
A Formal Approach to Recovery by Compensating Transactions *

Henry F. Korth Eliezer Levy

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712 USA

Abraham Silberschatz

Abstract

Compensating transactions are intended to handle situ-
ations where it is required to undo either committed
or uncommitted transactions that affect other trans-
actions, without resorting to cascading aborts. This
stands in sharp contrast to the standard approach to
transaction recovery where cascading aborts are avoided
by requiring transactions to read only committed data,
and where committed transactions are treated as per-
manent and irreversible. We argue that this standard
approach to recovery is not suitable for a wide range
of advanced database applications, in particular those
applications that incorporate long-duration or nested
transactions. We show how compensating transactions
can be effectively used to handle these types of appli-
cations. We present a model that allows the definition
of a variety of types of correct compensation. These
types of compensation range from traditional undo, at
one extreme, to application-dependent, special-purpose
compensating transactions, at the other extreme,

1 Introduction

The concept of transaction atomicity is the cornerstone
of today’s transaction management systems. Atomic-
ity requires that an aborted transaction will have no
effect on the state of the database. The most common
method for achieving this is to maintain a recovery log

l Work partially supported by a grant from the IBM Corpora-
tion, TARP grant 4355 and NSF grant IRI-8805215.

Proceedings of the 16th VLDB Conlercn~c
Brisbane. Australia lc)90

and provide the uncZo(T;) operation which rest,ores the
data items updated by x to the value they had just
prior to the execution of T;. However, if some other
transaction, Tj, has read data values writt.en by Ti, un-

doing Ti is not sufficient. The (indirect) effects of Ti
must be removed by aborting Tj. Aborting the affected
transaction may trigger further aborts. This undesir-
able phenomenon, called cascading aborts, can result in
uncontrollably many transactions being forced to abort
because some other transaction happened to abort.

Since a committed transaction, by definition, cannot .
abort, it is required that if transaction Tj reads the val-
ues of data items writ&en by transaction Ti, then Tj
does not commit before Ti commits. A system that en-
sures this property is said to be recoverable [2]. One way
of avoiding cascading aborts and ensuring recoverabil-
ity is to prohibit transactions from reading uncommitted
data values - those produced by transactions that have
not committed yet. This principle has formed the basis
for standard recovery in most contemporary database
systems.

Unfortunately, there is a large range of database ap-
plications for which the standard recovery approach is
excessively restrictive and even not appropriate. The
common denominator of such applications is the need
to allow transactions to read uncommitted data values.

In general, as indicated by Gray [6], early exposure
of uncommitted data is essential in the realm of long-
duration and nested transactions. When transactions
are long-lived, it is unreasonable to prevent access to
uncommitted data by forcing other transactions to wait
until the updating transaction commits, since the wait
will be of long duration. Also, long-duration and nested
transactions are often used to model collaborative de-
sign activities [9]. I n order to promote the cooperative
nature of design environments, there is a need to expose
incomplete (i.e., uncommitted) design objects. Such ap-
plications, and other that incorporate transactions of
that nat,ure, cannot be accommodated by the standard
recovery approach since their executions entail cascad-
ing aborts and some of them are even non-recoverable.

An additional restriction imposed by standard recov-

95

ery is the inability to undo an already committed trans-
action. Suppose that a transaction was committed “er-
roneously.” By committed erroneously, we mean that
from the system’s point of view there was nothing wrong
with the committed transaction. However, external rea-
sons, that were discovered later, rendered the decision
to commit the transaction erroneous. Under the stan-
dard recovery approach there is no support for undoing
such transactions.

This paper presents the method of a compensating
transactions as a recovery mechanism in applications
where exposure of uncommitted data and undoing of
committed transactions must be facilitated. Our goals
are to develop a better understanding of what compen-
sation really is, when it is possible to employ it, and
what the implications are on correctness of executions
when compensation is used.

The remainder of this paper is organized as fol-
lows. We give an informal introduction to compensat-
ing transactions in Section 2. In Section 3, we present a
transaction model suitable for the study of compensa-
tion. We then use this model in Section 4 to define cri-
teria for “reasonable” compensation. After illustrating
our definitions with examples in Section 5, we examine
the theoretical consequences of our model in Section 6.
Implementation issues are discussed in Section 7, and
related work is described in Section 8.

2 Overview of Compensation

When the updates of a (committed or uncommitted)
transaction T are read by some other transaction, we
say that T has been externalized. The sole purpose of
compensation is to handle situations where we want to
undo an externalized transaction T, without resorting
to cascading aborts. We refer to T as the compensated-
for transaction. The transactions that are affected by
(reading) the data values written by T are referred to
as dependent transactions (of T), and are referred to
as a set using the notation dep(T). The key point of
our recovery paradigm is that we would like to leave
the effects of the dependent transactions intact while
preserving the consistency of the database, when un-
doing the compensated-for transaction. Compensation
undoes T’s effects in a semantic manner, rather than by
physically restoring a prior state. All that is guaranteed
by compensation is that a consistent state is established
based on semantic information. This state may not be
identical to the state that would have been reached, had
the compensated-for transaction never taken place.

We propose the notion of compensating transactions
as the vehicle for carrying out compensation. We use
the notation CT to denote the compensating transac-
tion for transaction T. A compensating transaction

has the fundamental properties of a transaction along
with some special characteristics. It appears atomic
to concurrently executing transactions (that is, trans-
actions do not observe partially compensated states);
it conforms to consistency constraints; and its effects
are durable. However, a compensating transaction is
a very special type of transaction. Under certain cir-
cumstances, it is required to restore consistency, rather
than merely preserve it. It is durable in the strong sense
that once a decision is made to initiate compensation,
the compensating transaction must complete, since it
does not make any sense to abort it. The choice of
either to abort or to commit is present for the origi-
nal transaction. A compensating transaction offers the
ability to reverse this choice, but we do not go any fur-
ther by providing the capability to abort the compensa-
tion. There are other special characteristics. Above all,
a compensating transaction does not exist by its own
right; it is always regarded within the context of the
compensated-for transaction. It is always executed after
the compensated-for transaction. Its actions are deriva-
tive of the actions of the compensated-for and the de-
pendent transactions. In some situations, the actions of
a compensating transaction can be extracted automati-
cally from the program of the compensated-for transac-
tion, the current state of the database, and the current
state of the log. In other situations, it is the system pro-
grammer’s responsibility to pre-define a compensating
transaction.

