
Parity Striping of Disc Arrays:
Low-Cost Reliable Storage with Acceptable Throughput

Jim Gray, Bob Horst, Mark Walker
Tandem Computers Inc., 19333 Vallco Parkway, Cupertino, CA. 95014

Abstract
An analysis of mirrored discs and of RAIDS shows that
mirrors have considerably better throughput, measured as
requests/second on random requests of arbitrary size (up to
IMB). Mirrors have comparable or better response time for
requests of reasonable size (less than 1OOKB). But mirrors
have a 100% storage penalty: storing the data twice. Parity
striping is a data layout that stripes the parity across the
discs, but does not stripe the data. Parity striping has
throughput almost as good as mirrors, and has cost/GB
comparable to RAID5 designs -- combing the advantages of
both for high-traffic disc resident data. Parity striping has
additional fault containment and software benefits as well.
Parity striping sacrifices the high data transfer rates of RAID
designs for high throughput, It is argued that response time
and throughput ate preferable performance metrics.

l.Introduction
Disc arrays have traditionally been used in supercomputers to
provide high transfer rates by reading or writing multiple
discs in parallel [Kim]. Rather than getting 2MB/s from a
single disc, applications are able to read or write N discs in
parallel by striping data across the discs thereby getting a
transfer rate of 2NMB/s.

n Host

zigure 1: Striping data across three discs of E blocks each forms
me large logical disc of 38 blocks. A sequential read or write of
iata DO, Dl. D2 can proceed in parallel at three times the data
ransfer rate of a single disc.
Permission to copy without fee all or part of this material i\

granted provided that the copies are not made or distrihutecl fat

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice i\ gi\cn

that copying is hy permission of the Ver) Large Data Bax

Endowment. To cop) otherwise. or to rcpuhlish. rcquirc\ a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

The striping unit can be a bit, a byte, a sector, a page, a
track, or any larger granule. If the striping unit is a block,
then the ith logical block maps to physical block fi/Nf of
disc i mod N. The whole array of N discs is treated as a
single large fast disc. Reading or writing the group of N
blocks {DNi, DNi+l,...,DN(i+l)-I] can be done in parallel
using a single disc rotation. If the read is not aligned to an
N block boundary, or if the read involves more than N
tracks, then multiple disc rotations will be required to
complete the read.

In the last five years, the idea of using part of the array
capacity to mask discs failures has become quite popular.
The most common example of this parity approach is found
in the IBM AS400 [AS400]. The idea is most clearly
explained in [Patterson] which coined the term RAID
(Redundant Arrays of Independent Discs), and discussed
several design alternatives. A typical data layout of a RAID5
disc array is as follows (see Figure 2):
. Sacrifice (&)th of the disc space to parity by acquiring

N+I discs of B blocks each.
. Logical block i maps to physical block ,!;/N]

of disc (i mod (N+l)+j), for i = OJ,.., NB-I
wherej =OifimodNcirrwd(N+I) elsej=l.

l The parity block Pi for logical blocks
iDNi,DNi+I,...PN(i+I)-l}
is block i of disc i mod (N+Z).l

:igure 2: The RAIDS approach to striping data and parity on three
lists of E blocks each. The parity blocks are labeled by PO,
‘l,... while the data blocks are labeled DO, Dl,..., D(2B-1). The
,esulting logical disc has 28 data blocks protected by B parity
flocks. Parity block Pl is maintained as D2 XOR D3. A read of
lata DO, Dl. D2 can proceed in parallel at three times the data
ransfer rate of a single disc, while a write of DO and Dl CSII proceed
tt twice the rate while writing PO = DO XOR Dl in parallel.

148

This mapping creates a helical pattern of parity running
through the disc array (see Figure 2). Requests to the logical
disc are spread among the N+I physical discs. Small
requests involve only one or two discs, while multi-block
requests may involve several discs and benefit from the sum
of their bandwidth.

A RAID disc controller protects against damaged blocks and
disc failures as follows (see Figure 3):
l When reading the logical group of blocks

{DNi, DNi+l,...,DN(i+l)-I}, if any single block is bad
(based on ECC or device error), that block can be
reconstructed by the XOR (exclusive-or) of the good
blocks with the corresponding parity block.

l When writing any subset of the logical group of blocks
{DNi, DNi+l,...PN(i+I)-119 the C~~CSPOnding In% PCUitY
block must also be computed (XOR of the logical blocks)
and written.

‘igm

Read to
Recompute
Parity on First
Disc Rotation

\ --7
1 Cantmlkx QdData\ /C4dPsiIv

Host

Parity and Data
on Second
Disc Rotatior~

:e 3A : The data flow of writes; n RAID showing the read ling of
12 parity and old data from disc to compute the new pa@. This
an easily be done in one rotation, as the discs rotate if the spindles
re synchronized. If the spindles are not synchronized, the data
lust be buffered, but the parity can still be computed in one
otation. The new data and parity are then written during the second
otation.

L
Cgure 3B: The data flow of a read of a damaged block from I
MID. The value of damaged block D4 can be reconstructed fron
he other diis (D4 = D5 XOR IQ).

Traditionally, fault tolerant-disc storage has been
implemented using duplexed discs (aka. mirrors (Tandem) or
shadows (DEC)) [Katzman]. The idea of mirroring is to
tolemte any single fault by using dual ports, dual controllers,
dual paths, and dual discs which store exactly the same data.
When data is written, it is written to both discs. When data
is read, it is read from either disc. If that read fails, the other
disc is read and the bad-spot on the first disc is spared and
rewritten.

rlq%
Figure 4: The mirrored disc approach

3r 1

to fault-tolerant storage places
identical data on a pair of diii, accessible from fault-tolerant hosts
via dual disc controllers and via four data paths. This gives a single
logical disc of B blocks. Reads go to either copy of the data, writes
go to both copies. *

Mirrored discs have a major drawback: cost. If you buy
2N discs of B blocks each, you can oniy store NB blocks of
data, a 100% storage overhead. In addition, a write intensive
application must write each update to two discs and so pays a
100% write penalty. Actually, it is slightly worse than
100% since one must pay for the longest seek of two disc
arms. These arguments seem a high price to pay for reliable
storage, and explain the interest in RAID systems.

There are some mitigating circumstances that make mirrors
slightly more attractive: random reads of blocks Bi and Bj
can seek, rotate, and transfer in parallel. So, for read
intensive applications mirrored discs give approximately
twice the throughput of a single disc. In fact, due to the
shortest-seek optimization, mirrored discs may give slightly
better than twice the performance of a single disc on read
intensive applications [Bittonl].

