatc raoges. Usually, the modulus operator is used as a split 
function. 
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With this technique, the hash structure becomes less 
sensitive to skewed data because hash chains may be of 
arbitrary length without any overflow handling. The 
portion of the hash table used to store tuples is a com- 
pact section growing linearly as more and more tuples 
are inserted. Only the table as a whole can overflow if 
its size exceeds the memory size. 

Another critical parameter is the number of hash 
chains, because this also determines their length. Since 
only one pointer is needed per hash chain, it may be 
economical to make the chain anchor array relatively 
large, so that chains have only a few records. A typical 
chain anchor array might use from 1 95 to 10 % of the 
hash table (4 byte/anchor, 100 byte&cord, 4 
records/chain). 

The transfer of tuples from main memory to the tem- 
porary bucket file should not involve record-by-record 
moves. Instead, it is desirable to have the same data 
representation in the bucket file and in main memory. 
Since records are kept in linked lists, they can be stored 
anywhere. Fig. 3 shows a hash table using block buffers 
for both resident and non-resident buckets’. 

records 

output buffer to bucket file 
(shared by several buckets) 

block header 
I . 

disk block 
I 

Fig. 3: Using Block Buffers as Memory Allocation Unit 

This storage method allows buckets to be swapped out 
dynamically, if it becomes necessary. Also, it is not 
necessary to write any buffers to the bucket file, until 
the available memory is exhausted. Up to that point, all 

buckets are kept memory-resident in linked lists of 
block buffers. While a bucket is swapped out to the 
bucket file, the link pointers between buffers am 
replaced with tile positions. This allows storage of buf- 
fers in random order on the bucket tile, or to share one 
file among many buckets. 

Fig. 3 also shows, that several buckets may share one 
buffer. This refers to the algorithm described later in 
this paper. 

3.2. Hashing in Virtual Memory 

In a multiuser system, it may not be desirable to reserve 
large amounts of main memory exclusively for hash join 
purposes. Therefore, the hash table must reside in vir- 
tual memory and may be partially written out to a swap 
file. Generally, the performance of a hashing strategy 
will suffer dramatically from page faults, because the 
access patterns in the hash table do not show locality 
and therefore no replacement algorithm (like LRU) for 
main memory pages will work satisfactorily with hash 
tables. So, only a small number of page faults can be ac- 
cepted. If hash chains are stored in linked lists, many 
memory pages may be accessed while following one 
hash chain. This can increase page fault rates, if main 
memory is scarce. 

The dense packaging due to hash chains implemented 
as linked lists is a very desirable property for main 
memory hash tables. It is also helpful, that the linked 
hash chains do not need to be contiguous, because no 
address computations are ma& in them, except for the 
chain anchor array. Big gaps inside a hash table may in 
some operating systems cause large swap files to be al- 
located, wasting disk space resources. To determine the 
amount of paging disk I/OS acceptable for a hash join, it 
should be considered that paging I/OS are random aces- 
ses on the paging disk, while file I/OS of sort/merge and 
hybrid joins have sequential access patterns. For this 
reason, join file ID can make use of large block tmns- 
fers to disks, while paging IJO usually uses blocks of 
small or medium size only (0.5 . . . 16 KB). 

In many operating systems, there is no safe way to 
determine the current amount of ‘free’ main memory. 
So, it would be desirable to have a join algorithm being 
able to dynamically adjust the hash table size. while the 
join is already in progress. This adjustment can be 

1) Fii. 3 does not show the actual hash chains (the linkages between records and the pointer array). The shown array c4 budc- 
et pointen has one entry per bucket and is therefare much smaller than the chain anchor array. 
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driven by a measurement of the number of page faults 
during the join process. The next section of this paper 
describes an extension to the Hybrid Join algorithm 
which is designed to cope with this and other problems. 

4. An Adaptive Hash Join Algorithm 

There are two principal input parameters to a hash join 
algorithm: the size of the inner relation and the avail- 
able memory. Unfortunately, these parameters cannot 
always be determined exactly at the time the join starts. 
Memory availability in a multiuser environment changes 
continuously, if no memory can be locked by the 
process, and the size of the input relation often depends 
on selectivity factors of predicates. Therefore, the algo- 
rithm described in the following reacts dynamically to 
changes of these input parameters. Possible reactions 
are: 

4 swapping some memory-resident buckets out to the 
bucket file, 

b) 

cl 

dynamically splitting buckets into smaller ones, 

changing the transfer size (and therefore the buffer 
size) of temporary file reads and writes. 