A mundane example taken from “real life” exemplifies
some of the characteristics of compensation. Consider a
database system that deals with transactions that rep-
resent purchasing of goods. Consider the act of a cus-
tomer returning goods after they have been sold. The
compensated-for transaction in that case is a particu-
lar purchase, and the compensating transaction encom-
passes the activity caused by the cancellation of the
purchase. The compensating transaction is bound to
the compensated-for transaction by the details of the
particular sale (e.g., price, method of payment, date of
purchase). The effects of purchasing transaction might
have been externalized in different ways. For instance,
it might have triggered a dependent transaction that
issued an order to the supplier in an attempt to replen-
ish the inventory of the sold goods. Furthermore, the
customer might have been added to the store’s mail-
ing list as a result of that particular sale. The actual
compensation depends on the relevant policy. For ex-
ample, the customer may be given store credit, or full
refund. Whether to cancel the order from the supplier
and whether to retain the customer in the mailing list
are other application-dependent issues with which the
compensating transaction must deal.

96

3 A Transaction Model

In the classical transaction model [14, 21 transactions
are viewed as sequences of read and writ.e operations
that. map consist.ent dat.ahase st,ates to consistent st,ates
when execut,ed in isolation. The correctness criterion
of this model is called serializabili2y. A concurrent, ex-
ecut,ion of a set of t,ransact,ions is represented as an in-
terleaved sequence of read and write operations, and
is said to be serializable if it is equivalent to a serial
(non-concurrent) execution.

This approach poses severe limitations on the use of
compensation. First, sequences of uninterpreted reads
and writes are of little use when the semantically-rich
act,ivit,y of compensation is considered. Second, the use
of serializability as the correctness criterion for applica-
tions that demand interaction and cooperation among
possibly long-duration transactions was questioned by
the work on concurrency control in [ll, 9, 31. Since we
target compensation as a recovery mechanism for these
kind of applications, our model does not rely on serial-
izability as the only correctness notion.

3.1 Transactions and Programs

A transaction is a sequence of operations that are gener-
ated as a result of the execution of some program. The
exact sequence that the program generates depends on
the database state “seen” by the program. In the classi-
cal transaction model only the sequences are dealt with,
whereas the programs are abstracted and ire of little
use. Given a concurrent execution of a set of transac-
tions (i.e., an interleaved sequence of operations) com-
pensation for one of the transactions, T, can be modeled
as an attempt to cancel the operations of T while leav-
ing the rest of the sequence intact. The validity of what
remains from that execution is now in serious doubt,
since originally transactions read data items updated
by T and acted accordingly, whereas now T’s opera-
tions have vanished but its indirect impact on its de-
pendent transactions is still apparent. The only formal
way to examine a compensated execution is by compar-
ing it to a hypothetical execution of only the dependent
transactions, without the compensated-for transaction.
We use the comparison of the compensated execution
with the hypothetical execution that does not include
the compensated-for transaction, as a key criterion in
our exposition. Generating this hypothetical execution
and studying it requires the introduction the kunsac-
tions’ programs which are, therefore, indispensable for
our purposes.

A transaction program can be defined in any high-
level programming language. Programs have local (i.e.,
private) variables. In order to support t,he private (i.e.,
non-database) state space of programs we define the

concept of an augmenled state. The augmented state
space is the database state space unioned with the pri-
vate state spaces of t,he transactions’ programs. The
provision of an augmented state allows one to treat read-
ing and updating t,he dat,abase state in a similar manner.
Reading the database st.ate is translated t.o an update
of the augmented state, thereby modeling the storage
of the value read in a local variable.

Thus, a database, denoted as db, is a set of dat,a enti-
ties. The augmented database, denoted as adb, is a set
of entities that is a superset of the database; that is,
db C adb. An entity in the set (adb - db) is called a
private entity. Entities have ident,ifying names and cor-
responding values. A state is a mapping of entity names
to entity values. We dist,inguish between the database
state and the state of the augmented database, which
is referred to as the augmented state. We use the no-
tation S(e), to denote the value of entity e in a state
S. The symbols S and e (and their primed versions,
S’, e’, etc.) are used, hereafter, to denote a state and
an entity, respectively.

Another deviation from the classical transaction
model is the use of semantically-richer operations in-
stead of the primitive read and write. Having such op-
erations allows refining the notion of conflicting versus
commutative operations [l, 161. That is, it is possible
to examine whether two operations commute and hence
can be executed concurrently. By contrast, in the clas-
sical model, there is not much scope for such consider-
ations since a write operabion conflicts with any other
operation on the same entity.

An operation is a function from augmented states to
augmented stat.es that is restricted as follows:

An operation updates at most one entity (either a
private or a database entity);

an operation reads at most one database entity, but
it may read an arbitrary number of private entities;

an operation can both update and read only the
same database entity.

We use the following shorthand notation for a single op-
eration f: eo := f(el, . . . , ek). We say that f updates
entity eo, and reads entities el, . , ek. The argum.en.ts
of an operation are all the ent.ities it. reads. There are
two special termination operations, comm.it, and abort,
that have no effect on the augmented state. Operations
are assumed to be executed atomically.

It is implicitly assumed that all the arguments of an
operation are meaningful; that is, a change in their value
cause a change in the value computed by the operation.
The operations in our model reconcile two contradic-
tory goals. On the one hand, operations are functions
from augmented states to augmented st,ates, thereby

97

giving the flexibi1it.y to define complex and semantically-
rich operations. On the other hand, the mappings are
restrict,ed so that at most one database entity is ac-
cessed in the same operation, thereby making it feasible
to allow atomic execution of an operation. Although
only one database ent.ity may be accessed by an op-
eration, as many local variables (i.e., private entities)
as needed may be used as arguments for the mapping
associated with the operation. Having private entities
as arguments to operations adds more semantics to op-
erations. Having functions for operations allows us to
conveniently compose operations by functional compo-
sition, thereby making sequences of operations functions
too.

We are in a position now to introduce the notion of
a transaction as a program. A transaction program is a
sequence of program statements, each of which is either:

l An operation.

*A conditional statement of the form:
if b then SSl else SS2, where SSl and SS2
are sequences of program statements, and b is a
predicate that mentions only private entities and
constants.