Figure 2 paid no attention to processor failures, path failures,
or controller failures. But controllers are no more reliable
than discs these days. In fact, a truly fault-tolerant RAID
design should look like Figure 5. In order to tolerate single
controller failures, the host must be able to ask the second
controller to retry the write. The issue of controller failures
has not been discussed in the literature, but it is essential to
making a fault-tolerant store. In addition, fault tolerant disc
arrays are generally configured with a spare drive which
receives a reconstructed copy of the failed drive within a few
hours of the failure -- this is generally called an N+2 array
scheme, The standby spare minimizes the repair window,
and so improves the array mean time to data loss [Schulzel.,
With a correct implementation of these two issues, an N+2

149

disc array offers fault-tolerant storage comparable to mirrored
discs but with high data transfer rate and approximately a
40% cost savings measured in $/GB (for a 10+2 army).

Figure 5: The RAIDS approach configured for single-fault tolerance.
Ilk includes dual processors and dual controllers along with four
paths to each disc so that there is no single point of failure. In
addition, to deal with controller failures. the controller must have a
“retry interface” that computes new parity from the new data and
Fromunalfecteddata. Asparediscisconfiguredsothatafaileddisc
XII be quickly reconstructi Otherwise. the failure of a second disc
NIL the array will result in lost data Generally, arrays are configured
with eight or more drives to amortize the cost of storing the parity
cross many drives and the high fixed cost of the dual controllers.
kt this article, we assume a 12-drive complex.

The retry logic to deal with controller and path failures is
best described by the case of writing a single block Di.2 If
the write fails, the disc contents of block Di and its parity
block Pj are suspect (may have been partially written). The
host asks the second controller (Figure 5) to retry the write
of Di. Retry is a special controller operation which
computes the new parity by reading all other blocks of the
stripe (all except old Di and old Pj) and XORing them with
with the new data block Di to produce the new parity block
?j (see Figure 6). During the second rotation, the controller
mites the new data and new parity blocks (Di and Pj.). This
,dea easily generalizes to multi-block writes.

re 6 I: The retry lc and
&troller faihnes:Th~ second controll~reads and XORithe

mdamaged blocks with the new data to compute the new parity; all
n one rotation. Contrast this to Figure 3.A which reads old D4
md old parity.

2 This retry logic is new. It works for parity stripe and RAIDS
arrays. Making RAID W&S atomic (d or nothing) has been a
major sticking point for some database applications.

2.Why Striping and RAID Are Inappropriate for
OLTP Systems
The RAID idea has caused most computer designers to
reexamine their disc subsystem architecture. As a result the
classic disc striping idea is excellent for supercomputers and
has been added as an option for the scientific community in
IBM’s MVS, Amdahl’s Unix, and DEC’s VMS. But the
surprising result is that the business applications community
(e.g. databases) have generally concluded that RAID is not
appropriate for their applications because they don’t need the
bandwidth, they don’t need the extra storage capacity, and
they cannot afford to use several disc arms to service a single
request. These three surprising observations are elaborated in
the next paragraphs.

Why they don’t need the space: As Gelb points out
[Gelb], most IBM disc farms are 50% empty: 25% is
unused to allow files to grow, but another 25% is
unused because putting too much data under a disc arm
results in long queues of requests for that data. If these
customers could buy infinite capacity discs for the same
price, most would not be able to put more than a giga-
byte of data under each disc arm. So that is why they do
not need extra space -- they can’t use it3.

Why they don’t need the bandwidth:
Supercomputers may be able to absorb data at 4OMB/s,
but most computers cannot. First, the IO channels of
most computers run at lMB/s to SMB/S burst rates, and
actual data rates are typically half that. So the array
controller cannot deliver data to the host or application
very quickly. One way to circumvent this is to do the
striping in the host: the processor reads via multiple
channels in parallel. This is how the IBM, Amdahl, and
DEC implementations of striping work. In such a
multi-channel design the host becomes the RAID
controller and does the parity work. Having the host
compute the XOR of the data is expensive in host
processing cycles. In fact the host implementations
mentioned above do pure striping for bandwidth rather
than maintain RAID parity. Perhaps more to the point,
most applications cannot scan structured data at 4OMB/s.
Scans, sorts, and other structured access to data typically
process a few thousand records per second [Schneider].
At 100 bytes per record and lk instructions to process
each record, a 1OMIP processor consumes data at lMB/s
_- well below current device speeds of 4MB/s. So, the
bottleneck for Cobol and SQL applications is not disc
transfer rate, unless they are running on processors of
SOMIPS or more, and have IO channels rated in excess
of SMB/s. Device speeds are likely to improve as
processors become faster, so only limited degrees of
striping will be needed.4

3 Since this study was done (1984). IBM has twice doubled the
storage capacity under each disc arm. Presumably, this extra
capacity has gone unused in many applications.
4Software parallelism is often used to exceed these rates. Examples
of this are Teradata, Gamma [Schneider], and Nonstop SQL.

150

Why they can’t afford to use several disc arms
on a single request: Disc service time on typical
commercial, timesharing, and transaction processing
applications is 50% queueing, 17% seek, 17% rotation,
and 17% transfer [Scranton]. A RAID slaving all the
disc arms together reduces the transfer time, leaves the
seek almost unchanged, doubles the rotation time on
writes, and makes the queueing much worse (since there
is only one service center rather than N+2 service
centers). As pointed out above, most commercial
applications are disc-arm limited; customers buy discs
for arms rather than for giga-bytes. If, as in RAIDS, the
array does not slave the arms together and allows small
transfers, then the array still consumes more arm
resource because a RAID5 seek involving M of the N
arms is much slower than a l-arm seek (see [Bitton] or
Figure 9). More importantly, RAID5 writes require an
extra rotation; thereby adding 34% (17ms) to write
service times and driving up device utilization and
queueing [Scranton]. Figures 10, 11, and 12 quantify
this argument in terms of requests/second processed by a
disc array vs the same hardware configured as a mirrored
-Ye

In fairness, this discussion focuses on traditional applications
(ones that access structured records), rather than applications
that simply move data in bulk (like image processing, real
time video, and so on). In addition, it ignores utility access
such as disc-to-tape copy and operating system program
loading, dumping, and swapping. Each of these applications
simply move the data and so are not processor limited;
rather, they are limited by channel and device speeds. If the
channels ran at more than lOMB/s, then these applications
would benefit from the high transfer rate of stripe and RAID
schemes. In fact, the software implementations of striping
are cnrrently being used primary by scientific applications to
quickly load images and tables into memory, and to swap
large*spaces.

