
The qerformance and Utility of
the Cactus Implementation Algorithms

Pamela Drew* and Roger Ring**
Department of Computer !kience, University of Colorado, Boulder, Colorado 80309

Scat Hudson
Department of Computer Science, University of Arizona, I&son, Arixona 85721

Abstract
The database system Cactis is an experiment in
managing computed data in an efficient fashion. Using
au incremental update approach and self-adaptive
optimizations, the system attempts to minimize the
amount of I/O required to update derived data values.
Performauce tests have been run against a wide variety
of databases and transaction streams. The general
conclusion is that Cactis i-forms well, in most cases
resultiug in a reduction 0 p” UO in the range of 50 to 90
percent. We attempt to isolate various database factors
(such as the complexity of the schema aud of the derived
data) and determine how they affect the performance of
the Cactis implementation algorithms, as well as test the
major optimization aspects of Caclis in isolation.
Ftiy, we draw conclusions concerning the general
usefulness of the Cactis algorithms in database systems,
aud try to suggest where further research should be
performed

1. Introduction

The Cactis project muK86, HuK87, HuK88a, HuR891
began in 1985. The driving goal was to ad- one
speciik research issue relating to the support of complex
database applications such as CAD/CAM, software
engineering, VLSI design, and PCB design: the
maintenance of computed data. Design engineers often
report that standam hierarchical, network, and relational
databases do not provide sufficient support for complex
forms of engineering da& For example, in a software
environment, there are dependencies relating source
modules, object modules, con@uratio~~~, documentation,
bug reports, milestones, etc. PCB and VLSI design
require that the intricate consrrahlts involving board
wirings be represented
Doing this with a traditional database system presents
two problems. First, the system does not provide any

Permission IO copy without fee all or part of thih material is

granted provided that the copies arc not made or distrihutcd fog

direct cornmerciol advantage. the VLDB copyright notice and

the title of the publication and its date appear. and noticc is gi\cn

that copying is by permission of the Very Large Dat;l Baw

Endowment. To copy otherwise. or to republish. requirch ;I I'm

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

135

substantive modeling capabilities for explicitly
representing computed data, and so the application
software must construct computed data structures on its
own. This requires the application software to perform a
major data transformation, whereby complex data
objects am translated essentially into simple records.
Second, as a result, it is highly unlikely that the database
system will update and retrieve this data in an efficient
fashion.
Cactis presents a data model and a set of implementation
algorithms for maintaining computed data. The data
model is essentially that of au attributed graph [ACR88].
The model is in keeping with the spirit of the numerous
object-oriented database research projects, in that Cactis
encapsulates a computational capability witbin data
objects. These computations am derived attributes,
The implementation relies on two general techniques.
First of all, the system is iucmmental, in that computed
data is updated in a fashion that attempts to recompute as
little as possible when an update is made. !kcond, the
algorithms are self-adaptive, in that they learn from
previous usage statistics in determining how to schedule
computations. Cactis attempts to be efficient both with
respect to the number of data objects needed for a
computation and the management of the buffer pool. In
this way, Cactis achieves its goal of limiting the amount
of I/O needed to maintain derived (or computed) data.
Although numerous isolated performance tests have been
performed, and preliminary results have been reported
muK89], an integrated, extensive battery of tests had
never been performed on Cactis. Peeling that many
database research projects never properly validate their
implementation algorithms, we felt that this was
necessary to do.
We had two primary goals in mnning these tests. The
first was to determine the limits of the Cactis techniques.
In particular, as Cactis is intended to minimize the cost
of computing derived data, we wanted to see precisely
what kind of derived data makes the system work best.
Before performing the tests, we predicted that the system
would not work well when the complexity of computed
data was small, and that it would operate most
effectively when the database consisted of a tight graph
of highly-interdependent computed data. Below, we will
see that these pxediction8 were not always right.

‘This rcscarcbcr wss tmpportcd by a fellow&ii from U S West
Advanced Technologies. l cLhi ~carcha WYL supporid in put by
ONR under contract number NOCOW88-K-0559. and in part by a con-
tract from AT&T.

In order to properly test the effectiveness of Cactis, we
also had to isolate the two major mechanisms within
Cactis: the process for scheduling updates and the data
clustering facility. As the second mechanism is the most
easy to adapt to. other database systems, and as we
predicted that it would have the biggest impact of
performance, we were particularly concerned with
testing the second mechanism in isolation.
Our second goal was to determine what other research
must be performed in order to construct truly useful
mechanisms for maintaining derived data. We found
that them were a few major limitations in our attempt to
validate Cactis as a system whose internal algorithms
might be useful in other database systems. Hut&r work
is needed to construct metrics for categorizing derived
data; as it is, we are not able to make very precise
statements about what hinds of databases are best served
by Cactis.
Another problem is that we have not yet tested the Cactis
algorithms on databases which possess not only
computed data, but information that is processed with
standard, set-oriented queries. HinaRy, while we
conshuUed a fairly sophisticated system for
automatically building test databases, we do not know
how real-life databases stand up against our test
databases; it is necessary to gather metrics concerning
the makenp of databases which natumlly embody
derived d8ta The performance tests reported in this
paperseemtosuggestthatCactisworkswellwithina
very broad spectrum; the fact that we did not find any
substantkl factor that limits the usefulness of the system
makes us afraid that our automatically generated
dat&m~a,e do not truly match a natural spectrum

In the secofxi section, we provide an overview of the
Cactis model and implementation algorithms. Then we
report 00 a set of performance tests. Since there is no
standard with whid~ to compare Cactis, we focus on
validat@ the perfcmnance of our algorithms over a wide
specttum of databases. We also
the algolithm complexity of the iEs

$kananalysisof
implementation,

andintbecon&siondiscusshowthiscompateswiththe
actual performance results. We have concluded that
CiWis pvi&s a very effective way of maimaimng
compkx computed data, We have also discovered that
for certain forms of computed data, Cactis does not
perfolm particularly WelL