We impose the the following restrictions on the opera-
tions that are specified in the statements:

The set of private entities is partitioned among the
transaction programs. An operation in a program
cannot read nor update a private entity that is not
in its own partition;

private entities are updated only once;

An operation reads a private entity only after an-
other operation has updated that entity.

Example 1. Consider the following sets of entities:
db = {a, b, c}, and adb = dbu{u, V, w}, and the following
two transaction programs, TI and Tz:

Tl: begin
u:=a*

b: v:=)
if u > v then c:= f(c,v)

else begin
w:=c-
b:= ;(u,w)

end
end

T2: begin
a:=O*
b:=i’

end

Observe that operation f both updates and reads entity
c. Tz demonstrates operations that read no entities. 0

3.2 Histories and Correctness

We use the framework for alternative correctness crite-
ria set forth in [ll]. Explicit input and d&pul pdicsfes
over the database state are associated with transactions.
The input predicat.e is a pre-condition of transaction ex-
ecution and must hold on the state that the transaction
reads. The output condition is a post-condition which
the transaction guarantees on the database state at the
end of the transaction provided that there is no concur-
rency and the database state seen by the transaction
satisfies the input condition. Thus, as in the standard
model, transactions are assumed to be generated by cor-
rect programs, and responsibility for correct concurrent
execution lies with the concurrency control protocol.

Observe that the input and output predicates are ex-
cellent means for ca.pturing the semantics of a database
system. We use the convention that predicates (and
hence semantics) can be associated with a set of trans-
actions, similarly to the way predicates are associated
with nested transactions in [ll]. That is, a set of trans-
actions is supposed to collectively establish some desir-
able property, or complete a coherent task. This con-
vention is most useful in domains where a set of sub-
transactioni are assigned a single complex task.

We do not elaborate on the generat.ion of interleaved
or concurrent executions of sets of tiansaction pro-
grams, since this is not central to understanding our
results. However, the notion of a history, the result of
this interleaving, is a central concept in our model. A
history is a sequence of operations, defining both a total
order among the operations, as well as a function from
augmented states to augmented states that is the func-
tional composition of the operations. We use the nota-
tion X =< fi,.. . , f,, > to denote a history X in which
operation fi precedes fi+l, 1 < i < n. Alternatively,
we use the functional composition symbol ‘0’ to compose
operations as functions. That is, X = f~ o . . . o f,, de-
notes the function from augmented states to augmented
states defined by the same history X. We use the up-
per case letters at the end of the alphabet, e.g., X, Y, 2,
to denote both the sequence and the function a history
defines.

The equivalence symbol ‘E’ is used to denote equal-
ity of histories as functions. That is, if X and Y are
histories, then X z Y means that for all augmented
states S, X(S) = Y(S). Observe that since histories
and operations alike are functions, the function compo-
sition symbol ‘0’ is used to compose histories as well as
operations.

When a (concurrent) execution of a set of transaction
programs A is initiated on a state S and generates a
history X, we say that X is a history of A whose initial
state is S.

Example 2. Consider the transaction program Tl of

98

Example 1. Since Tl has a conditional statement there
are two histories, X and Y, which can be generated
when Tl is executed in isolation. We list the histories
as sequences of operations;

x = < 21 := a, v := b, c := f(c, v) > ,
y = <u:=a,u:=b,w:=c,b:=g(u,w)>

Let S = { a = 1 , b = 0 , c = 2 } be database state,
then S is an initial state for X. X(S) = S’, where
S’(c) = f(2,O). c onsider a concurrent execution of Tl
and Tz of the previous example. We show two (out of
the many possible) histories, Z and W, whose initial
state is S given above. Each operation is prefixed with
the name of the transaction that issued it.

Z = < T2 : a := 0, Tl : u := a, Tz : b := 1,

Tl :v:=b, Tl:w:=c, Tl:b:=g(u,w)>

W =< Tz:a:=O, Tz:b:=I, Tl:u:=a,

Tl :v:= b, Tl : w := c, Tl : b := g(u, w) >

Observe that Z(S) = W(S) = S”, where
S” = { a = 0 , b = do, ‘4 , c = 2 }. Observe that
z E w. 0

A key notion in the treatment of compensation is
commutativity. We say that two sequences of opera-
tions, X and Y, commute, if (X o Y) E (Y o X).
Two operations conflict if they do not commute. Ob-
serve that defining operations as functions, regardless
to whether they read or update the database, leads to
a very simple definition of the key concept of commuta-
tivity.

Part of the orderings implied by the total order in
which operations are composed to form a history are ar-
bitrary, since only conflicting operations must be totally
ordered. In essence, our equivalence notion (when re-
stricted to database state) is similar to final-state equiv-
alence [14]. However, in what follows, we shall need to
equate histories that are not necessarily over the same
set of transactions, which is in contrast to final-state
equivalence (and actually to all familiar equivalence no-
tions).

A projection of a history X on an entity e is is a
subsequence of X, that consists of the operations in X
that updated e. We denote the projection of X on e as
X,. The same notation is used for a projection on a set
of entities.

We impose very weak constraints on concurrent exe-
cutions in order to exclude as few executions as possible
from consideration. In this paper we consider the fol-
lowing types of histories:

l A history X is serial if for every two transactions
T’ and Tj that appear in X, either all operations of
z appear before all operations of Tj or vice versa.

A history X is serializable (SR) if there exists a
serial history Y such that X q Y.

Let C = cr A. . .AC, be a predicate over the database
state. For each conjunct ci let di denote the set of
database entities mentioned in ci. A history X is
predicate-wise sen’alirable with respect to a predi-
cate C (PWSR c 1) ‘f f or every set of entities di there
exists a serial history Y such that X& s Ydi.

A history X is entity-wise serializable (EWSR) if
for every entity e there exists a serial history Y such
that X, E Yc.

The definition of PWSR histories is adapted from [g].
AS we shall see shortly, EWSR histories are going to be
quite useful in our work. The following lemma is given
without proof.

Lemma 1. Let C be a predicate that mentions all
database entities, and let ewsr, pwsrc, sr denote the set
of E WSR histories, P WSRc histories, and SR histon’es,
respectively. Then, sr C pwsrc C ewsr. 0

We denote by XT the sequence of operations of a
transaction T in a history X, involving possibly other
transactions. The same notation is used for sets of
transactions. When XT is projected on entity e the
resulting sequence is denoted XT,~.

