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Abstract 

Compensating transactions are intended to handle situ- 
ations where it is required to undo either committed 
or uncommitted transactions that affect other trans- 
actions, without resorting to cascading aborts. This 
stands in sharp contrast to the standard approach to 
transaction recovery where cascading aborts are avoided 
by requiring transactions to read only committed data, 
and where committed transactions are treated as per- 
manent and irreversible. We argue that this standard 
approach to recovery is not suitable for a wide range 
of advanced database applications, in particular those 
applications that incorporate long-duration or nested 
transactions. We show how compensating transactions 
can be effectively used to handle these types of appli- 
cations. We present a model that allows the definition 
of a variety of types of correct compensation. These 
types of compensation range from traditional undo, at 
one extreme, to application-dependent, special-purpose 
compensating transactions, at the other extreme, 

1 Introduction 

The concept of transaction atomicity is the cornerstone 
of today’s transaction management systems. Atomic- 
ity requires that an aborted transaction will have no 
effect on the state of the database. The most common 
method for achieving this is to maintain a recovery log 
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and provide the uncZo(T;) operation which rest,ores the 
data items updated by x to the value they had just 
prior to the execution of T;. However, if some other 
transaction, Tj, has read data values writt.en by Ti, un- 

doing Ti is not sufficient. The (indirect) effects of Ti 
must be removed by aborting Tj. Aborting the affected 
transaction may trigger further aborts. This undesir- 
able phenomenon, called cascading aborts, can result in 
uncontrollably many transactions being forced to abort 
because some other transaction happened to abort. 

Since a committed transaction, by definition, cannot . 
abort, it is required that if transaction Tj reads the val- 
ues of data items writ&en by transaction Ti, then Tj 
does not commit before Ti commits. A system that en- 
sures this property is said to be recoverable [2]. One way 
of avoiding cascading aborts and ensuring recoverabil- 
ity is to prohibit transactions from reading uncommitted 
data values - those produced by transactions that have 
not committed yet. This principle has formed the basis 
for standard recovery in most contemporary database 
systems. 

Unfortunately, there is a large range of database ap- 
plications for which the standard recovery approach is 
excessively restrictive and even not appropriate. The 
common denominator of such applications is the need 
to allow transactions to read uncommitted data values. 

In general, as indicated by Gray [6], early exposure 
of uncommitted data is essential in the realm of long- 
duration and nested transactions. When transactions 
are long-lived, it is unreasonable to prevent access to 
uncommitted data by forcing other transactions to wait 
until the updating transaction commits, since the wait 
will be of long duration. Also, long-duration and nested 
transactions are often used to model collaborative de- 
sign activities [9]. I n order to promote the cooperative 
nature of design environments, there is a need to expose 
incomplete (i.e., uncommitted) design objects. Such ap- 
plications, and other that incorporate transactions of 
that nat,ure, cannot be accommodated by the standard 
recovery approach since their executions entail cascad- 
ing aborts and some of them are even non-recoverable. 

An additional restriction imposed by standard recov- 
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ery is the inability to undo an already committed trans- 
action. Suppose that a transaction was committed “er- 
roneously.” By committed erroneously, we mean that 
from the system’s point of view there was nothing wrong 
with the committed transaction. However, external rea- 
sons, that were discovered later, rendered the decision 
to commit the transaction erroneous. Under the stan- 
dard recovery approach there is no support for undoing 
such transactions. 

This paper presents the method of a compensating 
transactions as a recovery mechanism in applications 
where exposure of uncommitted data and undoing of 
committed transactions must be facilitated. Our goals 
are to develop a better understanding of what compen- 
sation really is, when it is possible to employ it, and 
what the implications are on correctness of executions 
when compensation is used. 

The remainder of this paper is organized as fol- 
lows. We give an informal introduction to compensat- 
ing transactions in Section 2. In Section 3, we present a 
transaction model suitable for the study of compensa- 
tion. We then use this model in Section 4 to define cri- 
teria for “reasonable” compensation. After illustrating 
our definitions with examples in Section 5, we examine 
the theoretical consequences of our model in Section 6. 
Implementation issues are discussed in Section 7, and 
related work is described in Section 8. 

2 Overview of Compensation 

When the updates of a (committed or uncommitted) 
transaction T are read by some other transaction, we 
say that T has been externalized. The sole purpose of 
compensation is to handle situations where we want to 
undo an externalized transaction T, without resorting 
to cascading aborts. We refer to T as the compensated- 
for transaction. The transactions that are affected by 
(reading) the data values written by T are referred to 
as dependent transactions (of T), and are referred to 
as a set using the notation dep(T). The key point of 
our recovery paradigm is that we would like to leave 
the effects of the dependent transactions intact while 
preserving the consistency of the database, when un- 
doing the compensated-for transaction. Compensation 
undoes T’s effects in a semantic manner, rather than by 
physically restoring a prior state. All that is guaranteed 
by compensation is that a consistent state is established 
based on semantic information. This state may not be 
identical to the state that would have been reached, had 
the compensated-for transaction never taken place. 