In addition, we are assuming medium capacity discs (say
lGB/drive), and consequently high activity on the disc arms.
If we assumed four times smaller discs (say 250MB/drive),
then the request rate per drive would be reduced by a factor of
four and our arguments about buying discs for arms rather
than for giga-bytes would be incorrect. If four small
(3.4inch) discs and their associated power, controllers, and
cabinetry have a price comparable to a single “large” (5.25
inch) disc and its support logic, power and cabinetry, then
the arm contention arguments above do not apply. However,
we do not forecast the necessary 4:l price advantage for
small capacity discs -- both device categories are likely to
have small form factors (5.25 inch or less), and are likely to
be commodity items.

3. Parity Striping: Cheap Reliable Storage Plus
High Throughput
As explained above, many applications would be willing to
pay 20% disc space penalty for reliable storage but they
cannot afford to spend disc arm time. Parity striping is a
compromise devised for such applications. A parity stripe
system involves N+2 drives and involves parity much as the
RAID schemes do. But the parity is mapped as large
contiguous extents, and data is not striped across the discs at
all. The basic idea is that an N+2 array of discs looks like
N+l logical discs plus a spare (in a RAID5 scheme it looks
like one logical disc with many independent arms).

In a parity-striped disc array, if each disc has B blocks, the
last P=B/N blocks of each disc are reserved for parity, the
other blocks hold data (see Figure 7). So each disc has D=B-
P logical blocks and P parity blocks. The data is mapped as:
l Logical block i of disc j is physical block i of disc j

for i = 0 ,... P-1; j = 0 ,... jV.
l

D+ (i mod P) of disc

, _ -~- _ _ _-~e parity stripe approach Fie ItNth of each disc is dedicated as a parity zone, denoted Pi in the illustration,

Spare

le&ing N sligkly k&r k&al discs containing N data zones. Each data zone maps to a distinct parity zone on
some other disc -- the color coding shows this mapping. Read requests to a logical disc involve only a single physical
disc unless there is a failure. Write requests typically involve only one logical ulne and so only two physical discs: the
data zone and its parity zone disc. So parity striping has diic utilization similar to mirroring. Each parity zone
contains the XOR of all zones which map to it. As with RAID. a spare diic and multiple controllers are co&ured so

151

The complication of k in the above equation is needed to
avoid a disc containing one of its own parity blocks -- if
disc j fails, its parity must reside on the remaining N discs5.

In the normal case all discs are available. When a read
request arrives, it goes to a single logical disc and a single
physical disc. When a write request arrives, it also goes to a
single logical disc. That logical disc is represented by one of
the N+l disc data areas and by the parity areas on the other N
discs. The number of blocks on a logical disc (0) and and
the number of blocks in the parity area (P) are large
(typically lo6 and 16 respectively) compared to the number
of blocks in a request (typically less than 10.) So most
(99.9%) of the requests involve only one parity area. This
means that virtually all write requests use only two disc arms
-- much as writes to mirrored discs do. So parity striping
gives the low-cost/GB of RAID with the low device
utilization and consequent high throughput of mirrors -- the
only penalties being the extra revolution needed for the
writes to compute parity, and the more complex controller to
compute the parity.

As Chen argues [Chenl, one can configure RAIDS with very
large striping units, say a cylinder of 1MB. In that case,
almost all read requests to the RAIDS array will involve only
one disc, and almost all writes will involve only two discs.
But if smaller striping units are used , for example a 32KB
disc track, then many multi-block requests will intersect the
32KB boundaries and so will involve more than two discs.
This logic seems to force a stripe size at least ten times the
typical request size. Such coarse RAIDS configurations will
have the same throughput characteristics as parity striping.
But such configurations have almost completely abandoned
the high parallel transfer rates, and have none of the other
advantages of parity striping described later (fault
containment, smaller logical discs, software migration).

4. An Analysis of Mirrors, RAIDS, and Parity
Stripe Performance
The following is a fairly tedious analysis of the three
designs. It is summarized in of Figures 10, 11, and 12.
Analytic formulae are developed for the average device
utilization and average zero-load response time of read and
write operations. The analysis covers the no-failure case. It
assumes an N+2 array .of discs configured as a RAID5 with
spindle synchronization, vs the same discs configured as a
parity stripe array with a spare vs the same N+2 disc

N+2
complex configured as 2 - mirrored pairs. The next section

presents the performance of these three reliable storage
configurations on a 10+2 array and compares them to the
same 12 discs configured as a standard disc farm.

5 To make the arithmetic simple, we place the parity seipe at the
end of the disc. Since it is frequently written, an organ-pipe
diittibution would probably placed it in the center cylinders to
rninimk seek time [Hardy].

In order to compare the three designs, we assume discs have
the properties of a “modem disc” as described in Table 1.
Later we will consider how the conclusions change when a
“future disc” is inhoduced.

Table 1 Performance characteristics of hypothetical discs.
Modem Disc lCh& &lure Disc lIQy&tj

capacity: 1GR
cylinders: 1000 7lEl

block size: 1KB 1KB
max~seelc 30ms 20ms

rotate: 3600rpm
transfer rate:

device utiliz&on:
uIIB/S 6MWS

50% avg 50% avg

The analysis assumes infinitely fast processors, channels,
and controllers (so that the array parity computation time is
zero). and assumes uniform access to data pages. At the
beginning of each request, the arms are randomly arranged
This models a typical multiprogramming mix.
Disc seek time is a function of distance (cylinders traveled).
For the modem disc traveling across 20% of the cylinders,
the arm is constantly accelerating or decelerating and so is
modeled by a square root function. Beyond 20%. it is
modeled by a linear function. To within 5%. the seek time
of Tandem’s XL80 discs is approximated by the formula:
se+me(*J=

ifdistance c cutoff then5+.64 dlstame F--
e,se 14 + distance - cutofl

50
where cutoff is 20% of the disc cylinders. Figure 8 shows
how well the equation fits the observed seek behavior of
these drives [Chanl .

30
1

Seek Time vs Distance (ms vs cyl)

0 1002&3004005006007008009001000
Seek Distance (cylinders)

$+re 8: Comparison of analytic seek time model and
Ibsened. A maximum error (5%) occurs near 100 cylinders,
otherwise the curves are almost identical.