In a Hybrid Join, data are hash partitioned three times 
as shown in Fig. 2. However, no bucket tuning takes 
place. This is, because a Hybrid Join is designed to use 
only a few disk buffers for partitioning the data into 
buckets. The rest of the memory is used in this phase to 
build the hash chains for the first bucket (which may be 
of different size than the others). If enough main 
memory is available to hold all the data, no bucket files 
on disk are created and the bucket partitioning phase is 
skipped completely. 

The Adaptive Hash Join differs from a Hybrid Join in 
the following way: 

l All buckets have the same size. Initially, all buckets 
are memory-resident. If not enough memory is 
available during the process of building the inner 
hash table, buckets are written out to the bucket 
file, until enough memory is freed up. Therefore, 
several buckets may be memory-resident at the 
same time. 

l Initially, a multiple of the number of buckets that is 
presumably needed is allocated. This allows bucket 
tuning. However, to save buffer space, several 
buckets share one block buffer. Recall that block 
buffers are used to hold memory-resident tuples as 
well as to serve as output buffers to the bucket file. 

Allocation of an excess of buckets and sharing buf- 
fers outweigh each other, so that the total nwnber 
of buffers is approximately the same as in a Hybrid 
Join. In the following, a set of buckets that share a 
buffer will be called a clusrer. Clusters may be split 
dynamically, if they receive more than the estimated 
number of records. 

. The hash table is allocated in virtual memory. The 
algorithm continuously determines a maximum size 
M of its working set to avoid excessive page faults. 
This can be done by monitoring the number of page 
faults that are caused by the process. Initially, M is 
set to a value depending on the global CPU load. 

We are now able to describe the Adaptive Hash Join 
Algorithm: 

1. At the beginning of phase 1 of the join, the B buck- 
ets are divided into B/C clusters. For each cluster, a 
buffer of size S is allocated. The initial values of B, 
C and S are determined on estimates made by the 
query optimizer. B never changes throughout the 
join process, but the number of clusters, the default 
buffer size S and the memory size M may vary 
during the join. The initial value for M is deter- 
mined by the operating system. If B/C l S > M 
(there is not enough room for all the buffers), then 
S is decreased accordingly. If the minimum for S is 
reached (minimum transfer size for a disk I/C), then 
B is set to max((M/S),l) and C is set to 1. 

2. Records are read from the building relation and 
partitioned into buckets. Each record is stored in 
the buffer that is allocated for the bucket’s cluster. 
This is repeated, until all records are read or a buff- 
er becomes full. If all records are mad, the algo- 
rithm continues with step 9. 

3. If a buffer overfIows, a new value of M is deter- 
mined by the operating system. If part of the 
bucket’s cluster is already swapped out, then the 
buffer is written to the bucket file and cleared and 
the algorithm .proceeds with step 7. 

4. If enough memory is available, and the bucket’s 
cluster is not yet swapped out to the bucket file, 
then a new buffer of size S is allocated and inserted 
into a linked list of buffers for the cluster. If not 
enough memory is available to allocate a new buffer, 
then clusters are swapped out, until enough space is 
available. Swapping out a cluster is done by writing 
all its buffers to the bucket file and deallocating the 
buffers in memory - except the last one, which will 
serve as an output buffer to the bucket fde. 
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5. If all clusters are swapped out and there is still not 
enough memory available, the default buffer size S 
is decremented. Existing output buffers are shor- 
tened to the new size, until enough memory is avail- 
able or the minimum size of S is reached. Note that 
this indicates, that there is not even enough foam to 
hold just the output buffers to the bucket file. 

6. If still not enough memory is available, this is ig- 
nored. This is possible, because the algorithm per- 
forms in virtual memory. Restriction of memory 
usage is done for performance reasons only. 

7. Then, a cluster overflow check is performed. If the 
cluster consists of more than one bucket and if it 
contains more records than would fit into memory 
of size M, then the cluster is split into two smaller 
clusters, using separate buffers. Already existing 
buffers of the old cluster (residing on disk) remain 
unchanged, they now contain tuples from more than 
one cluster. For the allocation of the new buffer, the 
same heuristics as described in steps 4,5 and 6 are 
applied. 

8. If the cluster overflows, but consists of only one 
bucket, then the overflow is ignored at this point of 
the algorithm. This situation will be solved in step 
11. Continue with step 2. 

9. After all tuples of the inner relation have been read, 
the next phase of the join starts: Read the outer 
relation. Partition the outer relation into clusters in 
the same way as the inner relation. For each record, 
determine the cluster which will contain the match- 
ing inner records. If the cluster is memory-resident, 
join this record immediately, otherwise store it in 
the according bucket file of the outer relation. 
Repeat this, until the end of the outer relation is 
reached. Note that the outer relation is partitioned 
according to the final partitioning of the inner rela- 
tion. No dynamic change of the partitioning schema 
takes place. 