We propose the notion of compensating transactions 
as the vehicle for carrying out compensation. We use 
the notation CT to denote the compensating transac- 
tion for transaction T. A compensating transaction 

has the fundamental properties of a transaction along 
with some special characteristics. It appears atomic 
to concurrently executing transactions (that is, trans- 
actions do not observe partially compensated states); 
it conforms to consistency constraints; and its effects 
are durable. However, a compensating transaction is 
a very special type of transaction. Under certain cir- 
cumstances, it is required to restore consistency, rather 
than merely preserve it. It is durable in the strong sense 
that once a decision is made to initiate compensation, 
the compensating transaction must complete, since it 
does not make any sense to abort it. The choice of 
either to abort or to commit is present for the origi- 
nal transaction. A compensating transaction offers the 
ability to reverse this choice, but we do not go any fur- 
ther by providing the capability to abort the compensa- 
tion. There are other special characteristics. Above all, 
a compensating transaction does not exist by its own 
right; it is always regarded within the context of the 
compensated-for transaction. It is always executed after 
the compensated-for transaction. Its actions are deriva- 
tive of the actions of the compensated-for and the de- 
pendent transactions. In some situations, the actions of 
a compensating transaction can be extracted automati- 
cally from the program of the compensated-for transac- 
tion, the current state of the database, and the current 
state of the log. In other situations, it is the system pro- 
grammer’s responsibility to pre-define a compensating 
transaction. 

A mundane example taken from “real life” exemplifies 
some of the characteristics of compensation. Consider a 
database system that deals with transactions that rep- 
resent purchasing of goods. Consider the act of a cus- 
tomer returning goods after they have been sold. The 
compensated-for transaction in that case is a particu- 
lar purchase, and the compensating transaction encom- 
passes the activity caused by the cancellation of the 
purchase. The compensating transaction is bound to 
the compensated-for transaction by the details of the 
particular sale (e.g., price, method of payment, date of 
purchase). The effects of purchasing transaction might 
have been externalized in different ways. For instance, 
it might have triggered a dependent transaction that 
issued an order to the supplier in an attempt to replen- 
ish the inventory of the sold goods. Furthermore, the 
customer might have been added to the store’s mail- 
ing list as a result of that particular sale. The actual 
compensation depends on the relevant policy. For ex- 
ample, the customer may be given store credit, or full 
refund. Whether to cancel the order from the supplier 
and whether to retain the customer in the mailing list 
are other application-dependent issues with which the 
compensating transaction must deal. 
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3 A Transaction Model 

In the classical transaction model [14, 21 transactions 
are viewed as sequences of read and writ.e operations 
that. map consist.ent dat.ahase st,ates to consistent st,ates 
when execut,ed in isolation. The correctness criterion 
of this model is called serializabili2y. A concurrent, ex- 
ecut,ion of a set of t,ransact,ions is represented as an in- 
terleaved sequence of read and write operations, and 
is said to be serializable if it is equivalent to a serial 
(non-concurrent) execution. 

This approach poses severe limitations on the use of 
compensation. First, sequences of uninterpreted reads 
and writes are of little use when the semantically-rich 
act,ivit,y of compensation is considered. Second, the use 
of serializability as the correctness criterion for applica- 
tions that demand interaction and cooperation among 
possibly long-duration transactions was questioned by 
the work on concurrency control in [ll, 9, 31. Since we 
target compensation as a recovery mechanism for these 
kind of applications, our model does not rely on serial- 
izability as the only correctness notion. 

3.1 Transactions and Programs 

A transaction is a sequence of operations that are gener- 
ated as a result of the execution of some program. The 
exact sequence that the program generates depends on 
the database state “seen” by the program. In the classi- 
cal transaction model only the sequences are dealt with, 
whereas the programs are abstracted and ire of little 
use. Given a concurrent execution of a set of transac- 
tions (i.e., an interleaved sequence of operations) com- 
pensation for one of the transactions, T, can be modeled 
as an attempt to cancel the operations of T while leav- 
ing the rest of the sequence intact. The validity of what 
remains from that execution is now in serious doubt, 
since originally transactions read data items updated 
by T and acted accordingly, whereas now T’s opera- 
tions have vanished but its indirect impact on its de- 
pendent transactions is still apparent. The only formal 
way to examine a compensated execution is by compar- 
ing it to a hypothetical execution of only the dependent 
transactions, without the compensated-for transaction. 
We use the comparison of the compensated execution 
with the hypothetical execution that does not include 
the compensated-for transaction, as a key criterion in 
our exposition. Generating this hypothetical execution 
and studying it requires the introduction the kunsac- 
tions’ programs which are, therefore, indispensable for 
our purposes. 

A transaction program can be defined in any high- 
level programming language. Programs have local (i.e., 
private) variables. In order to support t,he private (i.e., 
non-database) state space of programs we define the 

concept of an augmenled state. The augmented state 
space is the database state space unioned with the pri- 
vate state spaces of t,he transactions’ programs. The 
provision of an augmented state allows one to treat read- 
ing and updating t,he dat,abase state in a similar manner. 
Reading the database st.ate is translated t.o an update 
of the augmented state, thereby modeling the storage 
of the value read in a local variable. 

Thus, a database, denoted as db, is a set of dat,a enti- 
ties. The augmented database, denoted as adb, is a set 
of entities that is a superset of the database; that is, 
db C adb. An entity in the set (adb - db) is called a 
private entity. Entities have ident,ifying names and cor- 
responding values. A state is a mapping of entity names 
to entity values. We dist,inguish between the database 
state and the state of the augmented database, which 
is referred to as the augmented state. We use the no- 
tation S(e), to denote the value of entity e in a state 
S. The symbols S and e (and their primed versions, 
S’, e’, etc.) are used, hereafter, to denote a state and 
an entity, respectively. 