4 Compensating Transactions

With the aid of the tools developed in the last section,
we are in a position to define compensation more for-
mally.

4.1 Specification Constraints

Although compensation is an application-dependent ac-
tivity, there are certain guidelines to which every com-
pensating transaction must adhere. After introducing
some notation and conventions we present three speci-
fication constraints for defining compensating transac-
tions. These constraints provide a very broad frame-
work for defining concrete compensating transactions
for concrete applications, and can be thought of as a
generic specification for all compensating transactions.

We say that transaction Tj is dependent upon trans-
action Ti in a history if there exists an entity e such
that

l Tj reads e after Ti has updated e;

l T; does not abort before Tj reads e; and

l every transaction (if any) that updates e between
the time Ti updates e and Tj reads e, is aborted
before Tj reads e.

99

The above definition is adapted from [2].
A t.ransaction Ti, which is the depended-upon trans-

act,ion may be eit,lier a commit.t.ed transaction, or an
active transaction. In either case, if we want to support
t.hc undo of T,, then the corresponding compensating
transact,ion, CT;, must. be pre-defined. The key point
is t.hat admitting non-recoverable hist.ories and support.-
ing the undo of committ,ed transactions is predicated on
the existence of the compensatory mechanisms needed
to handle undoing externalized transactions. In the rest
of t,he paper, T denotes a compensated-for transaction,
CT denotes the corresponding compensating t.ransac-
tion. and dep(T) d enotes a set of transactions depen-
dent upon T. This set of dependent transactions can
be regarded as a set. of related (sub)transactions that
perform some coherent task.

Constraint 1. For all hidories X, ifX~+ 0 XCT,~
is a contiguous subsequence ofX,, then (XT,~OXCT,~) f
I, where I is the identity mapping. q

The simplest interpretation of Constraint 1 is that for all
entities e that were updated by T but read by no other
transaction (since XCT+ follows XT,~ in the history),
CT amounts simply to undoing T. Consequently, if
there are no transactions that depend on T, (i.e., no
transaction reads T’s updated data entities), thcu CT
is just the traditional undo(T). The fact that CT does
not always just undo T is crucial, since the effects of
compensation depend on the span of history from the
execution of the compensated-for transaction till its own
initiation. If such a span exists, and T has dependent
transactions, the effects of compensation may vary and
can be very different from undoing T. For instance,
compensation may include additional activity that is
not directly related to undoing. A good example here
is a cancellation of reservation in an airline reservation
system which is handled as a compensating transaction
that causes the transfer of pending reservation from a
waiting list to the confirmed list.

There are certain operations on certain entities that
cannot be undone, or even compensated-for, in the form
of inverting the state. In [6] these type of operations and
entities are termed real (e.g., dispensing money, firing
a missile). For simplicity’s sake, we omit discussion of
such entities.

Constraint 2. Given a history X involving T
and CT, there must exist X’ and X” subsequences of
X, such that no transaction has operations both in X’
and in Xl’, and X 3 X’ o XCT o X”. Cl

This constraint represents the atomicity of compensa-
tion. That is, a transaction should either see a database
state affected by T (and not by CT), or see a state fol-
lowing CT’s termination. More precisely, transactions

should not have operations that conflict with CT’s op-
erat.ions scheduled both before and after CT’s opera-
tions, or in between CT’s first and last operat,ions. It
is t.he responsibility of the concurrency control protocol
to implement. this constraint (see Section 7 for imple-
mentation discussion).

In what follows, we use the notation 0~ and 1~ to
denote the output and input predicate of transact.ion
T, respectively. The same notabion is used for a set of
transactions. These predicat,es are predicates over the
dat.abase state.

Constraint 3. Let Q be a predicate defined over
the database state,, if (0 dep(q * Q) A (IT * Q) then
OCT *Q. 0

Constraint 3 is appropriate when Q is a either general
consistency constraint, or a specific predicate that is es-
tablished by dep(T) (that is, one of the collect.ive tasks
of the transactions in dep(T) was to make Q true). In-
formally, this constraint says that if Q was established
by dep(T), and is not violated by undoing T, then it
should be preserved by CT. Observe that the assump-
tion that Q holds initially (i.e., 1~ 3 Q) is crucial since
T’s effects are undone by CT, and hence, predicat,es
established by T and preserved by dep(T) do not per-
sist after the compensation. It is the responsibility of
whoever defines CT to enforce Const.raint 3.

Constraints 1 and 2 will be assumed to hold for all
compensating transact,ions, hereafter. Constraint 3,
which is more intricate and captures more of the se-
mantics of compensation, will be discussed further in
Section 6.

4.2 Types of Compensation

For some applications, it is acceptable that an execution
of the dependent transaction, without the compensated-
for and the compensating transactions, would produce
different results than those produced by the execution
with the compensation. On the other hand, ot.her appli-
cations might forbid compensation unless the outcome
of these two executions is the same. Next we make ex-
plicit the above criterion that distinguishes among types
of compensation by defining the notion of compensation
soundness.

Definition 1. Let X be the history of T, CT, and
dep(T) whose initial state is S. Let Y be some history
of only the transactions in dep(T) whose initial state is
also S. The history X is sound, zf X(S) = Y(S). 0

The history Y can be any history of dep(T). As far
as the definition goes, different sets of (sub)transactions
of dep(T) may commit in X and in Y, and conflicting
operations may be ordered different.ly. The key point is

100

that .X(S) = Y(S). If a history is sound then compen-
sation does not disturb the outcome of the dependent
transactions. The database state after compensation is
the same as the state after an execution of only the de-
pendent transactions in d$T). All direct and indirect
effects of the compensated-for transaction, T, have been
erased by the compensation.

Transactions in dep(T) see different database states
when T and CT are not executed, and therefore gen-
erate a history Y which can be totally different than
the history X. This distinction between the histories X
and Y, which is the essence of the important notion of
soundness, would not have been possible had we viewed
a transaction merely as sequence of operations rather
than a program.

A delicate point arises with regard to soundness when
S does not satisfy Ides. Such situations may occur
when T establishes Ides for dep(T) in such a manner
that dep(T) mzls2 follow T in any history. Hence, if T
is compensated-for, there is no history of dep(T), Y,
that can satisfy the soundness requirement. We model
such situations by postulating that if Ides does
not hold, then Y(S) results in a special state that is
not equal to any other state (the undefined state), and
hence X is indeed not sound.