It is convenient to have a formula for the expected seek
distance of A arms to one particular cylinder. Assuming
each arm is initially randomly positioned [Bittonl] derives:

152

The table and chart for seek(A) on the “modem disc” of Table
1 is:

I EXPECTED SEEK TIME VS ARMS 1
arms

1

expected seek
cylinders

333

seek time (ms)

17

4.1. Mirrored Discs: The analysis of access to mirrored
discs is taken from [Bittonl]. A read must seek one disc to
the target cylinder. Ordinarily this would be seeR(Z), but
using the closest arm reduces seeks to approximately l/6 of
the surface rather than the l/3 typical of unmirrored discs.
This takes approximately 13ms rather than the 17ms seek of
a single arm disc. This is modeled as .8*seek(I) here, but the
real equation is used in the spreadsheet and graph. After the
seek, the disc must rotate half a revolution on average before
the desired data comes under the disc read head. Finally, the
transfer begins at the device transfer-rate and lasts for
request~sizeltrun.$er~rute seconds. So the response time of a
mirtoreddiscreadrequestisz
mirror read time (elapsed seconds): (2)

.8 l seek(l) + rotate12 + request~size!trm$er rate
Since only one disc is involved in the transfer, this-is also
the device-busy time.
mirror read cost (disc seconds): (3)

-8 l seek(I) + rot&et2 + reque~~sizehnsfer_rate
Mirrored writes must seek both disc arms, then must wait
half a rotation and then transfer.
mirror write time (elapsed seconds): (4)

seek(Z) + rotutel2 + request~sizeitrun#er me
Since two devices (discs) are occupied during this t&e, the
device-busy time is:
mirror write cost (disc seconds): 0)

2 l (seek(Z) + rotaten + request~sizeltru@er_rare))
The analysis assumes that the two writes are done in parallel
on spindle synchronized discs (rather than writing the first
disc and then the second, sometimes called serial writes).

4.2. Parity Stripe Discs: For parity striping, the read
equations are almost exactly the same as for mirroring --
except that parity stripe reads do not get the shortest seek
optimization of mirrors. parity stripe reads seek l/3 of the
disc rather than the l/6 typical of mirrored disc reads
IJMtonl]. The read equations arc:
parity stripe read time (elapsed seconds): (6)

seek(l) + rotateR + request-skeltr~er rate
Since only one disc is involved in the transfer, this-is also
the device-busy time.
parity stripe read cost (disc seconds): (7)

seek(l) + rotaten + request~sizeltrunsfer_rate
The parity stripe write equations are more complex because
the relevant parity disc(s) must first be read, the old data
XORed out, the new data XORed in, and then the new data and
new parity can be written in parallel as a unit. As argued
before, all but .I% of the write requests involve only one
parity stripe. So the analysis here just accounts for the
common case. The write seek must move both arms as in
the mirrored read. Then the disc must rotate .5 revolutions
before the data begins. Then the disc must rotate one
revolution to compute the new parity (read the old parity and
data from disc and XOR them with the new data). So there is
a 1.5 revolution wait before the write transfer can begin.
parity stripe write time (elapsed seconds): (8)

seek(Z)+1 5 0 rotute+ request~&eltrun$~ me)
and since two devices am used, the device busy-time &:
parity stripe write cost (disc seconds): (9)

2 b (seek(Z)+1 5 0 rotute+ reque~~&dmnsfer_rale)
4.3. RAIDS: For RAIDS discs, a read of S striping units
involves A discs, where S = request-sizelblock-size and A =
min(S, N+Z) . These discs must all seek, then rotate, and
then the read transfer can begin. The seek time is the max of
the seek times of each disc. Once the seek completes, the
read waits for an average rotation and then can transfer at a
rate of A l transfer-me. So the response time for a RAID5
readis:
RAIDS read time (elapsed seconds): (10)

rotate request size seek(A) + 2 ’ A l trunsfer~rute
Since A discs are involved in the transfer, the device-busy
time is A times the service time:
RAIDS read cost (disc seconds): (11)

A*(seeHA)+ ‘7 + re@est ma? 2 A l transfer rat
For writes, an extra disc is involved if A < N+Z, -m defme A’
= min(S+l,N+Z). The A’ discs must all seek, rotate to the
parity, and then the parity must be read and the new parity
computed during a rotation. Then a write of the data can bc
done at the high transfer rate.. The equations am:
RAID5 write time (elapsed seconds): (12)

seek(A’) +I5 l rotate + request size
A l trunsfer_rotc

RAID5 write cost (disc seconds): (13)

A’o(seek(A’)+lJorotute+ rewst swe A l trunsfer_tate).

153

This analysis ignores several important phenomenon:
l The parity areas are likely to be warmspots; they get N

times the update traffic of other parts of each disc. Half of
all the write traffic goes to the parity area of each disc -- in
a lot2 array, 50% of the writes go to 9% of the data. So
there may be queueing on writes to the parity areas in the
parity stripe and RAID5 schemes.

l In the RAID5 schemes, a request is for a particular sequence
of A of the N discs. This tends to make RAID5 reads and
writes of more than 2 discs interfere with one another
much more than they would in a mirrored or parity stripe
scheme. So it may be difficult to run each disc at 50%
utilization.

l The analysis is for the no-fault case. In case a block or
disc fails, the load on each other disc approximately
doubles (driving them to 100% utilization if they were
50% utilized before!). In a mirrored disc scheme, the
failure of one disc causes the load on its mirror to increase
by the read traffic. So a mirrored pair running with ten
logical reads and ten logical writes per second places a 15
request/second load on each drive. When one drive fails, the
other now must carry all 10 reads and so gets a 20
request/second load, a 33% increase rather then the 100%
increase of disc arrays. Using the “modem disc” numbers
of Table 1 on 16KB requests, this would move the mirror
from 44.5% utilized to 54% utilized.

All these shortcomings in the analysis tend to give
optimistic estimates of RAID and parity stripe throughputs
compared to mirrored schemes. The only assumption here
unfavorable to RAID is the assumption that requests are not
aligned to the array geometry. If requests are aligned to N l

B boundaries and are in units of N l B bytes, then no extra
rotations are needed to compute parity. On the other hand,
if the transfer is very large and involves multiple rotations,
the analysis here assumes the subsequent aligned transfers do
not require a parity read, and indeed the analysis does not
charge for the extra rotation that will generally be required to
write the unaligned suffix of such a large transfer. We
believe it unreasonable to expect applications to be aware of
disc geometry.

