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Abstract 
An analysis of mirrored discs and of RAIDS shows that 
mirrors have considerably better throughput, measured as 
requests/second on random requests of arbitrary size (up to 
IMB). Mirrors have comparable or better response time for 
requests of reasonable size (less than 1OOKB). But mirrors 
have a 100% storage penalty: storing the data twice. Parity 
striping is a data layout that stripes the parity across the 
discs, but does not stripe the data. Parity striping has 
throughput almost as good as mirrors, and has cost/GB 
comparable to RAID5 designs -- combing the advantages of 
both for high-traffic disc resident data. Parity striping has 
additional fault containment and software benefits as well. 
Parity striping sacrifices the high data transfer rates of RAID 
designs for high throughput, It is argued that response time 
and throughput ate preferable performance metrics. 

l.Introduction 
Disc arrays have traditionally been used in supercomputers to 
provide high transfer rates by reading or writing multiple 
discs in parallel [Kim]. Rather than getting 2MB/s from a 
single disc, applications are able to read or write N discs in 
parallel by striping data across the discs thereby getting a 
transfer rate of 2NMB/s. 

n Host 

zigure 1: Striping data across three discs of E blocks each forms 
me large logical disc of 38 blocks. A sequential read or write of 
iata DO, Dl. D2 can proceed in parallel at three times the data 
ransfer rate of a single disc. 
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The striping unit can be a bit, a byte, a sector, a page, a 
track, or any larger granule. If the striping unit is a block, 
then the ith logical block maps to physical block fi/Nf of 
disc i mod N. The whole array of N discs is treated as a 
single large fast disc. Reading or writing the group of N 
blocks {DNi, DNi+l,...,DN(i+l)-I] can be done in parallel 
using a single disc rotation. If the read is not aligned to an 
N block boundary, or if the read involves more than N 
tracks, then multiple disc rotations will be required to 
complete the read. 

In the last five years, the idea of using part of the array 
capacity to mask discs failures has become quite popular. 
The most common example of this parity approach is found 
in the IBM AS400 [AS400]. The idea is most clearly 
explained in [Patterson] which coined the term RAID 
(Redundant Arrays of Independent Discs), and discussed 
several design alternatives. A typical data layout of a RAID5 
disc array is as follows (see Figure 2): 
. Sacrifice (&)th of the disc space to parity by acquiring 

N+I discs of B blocks each. 
. Logical block i maps to physical block ,!;/N] 

of disc (i mod (N+l)+j), for i = OJ,.., NB-I 
wherej =OifimodNcirrwd(N+I) elsej=l. 

l The parity block Pi for logical blocks 
iDNi,DNi+I,...PN(i+I)-l} 
is block i of disc i mod (N+Z).l 

:igure 2: The RAIDS approach to striping data and parity on three 
lists of E blocks each. The parity blocks are labeled by PO, 
‘l,... while the data blocks are labeled DO, Dl,..., D(2B-1). The 
,esulting logical disc has 28 data blocks protected by B parity 
flocks. Parity block Pl is maintained as D2 XOR D3. A read of 
lata DO, Dl. D2 can proceed in parallel at three times the data 
ransfer rate of a single disc, while a write of DO and Dl CSII proceed 
tt twice the rate while writing PO = DO XOR Dl in parallel. 
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This mapping creates a helical pattern of parity running 
through the disc array (see Figure 2). Requests to the logical 
disc are spread among the N+I physical discs. Small 
requests involve only one or two discs, while multi-block 
requests may involve several discs and benefit from the sum 
of their bandwidth. 

A RAID disc controller protects against damaged blocks and 
disc failures as follows (see Figure 3): 
l When reading the logical group of blocks 

{DNi, DNi+l,...,DN(i+l)-I}, if any single block is bad 
(based on ECC or device error), that block can be 
reconstructed by the XOR (exclusive-or) of the good 
blocks with the corresponding parity block. 

l When writing any subset of the logical group of blocks 
{DNi, DNi+l,...PN(i+I)-119 the C~~CSPOnding In% PCUitY 
block must also be computed (XOR of the logical blocks) 
and written. 
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:e 3A : The data flow of writes; n RAID showing the read ling of 
12 parity and old data from disc to compute the new pa@. This 
an easily be done in one rotation, as the discs rotate if the spindles 
re synchronized. If the spindles are not synchronized, the data 
lust be buffered, but the parity can still be computed in one 
otation. The new data and parity are then written during the second 
otation. 

L 
Cgure 3B: The data flow of a read of a damaged block from I 
MID. The value of damaged block D4 can be reconstructed fron 
he other diis (D4 = D5 XOR IQ). 

Traditionally, fault tolerant-disc storage has been 
implemented using duplexed discs (aka. mirrors (Tandem) or 
shadows (DEC)) [Katzman]. The idea of mirroring is to 
tolemte any single fault by using dual ports, dual controllers, 
dual paths, and dual discs which store exactly the same data. 
When data is written, it is written to both discs. When data 
is read, it is read from either disc. If that read fails, the other 
disc is read and the bad-spot on the first disc is spared and 
rewritten. 

rlq% 
Figure 4: The mirrored disc approach 

3r 1 

to fault-tolerant storage places 
identical data on a pair of diii, accessible from fault-tolerant hosts 
via dual disc controllers and via four data paths. This gives a single 
logical disc of B blocks. Reads go to either copy of the data, writes 
go to both copies. * 

Mirrored discs have a major drawback: cost. If you buy 
2N discs of B blocks each, you can oniy store NB blocks of 
data, a 100% storage overhead. In addition, a write intensive 
application must write each update to two discs and so pays a 
100% write penalty. Actually, it is slightly worse than 
100% since one must pay for the longest seek of two disc 
arms. These arguments seem a high price to pay for reliable 
storage, and explain the interest in RAID systems. 

There are some mitigating circumstances that make mirrors 
slightly more attractive: random reads of blocks Bi and Bj 
can seek, rotate, and transfer in parallel. So, for read 
intensive applications mirrored discs give approximately 
twice the throughput of a single disc. In fact, due to the 
shortest-seek optimization, mirrored discs may give slightly 
better than twice the performance of a single disc on read 
intensive applications [Bittonl]. 

Figure 2 paid no attention to processor failures, path failures, 
or controller failures. But controllers are no more reliable 
than discs these days. In fact, a truly fault-tolerant RAID 
design should look like Figure 5. In order to tolerate single 
controller failures, the host must be able to ask the second 
controller to retry the write. The issue of controller failures 
has not been discussed in the literature, but it is essential to 
making a fault-tolerant store. In addition, fault tolerant disc 
arrays are generally configured with a spare drive which 
receives a reconstructed copy of the failed drive within a few 
hours of the failure -- this is generally called an N+2 array 
scheme, The standby spare minimizes the repair window, 
and so improves the array mean time to data loss [Schulzel., 
With a correct implementation of these two issues, an N+2 

149 



disc array offers fault-tolerant storage comparable to mirrored 
discs but with high data transfer rate and approximately a 
40% cost savings measured in $/GB (for a 10+2 army). 