2. The Cadis Data Model
A Cactis dambase cons&s of a set of typed objects.
E!achobjectinthedatabaseconsistsofanumberof
ortribum, each of which is assigned a value that may be
of any type expressibk in the C programming language.
‘l’k type and number of attributes associated with an
objeuis&terminedbythetypeoftheobject.
Extend struuure can be created by establishing
relationships between objects. In conventional object-
oriented systems such as Smalltalk [GoR83], the external
ir.mf8a2 to 8n object consist3 of a set of messages that
tk objea can respod to. However, in the C&s data
model the external interface to an object consists of a set

of (typed) data values that flow into and out of the object
across (typed) relationships.
Attributes may be assigned values by user operations or
they may be computed, and all such values are visible
only within individual objects unkss they are passed
through relationships to other objects. No@computed
attributes support a form of structural encapsulation.
Values transmitted into an object may be used to derive
computed attribute values. This supports a form of
behavioral encapsulation, whereby an object may
respond to changes elsewhere in the database by
defining its own derived attribute values. Values
which flow out of an object may be either derived or
non-derived. In the Cactis model the intemal
impkmentation of derived attributes is expressed
declaratively in the form of attribute evaluation rules.
The Cactis data model provides direct support for rich
semantic relationships. &nsequently, the Cactis data
model can be seen as a semantic data model H-IuK87].
As in other semantic models, relationships in the Cactis
modelaretypedanddirected. Thetypeanddimctionof
a relationship is used to represent a semantic concept.
However, relationships in a Cactis database are
significantly different than those found in other semantic
models such as the Entity-Relationship Model [che76],
the Semantic Data Model [HaM81], or the Hmctional
Data Model [KeF76,Shi81]. In these models,
relationships are defined with types. An object type
uniquely defines the relationships that, objects of that
type may participate in
those rehuionships.

-includingtherangetypesof

TheCactismodel,ontheotherhand,separatesobject
types firm relati~ types. A relationship type is
determined solely by the type, direction, and number of
value8 that flow across th rehtionship. Consequently,
any object which exports and imports the proper set of
value8 may patticipate in a rektionship of that type.
Expressed in different terms this means that the range
type of a relationship does not depend on the domain
type. In this way, relationships may be moved around to
connectupobjectsofvatioustypes. Allthatmattersis
that a relationship deliver attribute values of the correct
type and number, as expecmd by the object at the
“range” end of the relationship.
This notion of relationships has important implications.
In particular, it allows much greater extensibility of the
databasesinceanobjectmay-infactmust-remain
compktely ignorant of the type of any object it is related
to. An object only knows what types of values flow
across a relationship, not how the values are produced or
consumed. nlis allows objects to be transparently
replaced by more complex equivalents in a manner that
is completely transparent to any objects they are related
to.

3. Incremental Update
TheCac4isdatamodelprovidesapowerfulmechanism
for supporting derived data However, it also presents a
signi6cant challenge for e&ient implementatioa; this is
due to the fact that such a general-purpose facility for
specifying derived data could potentially cause vast areas

136

of the database to be mad or written every time a change
is made. This section describes the basic update
algorithm used in the Cactis system, while the next
sectioll c4msiders the self-adaptive opnmizations
developed to improve performance iu a disk-based
environment. Please note that Cactis is tuned only
towad m’ ’ lmmizing the I/o cost of calculating derived
values; it does not su

4p”
lt any convelltional access

structures (like btrees) or doing set-oriented retrievals.
Wealsodonotconsider concurrency control or recovery
inthispaper,allourtestswere~unonasingleuser
version of cacti&
The update algorithm used by the Cactis system is
incremental. When a change is made to an attribute in
the database, the update algorithm at worst has to do
work proportional to the set of derived attributes that am
(transitively) dependent on the attribute chauged. The
update algorithm does not do work proportional to the
whole database or the set of all objects of certain types.
More importantly, if a change to attribute A causes
attributes B and C to be transitively affected, and if B
and C both transitively cause attribute D to be updated,
then D is only updated once. With a mechanism like
data driven triggers P&79] this is not guaranteed This
can cause exponential behavior in the worst case (see for
example mep84] for an analysis of data driven updates
of this form). The Cactis algorithm in comparison is
strictly linear iu its behavior.
While an update is being propagated to all dependent
attributes, access to attributes which are not trausitively
related to a changed value can be accessed directly
without additional overhead. In addition, the update
algorithm is lazy. The system ensures that when values
are examine4 they are cmrect with respect to their
detining equations. However, attributes are not
recomputed unless and until they am actually examined.
In this way, work is avoided for attributes which would
have received a series of new values, but for which those
new values ate never actually Deeded by the user. This
allows values of only infrequent interest to be derived at
little cost.
The incremental update algorithm is best understood as a
series of graph traversals on the attribute dependency
graph. Nodes io this graph represent attributes, while
edges in this graph represent (direct) dependencies
(caused by derivation rules) between attributes. After
each database update, the algorithm works on tbis graph
in two phases. The first phase identiges potential work
to be done - transitively dependent attributes that may
need to be recomputed as a result of the update. The
second phase performs the actual recomputation of
attributes. Whenever au access requests one or more
values, the system detenniues which attributes need to be
recomputed and invokes the second phase of the update
algorithm to recompute those values as needed
Normally, attributes am only recomputed on demand,
however, the schema designer has the option of declaring
that certain attributes are important. Important attributes
am brought up to date even if their values are not used.
The first phase of the algorithm is the mark out-of-date
phase. It starts at the point(s) of change and marks all

attributes which might be affected by the change as out-
ofdate. This marking process is simply a traversal of the
attributedependencygraph. W&neveranawribumvalue
isrequeste4thesystemtirstcheckstoseeifithasbeen
matkedout-ofdate. Ifithas,itsvalueisreunnputedby
invoking its attribute evaluation function. llus is the
second phase of the algorithm. The function recursively
requests the values of other attributes, which may invoke
the second phase of tlE algorithm for tLu%e attributes. In
this way, the algorithm obtains a 8nal value which is
correct with respect to all trauaitive ndmcien. elm