5. Applying the Analysis to a 10+2 array
Equations (7)-(13) can be used to compute the minimum
response time (zero load response time) for an array of N
discs configured as mirrors, parity stripe, or RAIDS. In this
analysis, the number of ‘discs is held constant and the request
size is varied from small (one block unit = 1KB) to large
(1MB) in powers of 2. For simplicity, only the pure read
case (only read requests), and the pure write case (only writes)
are analyzed, rather than a mix of reads and writes. Also,
rather than looking at a mix of request sizes, the analysis
looks at workloads of constant request size and simply grows
the request size by powers of two. These simplifications
make the analysis tractable (trivial). We believe that
elaborating the model to include these refinements would not
change the conclusions.

A second issue is how the array behaves under load.
Assuming that the discs are run at 50% utilization, a 10+2
discarraywilluse5O%of lldiscs(recalltllatthesparedisc
in the array does not provide service) giving 5.5 disc seconds
of service per second: while mirrored disc will use all 12
discs and give 6 seconds of service per second. So equations
(7). (9). and (13) imply the array throughput in each case.

In looking at the following figures, realize that application
disc requests are typically less than 1OKB today, while
utilities issue requests in the 50KB range. Larger transfers
are rare, because they monopolize the IO subsystem with
little benefit. Rather, large transfers are typically broken
into multiple “small” 50ms transfers so that truly small
transfers can be serviced during the gaps between the large
transfers. This allows a kind of priority scheduling of
devices and paths, and at 50% utilization suggests that the
average response to a disc request will be about 1OOms. A
virtue of striping is that it can transfer much more data in
these 50ms windows by doing parallel transfers from each
disc. But, to repeat: current software typically operates in
the first columns of these graphs (less than 1OKB requests),
next generation software is likely to be in the second
columns (IOKB to 1OOKB). The high transfer rate of RAIDS
only begins to dominate at the high-end of this range. and so
is a poor design for traditional applications.

Also realize that the fine (1KB) striping unit was chosen to
show the extreme case. If we had chosen a 1MB striping
unit, then RAID5 and parity stripe would have virtually
identical performance curves. So, the real point of this
section is that tine granularity striping is a bad tradeoff for
OLTP systems. This ethos the conclusions of [Chenl.
Given that parallel transfers are not used by RAID5 in OLTP
applications, the next section argues the merits of parity
striping over RAID5 in terms of benefits other than
performance.

5.1. The Read-Only Case
Figure 10 shows the read performance of RAIDS, mirrors, and
disc striping. An array of 12 standard discs has
approximately the same read performance as mirrors, and so
is not shown.

Figure 10 indicates that for small transfers (less than 32KB)
the shortest-seek .benefit of mirrors gives them a distinct
advantage over striping which must seek over 1/3rd of the
surface rather than 1/6th as in mirrors [Bittonl]. After the
request size exceeds about 24KB, the high transfer rate of
RAID begins to dominate -- and RAID5 shows considerable
response time benefit. The throughput of disc arrays is not
attractive in any range because each large request consumes
seek and rotation time on multiple discs. The RAID5
throughput curve drops steeply until all discs are involved in
each request and then holds approximately constant for
request sizes between 1 lKl3 and 256KB. In this range, the
array throughput is typicallyfive times worse than either the
mirror or parity stripe throughput.

154

Min Read Response Time vs Request Size
for RAIDS, Mirrors, and Parity Stripe

at Zero-load

Read Request Throughput vs Request Size
for RAIDS, Mirrors, and Parity Stripe
at 50% load

loo0

1
1 10 100 moo 1 10 1000

Ralua==#w lbW-&i

Cgure IO: Log-log plots of the read performance of the three disc architectures vs request size. The RAIDS striping unit is
ssurned to be ~KB. the discs are assumed to be spindle synchronized, the requests are assumed uniformly distributed to all
xations. The discs are run at 50% utilization to compute the throughput. A conventional array of 12 discs would have read
erhrnance similar to mirrors.
I * . - _--\ * I, ;:

lnrougnout me range, mirrors nave a stignt aovantage over
parity stripe because they benefit from the shortest seek
optimization, and because they can use all 12 disc arms.

:cond),

The model does not include the obvious optimization form
mirrors: splitting large reads in half and sending half of the
read to each arm. Using this optimization for reads of 64KB
or more would slightly degrade throughput but would give
mirrors some of the response time advantages of the RAID5
scheme. The Tandem sequential scanning software includes
this optimization.

5.2. The Write-Only Case
The picture for writes is not much different. For small
transfers (those less than 64KB), mirrors have better response
time and throughput than do the other kinds of arrays
(because they avoid the extra rotation needed for parity stripe

-am-l KAID). Looking at tnrougnputs (requests/St
mirrors consistently outperform any kind of striping because
of striping’s rotational penalty. In the 1Okb to 1OOkb range,
mirrors service five times as many requests as RAIDS discs.
These charts show the virtue of parity striping. At a
relatively minor cost (50% more response time and -30%
less throughput), parity striping gives the the low $/CB cost
of RAID5 without the 500% r/s throughput penalty. Using
the array as a standard disc farm (no reliable storage) gives
approximately the same minimum response time as mirrors
(the mirror seek time seek(2) of Figure 9 rather than seek(l)),
but standard discs give twice the throughput since they use
only one arm per write. At 16KB requests: the write
throughput of a mirrored drive is 46% of a standard drive, the
write throughput of parity striped discs is 29% of standard,
and the write throughput of RAID5 is 9% of standard

Minimum Write Response Time vs Request Size
for RAIDS, Mirrors, and Parity Stripe

at Zero-load
lam

Write Request Throughput vs Request Size
for RAIDS, Mirrors, and Parity Stripe
at 50% load

10 I
1 10 1m ram 1 10

M-m Ml-S-&
lam

Figure 11: Log-log plots of the write performance of the three dii architectures vs request size.. The discs are assumed to be
iphdle synchronized, the requests are assumed uniformly distributed to all locations. The discs are rtm at 50% utilization to
compute the throughput. Standard shows the throughput of the array used as 12 independent discs. Standard diic writes have
1 oximately the same minimum response time as mirrored writes.