Figure 5: The RAIDS approach configured for single-fault tolerance. 
Ilk includes dual processors and dual controllers along with four 
paths to each disc so that there is no single point of failure. In 
addition, to deal with controller failures. the controller must have a 
“retry interface” that computes new parity from the new data and 
Fromunalfecteddata. Asparediscisconfiguredsothatafaileddisc 
XII be quickly reconstructi Otherwise. the failure of a second disc 
NIL the array will result in lost data Generally, arrays are configured 
with eight or more drives to amortize the cost of storing the parity 
cross many drives and the high fixed cost of the dual controllers. 
kt this article, we assume a 12-drive complex. 

The retry logic to deal with controller and path failures is 
best described by the case of writing a single block Di.2 If 
the write fails, the disc contents of block Di and its parity 
block Pj are suspect (may have been partially written). The 
host asks the second controller (Figure 5) to retry the write 
of Di. Retry is a special controller operation which 
computes the new parity by reading all other blocks of the 
stripe (all except old Di and old Pj) and XORing them with 
with the new data block Di to produce the new parity block 
?j (see Figure 6). During the second rotation, the controller 
mites the new data and new parity blocks (Di and Pj.). This 
,dea easily generalizes to multi-block writes. 

re 6 I: The retry lc and 
&troller faihnes:Th~ second controll~reads and XORithe 

mdamaged blocks with the new data to compute the new parity; all 
n one rotation. Contrast this to Figure 3.A which reads old D4 
md old parity. 

2 This retry logic is new. It works for parity stripe and RAIDS 
arrays. Making RAID W&S atomic (d or nothing) has been a 
major sticking point for some database applications. 

2.Why Striping and RAID Are Inappropriate for 
OLTP Systems 
The RAID idea has caused most computer designers to 
reexamine their disc subsystem architecture. As a result the 
classic disc striping idea is excellent for supercomputers and 
has been added as an option for the scientific community in 
IBM’s MVS, Amdahl’s Unix, and DEC’s VMS. But the 
surprising result is that the business applications community 
(e.g. databases) have generally concluded that RAID is not 
appropriate for their applications because they don’t need the 
bandwidth, they don’t need the extra storage capacity, and 
they cannot afford to use several disc arms to service a single 
request. These three surprising observations are elaborated in 
the next paragraphs. 

Why they don’t need the space: As Gelb points out 
[Gelb], most IBM disc farms are 50% empty: 25% is 
unused to allow files to grow, but another 25% is 
unused because putting too much data under a disc arm 
results in long queues of requests for that data. If these 
customers could buy infinite capacity discs for the same 
price, most would not be able to put more than a giga- 
byte of data under each disc arm. So that is why they do 
not need extra space -- they can’t use it3. 

Why they don’t need the bandwidth: 
Supercomputers may be able to absorb data at 4OMB/s, 
but most computers cannot. First, the IO channels of 
most computers run at lMB/s to SMB/S burst rates, and 
actual data rates are typically half that. So the array 
controller cannot deliver data to the host or application 
very quickly. One way to circumvent this is to do the 
striping in the host: the processor reads via multiple 
channels in parallel. This is how the IBM, Amdahl, and 
DEC implementations of striping work. In such a 
multi-channel design the host becomes the RAID 
controller and does the parity work. Having the host 
compute the XOR of the data is expensive in host 
processing cycles. In fact the host implementations 
mentioned above do pure striping for bandwidth rather 
than maintain RAID parity. Perhaps more to the point, 
most applications cannot scan structured data at 4OMB/s. 
Scans, sorts, and other structured access to data typically 
process a few thousand records per second [Schneider]. 
At 100 bytes per record and lk instructions to process 
each record, a 1OMIP processor consumes data at lMB/s 
_- well below current device speeds of 4MB/s. So, the 
bottleneck for Cobol and SQL applications is not disc 
transfer rate, unless they are running on processors of 
SOMIPS or more, and have IO channels rated in excess 
of SMB/s. Device speeds are likely to improve as 
processors become faster, so only limited degrees of 
striping will be needed.4 

3 Since this study was done (1984). IBM has twice doubled the 
storage capacity under each disc arm. Presumably, this extra 
capacity has gone unused in many applications. 
4Software parallelism is often used to exceed these rates. Examples 
of this are Teradata, Gamma [Schneider], and Nonstop SQL. 
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Why they can’t afford to use several disc arms 
on a single request: Disc service time on typical 
commercial, timesharing, and transaction processing 
applications is 50% queueing, 17% seek, 17% rotation, 
and 17% transfer [Scranton]. A RAID slaving all the 
disc arms together reduces the transfer time, leaves the 
seek almost unchanged, doubles the rotation time on 
writes, and makes the queueing much worse (since there 
is only one service center rather than N+2 service 
centers). As pointed out above, most commercial 
applications are disc-arm limited; customers buy discs 
for arms rather than for giga-bytes. If, as in RAIDS, the 
array does not slave the arms together and allows small 
transfers, then the array still consumes more arm 
resource because a RAID5 seek involving M of the N 
arms is much slower than a l-arm seek (see [Bitton] or 
Figure 9). More importantly, RAID5 writes require an 
extra rotation; thereby adding 34% (17ms) to write 
service times and driving up device utilization and 
queueing [Scranton]. Figures 10, 11, and 12 quantify 
this argument in terms of requests/second processed by a 
disc array vs the same hardware configured as a mirrored 
-Ye 

In fairness, this discussion focuses on traditional applications 
(ones that access structured records), rather than applications 
that simply move data in bulk (like image processing, real 
time video, and so on). In addition, it ignores utility access 
such as disc-to-tape copy and operating system program 
loading, dumping, and swapping. Each of these applications 
simply move the data and so are not processor limited; 
rather, they are limited by channel and device speeds. If the 
channels ran at more than lOMB/s, then these applications 
would benefit from the high transfer rate of stripe and RAID 
schemes. In fact, the software implementations of striping 
are cnrrently being used primary by scientific applications to 
quickly load images and tables into memory, and to swap 
large*spaces. 

In addition, we are assuming medium capacity discs (say 
lGB/drive), and consequently high activity on the disc arms. 
If we assumed four times smaller discs (say 250MB/drive), 
then the request rate per drive would be reduced by a factor of 
four and our arguments about buying discs for arms rather 
than for giga-bytes would be incorrect. If four small 
(3.4inch) discs and their associated power, controllers, and 
cabinetry have a price comparable to a single “large” (5.25 
inch) disc and its support logic, power and cabinetry, then 
the arm contention arguments above do not apply. However, 
we do not forecast the necessary 4:l price advantage for 
small capacity discs -- both device categories are likely to 
have small form factors (5.25 inch or less), and are likely to 
be commodity items. 