Another deviation from the classical transaction 
model is the use of semantically-richer operations in- 
stead of the primitive read and write. Having such op- 
erations allows refining the notion of conflicting versus 
commutative operations [l, 161. That is, it is possible 
to examine whether two operations commute and hence 
can be executed concurrently. By contrast, in the clas- 
sical model, there is not much scope for such consider- 
ations since a write operabion conflicts with any other 
operation on the same entity. 

An operation is a function from augmented states to 
augmented stat.es that is restricted as follows: 

An operation updates at most one entity (either a 
private or a database entity); 

an operation reads at most one database entity, but 
it may read an arbitrary number of private entities; 

an operation can both update and read only the 
same database entity. 

We use the following shorthand notation for a single op- 
eration f: eo := f(el, . . . , ek). We say that f updates 
entity eo, and reads entities el, . , ek. The argum.en.ts 
of an operation are all the ent.ities it. reads. There are 
two special termination operations, comm.it, and abort, 
that have no effect on the augmented state. Operations 
are assumed to be executed atomically. 

It is implicitly assumed that all the arguments of an 
operation are meaningful; that is, a change in their value 
cause a change in the value computed by the operation. 
The operations in our model reconcile two contradic- 
tory goals. On the one hand, operations are functions 
from augmented states to augmented st,ates, thereby 
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giving the flexibi1it.y to define complex and semantically- 
rich operations. On the other hand, the mappings are 
restrict,ed so that at most one database entity is ac- 
cessed in the same operation, thereby making it feasible 
to allow atomic execution of an operation. Although 
only one database ent.ity may be accessed by an op- 
eration, as many local variables (i.e., private entities) 
as needed may be used as arguments for the mapping 
associated with the operation. Having private entities 
as arguments to operations adds more semantics to op- 
erations. Having functions for operations allows us to 
conveniently compose operations by functional compo- 
sition, thereby making sequences of operations functions 
too. 

We are in a position now to introduce the notion of 
a transaction as a program. A transaction program is a 
sequence of program statements, each of which is either: 

l An operation. 

*A conditional statement of the form: 
if b then SSl else SS2, where SSl and SS2 
are sequences of program statements, and b is a 
predicate that mentions only private entities and 
constants. 

We impose the the following restrictions on the opera- 
tions that are specified in the statements: 

The set of private entities is partitioned among the 
transaction programs. An operation in a program 
cannot read nor update a private entity that is not 
in its own partition; 

private entities are updated only once; 

An operation reads a private entity only after an- 
other operation has updated that entity. 

Example 1. Consider the following sets of entities: 
db = {a, b, c}, and adb = dbu{u, V, w}, and the following 
two transaction programs, TI and Tz: 

Tl: begin 
u:=a* 

b: v:= ) 
if u > v then c:= f(c,v) 

else begin 
w:=c- 
b:= ;(u,w) 

end 
end 

T2: begin 
a:=O* 
b:=i’ 

end 

Observe that operation f both updates and reads entity 
c. Tz demonstrates operations that read no entities. 0 

3.2 Histories and Correctness 

We use the framework for alternative correctness crite- 
ria set forth in [ll]. Explicit input and d&pul pdicsfes 
over the database state are associated with transactions. 
The input predicat.e is a pre-condition of transaction ex- 
ecution and must hold on the state that the transaction 
reads. The output condition is a post-condition which 
the transaction guarantees on the database state at the 
end of the transaction provided that there is no concur- 
rency and the database state seen by the transaction 
satisfies the input condition. Thus, as in the standard 
model, transactions are assumed to be generated by cor- 
rect programs, and responsibility for correct concurrent 
execution lies with the concurrency control protocol. 

Observe that the input and output predicates are ex- 
cellent means for ca.pturing the semantics of a database 
system. We use the convention that predicates (and 
hence semantics) can be associated with a set of trans- 
actions, similarly to the way predicates are associated 
with nested transactions in [ll]. That is, a set of trans- 
actions is supposed to collectively establish some desir- 
able property, or complete a coherent task. This con- 
vention is most useful in domains where a set of sub- 
transactioni are assigned a single complex task. 

We do not elaborate on the generat.ion of interleaved 
or concurrent executions of sets of tiansaction pro- 
grams, since this is not central to understanding our 
results. However, the notion of a history, the result of 
this interleaving, is a central concept in our model. A 
history is a sequence of operations, defining both a total 
order among the operations, as well as a function from 
augmented states to augmented states that is the func- 
tional composition of the operations. We use the nota- 
tion X =< fi,.. . , f,, > to denote a history X in which 
operation fi precedes fi+l, 1 < i < n. Alternatively, 
we use the functional composition symbol ‘0’ to compose 
operations as functions. That is, X = f~ o . . . o f,, de- 
notes the function from augmented states to augmented 
states defined by the same history X. We use the up- 
per case letters at the end of the alphabet, e.g., X, Y, 2, 
to denote both the sequence and the function a history 
defines. 

The equivalence symbol ‘E’ is used to denote equal- 
ity of histories as functions. That is, if X and Y are 
histories, then X z Y means that for all augmented 
states S, X(S) = Y(S). Observe that since histories 
and operations alike are functions, the function compo- 
sition symbol ‘0’ is used to compose histories as well as 
operations. 