We illustrate Definition 1 by considering the following
two histories over read and write operations (the nota-
tion ri[e] denotes reading e by Ti , and similarly wi[e]
for write, and ci for commit):

w = < wj [e] , rib] , Cj , Ci >

z = < Wj[e] , ri[e] , Wi[e’] , Ci >

The history W is recoverable. History 2 is not recover-
able. If however, CTj is defined, Tj can still be aborted.
Let us extend Z with the operations of CTj and call
the extended history 2’. Z’ is sound provided that Z&
would have been generated by Ii’s program, and the
same value would have been written to e’, had Ti run
in isolation starting with the same initial state as in Z’.

The key notion in the context of compensation, as we
defined it, is commutativity of compensating operations
with operations of dependent transactions. Significant
attention has been devoted to the effects of commuta-
tive operations on concurrency control [8, 16, 11. Our
work parallels these results as it exploits commutativity
with respect to recovery. In all of our theorems we pre-
fer to impose commutativity requirements on CT rather
than on T, since CT is less exposed to users, and hence
constraining it, rather than constraining T, is prefer-
able. Predicated on commutativity, the operations of
the compensated-for transaction and the corresponding
compensatory operations can be ‘brought together’, and
then cancel each other’s effects (by the enforcement of
Constraint l), thereby ensuring sound histories. The

following theorem formalizes this idea.

Theorem 1. Let X be a history involving T, dep(T)
and CT. If each of the operations in Xdep(=) commutes
with each of the operations in XCT, then X is sound.
0

We illustrate this theorem by the following simple ex-
ample:

Example 3. Let Ti, Tj and C7;: be a compensated-
for transaction, a dependent transaction and the com-
pensating transaction, respectively. Let the programs
of all these transactions include no condition statements
(i.e., they are sequences of operations). We give a his-
tory X, in which each operation is prefixed by t,he name
of the issuing transaction. X =< Ti : a := a + 2, Tj :
u Z= b, Tj : a := a + u, CTi : a := a - 2) >. Clearly,
every operation of Tj commutes with every operation
of CTi in X. Hence, X is sound, and the history that
demonstrates soundness is simply Y = XT~ = < Tj :
u := b, Tj : a := u + u >. As will become clear in
Section 6, the fact that no condition statements appear
in Tj is important. 0

Our main emphasis in this paper is on more liberal
forms of compensation soundness, where the results of
executing the dependent transactions in isolation may
be different from their results in the presence of the
compensated-for, and the compensating transactions.
One way of characterizing these weaker forms of sound-
ness is by qualifying the set of entities for which the
equality in Definition 1 holds. In Section 5.1, we define
a type of compensating transaction that ensures sound
compensation with respect to some set of entities. Al-
ternatively, in Section 6 we investigate other weak forms
of soundness that approximate (pure) soundness.

5 Examples and Applications

In this section, we present several examples to illustrate
the various concept we have introduced so far. Through-
out this section we use the symbols T, dep(T), CT, X,
and S to denote a compensated-for transaction, its com-
pensating transaction, the corresponding set of depen-
dent transactions, the history of all these transactions,
and the history’s initial state, respectively.

5.1 A Generic Example

In this example we present a generic compensation defi-
nition. Let update(T, X) denote the set of database en-
tities that were updated by T in history X. The same
notation is used for a set of transactions.

Definition 2. Let X(S) = S’, and X z X’o XCT
(by Constraint 2). We define the generic compensating

I01

transaction CT, by characterizing S’ for all entities e:

1

S(e) if e $! llpdate(dep(T), X)

(x’(S))(e) if e E update(dep(T), X)
S’(e) = A e $! Update(T, X)

~~dep(T),e(S) if e E update(dey(T), X)
A e E update(T, X)

0

Before we proceed, we informally explain the meaning
of this t.ype of compensation. If no dependent trans-
action updates an entity that T updates, CT undoes
T’s updates on that. entity. The value of entities that
were updated only by dependent transactions is left in-
tact. The value of entities updated by both T and its
dependents should reflect only the dependents’ updates.

There is a certain subtlety in the second case of the
definition which is illustrated next. Assume that T up-
dated e. The modified e is read by a transaction in
dep(T) and the value read determines how this transac-
tion updates e’. After compensation, even though the
initial value of e is restored (by the first case of the def-
inition), the indirect effect it had on e’ is left intact (by
the second case of the definition). We use the above
definition as a precise specification of what CT should
accomplish.

To further illustrate the type of compensation just de-
scribed, we give a concrete example. Consider an airline
reservation system with the entity seats that denotes
the total number of seats in a particular flight, entity
rs that denotes the number of already reserved seats in
that flight, and entity reject that counts the number of
transactions whose reservations for that flight have been
rejected. Let reserve(x) be a simplified seat reserva-
tion transaction for x seats defined as:

if (TS + x) <= seats then rs:=rs+x
else reject:= reject+1

The consistency constraint Q in this case is:
Q(S) iff S(rs) 5 S(seats). Assume:

S = (seats = 100, rs = 95, rejects = lo),

T = reserve(5) , dep(T) = (reserve(3))

Let the history be X s XT o X,&p(T) o XCT where CT
is defined by Definition 2. We would like to have after
X: S’ = {rs = 95, rejects = ll}, that is, T’s reserva-
tions were made and later canceled by running CT, and
dep(T)‘s reservations were rejected. And that is exactly
what we get by our definition. Observe how T’s reser-
vations were canceled, but still its indirect impact on
rejects persists (since T caused dep(T)‘s reservations
to be rejected).

Hence, this example demonstrates a history that is
not sound but is nevertheless intuitively acceptable.

Had the transaction in dep(T) been executed alone, it
would result in successful reservations. Notice how in
this example the operation of CT can be implemented
as inverse of T’s operation (addition and subtraction).
The less interesting case, where there are enough seats
to accommodate both T and dep(T), also fits nicely. In
this case CT’s subtraction on t.he ent,it,y seats commutes
with dep(T)‘s addition t,o this entity.