“p” avaluehasbeenreevaluau&itsout-odatemarkisreset
so that Guttier accesses will not cause extra
recomputations. Both phases of tl~ algorithm ate thus
graph traversals - one following tfie dependency edges
forward and the other backward. This

-s2m: important to the optimizadons descn
section.
Aproofofm aud complete analysis of the
attribute evaluation algorithm used by Cactis cau be
found in mud891. To summarize this analysis: for au
update, the algorithm performs total work which is, in
the worst case, proportional to t& set of attributes
transitively dependent on the attribute(s) which were
changed. Note that when an update is made, C&s will
potentially examine au dependent attributes twice (ouce
for each phase of th3 update algorithm), while a trigger-
like mechanism could evaluate a given atttibute an
exponential number of times. In order to achieve linear
behavior within Cactis, attribute evaluation functions
must be purely licative
observable side-e iP

(i.e., they’ must have no
ects and must compute d&r result

strictly on the basis of their parameter values). This
limitation is not present with conventional trigger
mechanisms,
ullfoltunately, the cactis algolitllm is not o@imal since
it could conceivably do work directly proportional to the
smaller set of attributes which either actually change
value after an update or are directly related to an
attribute which changes mep82]. In other words, the
algorithm updates the optimal set of attributes after a
change, but may perform a non-optimal amount of extra
overhead wok in order to do this (but never mom than
~;u&,the size of the transitive dependency set of

.
While an asymptotic analysis can sometimes be
deceptive because large constants are hidden,
performance tests on an in-memory version of the
algoritbmindicatethatthisismtaprobleminthiscase.
The basic algorithm is very simple and the constants of
proportionality are very small in practice. Consequently,
this analysis is iu fact of practical as well as theoretical
interest.

A Self-Adaptive Optimizations
Computation of derived data on disk is typically
expensive since following transitive dependency chains
cau potentially involve reading many different blocks
from disk to access relatively few attribute values. This
means that while the Cactis also&m is asymptotically
very good and in practice performs very well in an iu-

137

memory setting, it many not actually perform well in a
disk-based setting. ‘Ihis section describes a set of self-
adaptive optimidon techniques which are designed to
ensure that it does. These techniques axe the focus of the
perfonmnce tests described in the next three sections.
Two complementary techniques are used to reduce the
amount of disk I/O performed by the system. (Note that
CactisisnottunedtowardminimixingCPUtime;asa
result our performance tests are almost exclusively
conaned with I/o time.) The filst of these techniques
involves taking advantage of alternative orderings in the
computation of derived data. In particular, scheduling
partsofthegraphtraversalsusedforupdatesinaway
designed to reduce total disk I/O. lhe second technique
involves periodically rechlstering the database to
improve the locality of reference that occurs during
retrievd and update of derived data. Both these
techniques use statis& collected at the object level to
guide optimkations. These statistics, in the form of a
decaying average, track changes in access patterns and
allow the algorithms to adapt to the fh3egrained usage
patterns that -ally occur over time.
l%e cactis incremental update algorithm coIlsists of two
graph traversals, one to mark attributes out-of-date, and
one to compute derived attributes. The first scheduling
optimizationusedbythesystemtakesadvantageofthe
flexibility in odering that is allowed in these traversals.
The mark out-of- traversal can clearly proceed in
any order which marks all reachable attributes. In
panic&r, at each step in the traversal, the system is free
to choose the next node to visit based on what it
heuristically pfedius will reduce total disk uo.
‘Ibe second traversal of the algorithm also has flexibility
intheorderinwhichitpmceeds. Becauseattribute
evaluation functions in the Cactis data model must be
purely applicative, an attribute evaluation function may .

2ZLL -Ibis means that the second traversal
ammeters in any order and will still compute

may al80 proceed in any order so long as a given
att&uteisaxqmtedafberalloftheattributesitdirectly
w&m=-
In order to optimim the order in which each of the
traversals pmceeds, the system maintains statistics about
traversals. For each edge of the dependency graph that
crossesbehveenobjects,thesystemkeepsadecaying
average of the total number of objects visited along that
path In panic&r, each time a traversal is completed
acsom an edge tk rmv rekxence count is averaged with
the old count in an exponentially decaying fashion. For
a given @euJmcy edge, this statis& gives an estimate
0fhowmanyobjectsmustbeexamimAinorderto
updatethevalneflowingacrossthatedge.
Given this tmistic, the system uses the following
heuri&ctosched&updates.Fifft,ifthenextstepofa
cunputationcanbeperformedusingdataalleady
bnf6eredinmemory(i.e.,mC~slepinthetraversat’
wiIl visit an object buffered in memory) that computation
is given priority for scheduling. Secoad, for
computatials that requile I/o, priority is given to the one
which is predicted to require the least I/O. This is
evald by examinbg the statistics. These heulisticr

represent a shortest job tirst approach. The i&a is to
attempt to finish small computations quickly so that
buffer space can be freed up to support computations
which require more space.
The locality of reference of a database can be decreased
if objects which are often used together are placed in the
same physical disk block. The second optimization
performed by the system is to periodically rechrster the
dalayti (off-line) on the basis of usage stat%6 in

imease this locality of reference. For this
optCz.ation, stat&tics am kept which count how many
times each relationship is traversed. Relationships which
are hpently traversed generally connect objects that
are referenced together during the traversal process.
These objects are hence candidates to be clustered in the
samediskblock.
Off-line recl~tering of the database is done using a
greedy heuristic. Clustering starts by placing the most
frequently referenced object in the database in an empty
block. ‘Ihe system then considers all relationships that
go from an object inside the block to an object outside
the block (which has yet to be placed in a block of its
own). The object at the end of the most frequently
travened relationship is placed in the block. This
processismpeateduntiltheblockisfull. Tbesystem
then repeats this process for new blocks until all objects
have been assigned blocks.
Note that the two optimimtion techniques work hand-
in-hand. l%e iifst tries to minimize page thrashing by
choosing an update that will result Id little I/O. The
second attempts to maximize the utility of the pages
which are fetched