3. Parity Striping: Cheap Reliable Storage Plus 
High Throughput 
As explained above, many applications would be willing to 
pay 20% disc space penalty for reliable storage but they 
cannot afford to spend disc arm time. Parity striping is a 
compromise devised for such applications. A parity stripe 
system involves N+2 drives and involves parity much as the 
RAID schemes do. But the parity is mapped as large 
contiguous extents, and data is not striped across the discs at 
all. The basic idea is that an N+2 array of discs looks like 
N+l logical discs plus a spare (in a RAID5 scheme it looks 
like one logical disc with many independent arms). 

In a parity-striped disc array, if each disc has B blocks, the 
last P=B/N blocks of each disc are reserved for parity, the 
other blocks hold data (see Figure 7). So each disc has D=B- 
P logical blocks and P parity blocks. The data is mapped as: 
l Logical block i of disc j is physical block i of disc j 

for i = 0 ,... P-1; j = 0 ,... jV. 
l 

D+ (i mod P) of disc 

, _ -~- _ _ _-~e parity stripe approach Fie ItNth of each disc is dedicated as a parity zone, denoted Pi in the illustration, 

Spare 

le&ing N sligkly k&r k&al discs containing N data zones. Each data zone maps to a distinct parity zone on 
some other disc -- the color coding shows this mapping. Read requests to a logical disc involve only a single physical 
disc unless there is a failure. Write requests typically involve only one logical ulne and so only two physical discs: the 
data zone and its parity zone disc. So parity striping has diic utilization similar to mirroring. Each parity zone 
contains the XOR of all zones which map to it. As with RAID. a spare diic and multiple controllers are co&ured so 
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The complication of k in the above equation is needed to 
avoid a disc containing one of its own parity blocks -- if 
disc j fails, its parity must reside on the remaining N discs5. 

In the normal case all discs are available. When a read 
request arrives, it goes to a single logical disc and a single 
physical disc. When a write request arrives, it also goes to a 
single logical disc. That logical disc is represented by one of 
the N+l disc data areas and by the parity areas on the other N 
discs. The number of blocks on a logical disc (0) and and 
the number of blocks in the parity area (P) are large 
(typically lo6 and 16 respectively) compared to the number 
of blocks in a request (typically less than 10.) So most 
(99.9%) of the requests involve only one parity area. This 
means that virtually all write requests use only two disc arms 
-- much as writes to mirrored discs do. So parity striping 
gives the low-cost/GB of RAID with the low device 
utilization and consequent high throughput of mirrors -- the 
only penalties being the extra revolution needed for the 
writes to compute parity, and the more complex controller to 
compute the parity. 

As Chen argues [Chenl, one can configure RAIDS with very 
large striping units, say a cylinder of 1MB. In that case, 
almost all read requests to the RAIDS array will involve only 
one disc, and almost all writes will involve only two discs. 
But if smaller striping units are used , for example a 32KB 
disc track, then many multi-block requests will intersect the 
32KB boundaries and so will involve more than two discs. 
This logic seems to force a stripe size at least ten times the 
typical request size. Such coarse RAIDS configurations will 
have the same throughput characteristics as parity striping. 
But such configurations have almost completely abandoned 
the high parallel transfer rates, and have none of the other 
advantages of parity striping described later (fault 
containment, smaller logical discs, software migration). 

4. An Analysis of Mirrors, RAIDS, and Parity 
Stripe Performance 
The following is a fairly tedious analysis of the three 
designs. It is summarized in of Figures 10, 11, and 12. 
Analytic formulae are developed for the average device 
utilization and average zero-load response time of read and 
write operations. The analysis covers the no-failure case. It 
assumes an N+2 array .of discs configured as a RAID5 with 
spindle synchronization, vs the same discs configured as a 
parity stripe array with a spare vs the same N+2 disc 

N+2 
complex configured as 2 - mirrored pairs. The next section 

presents the performance of these three reliable storage 
configurations on a 10+2 array and compares them to the 
same 12 discs configured as a standard disc farm. 

5 To make the arithmetic simple, we place the parity seipe at the 
end of the disc. Since it is frequently written, an organ-pipe 
diittibution would probably placed it in the center cylinders to 
rninimk seek time [Hardy]. 

In order to compare the three designs, we assume discs have 
the properties of a “modem disc” as described in Table 1. 
Later we will consider how the conclusions change when a 
“future disc” is inhoduced. 

Table 1 Performance characteristics of hypothetical discs. 
Modem Disc lCh& &lure Disc lIQy&tj 

capacity: 1GR 
cylinders: 1000 7lEl 

block size: 1KB 1KB 
max~seelc 30ms 20ms 

rotate: 3600rpm 
transfer rate: 

device utiliz&on: 
uIIB/S 6MWS 

50% avg 50% avg 

The analysis assumes infinitely fast processors, channels, 
and controllers (so that the array parity computation time is 
zero). and assumes uniform access to data pages. At the 
beginning of each request, the arms are randomly arranged 
This models a typical multiprogramming mix. 
Disc seek time is a function of distance (cylinders traveled). 
For the modem disc traveling across 20% of the cylinders, 
the arm is constantly accelerating or decelerating and so is 
modeled by a square root function. Beyond 20%. it is 
modeled by a linear function. To within 5%. the seek time 
of Tandem’s XL80 discs is approximated by the formula: 
se+me(*J= 

ifdistance c cutoff then5+.64 dlstame F-- 
e,se 14 + distance - cutofl 

50 
where cutoff is 20% of the disc cylinders. Figure 8 shows 
how well the equation fits the observed seek behavior of 
these drives [Chanl . 

30 
1 

Seek Time vs Distance (ms vs cyl) 

0 1002&3004005006007008009001000 
Seek Distance (cylinders) 

$+re 8: Comparison of analytic seek time model and 
Ibsened. A maximum error (5%) occurs near 100 cylinders, 
otherwise the curves are almost identical. 