When a (concurrent) execution of a set of transaction 
programs A is initiated on a state S and generates a 
history X, we say that X is a history of A whose initial 
state is S. 

Example 2. Consider the transaction program Tl of 
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Example 1. Since Tl has a conditional statement there 
are two histories, X and Y, which can be generated 
when Tl is executed in isolation. We list the histories 
as sequences of operations; 

x = < 21 := a, v := b, c := f(c, v) > , 
y = <u:=a,u:=b,w:=c,b:=g(u,w)> 

Let S = { a = 1 , b = 0 , c = 2 } be database state, 
then S is an initial state for X. X(S) = S’, where 
S’(c) = f(2,O). c onsider a concurrent execution of Tl 
and Tz of the previous example. We show two (out of 
the many possible) histories, Z and W, whose initial 
state is S given above. Each operation is prefixed with 
the name of the transaction that issued it. 

Z = < T2 : a := 0, Tl : u := a, Tz : b := 1, 

Tl :v:=b, Tl:w:=c, Tl:b:=g(u,w)> 

W =< Tz:a:=O, Tz:b:=I, Tl:u:=a, 

Tl :v:= b, Tl : w := c, Tl : b := g(u, w) > 

Observe that Z(S) = W(S) = S”, where 
S” = { a = 0 , b = do, ‘4 , c = 2 }. Observe that 
z E w. 0 

A key notion in the treatment of compensation is 
commutativity. We say that two sequences of opera- 
tions, X and Y, commute, if (X o Y) E (Y o X). 
Two operations conflict if they do not commute. Ob- 
serve that defining operations as functions, regardless 
to whether they read or update the database, leads to 
a very simple definition of the key concept of commuta- 
tivity. 

Part of the orderings implied by the total order in 
which operations are composed to form a history are ar- 
bitrary, since only conflicting operations must be totally 
ordered. In essence, our equivalence notion (when re- 
stricted to database state) is similar to final-state equiv- 
alence [14]. However, in what follows, we shall need to 
equate histories that are not necessarily over the same 
set of transactions, which is in contrast to final-state 
equivalence (and actually to all familiar equivalence no- 
tions). 

A projection of a history X on an entity e is is a 
subsequence of X, that consists of the operations in X 
that updated e. We denote the projection of X on e as 
X,. The same notation is used for a projection on a set 
of entities. 

We impose very weak constraints on concurrent exe- 
cutions in order to exclude as few executions as possible 
from consideration. In this paper we consider the fol- 
lowing types of histories: 

l A history X is serial if for every two transactions 
T’ and Tj that appear in X, either all operations of 
z appear before all operations of Tj or vice versa. 

A history X is serializable (SR) if there exists a 
serial history Y such that X q Y. 

Let C = cr A. . .AC, be a predicate over the database 
state. For each conjunct ci let di denote the set of 
database entities mentioned in ci. A history X is 
predicate-wise sen’alirable with respect to a predi- 
cate C (PWSR c 1 ) ‘f f or every set of entities di there 
exists a serial history Y such that X& s Ydi. 

A history X is entity-wise serializable (EWSR) if 
for every entity e there exists a serial history Y such 
that X, E Yc. 

The definition of PWSR histories is adapted from [g]. 
AS we shall see shortly, EWSR histories are going to be 
quite useful in our work. The following lemma is given 
without proof. 

Lemma 1. Let C be a predicate that mentions all 
database entities, and let ewsr, pwsrc, sr denote the set 
of E WSR histories, P WSRc histories, and SR histon’es, 
respectively. Then, sr C pwsrc C ewsr. 0 

We denote by XT the sequence of operations of a 
transaction T in a history X, involving possibly other 
transactions. The same notation is used for sets of 
transactions. When XT is projected on entity e the 
resulting sequence is denoted XT,~. 

4 Compensating Transactions 

With the aid of the tools developed in the last section, 
we are in a position to define compensation more for- 
mally. 

4.1 Specification Constraints 

Although compensation is an application-dependent ac- 
tivity, there are certain guidelines to which every com- 
pensating transaction must adhere. After introducing 
some notation and conventions we present three speci- 
fication constraints for defining compensating transac- 
tions. These constraints provide a very broad frame- 
work for defining concrete compensating transactions 
for concrete applications, and can be thought of as a 
generic specification for all compensating transactions. 

We say that transaction Tj is dependent upon trans- 
action Ti in a history if there exists an entity e such 
that 

l Tj reads e after Ti has updated e; 

l T; does not abort before Tj reads e; and 

l every transaction (if any) that updates e between 
the time Ti updates e and Tj reads e, is aborted 
before Tj reads e. 
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The above definition is adapted from [2]. 
A t.ransaction Ti, which is the depended-upon trans- 

act,ion may be eit,lier a commit.t.ed transaction, or an 
active transaction. In either case, if we want to support 
t.hc undo of T,, then the corresponding compensating 
transact,ion, CT;, must. be pre-defined. The key point 
is t.hat admitting non-recoverable hist.ories and support.- 
ing the undo of committ,ed transactions is predicated on 
the existence of the compensatory mechanisms needed 
to handle undoing externalized transactions. In the rest 
of t,he paper, T denotes a compensated-for transaction, 
CT denotes the corresponding compensating t.ransac- 
tion. and dep(T) d enotes a set of transactions depen- 
dent upon T. This set of dependent transactions can 
be regarded as a set. of related (sub)transactions that 
perform some coherent task. 