5. A Test kamework
This section describes the test fmmework used to explore
the eft&tiveness of the Cactis implementation
techniques. The goal of this test fi-dmework was not to
determine the absohrte performance of the system (e.g.,
transadons per second) since the system is far from
optimized and there are currently fiew object-oriented
systems which it can be directly compared with in a
meaningful way. Also, the system was not designed to
serve as a general-purpose DBMS; rather our intention
was to build a DBMS tailored speciiically toward
efficient maintenance of derived data. In particular, the
system does not support. any set-oriented queries.
Therefore, the goal of the tests was to &termlne the
effectiveness of the implementation techniques used, to
explore how this effectiveness changes under different . situations, and to determm the limits of these
techniques.
Also, t$e tests prformed did not make use oiz”“p’”
applicatton or real life” benchmark tmnsach
duetotbefactthatasyet,noclearchamcM&csof~
typical application using extensive derived data have
emerged. Instead test data sets and query streams were
generated in a random but carefully parameter&d
fashion. Ibis allowed speciftc characteristics to be
varied in isolation to study their effects on system
pelfO~tUBX.

138

while~test~SUltSintbenextSeCti~providespedliC
percent improvement numbers for each of the
optimizatiot~ techaiqm Ilsed by the system,-t&e
numbers are d.iflhk to apply to spedfic applkukns. It
would be evem more unreasonable to attempt to apply
themtodatabasesystemswhichusetedmiquessimilar
to,butdiffemntfrom,Cactis. Amomimportantresultis
the overall effecliveness of the specifk Cactis
optimizuion algorithms, a& how this varies across
important dimtions of database structure. In sum, the
tests were designed to detetmine performance trendsthe
speci.ficnumbershavetobeconsideredonlywithina
narrowcontext.
In order to explore a wide range of sitnations, a program
which generates random databases and query streams
wascmnstructed. l%isgemXatoracceptsaseriesof
parameters (described below) and creates a cactis
sc~adatabrrseoftestobjects,andaoneormoretest
query streams to run agak3t the database. The
parameters supplied to the database generator control the
characteristics of the generated schemas, objects, aud
query streams. ‘I&se chamcteristics am designed
primarily to vary in the following thme important
categories:
l struchnc aud compkxity of connections between objects

In this categoly. the lumctum of the gaIelated databuns is
varied at three kvelr. At the highe6t kvcl, we am concerned
withthetotalconRec&&e6softhedata. Tbatir,giV~an
object, how many atha ubjcct6 i6 it related to, either d&ctly or
tllrough txalktive relation6hip6. llli6 cuncern6 relationship
connections, not spccilically derived attriite dependencks. At
the objazt kvel, we are intaerted ia the locality of refereMx of
l&ted object6; if a 6eric.a of rektion6hip connecIion6 i6
followed,whatirthepn4mbilitydrctumingtoanobject
already on the lE4atial6hip p6th. Finally, at the level of
illdiVidUd attfii6, = atC iIltUCl&d ill the 6tl’UCtUlC Of
dCXiVCd attribnte dependencie6. &XCi&dy, WC VUf the
length of a chain 6tarting l%om a nm-derived object to the last
derived object which, due to 6n artriite duivation, hansitively
depend6 on the non-derived object. For exampk. for a de&e4
attriiute, does it tend to have long chains of attribute
dependencies, or only 6hort chaina Similady. do the attriiute
dependenci~ tend to fan out widely or do they tend to confine
them6elver to a anall number of n4atively linear chains.

0 query &afacteliStic6

In this categay. we 6le intemad primarily in tlm locality of
reference of the querks - do they tend to acccs6 variabks in a
1OCd llCi@lbOIhOOd Of the databere OT IlpWd their aCCC6SeS
across tandatd 6utions.

dUfhiXlg Ch~eIi6tiC6

Fmally, in thi6 cateiiyny. we are intexutcd in the size of in-
memory buffer 6pacc. Jn pa&ular, we a~ interested in how
much of the database can be but%xed in memory at one time,
since this ch6mcte&ic can have a dramatic effect on overall
pClfOmN4tlCC.

In order to generate test data sets with specitic properties
out of the range of possibilities given above, the database
generator xcepts a series of parameter values. These
parameters control generation of a random database
which at au informal level proceeds as follows: First, all

pruedure CoMeqotja : set of object; cyde_biat : noat);
Vr

obil,obp:cbjed;
conneded :84dCbjBd;
unculnected :utdd.ject;

- Miolly no connectiou ma&?
oollneded :=empty;-:=~;
-etortwithoneobjectillcoMeckdset
W :=removu~random(uncollnected)eded);
w-t

-ch0os.eoneendofouwreWmsh&jbr~
-COllUCtdsct
objl:=choow_random(connected);

-decide~lhi#willio~le
Ifrandom()~cyde~biasTbm

Ed;

theobjeushlthetestdatabasearecreated lbenumber
of objects is controhed by the total~size parameter.
The!seobjectsarethenpartitionedinto.gtoupsthatwill
eventually tlmn connected componeats within the
databaw (by this we mean conneded viarelationships,
not necessarily attribute dependencies). ‘Ibe sixe of each
partition is controlled by the conneckd sixe parameter.
Thispammetercomrolstheoverall~ofthe
database - in other words how dottely coupled or
isolated objects are. Larger values of amne&ed~slxe
imply mom relationships between objects while smaller
values imply mom isolation
Once partitions have been formed, each partition is
processed iudependently to produce a connected
component of the database. This step involves creating
relationships between objects. At this level, the property
varied is locality of reference - the likelihood that,
when following relationships, otmz is likely to mtum to
the same neighborhood or instead to visit new objects.
While it is difficult to exactly control this probability in a
randomly generated database, it can be approximated.
We do this by manipulating the properties of the
undirected graph formed by objects and relationships.
At OE extreme, if this graph is a tree, then the locality of
reference is minimized since no path ever returns to the
same object twice. On the other hat& as cycles are
introduced into the graph the probability of retuming to
the same object increases. The parameter cyde bias is
used to control the introduction of cycles &to the
relationship structme and hence the locality of reference
at the object level.
The algorithm used to generate relationships for each
partition is shown in Figure 1. It works by selecting one
object to start the connected component then repeatedly