10. Determine the actual value of M. Read as many 
clusters from the bucket file as fit in memory. 
Create the hash chains for these tuples. If there are 
no more clusters, the join is completed. 

11. If not even one cluster fits into memory, then read a 
part of the next cluster and build the hash chains. 
Save the rest of the cluster for the next execution of 
step 10. 

12. Read the matching cluster from the outer relation 
and perform the join (record by record, accessing 
the inner relation using the hash chains). Go to step 
10. 

In cases, where a constant (and sufficient) amount of 
memory is available and where the actual size of a buck- 
et does not exceed its expected size, steps 2, 3,4,9 and 
12 approximately describe a Hybrid Join. Steps 6 and 8 
will have to be replaced by another overflow strategy in 
a Hybrid Join. Steps 1,3,4,5,6,7,8, 10 and 11 contain 
dynamic decisions based on runtime parameters that 
can change during the join process. The strategies a), b) 
and c) mentioned earlier are implemented by steps 4, 7 
and 5. 

In the following, a few scenarios will be discussed. The 
varying parameter will be the actual number A of tuples 
in the building relation, compared to the estimated 
number of tuples, E. This will show that acceptable per- 
formance will be obtained in all cases, making the algo- 
rithm suitable to be used as a standard method, like 
Sort/Merge. An estimate of the number of records in 
the inner table will be supplied by the query optimizer. 
This estimate may be derived from statistical informa- 
tion and can therefore be much lower or higher than the 
actual number of records in the inner table: 

l E >> A: 

If the estimate of the record count was much too 
high, there will not be enough records in each 
cluster to fill one disk buffer. Main memory will be 
utilized badly, because many buffers that are f&d 
only partly will be allocated. The real effect is not 
so bad, however, because main memory is divided 
into pages and many pages fit into the unused por- 
tions of a large disk buffer. These unused pages do 
not occupy physical memory, they only use virtual 
memory space. Gn the other hand, it is now pos- 
sible to perform bucket tuning and less than the es- 
timated number of iterations of steps 10 through 12 
are necessary. 
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array of bucket block buffers 
pointers (of different size) 

Fig. 4: Adaptive Configurations 

l E>A: 

If the estimate was somewhat too high, more 
clusters than expected will be kept memory-resi- 
dent. Fewer buffers could have been used, there- 
fore some memory space was wasted. 

duced, hecause the common part of the split 
clusters is read several times from disk in step 10. If 
this would cause some blocks to be read more than 
three times, then it is more efficient to repartition 
the shared part of the buckets in a separate step. 
The number of disk accesses is still limited to an ac- 
ceptable amount. 

l E=k l E<<A: 

If the estimate was about right, it was not necessary 
to allocate more buckets and to build clusters. The 
standard Hybrid algorithm avoids this, but the over- 
head doing it should be minimal. 

l E<A: 

If there are more records than expected, but still 
less than the maximum that can be handled using 
the available buckets, then some clusters will be 
split. The split clusters will still be small enough to 
fit in memory. However, some overhead is intro- 

If the estimate was much too low, then the clusters 
will be split, until they have no more than one buck- 
et. Even these buckets will be larger than the avail- 
able main memory. This will cause step 11 to be ex- 
ecuted. It is the only case, w$ere data from the 
outer bucket file are read more than once. This 
situation is described by [DeWi%S, Naka881 as Harh 
Loop Join. Hash Loop Joins w still have better 
performance than Sort/Merge gins, but they may 
also be more expensive. 
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l Skew: 

In case of attributes with very many duplicate 
values (e. g. “M” and “F” for sex), only some buckets 
will overflow and cause a Hash Loop Join. Basical- 
ly, the same rules apply to this case. The perfor- 
mance in comparison with Sort/Merge depends on 
the join selectivity. If many output tuples am 
generated, the Hash Loop Join will perform better. 
If only few tuples match the join condition, a 
Sort/Merge Join will need fewer disk accesses and 
will be faster. 

Fig. 4 is a graphical display of some of the scenarios. 
The lower right comer shows the critical configuration, 
where a very large relation has to be joined in a relative- 
ly small memory. In this case, the advantages of using 
large buffers are lost. The necessary cluster splits will 
also cause some performance degradation. The upper 
right comer shows a large table with sufficient memory. 
Buffers remain large and fewer cluster splits are neces- 
sary, because bigger clusters can be processed. On the 
left side of Fig. 4, the configurations for sufficient (or 
even too much) memory are shown. The algorithm will 
always try to keep the buffers to the bucket file as large 
as possible. This has a higher priority than keeping 
clusters memory-resident. Buffers are used for more 
than one I/O operation. If memory-resident clusters am 
written to the hybrid file, the data is only written once. 
Therefore, it is more efficient to keep a larger buffer 
space at the cost of less memory-resident clusters. The 
only case were space is wasted by output buffers is 
where too many clusters are allocated. 