It is convenient to have a formula for the expected seek 
distance of A arms to one particular cylinder. Assuming 
each arm is initially randomly positioned [Bittonl] derives: 
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The table and chart for seek(A) on the “modem disc” of Table 
1 is: 

I EXPECTED SEEK TIME VS ARMS 1 
arms 

1 

expected seek 
cylinders 

333 

seek time (ms) 

17 

4.1. Mirrored Discs: The analysis of access to mirrored 
discs is taken from [Bittonl]. A read must seek one disc to 
the target cylinder. Ordinarily this would be seeR(Z), but 
using the closest arm reduces seeks to approximately l/6 of 
the surface rather than the l/3 typical of unmirrored discs. 
This takes approximately 13ms rather than the 17ms seek of 
a single arm disc. This is modeled as .8*seek(I) here, but the 
real equation is used in the spreadsheet and graph. After the 
seek, the disc must rotate half a revolution on average before 
the desired data comes under the disc read head. Finally, the 
transfer begins at the device transfer-rate and lasts for 
request~sizeltrun.$er~rute seconds. So the response time of a 
mirtoreddiscreadrequestisz 
mirror read time (elapsed seconds): (2) 

.8 l seek(l) + rotate12 + request~size!trm$er rate 
Since only one disc is involved in the transfer, this-is also 
the device-busy time. 
mirror read cost (disc seconds): (3) 

-8 l seek(I) + rot&et2 + reque~~sizehnsfer_rate 
Mirrored writes must seek both disc arms, then must wait 
half a rotation and then transfer. 
mirror write time (elapsed seconds): (4) 

seek(Z) + rotutel2 + request~sizeitrun#er me 
Since two devices (discs) are occupied during this t&e, the 
device-busy time is: 
mirror write cost (disc seconds): 0) 

2 l ( seek(Z) + rotaten + request~sizeltru@er_rare )) 
The analysis assumes that the two writes are done in parallel 
on spindle synchronized discs (rather than writing the first 
disc and then the second, sometimes called serial writes). 

4.2. Parity Stripe Discs: For parity striping, the read 
equations are almost exactly the same as for mirroring -- 
except that parity stripe reads do not get the shortest seek 
optimization of mirrors. parity stripe reads seek l/3 of the 
disc rather than the l/6 typical of mirrored disc reads 
IJMtonl]. The read equations arc: 
parity stripe read time (elapsed seconds): (6) 

seek(l) + rotateR + request-skeltr~er rate 
Since only one disc is involved in the transfer, this-is also 
the device-busy time. 
parity stripe read cost (disc seconds): (7) 

seek(l) + rotaten + request~sizeltrunsfer_rate 
The parity stripe write equations are more complex because 
the relevant parity disc(s) must first be read, the old data 
XORed out, the new data XORed in, and then the new data and 
new parity can be written in parallel as a unit. As argued 
before, all but .I% of the write requests involve only one 
parity stripe. So the analysis here just accounts for the 
common case. The write seek must move both arms as in 
the mirrored read. Then the disc must rotate .5 revolutions 
before the data begins. Then the disc must rotate one 
revolution to compute the new parity (read the old parity and 
data from disc and XOR them with the new data). So there is 
a 1.5 revolution wait before the write transfer can begin. 
parity stripe write time (elapsed seconds): (8) 

seek(Z)+1 5 0 rotute+ request~&eltrun$~ me) 
and since two devices am used, the device busy-time &: 
parity stripe write cost (disc seconds): (9) 

2 b ( seek(Z)+1 5 0 rotute+ reque~~&dmnsfer_rale ) 
4.3. RAIDS: For RAIDS discs, a read of S striping units 
involves A discs, where S = request-sizelblock-size and A = 
min(S, N+Z) . These discs must all seek, then rotate, and 
then the read transfer can begin. The seek time is the max of 
the seek times of each disc. Once the seek completes, the 
read waits for an average rotation and then can transfer at a 
rate of A l transfer-me. So the response time for a RAID5 
readis: 
RAIDS read time (elapsed seconds): (10) 

rotate request size seek(A) + 2 ’ A l trunsfer~rute 
Since A discs are involved in the transfer, the device-busy 
time is A times the service time: 
RAIDS read cost (disc seconds): (11) 

A*(seeHA)+ ‘7 + re@est ma? 2 A l transfer rat 
For writes, an extra disc is involved if A < N+Z, -m defme A’ 
= min(S+l,N+Z). The A’ discs must all seek, rotate to the 
parity, and then the parity must be read and the new parity 
computed during a rotation. Then a write of the data can bc 
done at the high transfer rate.. The equations am: 
RAID5 write time (elapsed seconds): (12) 

seek(A’) +I5 l rotate + request size 
A l trunsfer_rotc 

RAID5 write cost (disc seconds): (13) 

A’o(seek(A’)+lJorotute+ rewst swe A l trunsfer_tate ). 
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This analysis ignores several important phenomenon: 
l The parity areas are likely to be warmspots; they get N 

times the update traffic of other parts of each disc. Half of 
all the write traffic goes to the parity area of each disc -- in 
a lot2 array, 50% of the writes go to 9% of the data. So 
there may be queueing on writes to the parity areas in the 
parity stripe and RAID5 schemes. 

l In the RAID5 schemes, a request is for a particular sequence 
of A of the N discs. This tends to make RAID5 reads and 
writes of more than 2 discs interfere with one another 
much more than they would in a mirrored or parity stripe 
scheme. So it may be difficult to run each disc at 50% 
utilization. 

l The analysis is for the no-fault case. In case a block or 
disc fails, the load on each other disc approximately 
doubles (driving them to 100% utilization if they were 
50% utilized before!). In a mirrored disc scheme, the 
failure of one disc causes the load on its mirror to increase 
by the read traffic. So a mirrored pair running with ten 
logical reads and ten logical writes per second places a 15 
request/second load on each drive. When one drive fails, the 
other now must carry all 10 reads and so gets a 20 
request/second load, a 33% increase rather then the 100% 
increase of disc arrays. Using the “modem disc” numbers 
of Table 1 on 16KB requests, this would move the mirror 
from 44.5% utilized to 54% utilized. 

All these shortcomings in the analysis tend to give 
optimistic estimates of RAID and parity stripe throughputs 
compared to mirrored schemes. The only assumption here 
unfavorable to RAID is the assumption that requests are not 
aligned to the array geometry. If requests are aligned to N l 

B boundaries and are in units of N l B bytes, then no extra 
rotations are needed to compute parity. On the other hand, 
if the transfer is very large and involves multiple rotations, 
the analysis here assumes the subsequent aligned transfers do 
not require a parity read, and indeed the analysis does not 
charge for the extra rotation that will generally be required to 
write the unaligned suffix of such a large transfer. We 
believe it unreasonable to expect applications to be aware of 
disc geometry. 

5. Applying the Analysis to a 10+2 array 
Equations (7)-(13) can be used to compute the minimum 
response time (zero load response time) for an array of N 
discs configured as mirrors, parity stripe, or RAIDS. In this 
analysis, the number of ‘discs is held constant and the request 
size is varied from small (one block unit = 1KB) to large 
(1MB) in powers of 2. For simplicity, only the pure read 
case (only read requests), and the pure write case (only writes) 
are analyzed, rather than a mix of reads and writes. Also, 
rather than looking at a mix of request sizes, the analysis 
looks at workloads of constant request size and simply grows 
the request size by powers of two. These simplifications 
make the analysis tractable (trivial). We believe that 
elaborating the model to include these refinements would not 
change the conclusions. 