139

creating a relationship until all objects in the partition are
connected. At each stage the probability of introducing a
&&nship which closes an (undirected) cycle is
cycle bias while the probability of creakg a non cycle
edge 5 1 - cyde-bias.
Once a relaticmship structure has been established for
each partition, an attribute dependency structure for
derived attributes must be established The dependency
shuchuecanbeseenasadinxtedgraphembedded
within the undirected graph formed by objects and
relationships. Each node in this directed graph
corresponds to an attribute, while each edge conesponds
to a dependency between attributes.
InoNiertoapplytinecontroltothestlllctureofthe
dependency graph(s) constructed, a series of templates
ate used. l&se templates give a set of dependency
graphs in isolation from the outer object-relationship
graph. ‘lb database generator acts by randomly
choosing a template graph, then instautiating attributes
ml dependencies matching a copy of that graph within
the outer object-relationships graph Layout starts at a
randomly selected object and proceeds by placing
dependencies across randomly selected relationships.
Attributes are declared, and simple attribute evaluation
functions are generated to induce the proper attribute
dependeacia (all attributes are simple integer values and
all evahmtion functions are simple additions). By
varying the set of template graphs used, the average path
length and average fan-out can be controlled directly.
Oncetkdatabasegeneratorhasconstructedatest
database, it proaxds to construct one or more random
querystreams. Theaequerystreamsareamixturesof
reads and writes at a ratio determined by the
read write ratio parameter. To reduce the total
mm&r of tests to be performed, all experiments
reportedbereusearatioof2:1.
Inadditkmtotheratioofreadstowrites,thenatureof
the query stream is also cxarolled by the
trammdh-type paraaaeter. This parameter is set to
eithx random ot le. At the random setting, tbe
at&ibuWaccuuzdateachstageofthequeryarechosen
atrandomfromaaywhereintlledatabase.m
repxema me kmt locality of reference within the query
ad tfre moBt diScult case for performance
~zationtbe*hanQiftransacti?n~typeis

tramachons are generated whrch start at
a ra&mly se&ted attribute, but which always proceed
toaccessattributesofmlatedobjects. Thisrepresentsa
highdegN!eofkWityofreferenceandhencetbebSt
case for opGmiz&orar. In addi* when a tratksaction
~fbca&tdiasclscotd.ulequerystreamcousists0f

aequwWs-agagrun,thebestcaseforthe
opt&id- - wkneas random query streams contain
nolepeatedlJeq@m-ag*theworstcase.
OnceaWt~andtestquerystreamhavebeen
selected actual test runs were performed using the
produrcsbowninKgure2. Foreachtestnmstatistics
welegathemdwhichmeasuredthetotalnumberofdisk
-Ibtdisk ac4xsse with a simple first come tirst
sense (FCFS) schbduler (i.e., no upthmzation) were
compared against those for the optimized (priority-

based) sckxluler to obtain a percent improvement due to
the priority scheduler. In additioo, statistics were kept for
the iilst l/3 of the query stream (run without chlstering)
andcomparedwiththetinat1/3ofthequerystream(run
after cl- twice) to obtain an improvement due to
the cl- algorithm. Clustering improvement
numbers are not inWed by a poor initial clustering since
the initial clustering of the database insures that all
objectsonthesamediskblockaredirectlyrelatedto
some other object in that block (except in rare boundary
cases). This is already a reasonably good clustering and
is sisnificantly better than the worst case.

6. TestResults
Using a range of parameter settings on the database
generator, we created 264 different databases. Each
database used a different randomly generated query
sheamwitha2:1ratioofreadstowrites. Tokeepthe
time mpired to perform the tests manageable, databases
of 100 objects were used for all tests. (Creating
databases with larger numbers of objects would have
caused the database generator to run for very long
periods of time.) However, to compensate for these
relatively small databases, a conespondingly small in-
memory buffer area was used. Because exact object size
could not be controlled (since the process of randomly
laying out attributes causes objects to be of varying size)
afixedrunberofob~(4)wenplacedineachdislr
block. In cases where the buffer sire was held constant
(i.e., results shown in Figures 4 through 9), 3 blocks
were allowed for in-memory buffer space resulting in 12
object being buffered at one time.
E!ach graph presented in this section shows the average
behavior of the system over a particular range of
parameter settings. In addition each data point is
depicted with a range indicating the higkst and lowest
resultsobtakdatthatparametersetting. Aswillbe
seen below, variances at given settings were fairly low.

proce&re runJest(DB: databasq
quafy: quety~stream; bu_size: ire)

VU

achad : admdulu_type;

~‘or a&ad e (FCFS. F’riority) DO Begin
- clear 6all clwkring and dudnling opIimi& stoiklics

-kWW;
-mn#rstdlirdofquaystream
Ca&ia(DB, query.partl , ached. buLsize);
-r8c&sfarthe~e
d-WW;
-mpeutlwicemore
Cactia(DB, query.part2, ache4 krf_she);
duster(DB);
Cactia(DB, qwy.part% ached. an_ilize);
-WDB);

Jw
Jhd;