Constraint 1. For all hidories X, ifX~+ 0 XCT,~ 
is a contiguous subsequence ofX,, then (XT,~OXCT,~) f 
I, where I is the identity mapping. q 

The simplest interpretation of Constraint 1 is that for all 
entities e that were updated by T but read by no other 
transaction (since XCT+ follows XT,~ in the history), 
CT amounts simply to undoing T. Consequently, if 
there are no transactions that depend on T, (i.e., no 
transaction reads T’s updated data entities), thcu CT 
is just the traditional undo(T). The fact that CT does 
not always just undo T is crucial, since the effects of 
compensation depend on the span of history from the 
execution of the compensated-for transaction till its own 
initiation. If such a span exists, and T has dependent 
transactions, the effects of compensation may vary and 
can be very different from undoing T. For instance, 
compensation may include additional activity that is 
not directly related to undoing. A good example here 
is a cancellation of reservation in an airline reservation 
system which is handled as a compensating transaction 
that causes the transfer of pending reservation from a 
waiting list to the confirmed list. 

There are certain operations on certain entities that 
cannot be undone, or even compensated-for, in the form 
of inverting the state. In [6] these type of operations and 
entities are termed real (e.g., dispensing money, firing 
a missile). For simplicity’s sake, we omit discussion of 
such entities. 

Constraint 2. Given a history X involving T 
and CT, there must exist X’ and X” subsequences of 
X, such that no transaction has operations both in X’ 
and in Xl’, and X 3 X’ o XCT o X”. Cl 

This constraint represents the atomicity of compensa- 
tion. That is, a transaction should either see a database 
state affected by T (and not by CT), or see a state fol- 
lowing CT’s termination. More precisely, transactions 

should not have operations that conflict with CT’s op- 
erat.ions scheduled both before and after CT’s opera- 
tions, or in between CT’s first and last operat,ions. It 
is t.he responsibility of the concurrency control protocol 
to implement. this constraint (see Section 7 for imple- 
mentation discussion). 

In what follows, we use the notation 0~ and 1~ to 
denote the output and input predicate of transact.ion 
T, respectively. The same notabion is used for a set of 
transactions. These predicat,es are predicates over the 
dat.abase state. 

Constraint 3. Let Q be a predicate defined over 
the database state,, if (0 dep(q * Q) A (IT * Q) then 
OCT *Q. 0 

Constraint 3 is appropriate when Q is a either general 
consistency constraint, or a specific predicate that is es- 
tablished by dep(T) (that is, one of the collect.ive tasks 
of the transactions in dep(T) was to make Q true). In- 
formally, this constraint says that if Q was established 
by dep(T), and is not violated by undoing T, then it 
should be preserved by CT. Observe that the assump- 
tion that Q holds initially (i.e., 1~ 3 Q) is crucial since 
T’s effects are undone by CT, and hence, predicat,es 
established by T and preserved by dep(T) do not per- 
sist after the compensation. It is the responsibility of 
whoever defines CT to enforce Const.raint 3. 

Constraints 1 and 2 will be assumed to hold for all 
compensating transact,ions, hereafter. Constraint 3, 
which is more intricate and captures more of the se- 
mantics of compensation, will be discussed further in 
Section 6. 

4.2 Types of Compensation 

For some applications, it is acceptable that an execution 
of the dependent transaction, without the compensated- 
for and the compensating transactions, would produce 
different results than those produced by the execution 
with the compensation. On the other hand, ot.her appli- 
cations might forbid compensation unless the outcome 
of these two executions is the same. Next we make ex- 
plicit the above criterion that distinguishes among types 
of compensation by defining the notion of compensation 
soundness. 

Definition 1. Let X be the history of T, CT, and 
dep(T) whose initial state is S. Let Y be some history 
of only the transactions in dep(T) whose initial state is 
also S. The history X is sound, zf X(S) = Y(S). 0 

The history Y can be any history of dep(T). As far 
as the definition goes, different sets of (sub)transactions 
of dep(T) may commit in X and in Y, and conflicting 
operations may be ordered different.ly. The key point is 
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that .X(S) = Y(S). If a history is sound then compen- 
sation does not disturb the outcome of the dependent 
transactions. The database state after compensation is 
the same as the state after an execution of only the de- 
pendent transactions in d$T). All direct and indirect 
effects of the compensated-for transaction, T, have been 
erased by the compensation. 

Transactions in dep(T) see different database states 
when T and CT are not executed, and therefore gen- 
erate a history Y which can be totally different than 
the history X. This distinction between the histories X 
and Y, which is the essence of the important notion of 
soundness, would not have been possible had we viewed 
a transaction merely as sequence of operations rather 
than a program. 

A delicate point arises with regard to soundness when 
S does not satisfy Ides. Such situations may occur 
when T establishes Ides for dep(T) in such a manner 
that dep(T) mzls2 follow T in any history. Hence, if T 
is compensated-for, there is no history of dep(T), Y, 
that can satisfy the soundness requirement. We model 
such situations by postulating that if Ides does 
not hold, then Y(S) results in a special state that is 
not equal to any other state (the undefined state), and 
hence X is indeed not sound. 