155

5.3. Analyzing A High Performance Disc
One might object that these results are dependent on the disc
technology; that the conclusions would be very different if
the discs were much higher performance, or much lower
performance. Examination of equations (2)-(13) shows this
is not so. We have looked a many kinds of discs, and
include here the curves for the “future disc” of Table 1 which
seeks and rotates about 70% faster, and has three times the
data transfer rate. The curves for that disc are given in Figure

12 and show the same pattern: mirrors have the best
response time and throughput below 32KB. fine granularity
striping to get parallel transfers is a poor response-time
tradeoff, and so coarse striping in the style of parity striping
or [Chen] is very attractive if the goal is low cost per reliable
GB. At 16kb request sizes, RAID5 has about a 1000%
throughput penalty compared to mirrors, and parity striping
represents a compromise -- providing reliable storage with
throughput only 40% worse than mirrors.

Zero-load Response Time vs Request Size for 50% Load Throughput vs Request Size
RAIDSMirrors, and Parity Stripe for RAID5,Mirrors, and Parity Stripe

1 loo0 1
Requ$t Size&~

100’

lOtX? I
WRITE

. I

z
Response Time I

g

3 loo- I I E 3 I I parity stri

1 100 1000 1 1
Re&st&e(KB)

100 loo0
ReqzS@KB)

Qure 12: Log-log plots of the performance of the three dii architectures vs request size. The diis are assumed to be higher
erformance (12ms seek 6ooOrpm. and 6MEt/s transfer) than the discs in the previous charts. These charts still indicate a
rreference for mirrors over RAIb5 if throughput is the noal.

156

6. Other Benefits of Parity Striping

The argument made so far for parity striping over RAIDS has
been in terms of performance one. But one could simply use

RAID5 with a stripe size of &and get the same effect.

[Chenl. So why bother with parity striping? Parity Striping
has several advantages over a traditional RAID5 design - even
when it is configured with large (say 1MB striping units). In
fact the idea of parity striping grew out of attempts to fit a
RAID5 into a Tandem system. Parity striping circumvents
some of the problems we encountered with a traditional
RAID5 approach. These problems include:
1. Archiving a Giant Disc: Since the data is spread

across all the discs, archiving software must copy the
contents of the entire atray, rather than just one spindle.

2. Operations with a double failure: When a second
disc in the array fails during the repair window, the
entire array is damaged and must be restored from the
archive (see 1 above). The restoration of a giant disc
(say 1lGB) from a tape drive at 3MB/s will take an hour
vs the live minutes needed to restore a single drive.
Agreed, this only happens rarely, but when it happens it
is a big event.

3. Load balancing: Load balancing of requests across a
RAID array is not controllable: in particular one cannot
place two different files on two different discs unless the
file system does some very complex arithmetic. Rather,
one must hope that striping does not cause bad
interference. This is the converse of most RAID
arguments which point to the automatic load balancing
that comes from spreading all files across all discs. If
coarse striping units (say 1MB) are chosen for RAIDS,
then the load balancing benefits claimed for RAID
disappear since hotspots tend to be of that size, but the
ability to manually control the location of files does not
remlll.

4. The software problem: Introducing a new disc which
is an order of magnitude larger and which processes ten
times as many requests per second will break most
software designs. Here is a partial list of Tandem
software problems presented by a 10+2 array of modem
drives. We believe that MVS, VMS, and most Unix
implementations have similar problems.
l The disc server software uses 31 bit addressing for the

disc cache (disc buffer pool) -- this limits the disc
cache to 2GB. So a disc array of will have a limited
cache size compared to six mirrored disc servers with a
12GB aggregate cache. In fact, due to fault tolerance,
and to some data structures the current Tandem disc
cache is limited to 56MB per logical drive so this
problem is quite extreme. Main memory databases
will only be able to use 56MB of any size array.

l The software uses 32 bit addressing for files, and uses
partitioning of files across discs to get file sizes up to
a Terabyte. If the array appears to be a single logical
disc, it will be impossible to fill it with one large
file.

l Tbe software assumes that them arefrequent operations
(e.g. read and write) and rare operations (e.g. b-tree
split, update directory, and so on). Frequent
operations run in parallel and typically execute in
cache. Rare operations acquire a semaphore to
simplify concurrency and fault tolerance. With eleven
discs viewed as one, rare operations will be eleven
times more common. This will likely cause
bottlenecks on the semaphores. In particular: the disc
directory is stored as a single file and updates to it are
covered by a semaphore and some elaborate fault-
tolerance logic. If the directory update rate increases
by an order of magnitude, the current logic will
bottleneck and will have to change.

5. The bandwidth problem: Building controllers and
channels that can run at lOOMB/s is non-trivial. Current
controllers and channels run one or two orders of
magnitude slower than this. For the uninitiated, IO
channels are like LANs but operate at mega-BYTES-per-
second rather than mega-BITS-per-second. A lOOMB/s
channel is about 1000 times faster than LANs like
Ethernet. In addition, many applications can’t use the
high bandwidth until processors of 1OOMIPS or more are
commonplace.

6. Exotic Controllers: Rather than using standard
controllers (as with mirrors), disc arrays depend on
exotic controllers and spindle synchronized discs. In
addition, they require complex controller logic (software)
to retry the operation via a second controller if the first
controller fails. Such exotic controllers will not be
cheap and may adversely affect the price advantage of
disc arrays when compared to mirrors using standard
controllers.

7. Performance with a single failure: When a single
disc in the array fails, the load on the remaining discs
doubles. With mirrors, when one disc fails the read load
on the mirror doubles, but the write load is not changed.
So the net change in load is typically a 33% increase on
one drive rather than 100% increase on 10 drives. The
real story is even worse than this since the
reconstruction of the lost disc on the spare disc will add
to the load.

8. The parity hotspot problem: Half the update traffic
of each disc is parity updates. In the 10+2 array, half of
the updates go to 10% of the data. This may make the
parity areas. hotspots, further exaggerating the load
balancing issue (problem 3 above).

Parity striping exploits problem 5, sacrificing bandwidth to
solve problems 1, 2, 3, and 4. We have no answer for
problems 6, 7, and 8. Perhaps experience will show that
these are not really problems after all. After all, problem 4
is just smop (a simple matter of programming).

Parity striping solves the giant disc problem (1 above) by
making each physical disc a smaller logical disc. So the
10+2 array looks like eleven logical discs each containing
IGB. The data of these logical discs can be archived and,

157

restored independently. The parity can be reconstructed from
the other discs and so need not be archived.

If two discs of a parity stripe array fail, then the data of those
two discs must be restored from the archive. But the data on
the other N-l discs is still available for reading and writing
(solving problem 2 above). In particular the file directory
and B-trees of each surviving logical disc are still intact. So
parity striping has better fault containment than RAIDS
designs. Double failures are a rare event if everything goes
well (once in 500 years according to [Schulze]). But when
such failures happen they will be an big event.