Figm2TathgProcah1rr

140

lhefmalmajorparameterassociatedwithcmatinga
dOIlldlitilb~iSthe~p~usedtOdt?~rmbethe
6lmgrained attribute &pea&n&s. All templates used
forthesetestsweteintheformofatreeliketheone
showninKgum3. Thisteauplateisintheformofa
modilkdfullbiitreewithanextranodeinserted
across each edge. The template trees themselves wete
parameterizedintwoways. Firstthedepthofthetree-
thedktanceikomtheroottoeachleaf-wasvaried.
The depth of the template shown in Figure 3 is 8.
Secot&thebmnchmgtktor-thenumberofchildren
ofeachnodethathssmotethanonechild-ofthetree
waschanged. lhebranch@factorofthetemplate
showninFigure3is2.l.ncaseswherethetemplatewss
heldconstam(i.e..tbemsultsshowninFQutes4though
12)adepthof10andbmn&ingfactorof2wasused.
‘lbegraphscanbeanalyzedinthreegroups. Kguzes4
through 9 measure the effects of changes in course
graimxl strucme (i.e., the connected~size parameter) on
the algorithms while holding the in-memory bufkr size
and fkqpimd structure (i.e., the attribute deperxlency
template) tixed. This corresponds to varying the major
fstwxud aspects of the schema (i.e., the relationship
assignments) while holding other factors steady. The
second set of tests shown in F@.lms 10, 11, and 12
measure the effects of varying in-memory buffer size
while keeping other factors fixed. pinally, the third set
of tests (shown in Kgures 13 through 18) indicate how
thesystemperfomlsundervariationsinthestruchueof
fil.le-grainedattributedependenci~. l%isLxnlespondsto
varying the computational depemkdes between derived
attributes, but hohiing the major structural and buffering
aspects of the database steady.
Alltestspresentedinthissectiondepicttheresultsfora
cyd~bii of 30% which is a mid range value. Tests
were also perfomed for hisses of 10% and 50%. These
test(notshown)produ~verysimilarresults-botllthe
average value and variances are close to those for 30%.
Furthermore, the cyde-bias parame$er does not seem to
directly determine performance since the system

Figure 3. Sample Atnibute Dependency Template

performed best for low cycles in some cases and best for
highormediumcyclesinothers.lnallcaseseachchoice
ofabiasresultedincomparablemsults(ahhoughtbe
variaoce between di&rent biases is typica& somewhat
greaterthanthatfortherunsunderasmgkbias). Since
cyde-bias failed to be a predicting factor, test results for
high and low cycles are omitted and only medium (30%)
cydes are shown
Fi~4and5indicatetheimprovementfromtbe
priority sckduhq optimkation in isolation ti
clustering. These figures measure percent improvement
ofprioritizds&eduhngover~tirstcome
6rstse~ed(FcFs)schedulingas-component
size (coMecta~sine) is varied. Rgure 4 shows the
results for random haaactions while Kgure 5 shows t&z
results for localhd traasahm. Bothtmnsssiontypes
perfolmed compaTably with local&d t.ramadions
resulting in slightly gleater improvements. The general
trendinbothcssesisfortheoptimkationtoperfonnbest
in a mid range of connecttvities and poorest when
connectivity is either very high or very low.
Figures 6 ami 7 indicate improvement from duster@ in
isolation from priority scheduling (i.e., dustering with
non-optimized FCFS xheduhng). Kgure 6 shows
random transactions while Rgure 7 shows local&d.
Again, there is not a large Merence between localized
and random, but as we would expect, locahzed tends to
perform slightly better overall. Here we also see that the
clustering opumization provides considerably better
overall improvements than tk priority scheduhng
optimktion, and that the dustering optimi&on is more
robust - it does not loose effectiveness at higher levels
of connectivity, but instead remains relatively steady
neat its best performance.
Although the clustering and scheduling optimMions are
largely complementary, their effects are not strictly
additive. F~~M?s 8 and 9 indicate the percent
improvement of clustering dooe in the presence of
priority scheduling.
While Figures 4 through 9 provide results for a fixed in-
memory buffer size of 3 blo& (12 objects), Kgures 10,
11, snd 12 provide an itMJication of how performsnce
changes as the smount of buffer space changes. For these
teStS, COMd size WaS fixed at 20, & tnuroStiOllS
were of the lo&lized variety, and the same attribute
dependency template as FQures 4 through 9 WBS used
(i.e., depth of ,lO and branching fac.m of 2). Rgute 10
shows improvement due to sdxdulmg over a range of
buffer sizes; Figure 11 shows the improvement due to
clustering without scheduling; and Kgure 12 shows tl.~
improvement due to both clustering when scheduling
was performed. Again, as a general trend, clustering
provides considerably more optimization thao
scheduling. ln both cases, mid range buffer sires
perfotmed best. Very small buffer sizes seem to be
intrinsically prone to at least some thmshing, while large
sires allowed most or all of a connected component to
remain memory resident so that the naive, unoptimized
approaches still worked welL
The find group of tests depicted in @ums 13 through
18 show how varying the fine-grained structure of

141

attribute dependencies affects each of the optimizations.
The same basic attribute dependency structure (i.e., a
txeewiththesameshapeastheoneshowninKgm33)
was used for these tests. However, in this case, the depth
and lmnching factor of the tree was varied. Other
parameters remained tixed with a buffer sire of 3 blocks,
a conn&ed~sixe of 20, and all localized transactiom.
Figures 13, 14, and 15 show the effects of varying the
depth of the tree (i.e. length of dependency chain from
the root to each leaf) while keeping the branching factor
lixed at 2. Figures 16, 17, and 18 show the effects of
using a shallow dependency tree template (depth 2) and
varyingtbebmnchingfactor.Eachofthesecasesseems
to exhibit a relatively high variance acxoss the range of
strudms. In general, these results do not seem indicate
a strong correlation between optimixation performance
and either the depth or branching factor of the attribute
dependency template.
Asa5raltest,Kgum19showstheresuItsofpro5ing
thedambaseccdeitselftodeterminetheratioofwork
done within the scheduling algorithm versus that done
for I/O operations. For simplicity this graph measures the
ratiooftotalfunctioncallsmadeasthecourse-grained
complexity (comuztivity) of the database is varied. As
can be seen, the proportion of work done for scheduhng
only mueases very slightly as the database complexity
-.