An important question is, whether an Ada tive Hash 
Join performs with linear cost as long as 8 b buffers in 
memory are available, if the inner relation fits in b buf- 

fers. This can be easily answered with ‘yes’, if the large 
buffer size that is actually used in the algorithm is also 
used to compute the value of b. and if it is assumed, that 
no cluster splits take place and the amount of available 
memory remains constant. Even if the buffer sixe B is 
set to its minimum (depending on the actual disk sector 
size). linear performance will result, because step 1 of 
the algorithm will already decmase the buffer size to its 
minimum in this case. Only then it is possible to allocate 
all the output buffers. This proves, that the very impor- 
tant property of linear performance has not been 
sacrificed to get a more flexible overflow mechanism or 
to use largex disk blocks., 

On the other hand, an Adaptive Hash Join will also be 
able to perform with only two buffers of main memory. 
In this case, the number of buckets is set to one in step 
1 and the algorithm will perform like a nested loop join, 
with the exception, that the inner relation is unneces- 
sarily scanned and written to a bucket tile in the first 
phase. This is certainly a case that will have bad perfor- 
mance like all other algorithms, if the table is large, but 
adding very small amounts of memory will show big per- 
formance improvements: three buffers will already 
allow two buckets and therefore let the join perform 
four times faster. 

4.1. Performance Measurements 

Some preliminary performance evaluations have been 
done with an implementation of the adaptive hash join 
algorithm in Nonstop SQL, a DBMS running on Tan- 
dem computers. Figure 5 shows the results. The query 
measured is a join between two Wisconsin-style tables 
[Bitt831 on the uncluttered, non-indexed column 
uniquel. Each table is 7 MB large and contains 30,000 
rows. The parallel query execution feature of Nonstop 
SQL is not used. With a default buffer size of 28KI3, and 

Disk I/O transfers (MB) 
(excluding I/OS on base 28 
tables) 

n . 

n Sort/Merge Join 

Fig. 5: Measurement of I/O Overhead 
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an initial allocation of 21 clusters by the query optimizer 
the algorithm needs somewhat less than 700 KB to allo- 
cate all buffers with their full length. In this case, no 
buckets are kept memory-resident after the inner table 
has been read. 

In the configuration with only .3 MB of memory the buf- 
fers need to be shortened to 8 KB and cluster splits 
occur. The graphical display shows the amount of data 
transferred to and from the disks. In the case where 
only .3 MB of memory is available, the block size 
decreases by l/3, so that three times more transfers are 
necessary. Despite this fact the adaptive join still runs 
faster in terms of elapsed time than the merge join (791 
vs. 1260 set). Figure 5 also shows a reference point with 
a sort/merge join. 

CPU time consumption is nearly constant in all cases, as 
it is predicted in the first part of this paper. The adap- 
tive hash j * 

Y 
consumes in average 62 percent of the 

CPU time o a sort/merge join. Figure 5 does not show 
the I/O operations necessary to read the input tables. 

Elapsed 
. 

BOO- 

600- 

400 - 

200- 

I 
I I I I I I + 

min 1 2 3 4 
Working Set (MB) 

x sort/merge o adaptive hash l simple hash 

Fig. 6: Elapsed Time vs. Memory Size 

Fig. 6 shows the elapsed time for joining 10,000 rows of 
a Wisconsin dation in dependency on the ‘working set’ 
size in virtual memory (available physical memory for 
this process). For working set sizes below 2 MB (the 
size of the inner table) the performance of a simple 
hash join decreases dramatically, while sort/merge join 
and adaptive hash join only show a slight change in 
response time. The NonStop SQL implementation does 
not behave exactly as described in the previous sections. 
Instead, its mininal memory consumption is somewhat 
higher than the theoretical minimum. Therefore, a 2MB 
relation is not yet big enough to cause a hash loop join. 

5. Conclusions 

Hash Joins have linear cost, as long as a minimum 
amount of memory is available. This minimum is 
proportional to the square root of the size of the inner 
relation and proportional to the buffer size used for 
transfers to the hybrid file. We described an algorithm 
that will use large transfers to disks, as long as enough 
main memory is available, but will not reduce the maxi- 
mum number of tuples, which can be joined in nearly 
linear cost. To be able to process relations of any size 
with acceptable performance, a set of adaptive overflow 
techniques was introduced. To make it possible to run 
this algorithm in a multiuser environment without major 
interference to other users, the amount of memory 
being assigned to a join process can be adjusted 
dynamically while the join is executing. This is especial- 
ly important, if large join queries are performed concur- 
rently . with interactive (OLTP) applications. 
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