A second issue is how the array behaves under load. 
Assuming that the discs are run at 50% utilization, a 10+2 
discarraywilluse5O%of lldiscs(recalltllatthesparedisc 
in the array does not provide service) giving 5.5 disc seconds 
of service per second: while mirrored disc will use all 12 
discs and give 6 seconds of service per second. So equations 
(7). (9). and (13) imply the array throughput in each case. 

In looking at the following figures, realize that application 
disc requests are typically less than 1OKB today, while 
utilities issue requests in the 50KB range. Larger transfers 
are rare, because they monopolize the IO subsystem with 
little benefit. Rather, large transfers are typically broken 
into multiple “small” 50ms transfers so that truly small 
transfers can be serviced during the gaps between the large 
transfers. This allows a kind of priority scheduling of 
devices and paths, and at 50% utilization suggests that the 
average response to a disc request will be about 1OOms. A 
virtue of striping is that it can transfer much more data in 
these 50ms windows by doing parallel transfers from each 
disc. But, to repeat: current software typically operates in 
the first columns of these graphs (less than 1OKB requests), 
next generation software is likely to be in the second 
columns (IOKB to 1OOKB). The high transfer rate of RAIDS 
only begins to dominate at the high-end of this range. and so 
is a poor design for traditional applications. 

Also realize that the fine (1KB) striping unit was chosen to 
show the extreme case. If we had chosen a 1MB striping 
unit, then RAID5 and parity stripe would have virtually 
identical performance curves. So, the real point of this 
section is that tine granularity striping is a bad tradeoff for 
OLTP systems. This ethos the conclusions of [Chenl. 
Given that parallel transfers are not used by RAID5 in OLTP 
applications, the next section argues the merits of parity 
striping over RAID5 in terms of benefits other than 
performance. 

5.1. The Read-Only Case 
Figure 10 shows the read performance of RAIDS, mirrors, and 
disc striping. An array of 12 standard discs has 
approximately the same read performance as mirrors, and so 
is not shown. 

Figure 10 indicates that for small transfers (less than 32KB) 
the shortest-seek .benefit of mirrors gives them a distinct 
advantage over striping which must seek over 1/3rd of the 
surface rather than 1/6th as in mirrors [Bittonl]. After the 
request size exceeds about 24KB, the high transfer rate of 
RAID begins to dominate -- and RAID5 shows considerable 
response time benefit. The throughput of disc arrays is not 
attractive in any range because each large request consumes 
seek and rotation time on multiple discs. The RAID5 
throughput curve drops steeply until all discs are involved in 
each request and then holds approximately constant for 
request sizes between 1 lKl3 and 256KB. In this range, the 
array throughput is typicallyfive times worse than either the 
mirror or parity stripe throughput. 
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Min Read Response Time vs Request Size 
for RAIDS, Mirrors, and Parity Stripe 

at Zero-load 

Read Request Throughput vs Request Size 
for RAIDS, Mirrors, and Parity Stripe 
at 50% load 

loo0 

1 
1 10 100 moo 1 10 1000 

Ralua==#w lbW-&i 

Cgure IO: Log-log plots of the read performance of the three disc architectures vs request size. The RAIDS striping unit is 
ssurned to be ~KB. the discs are assumed to be spindle synchronized, the requests are assumed uniformly distributed to all 
xations. The discs are run at 50% utilization to compute the throughput. A conventional array of 12 discs would have read 
erhrnance similar to mirrors. 
I . . . . . . * . - _--\ * . . . . I, ;: 

lnrougnout me range, mirrors nave a stignt aovantage over 
parity stripe because they benefit from the shortest seek 
optimization, and because they can use all 12 disc arms. 

:cond), 

The model does not include the obvious optimization form 
mirrors: splitting large reads in half and sending half of the 
read to each arm. Using this optimization for reads of 64KB 
or more would slightly degrade throughput but would give 
mirrors some of the response time advantages of the RAID5 
scheme. The Tandem sequential scanning software includes 
this optimization. 

5.2. The Write-Only Case 
The picture for writes is not much different. For small 
transfers (those less than 64KB), mirrors have better response 
time and throughput than do the other kinds of arrays 
(because they avoid the extra rotation needed for parity stripe 

-am-l KAID). Looking at tnrougnputs (requests/St 
mirrors consistently outperform any kind of striping because 
of striping’s rotational penalty. In the 1Okb to 1OOkb range, 
mirrors service five times as many requests as RAIDS discs. 
These charts show the virtue of parity striping. At a 
relatively minor cost (50% more response time and -30% 
less throughput), parity striping gives the the low $/CB cost 
of RAID5 without the 500% r/s throughput penalty. Using 
the array as a standard disc farm (no reliable storage) gives 
approximately the same minimum response time as mirrors 
(the mirror seek time seek(2) of Figure 9 rather than seek(l)), 
but standard discs give twice the throughput since they use 
only one arm per write. At 16KB requests: the write 
throughput of a mirrored drive is 46% of a standard drive, the 
write throughput of parity striped discs is 29% of standard, 
and the write throughput of RAID5 is 9% of standard 

Minimum Write Response Time vs Request Size 
for RAIDS, Mirrors, and Parity Stripe 

at Zero-load 
lam 

Write Request Throughput vs Request Size 
for RAIDS, Mirrors, and Parity Stripe 
at 50% load 

10 I 
1 10 1m ram 1 10 

M-m Ml-S-& 
lam 

Figure 11: Log-log plots of the write performance of the three dii architectures vs request size.. The discs are assumed to be 
iphdle synchronized, the requests are assumed uniformly distributed to all locations. The discs are rtm at 50% utilization to 
compute the throughput. Standard shows the throughput of the array used as 12 independent discs. Standard diic writes have 
1 oximately the same minimum response time as mirrored writes. 
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5.3. Analyzing A High Performance Disc 
One might object that these results are dependent on the disc 
technology; that the conclusions would be very different if 
the discs were much higher performance, or much lower 
performance. Examination of equations (2)-(13) shows this 
is not so. We have looked a many kinds of discs, and 
include here the curves for the “future disc” of Table 1 which 
seeks and rotates about 70% faster, and has three times the 
data transfer rate. The curves for that disc are given in Figure 

12 and show the same pattern: mirrors have the best 
response time and throughput below 32KB. fine granularity 
striping to get parallel transfers is a poor response-time 
tradeoff, and so coarse striping in the style of parity striping 
or [Chen] is very attractive if the goal is low cost per reliable 
GB. At 16kb request sizes, RAID5 has about a 1000% 
throughput penalty compared to mirrors, and parity striping 
represents a compromise -- providing reliable storage with 
throughput only 40% worse than mirrors. 