We illustrate Definition 1 by considering the following 
two histories over read and write operations (the nota- 
tion ri[e] denotes reading e by Ti , and similarly wi[e] 
for write, and ci for commit): 

w = < wj [e] , rib] , Cj , Ci > 

z = < Wj[e] , ri[e] , Wi[e’] , Ci > 

The history W is recoverable. History 2 is not recover- 
able. If however, CTj is defined, Tj can still be aborted. 
Let us extend Z with the operations of CTj and call 
the extended history 2’. Z’ is sound provided that Z& 
would have been generated by Ii’s program, and the 
same value would have been written to e’, had Ti run 
in isolation starting with the same initial state as in Z’. 

The key notion in the context of compensation, as we 
defined it, is commutativity of compensating operations 
with operations of dependent transactions. Significant 
attention has been devoted to the effects of commuta- 
tive operations on concurrency control [8, 16, 11. Our 
work parallels these results as it exploits commutativity 
with respect to recovery. In all of our theorems we pre- 
fer to impose commutativity requirements on CT rather 
than on T, since CT is less exposed to users, and hence 
constraining it, rather than constraining T, is prefer- 
able. Predicated on commutativity, the operations of 
the compensated-for transaction and the corresponding 
compensatory operations can be ‘brought together’, and 
then cancel each other’s effects (by the enforcement of 
Constraint l), thereby ensuring sound histories. The 

following theorem formalizes this idea. 

Theorem 1. Let X be a history involving T, dep(T) 
and CT. If each of the operations in Xdep(=) commutes 
with each of the operations in XCT, then X is sound. 
0 

We illustrate this theorem by the following simple ex- 
ample: 

Example 3. Let Ti, Tj and C7;: be a compensated- 
for transaction, a dependent transaction and the com- 
pensating transaction, respectively. Let the programs 
of all these transactions include no condition statements 
(i.e., they are sequences of operations). We give a his- 
tory X, in which each operation is prefixed by t,he name 
of the issuing transaction. X =< Ti : a := a + 2, Tj : 
u Z= b, Tj : a := a + u, CTi : a := a - 2) >. Clearly, 
every operation of Tj commutes with every operation 
of CTi in X. Hence, X is sound, and the history that 
demonstrates soundness is simply Y = XT~ = < Tj : 
u := b, Tj : a := u + u >. As will become clear in 
Section 6, the fact that no condition statements appear 
in Tj is important. 0 

Our main emphasis in this paper is on more liberal 
forms of compensation soundness, where the results of 
executing the dependent transactions in isolation may 
be different from their results in the presence of the 
compensated-for, and the compensating transactions. 
One way of characterizing these weaker forms of sound- 
ness is by qualifying the set of entities for which the 
equality in Definition 1 holds. In Section 5.1, we define 
a type of compensating transaction that ensures sound 
compensation with respect to some set of entities. Al- 
ternatively, in Section 6 we investigate other weak forms 
of soundness that approximate (pure) soundness. 

5 Examples and Applications 

In this section, we present several examples to illustrate 
the various concept we have introduced so far. Through- 
out this section we use the symbols T, dep(T), CT, X, 
and S to denote a compensated-for transaction, its com- 
pensating transaction, the corresponding set of depen- 
dent transactions, the history of all these transactions, 
and the history’s initial state, respectively. 

5.1 A Generic Example 

In this example we present a generic compensation defi- 
nition. Let update(T, X) denote the set of database en- 
tities that were updated by T in history X. The same 
notation is used for a set of transactions. 

Definition 2. Let X(S) = S’, and X z X’o XCT 
(by Constraint 2). We define the generic compensating 
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transaction CT, by characterizing S’ for all entities e: 

1 

S(e) if e $! llpdate(dep(T), X) 

(x’(S))(e) if e E update(dep(T), X) 
S’(e) = A e $! Update(T, X) 

~~dep(T),e(S) if e E update(dey(T), X) 
A e E update(T, X) 

0 

Before we proceed, we informally explain the meaning 
of this t.ype of compensation. If no dependent trans- 
action updates an entity that T updates, CT undoes 
T’s updates on that. entity. The value of entities that 
were updated only by dependent transactions is left in- 
tact. The value of entities updated by both T and its 
dependents should reflect only the dependents’ updates. 

There is a certain subtlety in the second case of the 
definition which is illustrated next. Assume that T up- 
dated e. The modified e is read by a transaction in 
dep(T) and the value read determines how this transac- 
tion updates e’. After compensation, even though the 
initial value of e is restored (by the first case of the def- 
inition), the indirect effect it had on e’ is left intact (by 
the second case of the definition). We use the above 
definition as a precise specification of what CT should 
accomplish. 

To further illustrate the type of compensation just de- 
scribed, we give a concrete example. Consider an airline 
reservation system with the entity seats that denotes 
the total number of seats in a particular flight, entity 
rs that denotes the number of already reserved seats in 
that flight, and entity reject that counts the number of 
transactions whose reservations for that flight have been 
rejected. Let reserve(x) be a simplified seat reserva- 
tion transaction for x seats defined as: 

if (TS + x) <= seats then rs:=rs+x 
else reject:= reject+1 

The consistency constraint Q in this case is: 
Q(S) iff S(rs) 5 S(seats). Assume: 

S = (seats = 100, rs = 95, rejects = lo), 

T = reserve(5) , dep(T) = (reserve(3)) 

Let the history be X s XT o X,&p(T) o XCT where CT 
is defined by Definition 2. We would like to have after 
X: S’ = {rs = 95, rejects = ll}, that is, T’s reserva- 
tions were made and later canceled by running CT, and 
dep(T)‘s reservations were rejected. And that is exactly 
what we get by our definition. Observe how T’s reser- 
vations were canceled, but still its indirect impact on 
rejects persists (since T caused dep(T)‘s reservations 
to be rejected). 