7.ImplicationsandAnalysis
At the higbt level, the teat results presented in the last
section show that the self-adaptive optimixations used in
theCactissystemdoindeedacttoreduceI/Ocosts. It
can also be seen that the clustering optimixation
repmen& the “big win”. It provides the biggest
improvement in performance and, as it is dooe off-line
and involves a greedy algorithm, is the simplest
optimixadon. This optimization also has the advantage
of being the least dependent on the particulars of the
Cads data model - a variation of this optimization
could be applied to a variety of different object-oriented
data mofkls. Knally, chutering also appears very
robust, working masonably welI (In pJL88] the authors
discussadat&asesystemwhichismakinguseofthe
CactisaIgorithmforcI~ringdata.)
‘here are two potential drawbacks to the clustering
optimizaton. Krst, it is likely to be incompatible with
the kinds of clustering used for set-oriented queries.
ll& is due to the fact that Cactis clusters data in a
fashion that disregards the type structure. For set-
orientedqPeries,itisimpoaanttobeabletoisolateall
the objects of a given type that meet certain properties.
At a minimum, the GuXrs clustering algorithm assumes
that most data man+laGons involve the retrieval of
wmpnted attributes, not set-oriented retrievals. Second,
this opthhion is currently performed off-IirE and
hence m@res an interruption in the availability of the
database. However, we are exploring techniques to
a&m this optimization to be performed in an on-line
incrementalfashion
l%e very im@e results gathered in testing the Cactis
clustering algorithm cause us to feel that database

clustering is a research direction worth pursuing. On-
line, intenuptable algorithms for clustering data under a
wide variety of situations are oeeded. The effects of
mixing derived data with set-processed data is just one of
the parameters that should be examined. Cactis assumes
that all databases objects are large and of the same size.
Databases with a wide variety of object sixes must be
tested, and special algorithms to handle this will be
needed. Also, Cactis uses a simple, greedy algorithm
Whkb is highly sub-optimal. Under certain
circumstances, it will be worth the overhead of a more
complex algorithm to get even better perfonmmce.
While somewhat overshadowed by chrstering, the
ScheduIing opumixation also provides Cl&U

improvements. However, the scheduling optimization
seems less robust - working well for most connectivity
patterns but not for the entire range of databases. It is
also much less compatible with other current object-
oriented database implementations.
A major trend of the results is that none of the
opumixations work well for databases which have only
very small connectivity. This indicates that the
techniques perform the job they were intended to
perform - optimization for complex derived data - but
do not help much in cases where data is isolated. This is
a clear indication of where the Cactis optimimtion
techniques do not work. This shows for example, that
the optbhtions probably would not be helpful for
conventional applications where most access is
performed by means of associative search An
interesting experiment would be to see how Cactis would
perform with a mix of query types. It might be that
derived attribute computations are dimcult to optimize in
the presence of other queries. Similarly, it would be
interesting to measure Cactis’ performance when a major
shittinthelocusofaquerystmamoccurs.Itmayalsobe
that the optimization techniques would be slow to
respond to radical changes in usage patterns despite the
exponential decay of the usage statistics.
The test dts presented in the previous section also
provided a few surprises. It was imtially thought that the
depth and branching fador of the attribute dependency
template trees and the number of cycles in the
Aationship graph would have a strong correlation with
overall performance. However, instead the only strongly
correlated factor turned out to be the global
connededness of the data. We believe the reason for
this is that for the parameters controlling the finer-
grained structure of the database induce much more
complicated behavior patterns that cannot be correlated
with a simple linear scale of variations. More extensive
tests, however, might allow more precise conclusions on
the effects of various parameter settings.
Knally, one of the most significant conchisions is that
the business of generating databases is a tough one.
Although initially, we thought that the parameter
arrangements supported by our generator would allow
he-graid control over the creation of databases and
transadons streams, it turned out that we were not
always able to do exactly what we needed For example,
it was difficub to control the average size and variation

142

100

90

a0
i

Connectivity

Figme 4. Improvemed Due to Priority Scheduling
(Random-&)

in size of objects. It was also hatd to precisely control
the layout of attributes in objects. The template system,
while simple to use, only gave us very coarse controL
This may have something to do with the apparent
conclusion tbat attribute layout did not affect
performauce. And, our generator also made it difficult to
experiment with databases containing many objects.
In sum, we don’t feel that our generator is by any meaus
a way of exhaustively searching the space of all possible
derived data databases. In general, our generator does
not satisfactorily simulate real-life databases designed to
serve users with complex tasks. A more sophisticated
tool is needed for experimenting with new algotitluns for
maintaining complex data in such applications as
engineering design. To address this, we are currently
working on a system called A La Carte PKB89], which
provides a test bed for selecting various database
facilities (such as a powerful data model, a novel
concurrency control technique, and a transaction
mechanism oriented toward long, interactive design
transadons) and then plugging in new database
implementation algorithms. Only with a much more
sophisticated test bed, can algorithms for supporting
complex databases be properly designed and tested,
without having to rebuild a large chunk of a new
database each time.

8. The Future of Cactis
We are currently designing and constructing a distributed
version of Cactis, called Cacti muK88b]. ‘Ihe system is
targeted for a local network of Sun workstations. Our
central motivation in pursuing this effort is that we
envision derived data to be important in many
engineering design efforts, and &sign engineers often
work in distributed, interactive environments. The
implementation of the system is being greatly facilitated
by the fact that the graph algorithm in Cactis is naturally

143

p~~th~makingiteasytoadaptittoadistribu‘ted
emromnent. In keeping with the self-adaptive nature of
Cactiis, the new system uses usage statistics to replicate,
m@ate,andmcluskrdataaroundthenetw&Wealso

attribute computations to be integrated.

100
1

90-

80”
ig
g 70-
g aI-
9
g 50-
E = 40-

30-

20-

IO-

Connectivity

Figure 5. Improvement Due to priority Scheduliog
(LcxahdTransauions)

100

90

a0
i

0, i’
!5 25

/
0 .i 10 20 30 35 4b

Connectivity

Figure 6. Improvement Due to Clustering Alone
(Random Transactions)

100

90
1

100

90

3 80

s
70-

‘=: 60-
z
E so-
>”
g 40-

g 30-

;I 1, , , ,) / ,
0 5 10 15 20 25 30 35 40

Connectivity

SO- 81

h 70-
e
z 60-

i 50-

9, 40-

85 30-

;]/;,,, ,,

0 5 10 15 20 25 3b 35 u)

Connectivity

100

90

80

Connectivity

Figtue 9. Imprmmmt Due to Clustering Figure 10. Improvement Due tosckd~g
With scheduling (Ludizd Transactiom) Under Varied Buffer Sizes