5.2 Storage Management Examples

The following example is from [13], though the notion of
compensation is not used there. Consider transactions
Tl and Ts, each of which a,dds a new tuple to a relation
in a relational database. Assume the tuples added have
different keys. A tuple addition is processed by first al-
locating and filling in a slot in the relat.ion’s tuple file,
and then adding the key and slot number to a separate
index. Assume that Ti’s slot updating (Si) and index
insertion (Ii) steps can each be implemented by a sin-
gle page read followed by a single page write (written
ri[tp], wi[tp] for a tuple file page p, and ri[ip], wi[ip] for
an index file page p).

Consider the following history of Tl and Tz regarding
the tuple pages tq, tr and the index page ip:

This is a serial execution of < S1 , S2 , I2 , II >, which
is equivalent to the serial history of executing Tl and
then T2. Assume, now, that we want to abort T2. The
index insertion II has seen and used page p, which was
written by T2 in its index insertion step. The only way
to abort Tz, without aborting Tl is to compensate for
Tz. Fortunately, we have a very natural compensation,
CT2, which is a delete key operation. Observe that a
delete operation as compensation, satisfies Constraint
1, commutes with insertion of a tuple with a different
key, and encapsulates composite compensation for the
slot updating and index insertion. The resulting history
is sound.

6 Approximating Soundness

In this section we introduce weak forms of compensa-
tion soundness, where the results of an execution that
includes compensation only approximate the results of
executing the dependent transactions in isolation.

Let us denote the history‘of transactions T, dep(T)
and CT as X, and the history without compensation,
i.e., a history of only dep(T), as Y. In an approximated
form of soundness, the final state of X is only related to
the final state of Y.

102

The relation should serve to constrain CT, and pre-
vent it from violating consistency constraints and other
desirable predica.tes est.ablished by dep(T). Thus, the
relation should enforce same ‘goodness’ properties, for
instance: “if a consistency constraint predicate holds on
the final state of Y, it should also hold on the final state
of X.”

Achieving even approximated soundness is an intri-
cat,e problem when the histories are non-serializable, as
we allow them to be. The obstacle is, as mentioned
before, that the programs of transactions in dep(T) see
different database states when T and CT are not exe-
cuted, and therefore may generate a history Y which can
be totally different than the original history X. Hence,
X and Y may not be related as required.

We state several theorems that formalize the inter-
play among the approximated soundness notion, con-
currency control constraints, restrictions on programs
of dependent transactions, and commutativity. Each
theorem is followed by a simplified example that serves
to illustrate at least part of the theorem’s premises and
consequences. Proofs of the theorems can be found in
[lo]. Throughout this section, we assume that a com-
pensating transaction complies with Constraints 1 and
2 of Section 4. We start with definitions of weaker
forms of c0mmutativit.y and weaker forms of compen-
sation soundness.

Definition 3. Two sequences of operations, X and
Y, commute with respect to a relation R on augmented
states (in short, R-commute), if for all augmented states
s, (X 0 Y)(S) R (Y 0 X)(S). cl

Observe that when ‘R is the equality relation we have
regular commutativity.

Definition 4. Let X be a history of T, dep(T),
and CT whose initial state is S, and let72 be a reflexive
relation on augmented states. The history X is sound
wiih respect to R (in shoti R-sound), if there etisls a
history Y of dep(T) h w ose initial state is S such ihat
Y(S) 72 X(S). 0

Observe that regular soundness is a special case of R-
soundness when R is the equality relation. Since R is
reflexive, the empty history is always R-sound, regard-
less of the choice of R.

We motivate the above definitions by considering ad-
equate relations 72 in the context of R-commutativity
and R-soundness. Let & be a predicate on database
states such that Ok+, + Q. Q can be regarded as
either a consistency constraint, or a desired predicate
that is established by dep(T) (similarly to the predicate
Q in Constraint 3). Therefore, we would like to guar-
antee that compensation does not violate Q. Define %!

(in the context of X, Y and S) as follows:

Y(s) z x’(s) iff (Q(l’(S)) * Q(X’(S)))

An R-sound history with such 7Z ha.s the advantageous
property that predicates like Q are not violated by the
compensation. Such R-sound histories yield states that
approximate states yielded by sound histories in the
sense that both states satisfy some desirable predicates.
In the examples that follow the theorems, we use rela-
tions R of that form.

Definition 5. Let x be a relation on states, and
let v, and vd denote values of an arbitrary enlity e. We
define Ihe relations R, on values of e for every enMy e
as follows: ve R, v: iff
(3S’, S” : S’(e) = v1 A S”(e) = v2 A S’ R S”) c3

Definition 6. LeZ X be a history of
T, dep(T) and CT whose initial state is S, and let
72 be a reflexive relation on auamented states. The
history X - is partially R-sound if there exists a his-
tory Y of dep(T) h w ose initial state is S such thai
(Ve E db : (Y(S))(e) ‘% (X(S)>(e)>. cl

Definition 7. A program of a transaction is .@ if
it is a sequence of operations 2ha2 use no private entities
as arguments. 0

If T’s program is fixed then it has no conditional
branches. Moreover, T cannot use local variables to
store values for subsequent referencing. A sequence of
operations, where each operation reads and updates a
single database entity (without storing values in local
variables) is a fixed transaction. A transaction that uses
a single operation to give a raise to a certain employee
recorded in a salary management database is an exam-
ple for a fixed transaction.

Theorem 2. Let X be a history of T, dep(T) and
CT whose initial slate is S. If the histories Xdep(~)
and XCT R-com.mu2e, X is EWSR, and all programs
of transactions in dep(T) are fixed, then X is partially
R-sound. 0

Example 4. Consider a database system with the
following entities, parametric operations, and reflexive
relation:

db = {u : integer, 6 : integer} ,
f(e) :: ife > 2 then e := e - 2 ,
g(e) :: if e > 10 then e := e - 10
S’ R S” iff (((S’(b) 2 0 A S’(a) 2 10) V (S’(a) = 4))
+ ((S”(b) 1 0 A S”(a) > 10) V (S”(a) = 4)))

(The predicates on a are present only to demonstrate
partial R-soundness). We emphasize that f and g are

103

(atomic) operations. The history X is as follows (there
is no need to give the program of &p(T) since it is
fised):

X =< dep(T) : A := a + 2, T : f(u), T : g(b),
dep(T) : g(b), CT : a := a + 2, CT : b := b + 10 >

Observe that XdeF(~) and XCT do not commute but
they do R-commute for t.he given relation R. Let the
initial state be S = {Q = 2, b = 15). We have that
X(S) = {a = 4, b = 15}, whereas Y(S) = {a = 4, b =
5}, and indeed X is pariially R-sound. 0

The inherent problem with (the proofs of) compensa-
tion soundness is the fact that they equate two histories
that are not over the same set of transactions, which
is in contrast to all the equivalence notions in the tra-
ditional theory of concurrency control. The obstacle is
that the history Y may be generated by different exe-
cutions of the programs of dep(T), and may be totally
different from Xdep(~), which is just a syntactic deriva-
tive of the history X. In Theorem 2, this problem was
solved only because dep(T) was fixed. This obstacle
can be removed by posing more assumptions, as is done
next.