Hence, this example demonstrates a history that is 
not sound but is nevertheless intuitively acceptable. 

Had the transaction in dep(T) been executed alone, it 
would result in successful reservations. Notice how in 
this example the operation of CT can be implemented 
as inverse of T’s operation (addition and subtraction). 
The less interesting case, where there are enough seats 
to accommodate both T and dep(T), also fits nicely. In 
this case CT’s subtraction on t.he ent,it,y seats commutes 
with dep(T)‘s addition t,o this entity. 

5.2 Storage Management Examples 

The following example is from [13], though the notion of 
compensation is not used there. Consider transactions 
Tl and Ts, each of which a,dds a new tuple to a relation 
in a relational database. Assume the tuples added have 
different keys. A tuple addition is processed by first al- 
locating and filling in a slot in the relat.ion’s tuple file, 
and then adding the key and slot number to a separate 
index. Assume that Ti’s slot updating (Si) and index 
insertion (Ii) steps can each be implemented by a sin- 
gle page read followed by a single page write (written 
ri[tp], wi[tp] for a tuple file page p, and ri[ip], wi[ip] for 
an index file page p). 

Consider the following history of Tl and Tz regarding 
the tuple pages tq, tr and the index page ip: 

This is a serial execution of < S1 , S2 , I2 , II >, which 
is equivalent to the serial history of executing Tl and 
then T2. Assume, now, that we want to abort T2. The 
index insertion II has seen and used page p, which was 
written by T2 in its index insertion step. The only way 
to abort Tz, without aborting Tl is to compensate for 
Tz. Fortunately, we have a very natural compensation, 
CT2, which is a delete key operation. Observe that a 
delete operation as compensation, satisfies Constraint 
1, commutes with insertion of a tuple with a different 
key, and encapsulates composite compensation for the 
slot updating and index insertion. The resulting history 
is sound. 

6 Approximating Soundness 

In this section we introduce weak forms of compensa- 
tion soundness, where the results of an execution that 
includes compensation only approximate the results of 
executing the dependent transactions in isolation. 

Let us denote the history‘of transactions T, dep(T) 
and CT as X, and the history without compensation, 
i.e., a history of only dep(T), as Y. In an approximated 
form of soundness, the final state of X is only related to 
the final state of Y. 
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The relation should serve to constrain CT, and pre- 
vent it from violating consistency constraints and other 
desirable predica.tes est.ablished by dep(T). Thus, the 
relation should enforce same ‘goodness’ properties, for 
instance: “if a consistency constraint predicate holds on 
the final state of Y, it should also hold on the final state 
of X.” 

Achieving even approximated soundness is an intri- 
cat,e problem when the histories are non-serializable, as 
we allow them to be. The obstacle is, as mentioned 
before, that the programs of transactions in dep(T) see 
different database states when T and CT are not exe- 
cuted, and therefore may generate a history Y which can 
be totally different than the original history X. Hence, 
X and Y may not be related as required. 

We state several theorems that formalize the inter- 
play among the approximated soundness notion, con- 
currency control constraints, restrictions on programs 
of dependent transactions, and commutativity. Each 
theorem is followed by a simplified example that serves 
to illustrate at least part of the theorem’s premises and 
consequences. Proofs of the theorems can be found in 
[lo]. Throughout this section, we assume that a com- 
pensating transaction complies with Constraints 1 and 
2 of Section 4. We start with definitions of weaker 
forms of c0mmutativit.y and weaker forms of compen- 
sation soundness. 

Definition 3. Two sequences of operations, X and 
Y, commute with respect to a relation R on augmented 
states (in short, R-commute), if for all augmented states 
s, (X 0 Y)(S) R (Y 0 X)(S). cl 

Observe that when ‘R is the equality relation we have 
regular commutativity. 

Definition 4. Let X be a history of T, dep(T), 
and CT whose initial state is S, and let72 be a reflexive 
relation on augmented states. The history X is sound 
wiih respect to R (in shoti R-sound), if there etisls a 
history Y of dep(T) h w ose initial state is S such ihat 
Y(S) 72 X(S). 0 

Observe that regular soundness is a special case of R- 
soundness when R is the equality relation. Since R is 
reflexive, the empty history is always R-sound, regard- 
less of the choice of R. 

We motivate the above definitions by considering ad- 
equate relations 72 in the context of R-commutativity 
and R-soundness. Let & be a predicate on database 
states such that Ok+, + Q. Q can be regarded as 
either a consistency constraint, or a desired predicate 
that is established by dep(T) (similarly to the predicate 
Q in Constraint 3). Therefore, we would like to guar- 
antee that compensation does not violate Q. Define %! 

(in the context of X, Y and S) as follows: 

Y(s) z x’(s) iff (Q(l’(S)) * Q(X’(S))) 

An R-sound history with such 7Z ha.s the advantageous 
property that predicates like Q are not violated by the 
compensation. Such R-sound histories yield states that 
approximate states yielded by sound histories in the 
sense that both states satisfy some desirable predicates. 
In the examples that follow the theorems, we use rela- 
tions R of that form. 