0' I I I I I
4 8 12 16 20

Number of Objects In Memory

144

100

90

3
80

h 70-

$5
a 60-

i so-

e, 40-

s
30-

t17-77Vo
Number of Objects In Memory Number of Objects in Memory

PiglE12IIIipl-OvemeIltDWO~
WithSckduling UnderVaxiedBufFerSizes

100

90 I

80
i

h 70- e.
P

21
19

16
lo-

01 I I I I I 1
0 6 8 10 12 14 16

Template Depth (Nodes)

Figure 13. Impmvement Due to Scheduling Figme 14. Improvement Due to Clustering Alone
Under Varied Template Depth Under Varied Template Depth

loot
90-
SO-

3 70-

‘=: 60- 5
$ 50-
e I% 40-
= 30-

20 1

86 63 __

i T 74 i
7pqyq;

49

lo-1

0, I I 0 I 6 8 1'1 I 10 I
- 14 16

Template Depth (Nodes)

145

100
1

90

80
1

2 70-

z 60-
5

$ 50-

9, 40-

g 30-

20

10
I

VT
0 i i Ib Ii Ik Iti

Template Depth (Nodes)

100-

go-

SO-

s 70-

‘=: 60-
5
E
9

50-

g, 40-

s 30-

20-

IO-

23 26

01 I , I I
0

t I
2 12 22 32 42 52

Template Width (Nodes)

Figure 15. Ilnprov~a Due to clustering Hgme16.Impro~entDueto~g
withschednlingUnderVtiedTemplateDepth Under Varied Template Branching

ulo-.

90-

SO-

h 70-

e
3 a-

g 50-

B
$ 40-
F:

= 30-

20-

IO-

32

01 I I i I I I 0; 1 I I I 1 I
0 2 12 22 32 42 52 0 2 12 22 32 42 52

Template Width (Nodes) Template Width (Nodes)

F@xe 17. IJnprovement Due to clustering Alone Agure18.Im~-ntttotog
Under Varied Template Branching Wth Scheduling Under Varied Template Branching

MO-

90-

SO-

s 70-

z 60-
G

g 50-

9, 4Q-

3 30-

20-

IO-

5;&68
54 53

146

Connectivity

Flgm 19. Ratio of procedpllecaIlsfor~gvs.
Proc&uecallsfor40

Rekencea
B.AlpuqkCaric,B.Rom,P.SwaawyPndK
%de&“GraphAthiiaaaSpccS~
Pad@“. Procee&ngz 4 the Sympokun on
Pracricd sm Devebpmenr EJn+r-MS,
Boaton, Novaubex 1988.121-129.

0. P. Buncman aadBKClanons,"Efficiently . . Mautonn Rdatialal Datahaw”. Trans.
Database !iystenu 4 (September 1979). 368-382.
P. P. Chal, “no E&y-R&tiomhip Modcl-
Towa& a Unikd View of Data”. ACM Truns. on
Dar&we Sysrenw 1,1(1976), 9-36.
P.Drew,RKingandJ.Bein,“ALaCProe:A
Wokbawh En- for Rapid DBMS
(Iamteion and Expakcntatia~ ‘*, Working
Paper, 1989.

S. F4nd, J. Joapb, D. H kngwathy, D. F. IivJy.
G.Path&ERPmqRW.PetenoqD.M
spar&n, S. hf. ‘Ilwtc. D. L Wella and S.

Lmguage and ita Impiementatio~ Addiwn-
Wesley. Reading, Iuaaa., 1983.

W811

-1

Ima91

-91

[Rep821

[Rep841

[ShiS l]

M. Hamma and D. hf&od, “Databane
DeriptionwitbSDMASamticDatabuc
Model”, ACM Trans. on Database Systems 6.3
(1981). 351-386.

S.HHudsonaudRKing,“CACI’JS:AD~
syatan for spefyiag Plm&Muya
Data”. Proceedings 4 the Wo- on Object-
Otienrd Darabaw, Pacik Gzovq czalifw
Septunbcr 23-26.1986,2637.
S. E Hudacn and R King, “Objeu~aed
duabaao auppult fa n&wale ewimmcm”,
Pnn= qf ACM SiGUOD In& ConJ on
Mimagemenr of Dara, s+ pnncirco. califb
May* 1987,491-m.
S.BHudaanandRKing,‘TheCactisPr~ject:
Daabaac supxt for Sofhvam Erl~t8”.
IEEE Transactiona on S#ware Engia&ng 14.6
(June 1988). 709-719.
S.E~aodR~g,“An~veDerived
Dasa Matlager for Diddmed Ihtabam”,
Proceedblgs cfthe second Memational workshq
on Object-O&n&d Dtwbnse Systems, Bad
Ihmacr am Stain-~ FRG, September
1988.193-203.

s. E I3udacq “‘xnaand Albitae Bv-
A Flexible Algcdhm for Lazy Update”,
Univdry 4 Arizovw Tech&d Repoti, 1989.
Tech. Rep. 89-12.
S. B. Hudmn ad R King, “Cactir: A Sclf-
Adaptive, tIbmmc& Implan~w of an
Objcct-Oricntcd Databae Maaagemuit Syntrxn”,
ACM Trawactions on Database Systems.
December, 1989.

R Hull and R King, “Semantic Database
Modeling: survty, Appkth& and RaeaIdl
hued’, ACM Compnring Suneys~ Se+nber
1987,201-m

LICanchbugandJ.ES.Pachaq”APunctional
~BUUModel”.TeChll%lRepoa,pmti6cia
Uaivcxridadc Catolia do Rio & Janeixv, Rio de
Jan&q Brazil, P&may, 1976

T. Reps, “Optimal-6me Itmcmcntal Semantic
Analysis for sylltax-dimtcd Editolc, co@rence
Record of the 9th Annwl ACM Sympadum on
Principles of Programming Lungnages, Jan. 1982,
169-176.

T. W. Rep, Geneming Lzngnage-Based
Environmene, MIT Pea, Camlnidge, hi-,
1984.
D.Sbipman~“‘IhoFJmctiooalDataMo&landthc
Data Language DAPLEX”. ACM Trtms. on
Da&&se Systema 6,1(1981), M&173.

147