Definition 8. A transaction T is a serialization
point in a history X if X G X’ o XT o X”. Cl

Observe that no restrictions are imposed on X’ and X”.
Also notice that a compensating transaction is a serial-
ization point, as implied by Constraint 2.

Theorem 3. Let X be a history of T, dep(T) and
CT . Let 2 be a history of the transactions in dep(T)
and CT such that 2 G Z&p(T) o ZCT. If for all states
S and for all histories Z, there exists a history Y of
dep(T) such that (ZCT oY)(S) R (Zdep(q O&T)(S),
then every history X where T is a serialization point is
R-sound. 0

Note that it is required that dep(T)‘s programs be such
that executing CT before dep(T) would result in a state
that is related by ‘R to the state resulting when exe-
cuting dep(T) first and then CT. Observe that this
requirement is stronger than R-commutativity.

This theorem is quite useful since it specifies a con-
currency control policy that guarantees R-soundness.
Namely, we need to ensure that every potential
compensated-for transaction be isolated (i.e., T is a se-
rialization point) in order to guarantee R-soundness in
case of compensation.

Example 5. Consider the set entities of Example
4, with the addition of a private entity ‘1~ that belongs
to some transaction in dep(T). Let the programs of
T, h(T), CT, and the relation R be defined as fol-

lows:

T = a:=a+l, CT = a:=~-1,
dep(T) = {u := a; if u 2 5 then j(b) else g(b)}
S’ R S” ijf (S’(b) 2 0 3 S”(b) 2 0)

Even though dep(T)‘s history can branch differently
when run alone and in the presence of T and CT, the
two different histories produce final states that are re-
lated by R. 0

Definition 9. A program of a transaction is linear
if it 1s a sequence of operations. Cl

Programs are sequences, but we allow operations to read
multiple entities, that is, use local variables. Therefore,
programs may not be fixed. An example for a linear
transaction program is a program that gives a raise to
all employees, where the raise based on some aggregated
computation (for instance 10% of the minimum salary).

Definition 10. Let R be a reflexive relation
on augmented states. An operation f that updates e
preserves ‘R, if
(Ve’ E adb : (S(e’) ‘I& S’(e’)) 3 (j(S) 72, f(S’))) q

Theorem 4. Let X be a history ojT,dep(T) and
CT whose initial state is S. If the histories Xdep(~)
and XCT R-commute, X is E WSR, the programs of all
transactions in dep(T) are linear, R is transitive, and
the operations of dep(T) p reserve ‘R, then X is partially
R-sound. 0

Example 6. Consider the set entities of Example
4, with the addition of a private entity u that belongs
to some transaction in dep(T). We use the relation
S’ ‘R S” ijj ((S’(b) 2 S’(a)) * (S”(b) 1 S”(u))).
The history X is as follows:

X =< T : a := a + 1, dep(T) : u := a,
dep(T) : b :=u+lO, CT:a:=a-l>

Observe that XCT and Xdep(~) R-commute (but do not
commute), dep(T) is linear (but not fixed), and X is
(partially) R-sound. 0

Finally, based on Lemma 1 from Section 2, we derive
the following corollary.

Corollary 1. Theorems 8 and 4 hold when X is
PWSRc or SR instead of EWSR. 0

The requirements from the dependent transactions in
Theorems 2,3, and 4 are quite severe. Besides the R-
commutativity requirement ‘imposed on the operations
of the dependent transactions, there are restrictions on
the shape of the programs (e.g., fixed or linear pro-
grams) in each of the theorems’ premises. Clearly, in
practical systems, there are many transactions that do

104

not stand up to any of these criteria. The practical
ramification of this observation is that externalization
of uncommitted data items should be done in a con-
t,rolled manner if a degree of soundness is of importance.
Tha.t is, uncommitted data should be externalized only
t,o transa.ctions that do satisfy the requirements speci-
fied in the premises of the theorems. In the context of
locks, locks should be released only to qualified trans-
actions, that is, those transactions that do satisfy the
requirements. Other transactions must be delayed and
are subject to the standard concurrency control and re-
covery policies.

7 Implementation Issues

In this section we discuss several implementation issues
that need to be considered in order for compensation to
be of practical use. We envision that a compensating
transaction would be driven by a scan of the log starting
from the first record of the compensated-for transaction
and up to its own begin-transaction log record. It is
important to provide convenient on-line access to the
log information for these purposes. Without a suitable
logging architecture, these accesses might translate to
I/O traffic that would interrupt the sequential log I/O
that is performed on behalf of executing transactions.
In addition, log records should contain enough semantic
information in order to guide the execution of the com-
pensating transaction. Therefore, it is likely that some
form of operation logging will be used [7].

There are some subtle ramifications on concurrency
control which are discussed next in the context of lock-
ing. We have required that CT’s execution is serial-
izable with respect to other concurrent transactions.
(Constraint 2). Also, if it is reasonably assumed that
update(CT,X) E update(T,X), then this leads to the
conclusion that the compensating transaction and the
dependent transactions should follow a 2-Phase Lock-
ing protocol [2] with respect to entities in update(T, X).
Otherwise, it possible to violate Constraint 2. A viable
strategy that might simplify matters for the implemen-
tation can be as follows. Once CT is invoked, the en-
tities in update(T, X) should be identified by analyzing
the log and then CT should exclusively lock all entities
in this set. After performing the necessary updates, CT
can release these locks.