Zero-load Response Time vs Request Size for 50% Load Throughput vs Request Size 
RAIDSMirrors, and Parity Stripe for RAID5,Mirrors, and Parity Stripe 

1 loo0 1 
Requ$t Size&~ 

100’ 

lOtX? I 
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Qure 12: Log-log plots of the performance of the three dii architectures vs request size. The diis are assumed to be higher 
erformance (12ms seek 6ooOrpm. and 6MEt/s transfer) than the discs in the previous charts. These charts still indicate a 
rreference for mirrors over RAIb5 if throughput is the noal. 
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6. Other Benefits of Parity Striping 

The argument made so far for parity striping over RAIDS has 
been in terms of performance one. But one could simply use 

RAID5 with a stripe size of &and get the same effect. 

[Chenl. So why bother with parity striping? Parity Striping 
has several advantages over a traditional RAID5 design - even 
when it is configured with large (say 1MB striping units). In 
fact the idea of parity striping grew out of attempts to fit a 
RAID5 into a Tandem system. Parity striping circumvents 
some of the problems we encountered with a traditional 
RAID5 approach. These problems include: 
1. Archiving a Giant Disc: Since the data is spread 

across all the discs, archiving software must copy the 
contents of the entire atray, rather than just one spindle. 

2. Operations with a double failure: When a second 
disc in the array fails during the repair window, the 
entire array is damaged and must be restored from the 
archive (see 1 above). The restoration of a giant disc 
(say 1lGB) from a tape drive at 3MB/s will take an hour 
vs the live minutes needed to restore a single drive. 
Agreed, this only happens rarely, but when it happens it 
is a big event. 

3. Load balancing: Load balancing of requests across a 
RAID array is not controllable: in particular one cannot 
place two different files on two different discs unless the 
file system does some very complex arithmetic. Rather, 
one must hope that striping does not cause bad 
interference. This is the converse of most RAID 
arguments which point to the automatic load balancing 
that comes from spreading all files across all discs. If 
coarse striping units (say 1MB) are chosen for RAIDS, 
then the load balancing benefits claimed for RAID 
disappear since hotspots tend to be of that size, but the 
ability to manually control the location of files does not 
remlll. 

4. The software problem: Introducing a new disc which 
is an order of magnitude larger and which processes ten 
times as many requests per second will break most 
software designs. Here is a partial list of Tandem 
software problems presented by a 10+2 array of modem 
drives. We believe that MVS, VMS, and most Unix 
implementations have similar problems. 
l The disc server software uses 31 bit addressing for the 

disc cache (disc buffer pool) -- this limits the disc 
cache to 2GB. So a disc array of will have a limited 
cache size compared to six mirrored disc servers with a 
12GB aggregate cache. In fact, due to fault tolerance, 
and to some data structures the current Tandem disc 
cache is limited to 56MB per logical drive so this 
problem is quite extreme. Main memory databases 
will only be able to use 56MB of any size array. 

l The software uses 32 bit addressing for files, and uses 
partitioning of files across discs to get file sizes up to 
a Terabyte. If the array appears to be a single logical 
disc, it will be impossible to fill it with one large 
file. 

l Tbe software assumes that them arefrequent operations 
(e.g. read and write) and rare operations (e.g. b-tree 
split, update directory, and so on). Frequent 
operations run in parallel and typically execute in 
cache. Rare operations acquire a semaphore to 
simplify concurrency and fault tolerance. With eleven 
discs viewed as one, rare operations will be eleven 
times more common. This will likely cause 
bottlenecks on the semaphores. In particular: the disc 
directory is stored as a single file and updates to it are 
covered by a semaphore and some elaborate fault- 
tolerance logic. If the directory update rate increases 
by an order of magnitude, the current logic will 
bottleneck and will have to change. 

5. The bandwidth problem: Building controllers and 
channels that can run at lOOMB/s is non-trivial. Current 
controllers and channels run one or two orders of 
magnitude slower than this. For the uninitiated, IO 
channels are like LANs but operate at mega-BYTES-per- 
second rather than mega-BITS-per-second. A lOOMB/s 
channel is about 1000 times faster than LANs like 
Ethernet. In addition, many applications can’t use the 
high bandwidth until processors of 1OOMIPS or more are 
commonplace. 

6. Exotic Controllers: Rather than using standard 
controllers (as with mirrors), disc arrays depend on 
exotic controllers and spindle synchronized discs. In 
addition, they require complex controller logic (software) 
to retry the operation via a second controller if the first 
controller fails. Such exotic controllers will not be 
cheap and may adversely affect the price advantage of 
disc arrays when compared to mirrors using standard 
controllers. 

7. Performance with a single failure: When a single 
disc in the array fails, the load on the remaining discs 
doubles. With mirrors, when one disc fails the read load 
on the mirror doubles, but the write load is not changed. 
So the net change in load is typically a 33% increase on 
one drive rather than 100% increase on 10 drives. The 
real story is even worse than this since the 
reconstruction of the lost disc on the spare disc will add 
to the load. 

8. The parity hotspot problem: Half the update traffic 
of each disc is parity updates. In the 10+2 array, half of 
the updates go to 10% of the data. This may make the 
parity areas. hotspots, further exaggerating the load 
balancing issue (problem 3 above). 

Parity striping exploits problem 5, sacrificing bandwidth to 
solve problems 1, 2, 3, and 4. We have no answer for 
problems 6, 7, and 8. Perhaps experience will show that 
these are not really problems after all. After all, problem 4 
is just smop (a simple matter of programming). 

Parity striping solves the giant disc problem (1 above) by 
making each physical disc a smaller logical disc. So the 
10+2 array looks like eleven logical discs each containing 
IGB. The data of these logical discs can be archived and, 
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restored independently. The parity can be reconstructed from 
the other discs and so need not be archived. 

If two discs of a parity stripe array fail, then the data of those 
two discs must be restored from the archive. But the data on 
the other N-l discs is still available for reading and writing 
(solving problem 2 above). In particular the file directory 
and B-trees of each surviving logical disc are still intact. So 
parity striping has better fault containment than RAIDS 
designs. Double failures are a rare event if everything goes 
well (once in 500 years according to [Schulze]). But when 
such failures happen they will be an big event. 

Ignoring the parity hotspot problem (problem 8). load 
balancing an N+ I parity stripe disc is just like load 
balancing a N+I array of standard or mirrored discs (problem 
3 above). 

A parity striped disc array looks like N+I modem discs to 
the software, and so should introduce minimal software 
disruption beyond the need to retry via the alternate controller 
if the first controller fails. This is a relatively minor and 
isolated change to the software. So parity striping solves 
many of the software problems posed by reliable disc arrays 
(problems 4 above). 

7. Summary 
Perhaps a better way to look at this whole argument is: 
1. Parity striping is just a variation of RAIDS. The parity 

techniques, recovery techniques, reliability analysis, and 
hardware requirements are the same for both schemes. All 
that differs is the way the data is mapped to the disc array. 

2. For a large class of applications, a large stripe size (say 

& ) is appropriate [Chen]. 

3. Given (2). the high parallel transfer rate of disc arrays is 
lost, and the automatic load balancing claims of RAID do 
not apply. 