Ignoring the parity hotspot problem (problem 8). load
balancing an N+ I parity stripe disc is just like load
balancing a N+I array of standard or mirrored discs (problem
3 above).

A parity striped disc array looks like N+I modem discs to
the software, and so should introduce minimal software
disruption beyond the need to retry via the alternate controller
if the first controller fails. This is a relatively minor and
isolated change to the software. So parity striping solves
many of the software problems posed by reliable disc arrays
(problems 4 above).

7. Summary
Perhaps a better way to look at this whole argument is:
1. Parity striping is just a variation of RAIDS. The parity

techniques, recovery techniques, reliability analysis, and
hardware requirements are the same for both schemes. All
that differs is the way the data is mapped to the disc array.

2. For a large class of applications, a large stripe size (say

&) is appropriate [Chen].

3. Given (2). the high parallel transfer rate of disc arrays is
lost, and the automatic load balancing claims of RAID do
not apply.

4. Current software will have a difficult time with giant
discs implied by RAIDS.

5. So, rather than map the array as one big logical disc,
parity striping maps it as N+I conventional (but very

reliable) discs. Each logical disc maps to most of one
physical disc. This has fault containment, load
balancing, and software benefits.

Previous analysis of disc arrays used for reliable storage
focused on their attractive cost&B and their high data transfer
rate. The discussion here focused on response time and
throughput. With that point of view, mirrored discs are the
best reliable storage choice for applications which are disc-
arm limited and which cannot absorb data at current device
speeds. Parity striping offers the low cost/GB of disc arrays,
while sacrificing the high transfer rate of RAID5 schemes,
and accepting a 40% reduction in throughput compared to
mirrored schemes. Perhaps the best way to see these
differences is to look at the price and performance of a single
modem disc in an atray configurfxl in the four different ways:
This table shows that parity striping provides an attractive
compromise between RAID5 and mirrors. As argued in the
previous section, parity striping has some additional
advantages over RAIDS: it has preferable fault containment
and operations features. Perhaps most importantly, it causes
minimal software disruption. Its major drawback when
compared to RAIDS, is the reduced data transfer bandwidth --
2MB/s rather than 22MBis with current discs and 6MB/s
rather than 66MB /s with future discs. For many
applications, only a small part of disc response time is data
transfer time, so this bandwidth advantage at the cost of
increased queueing is a false economy (see Table 2 above).

Given this point of view, we recommend that anyone
implementing an array controller should support standard
discs (no parity), mirrored discs, RAIDS, and parity stripe.
Standard discs give the best performance and cost/GB, mirrors
give the highest throughput reliable storage, RAID5 gives
high-transfer rates to and from reliable storage, and parity
stripe gives the reliable storage with cost/GB of RAIDS, but
has additional benefits. The marginal cost of supporting all
these options should be small since the hardware
requirements for RAID5 and parity stripe are identical (parity
and spindle synchronization logic), and since the software to
do the different data mappings is literally a few lines of code.

Table 2: Comparison of the four designs on a 10+2 array with 16KB requests.
Throughput Minimum

Configuration Cost/GB6 @50% utilization Response Time
requeSts/arm/s mbquest
read write read wrl&

Standard 1 .Ok$/GB 15.2rls 15.2rls 33ms 33ms
Mirrors 2.Ok$/GB 16.9r/s 7.Or/s 3oms 36ms
Parity stripe 1.2k$/GB 13.8r/s 4.4rls 33ms 52ms
RAIDS 1 .2k$/GB 1.3r/s 0.8rls 32ms 49ms

6 The cost of the controllers is ignored here. Standard and mirror configurations can use standard commodity controllers, while parity stripe and
RAIDS designs require specialized and high-pe.rformance controllers to do the parity computation, spindle synchxmizauon, and data reconstruction.
So the price advantages of pmity stripe and RAIDS are overstated here.

I 158

8. Acknowledgments

The idea of parity striping grew out of discussions with
Andrea Barr, Franc0 Putzolu, and Todd Sprenkel. We were
all trying to understand how a RAIDS-style array would fit
into the Tandem environment. These discussions defined the
problems. The parity stripe solution was easy once the
problems were stated. Although not highlighted, the retry
logic in this paper is new. It works for both parity stripe
and RAID5 arrays. Peter Chen and Garth Gibson have been a
constant source of ideas and have patiently listened to ours.
We were especially interested by Peter Chen’s recent paper
[Chen] which suggests coarse striping. Wing Chan provided
us with empirical measurements of a modem disc. The
analysis here benefited considerably from papers by and
discussions with Dina Bitton. The paper also benefited from
a spirited debate when it was presented at the RAID systems
seminar at UC Berkeley. Garth Gibson, Randy Katz, Dave
Patterson, and Mike Stonebraker each made detailed and
specific comments to improve the paper -- we tried to include
their advice.

9. References

[AS4001 ASKW”Progr cmuning: Backrcp and Recovery Guide, IBM
Form No. SC21-8079-O. June 1988. Note: parity discs
are called “check disks” in the AS400.

[Chen] Chen, P.. Patterson, D. “Maximizing Performance in a
Striped Disc Array”, to appear in Proc. ACM SIGARCH

[Gelb] GE. J.P., “System-Managed Storage”, IBM Sys. J. V28.1
1989. pp. 77-103

[Hardy] Hardy, G.H., Littlewood, J.E.. Polyp, G., Inequufities.
Cambridge U. Press. Cambridge 1934. Chap. 10. or see
D. Knuth, Art of Computer Programming, V3., Section
6.1 exercise 18. Addison Wesley, 1973.

[Patterson] Patterson, D.A., Gibson, G., Katz. R.. “A Case for
Redundant Arrays of Inexpensive Discs (RAID)“, Proc.
ACM SIGMOD June, 1988. pp. 106-109.

[Bittonl] Bitton, D., Gray, J.. ‘Disk Shadowing”, VLDB 1988
Proceedings, Morgan Kauffman, Sept 1988. pp. 33 l-338

[Bitton2] Bitton, D.. “Arm Scheduling in Shadowed Disks”,
COMPCON 1989, IEEE Press. March 1989. pp 132-136.

[Chan] Chart, W.. Private communication with Wing Chart of
Tandem Computers, Cupertino, CA..

[Katxman] Katxman, J.A.. “A Fault Tolerant Computing System,”
Proc. 11th Hawaii Int. Conference on System Sciences,
Honolulu, Hawaii, Jan 1978. pp. 85-102.