The recovery issues of compensating transactions
themselves must be also considered. As was noted ear-
lier, we should disallow a compensating transaction to
be aborted either externally (by user, or an applica-
tion), or internally (e.g., as a deadlock resolution vic-
tim). Still, there is the problem of system failures. We
think that the preferred way to handle this problem is to
resume uncompleted compensating transactions rather

than undoing them. To accomplish this, we need to re-
sume a compensating transaction from a point where
its internal state was saved along with the necessary
concurrency control information. We emphasize that
the principle for recovery of compensating transaction
is that once a begin-transaction record of CT appears
in stable storage, CT must be completed. An imple-
mentation along the lines of the ARIES system [12]
can support the persistence of compensating transac-
tions across system crashes. In ARIES, undo activity
is logged using Compensating Log Records (CLRs). It
is guaranteed that actions are not undone more than
once, and that undo actions are not undone even if the
undo of a transaction is interrupted by a system crash.

8 Related Work

The idea of compensating transactions as
a semantically-rich recovery mechanism is mentioned,
or at least referred to, in several papers. However, to
the best of our knowledge, a formal and comprehensive
treatment of the issue and its ramifications is lacking.

Strong motivation for our work can be found in Gray’s
early paper [6]. Th e notion of compensation (counter-
steps) is mentioned in the context of histories that pre-
serve consistency without being s&ializable in [4, 31.

Compensating transactions are also mentioned in the
context of a saga, a long-duration transaction that can
be broken into a collection of subtransact.ions that can
be interleaved in any way with other transactions [5].
A saga must execute all its subtransa.ctions, hence com-
pensating transactions are used to amend partial exe-
cution of sagas. In [5] and in [4] the idea that a com-
pensating transaction cannot voluntarily abort itself is
introduced.

A noteworthy approach, which can be classified as a
simple type of compensation, is employed in the XPRS
system [15]. Th ere, a notion of failure commutativity
is defined for complete transactions. Two transactions
failure commute if they commute, and if they can both
succeed then a unilateral abort by either transaction
cannot cause the other to abort. Transactions that are
classified as failure commutative can run concurrently
without any conflicts. Handling the abort of such a
transaction is done by a log-based special undo function,
which is a special case of compensation as we define it.

In [l], semantics of operations on abstract data types
are used to define recoverability, which is a weaker no-
tion than commutativity. Conflict relations are based
on recoverability rather than commutativity. Conse-
quently, concurrency is enhanced since the potential for
conflicts is reduced. When an operation is recoverable
with respect to an uncommitted operation, the former
operation can be executed; however a commit depen-

105

dency is forced between the two operations. This depen-
dency affects the order in which the operations should
commit, if they both commit. If either operation aborts,
the ot.her can still commit, thereby avoiding cascading
aborts. This work is more conservative than ours in the
sense that it narrows the domain of interest to serializ-
able histories.

9 Conclusions

In this paper, we have argued that exposing uncommit-
ted data is very useful for many database a.pplications
employing long-duration, nested and/or collaborative
transactions. Compensating transactions are proposed
as the means for recovery management in the presence
of early externalization. Several types of compensa-
tion soundness criteria were introduced and were found
to be predicated on notions of commutativity. Even
the approximated forms of soundness can be used to
guarantee that compensation results in desirable conse-
quences and does not abrogate dependent transactions’
outcome. A semantically-rich model that is adequate for
dealing with non-serializable and non-recoverable histo-
ries was set up, and was offered as a viable tool for the
understanding of these intricate histories and compen-
sation issues.

We believe that future database applications will re-
quire the rethinking of the traditional transaction model
that is founded on serializability and permanence of
commitment. Contemporary applications in the do-
mains of CAD and CASE exemplify our belief. The
work presented in this paper is a step towards the es-
tablishment of this new model.

References
[l] B. R. Badrinath and K. Ramamirtham. Semantic-

based concurrency control: Beyond commutativity.
In Proceedings of the Third International Confer-
ence on Data Engineering, Los Angeles, 1987.

[Z] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[3] A. A. Farrag and M. T. Ozso. Using seman-
tic knowledge of transactions to increase concur-

ACM l+ansaciions on Database Systems,
~~c4y~503-525, December 1989.

[4] H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database.
ACM Transactions on Database Systems, 8(2):186-
213, June 1983.

[5] H. Garcia-Molina and K. Salem. Sagas. In Proceed-
ings of ACM-SIGMOD 1987 International Confer-
ence on Management of Data, San Francisco, pages
249-259, 1987.

3
a
f

PI 7
a

t

PI I
t

[Ql

PO1

t111

P21

I131

P4

I151

WI

1

1

. N. Grav. The iransact.ion concept: \‘irtues
.nd limitabions. In Proceedings of fhe Seoenfh In-
ernational Conference on Very Large Dafabases,
Yannes, pages 144-154, 1981.

r. Baerder and A. Reuter. Principles of trans-
.ction oriented database recovery .- a taxonomy.
1CM Compufing Surveys, 15(4):289-317, Decem-
ier 1983.

I. F. Korth. Locking primitives in a database sys-
em. Journal of the ACM, 30(1):55-79, January
,983.

I. F. Korth, W. Kim, and F. Bancilhon. On long
luration CAD transactions. Informafion Sciences,
16:73-107, October 1988.

!I. F. Korth, E. Levy, and A. Silberschatz. A for-
nal approach to recovery by compensating trans-
actions. Technical Report TR-90-14, The Univer-
sity of Texas at Austin, Computer Sciences Depart-
ment, 1990.

II. F. Korth and G. Speegle. Formal model of
correctness without serializability. In Proceedings
of ACM-SIGMOD 1988 Internafional Conference
on Management of Data, Chicago, pages 379-388,
June 1988.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: A transact,ion recov-
ery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. Techni-
cal Report RJ 6649 (63960), IBM Research, 1989.
To appear in ACM Transactions on Database Sys-
tems.

3. E. B. Moss, N. D. Griffeth, and M. H. Graham.
Abstractions in recovery management. In Proceed-
ings of ACM-SIGMOD 1986 International Confer-
ence on Management of Data, Washington, pages
72-83, 1986.

C. Papadimitriou. The Theory of Database
Concurrency Control. Computer Science Press,
Rockville, Maryland, 1986.

M. R. Stonebraker, R. H. Katz, D. A. Patterson,
and J. K. Ousterhout. The design of XPRS. In Pro-
ceedings of the Fourteenth In.ternational Confer-
ence on Very Large Databases, Los Angeles, pages
318-330, 1988.

W. E. Weihl. Commutativity-based concurrency
control for abstract data types. IEEE Transac-
tions on Computers, C-37(12):1488-1505, Decem-
ber 1988.

106