4. Current software will have a difficult time with giant 
discs implied by RAIDS. 

5. So, rather than map the array as one big logical disc, 
parity striping maps it as N+I conventional (but very 

reliable) discs. Each logical disc maps to most of one 
physical disc. This has fault containment, load 
balancing, and software benefits. 

Previous analysis of disc arrays used for reliable storage 
focused on their attractive cost&B and their high data transfer 
rate. The discussion here focused on response time and 
throughput. With that point of view, mirrored discs are the 
best reliable storage choice for applications which are disc- 
arm limited and which cannot absorb data at current device 
speeds. Parity striping offers the low cost/GB of disc arrays, 
while sacrificing the high transfer rate of RAID5 schemes, 
and accepting a 40% reduction in throughput compared to 
mirrored schemes. Perhaps the best way to see these 
differences is to look at the price and performance of a single 
modem disc in an atray configurfxl in the four different ways: 
This table shows that parity striping provides an attractive 
compromise between RAID5 and mirrors. As argued in the 
previous section, parity striping has some additional 
advantages over RAIDS: it has preferable fault containment 
and operations features. Perhaps most importantly, it causes 
minimal software disruption. Its major drawback when 
compared to RAIDS, is the reduced data transfer bandwidth -- 
2MB/s rather than 22MBis with current discs and 6MB/s 
rather than 66MB /s with future discs. For many 
applications, only a small part of disc response time is data 
transfer time, so this bandwidth advantage at the cost of 
increased queueing is a false economy (see Table 2 above). 

Given this point of view, we recommend that anyone 
implementing an array controller should support standard 
discs (no parity), mirrored discs, RAIDS, and parity stripe. 
Standard discs give the best performance and cost/GB, mirrors 
give the highest throughput reliable storage, RAID5 gives 
high-transfer rates to and from reliable storage, and parity 
stripe gives the reliable storage with cost/GB of RAIDS, but 
has additional benefits. The marginal cost of supporting all 
these options should be small since the hardware 
requirements for RAID5 and parity stripe are identical (parity 
and spindle synchronization logic), and since the software to 
do the different data mappings is literally a few lines of code. 

Table 2: Comparison of the four designs on a 10+2 array with 16KB requests. 
Throughput Minimum 

Configuration Cost/GB6 @50% utilization Response Time 
requeSts/arm/s mbquest 
read write read wrl& 

Standard 1 .Ok$/GB 15.2rls 15.2rls 33ms 33ms 
Mirrors 2.Ok$/GB 16.9r/s 7.Or/s 3oms 36ms 
Parity stripe 1.2k$/GB 13.8r/s 4.4rls 33ms 52ms 
RAIDS 1 .2k$/GB 1.3r/s 0.8rls 32ms 49ms 

6 The cost of the controllers is ignored here. Standard and mirror configurations can use standard commodity controllers, while parity stripe and 
RAIDS designs require specialized and high-pe.rformance controllers to do the parity computation, spindle synchxmizauon, and data reconstruction. 
So the price advantages of pmity stripe and RAIDS are overstated here. 

I 158 



8. Acknowledgments 

The idea of parity striping grew out of discussions with 
Andrea Barr, Franc0 Putzolu, and Todd Sprenkel. We were 
all trying to understand how a RAIDS-style array would fit 
into the Tandem environment. These discussions defined the 
problems. The parity stripe solution was easy once the 
problems were stated. Although not highlighted, the retry 
logic in this paper is new. It works for both parity stripe 
and RAID5 arrays. Peter Chen and Garth Gibson have been a 
constant source of ideas and have patiently listened to ours. 
We were especially interested by Peter Chen’s recent paper 
[Chen] which suggests coarse striping. Wing Chan provided 
us with empirical measurements of a modem disc. The 
analysis here benefited considerably from papers by and 
discussions with Dina Bitton. The paper also benefited from 
a spirited debate when it was presented at the RAID systems 
seminar at UC Berkeley. Garth Gibson, Randy Katz, Dave 
Patterson, and Mike Stonebraker each made detailed and 
specific comments to improve the paper -- we tried to include 
their advice. 

9. References 

[AS4001 ASKW”Progr cmuning: Backrcp and Recovery Guide, IBM 
Form No. SC21-8079-O. June 1988. Note: parity discs 
are called “check disks” in the AS400. 

[Chen] Chen, P.. Patterson, D. “Maximizing Performance in a 
Striped Disc Array”, to appear in Proc. ACM SIGARCH 

[Gelb] GE. J.P., “System-Managed Storage”, IBM Sys. J. V28.1 
1989. pp. 77-103 

[Hardy] Hardy, G.H., Littlewood, J.E.. Polyp, G., Inequufities. 
Cambridge U. Press. Cambridge 1934. Chap. 10. or see 
D. Knuth, Art of Computer Programming, V3., Section 
6.1 exercise 18. Addison Wesley, 1973. 

[Patterson] Patterson, D.A., Gibson, G., Katz. R.. “A Case for 
Redundant Arrays of Inexpensive Discs (RAID)“, Proc. 
ACM SIGMOD June, 1988. pp. 106-109. 

[Bittonl] Bitton, D., Gray, J.. ‘Disk Shadowing”, VLDB 1988 
Proceedings, Morgan Kauffman, Sept 1988. pp. 33 l-338 

[Bitton2] Bitton, D.. “Arm Scheduling in Shadowed Disks”, 
COMPCON 1989, IEEE Press. March 1989. pp 132-136. 

[Chan] Chart, W.. Private communication with Wing Chart of 
Tandem Computers, Cupertino, CA.. 

[Katxman] Katxman, J.A.. “A Fault Tolerant Computing System,” 
Proc. 11th Hawaii Int. Conference on System Sciences, 
Honolulu, Hawaii, Jan 1978. pp. 85-102. 

[Kim] Kim, M.Y., “Synchronized Diik Interleaving”, IEEE TGC. 
V.3-35.11. Nov 1986. pp 978-988. 

[Schneider] Schneider, D.A., Dewitt, D.J., ” A Performance 
Evaluation of Four Parallel Join Algorithms in a Shared- 
Nothing Multiprocessor Environment”, ACM SIGMOD 
Record, V 18.2. June 1989. pp. 110-121. 

[Schulze] Schulxe, M., Gibson, G., Katz. R.. Patterson, D.. “How 
Reliable is RAID”, CompCon 1989. IEEE Press, March 
1989. pp. 118-123. 

[Scranton] Scranton, R.A., Thompson, D.A., ‘The Access Time 
Myth”. IBM Research Report RC 10197 (#!45223) Sept. 
1983. 

[Wilhelm] Wilhelm, N.C., “A General Model for the Perfomrmce 
of Disc Systems,” JACM. V24.1 Jan. 1977, pp. 14-31. 