[Kim] Kim, M.Y., “Synchronized Diik Interleaving”, IEEE TGC.
V.3-35.11. Nov 1986. pp 978-988.

[Schneider] Schneider, D.A., Dewitt, D.J., ” A Performance
Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment”, ACM SIGMOD
Record, V 18.2. June 1989. pp. 110-121.

[Schulze] Schulxe, M., Gibson, G., Katz. R.. Patterson, D.. “How
Reliable is RAID”, CompCon 1989. IEEE Press, March
1989. pp. 118-123.

[Scranton] Scranton, R.A., Thompson, D.A., ‘The Access Time
Myth”. IBM Research Report RC 10197 (#!45223) Sept.
1983.

[Wilhelm] Wilhelm, N.C., “A General Model for the Perfomrmce
of Disc Systems,” JACM. V24.1 Jan. 1977, pp. 14-31.

159

10. Appendix: Spreadsheets of Graphs 8,9 and 10
Modern Disc: 17ms seek, 3600rpm,

device busy time (lo+2 drives)
request arms parity stripe

size used read write
1 1 26 90

4' 4' 26 27 99:
8 8 29 97

16 11 33 105
s3: 11 11 41 57 153 121

128 11 89 217
256 11 153 345
512 11 281 601

1000 11 525 1089
response time (lo+2 drives)

req- read write
: : 26 26 45 45

4 4 27 46
8 a 29 48

16 11 33 52
32 11 60
64 11 5: 76

128 11 89 108
256 11 153 172
512 11 281 300

1000 11 525 544
throughput (lo+2 drives)

amf read
S’t
119

246
349
363
384
420
487
618
865

write
90

139
237
433
538
551
571
607
674
804
1051

read
26

9:
31
32
33
35
38
44
56
79

write
45
46
47
48
49

;!i
55

7";
96

reqsts
: :
4 4
8 8

16 11
32 11
64 11

128 11
256 11
512 11

1000 11

read write read write read write read write
215 61 215 61 271 106 235 235
211 61 98 40 265 105 230 230
203 59 46 23 254 101 222 222
169 57 22 13 234 95 207 207
166 53 16 10 203 84 182 182
134 46 15 10 160 69 146 146
96 36 14 10 112 50 105 105
62 25 13 9 70 33 67 67
36 16 11 8 40 19 39 39
20 9 9 7 22 11 21 21
10 5 6 5 12 6 11 11

mirrors
read

22
23
24
26
30
38
54
86

150
278
522

read
22
23
24
26
30

5":
86

150
278
522

write
56

2
63
71
67
119
183
311
567

1055

write
28

xi

E
44
60
92

156
284
528

Standard
reed

26
26
27

3239

::
89

153
281
525

read
26
26
27
29
33

;:
89

153
281
525

write
26
26
27
29
33

3:
89

153
261
525

write
26
26
27
29
33

::
89

153
281
525

PMBIS.

arm
1

i
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

DtnabfamuDe
formula distanceseektime

0.33
0.47
0.54
0.59

i::

E
0:72
0.73
0.74
0.75
0.76
0.77
0.78
0.78
0.79
0.80
0.80
0.81

333 17
467 19
543
594 2':
631 23
659 23
682 24
700 24
716 24
730 25
741 25
752 25
761 25
769 25
777 26
783 26
790 26
795 26
801 26
805 26

Mirrored diSc Shortest Seek
0.16 167 13

ParanM?tervatues
drives 10 -t2
stripe 1 KB

cylinders 1000 cyls
vm 3600 rpm

transfer-rate 2 MB/s
max_seek 30 m

settle 5ms
cutoff 0.2
*I=1 0.64
slope2 0.01994

14.051 ms

160

Future disc: 10ms seek, 6000rpm, GMB/s.

devfcebusytfme(10+2 drives)
Ditlh fOIlnUb

write Dina~fame

arms formula distance seek time

request arms parity stripe
s&e used read

: : 18 18 58

4 4 18 ::
8 8 19 61

16 11 20 63
32 11 23 69
64 11 28 79

128 11
ii

101
256 11 143
512 11 103 229

1000 11 184 391
responsetime(10+2drives)

req- read write

: : 18 18 29 29
4 4 18 30
8 8 19 30

16 11 20 32
32 11 23 34
64 11 40

128 11 iii 50
256 11 60 72
512 11 103 114

1000 11 184 196
throughput(10+2 drives)

req- read write

: : 308 311 94 94
4 4 302 93
8 8 291 91

16 11 272 87
32 11 240 80
64 11 195
128 11 141 iii
256 11 91 38
512 11 53 24

1000 11 30 14

amf
write lead

mirrors
write read

18 58 15
38 90 16
80 153 16

165 279 17
232 346 18
238 351 21
247 359 26
259 371 37
283 394 58
327 439 101
410 521 182

38

ii
41
43
49
59
81

123
209
371

read
18
19
20
21
21
22
22
24
26
30
37

write

:i
31
31
31

ii
34
36
40
47

read write
15 19
16 19
16 20
17 20
18 22
21 24
26 30
37 40
58 62
101 104
182 186

read wiite read write
311 94 389 156
143 61 385 155
69 36 376 152
33 20 361 147
24 16 354 138
23 16 291 123
22 15 231 101
21 15 164 74
19 14 104 49
17 13 60 29
13 11 33 16

Standard
write

18
18
19
19
20
23
28

iii
103
184

read
18
18
18
19
20
23

ii
60

103
184

read
339
336
330
318
297
262
213
154

:21
33

read

18
18
19
19
20
23
28
39
60

103
184

write
18
18
18
19
20
23
28
39
60

103
184

write
339
336
330
318
297
262
213
154
100
58
33

1 0.33
2 0.47
3 0.54
4 0.59
5 0.63
6 0.66
7 0.68
8 0.70
9 0.72
10 0.73
11 0.74
12 0.75
13 0.76
14 0.77
15 0.78
16 0.78
17 0.79
18 0.80
19 0.80
20 0.81

333 13
467 14
543 15
594 15

16
ii: 16
682 16
700 17
716 17
730 17
741 17
752 17
761 17
769 17
777 18
783 18
790 18
795 18
801 18
805. 18

Mirrored disc Shortest Seek
0.16 167 10

Parametervslues
drives 10 -t2
stripe 1 KB

cylinders 1000 cyfs
vm 6000 rpm

transfer-rate 6 MB/s
ma-seek 20 In5

settle 2ms
cutoff 0.2
*pe1 0.64
slope2 0.01119

base 11.051 ms

161