159 



10. Appendix: Spreadsheets of Graphs 8,9 and 10 
Modern Disc: 17ms seek, 3600rpm, 

device busy time (lo+2 drives) 
request arms parity stripe 

size used read write 
1 1 26 90 

4' 4' 26 27 99: 
8 8 29 97 

16 11 33 105 
s3: 11 11 41 57 153 121 

128 11 89 217 
256 11 153 345 
512 11 281 601 

1000 11 525 1089 
response time (lo+2 drives) 

req- read write 
: : 26 26 45 45 

4 4 27 46 
8 a 29 48 

16 11 33 52 
32 11 60 
64 11 5: 76 

128 11 89 108 
256 11 153 172 
512 11 281 300 

1000 11 525 544 
throughput (lo+2 drives) 

amf read 
S’t 
119 

246 
349 
363 
384 
420 
487 
618 
865 

write 
90 

139 
237 
433 
538 
551 
571 
607 
674 
804 
1051 

read 
26 

9: 
31 
32 
33 
35 
38 
44 
56 
79 

write 
45 
46 
47 
48 
49 

;!i 
55 

7"; 
96 

reqsts 
: : 
4 4 
8 8 

16 11 
32 11 
64 11 

128 11 
256 11 
512 11 

1000 11 

read write read write read write read write 
215 61 215 61 271 106 235 235 
211 61 98 40 265 105 230 230 
203 59 46 23 254 101 222 222 
169 57 22 13 234 95 207 207 
166 53 16 10 203 84 182 182 
134 46 15 10 160 69 146 146 
96 36 14 10 112 50 105 105 
62 25 13 9 70 33 67 67 
36 16 11 8 40 19 39 39 
20 9 9 7 22 11 21 21 
10 5 6 5 12 6 11 11 

mirrors 
read 

22 
23 
24 
26 
30 
38 
54 
86 

150 
278 
522 

read 
22 
23 
24 
26 
30 

5": 
86 

150 
278 
522 

write 
56 

2 
63 
71 
67 
119 
183 
311 
567 

1055 

write 
28 

xi 

E 
44 
60 
92 

156 
284 
528 

Standard 
reed 

26 
26 
27 

3239 

:: 
89 

153 
281 
525 

read 
26 
26 
27 
29 
33 

;: 
89 

153 
281 
525 

write 
26 
26 
27 
29 
33 

3: 
89 

153 
261 
525 

write 
26 
26 
27 
29 
33 

:: 
89 

153 
281 
525 

PMBIS. 

arm 
1 

i 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

DtnabfamuDe 
formula distanceseektime 

0.33 
0.47 
0.54 
0.59 

i:: 

E 
0:72 
0.73 
0.74 
0.75 
0.76 
0.77 
0.78 
0.78 
0.79 
0.80 
0.80 
0.81 

333 17 
467 19 
543 
594 2': 
631 23 
659 23 
682 24 
700 24 
716 24 
730 25 
741 25 
752 25 
761 25 
769 25 
777 26 
783 26 
790 26 
795 26 
801 26 
805 26 

Mirrored diSc Shortest Seek 
0.16 167 13 

ParanM?tervatues 
drives 10 -t2 
stripe 1 KB 

cylinders 1000 cyls 
vm 3600 rpm 

transfer-rate 2 MB/s 
max_seek 30 m 

settle 5ms 
cutoff 0.2 
*I=1 0.64 
slope2 0.01994 

14.051 ms 
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Future disc: 10ms seek, 6000rpm, GMB/s. 

devfcebusytfme(10+2 drives) 
Ditlh fOIlnUb 

write Dina~fame 

arms formula distance seek time 

request arms parity stripe 
s&e used read 

: : 18 18 58 

4 4 18 :: 
8 8 19 61 

16 11 20 63 
32 11 23 69 
64 11 28 79 

128 11 
ii 

101 
256 11 143 
512 11 103 229 

1000 11 184 391 
responsetime(10+2drives) 

req- read write 

: : 18 18 29 29 
4 4 18 30 
8 8 19 30 

16 11 20 32 
32 11 23 34 
64 11 40 

128 11 iii 50 
256 11 60 72 
512 11 103 114 

1000 11 184 196 
throughput(10+2 drives) 

req- read write 

: : 308 311 94 94 
4 4 302 93 
8 8 291 91 

16 11 272 87 
32 11 240 80 
64 11 195 
128 11 141 iii 
256 11 91 38 
512 11 53 24 

1000 11 30 14 

amf 
write lead 

mirrors 
write read 

18 58 15 
38 90 16 
80 153 16 

165 279 17 
232 346 18 
238 351 21 
247 359 26 
259 371 37 
283 394 58 
327 439 101 
410 521 182 

38 

ii 
41 
43 
49 
59 
81 

123 
209 
371 

read 
18 
19 
20 
21 
21 
22 
22 
24 
26 
30 
37 

write 

:i 
31 
31 
31 

ii 
34 
36 
40 
47 

read write 
15 19 
16 19 
16 20 
17 20 
18 22 
21 24 
26 30 
37 40 
58 62 
101 104 
182 186 

read wiite read write 
311 94 389 156 
143 61 385 155 
69 36 376 152 
33 20 361 147 
24 16 354 138 
23 16 291 123 
22 15 231 101 
21 15 164 74 
19 14 104 49 
17 13 60 29 
13 11 33 16 

Standard 
write 

18 
18 
19 
19 
20 
23 
28 

iii 
103 
184 

read 
18 
18 
18 
19 
20 
23 

ii 
60 

103 
184 

read 
339 
336 
330 
318 
297 
262 
213 
154 

:21 
33 

read 

18 
18 
19 
19 
20 
23 
28 
39 
60 

103 
184 

write 
18 
18 
18 
19 
20 
23 
28 
39 
60 

103 
184 

write 
339 
336 
330 
318 
297 
262 
213 
154 
100 
58 
33 

1 0.33 
2 0.47 
3 0.54 
4 0.59 
5 0.63 
6 0.66 
7 0.68 
8 0.70 
9 0.72 
10 0.73 
11 0.74 
12 0.75 
13 0.76 
14 0.77 
15 0.78 
16 0.78 
17 0.79 
18 0.80 
19 0.80 
20 0.81 

333 13 
467 14 
543 15 
594 15 

16 
ii: 16 
682 16 
700 17 
716 17 
730 17 
741 17 
752 17 
761 17 
769 17 
777 18 
783 18 
790 18 
795 18 
801 18 
805. 18 

Mirrored disc Shortest Seek 
0.16 167 10 

Parametervslues 
drives 10 -t2 
stripe 1 KB 

cylinders 1000 cyfs 
vm 6000 rpm 

transfer-rate 6 MB/s 
ma-seek 20 In5 

settle 2ms 
cutoff 0.2 
*pe1 0.64 
slope2 0.01119 

base 11.051 ms 

161 