Definition 5. Let x be a relation on states, and 
let v, and vd denote values of an arbitrary enlity e. We 
define Ihe relations R, on values of e for every enMy e 
as follows: ve R, v: iff 
(3S’, S” : S’(e) = v1 A S”(e) = v2 A S’ R S”) c3 

Definition 6. LeZ X be a history of 
T, dep(T) and CT whose initial state is S, and let 
72 be a reflexive relation on auamented states. The 
history X - is partially R-sound if there exists a his- 
tory Y of dep(T) h w ose initial state is S such thai 
(Ve E db : (Y(S))(e) ‘% (X(S)>(e)>. cl 

Definition 7. A program of a transaction is .@ if 
it is a sequence of operations 2ha2 use no private entities 
as arguments. 0 

If T’s program is fixed then it has no conditional 
branches. Moreover, T cannot use local variables to 
store values for subsequent referencing. A sequence of 
operations, where each operation reads and updates a 
single database entity (without storing values in local 
variables) is a fixed transaction. A transaction that uses 
a single operation to give a raise to a certain employee 
recorded in a salary management database is an exam- 
ple for a fixed transaction. 

Theorem 2. Let X be a history of T, dep(T) and 
CT whose initial slate is S. If the histories Xdep(~) 
and XCT R-com.mu2e, X is EWSR, and all programs 
of transactions in dep(T) are fixed, then X is partially 
R-sound. 0 

Example 4. Consider a database system with the 
following entities, parametric operations, and reflexive 
relation: 

db = {u : integer, 6 : integer} , 
f(e) :: ife > 2 then e := e - 2 , 
g(e) :: if e > 10 then e := e - 10 
S’ R S” iff (((S’(b) 2 0 A S’(a) 2 10) V (S’(a) = 4)) 
+ ((S”(b) 1 0 A S”(a) > 10) V (S”(a) = 4))) 

(The predicates on a are present only to demonstrate 
partial R-soundness). We emphasize that f and g are 
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(atomic) operations. The history X is as follows (there 
is no need to give the program of &p(T) since it is 
fised): 

X =< dep(T) : A := a + 2, T : f(u), T : g(b), 
dep(T) : g(b), CT : a := a + 2, CT : b := b + 10 > 

Observe that XdeF(~) and XCT do not commute but 
they do R-commute for t.he given relation R. Let the 
initial state be S = {Q = 2, b = 15). We have that 
X(S) = {a = 4, b = 15}, whereas Y(S) = {a = 4, b = 
5}, and indeed X is pariially R-sound. 0 

The inherent problem with (the proofs of) compensa- 
tion soundness is the fact that they equate two histories 
that are not over the same set of transactions, which 
is in contrast to all the equivalence notions in the tra- 
ditional theory of concurrency control. The obstacle is 
that the history Y may be generated by different exe- 
cutions of the programs of dep(T), and may be totally 
different from Xdep(~), which is just a syntactic deriva- 
tive of the history X. In Theorem 2, this problem was 
solved only because dep(T) was fixed. This obstacle 
can be removed by posing more assumptions, as is done 
next. 

Definition 8. A transaction T is a serialization 
point in a history X if X G X’ o XT o X”. Cl 

Observe that no restrictions are imposed on X’ and X”. 
Also notice that a compensating transaction is a serial- 
ization point, as implied by Constraint 2. 

Theorem 3. Let X be a history of T, dep(T) and 
CT . Let 2 be a history of the transactions in dep(T) 
and CT such that 2 G Z&p(T) o ZCT. If for all states 
S and for all histories Z, there exists a history Y of 
dep(T) such that (ZCT oY)(S) R (Zdep(q O&T)(S), 
then every history X where T is a serialization point is 
R-sound. 0 

Note that it is required that dep(T)‘s programs be such 
that executing CT before dep(T) would result in a state 
that is related by ‘R to the state resulting when exe- 
cuting dep(T) first and then CT. Observe that this 
requirement is stronger than R-commutativity. 

This theorem is quite useful since it specifies a con- 
currency control policy that guarantees R-soundness. 
Namely, we need to ensure that every potential 
compensated-for transaction be isolated (i.e., T is a se- 
rialization point) in order to guarantee R-soundness in 
case of compensation. 

Example 5. Consider the set entities of Example 
4, with the addition of a private entity ‘1~ that belongs 
to some transaction in dep(T). Let the programs of 
T, h(T), CT, and the relation R be defined as fol- 

lows: 

T = a:=a+l, CT = a:=~-1, 
dep(T) = {u := a; if u 2 5 then j(b) else g(b)} 
S’ R S” ijf (S’(b) 2 0 3 S”(b) 2 0) 

Even though dep(T)‘s history can branch differently 
when run alone and in the presence of T and CT, the 
two different histories produce final states that are re- 
lated by R. 0 

Definition 9. A program of a transaction is linear 
if it 1s a sequence of operations. Cl 

Programs are sequences, but we allow operations to read 
multiple entities, that is, use local variables. Therefore, 
programs may not be fixed. An example for a linear 
transaction program is a program that gives a raise to 
all employees, where the raise based on some aggregated 
computation (for instance 10% of the minimum salary). 

Definition 10. Let R be a reflexive relation 
on augmented states. An operation f that updates e 
preserves ‘R, if 
(Ve’ E adb : (S(e’) ‘I& S’(e’)) 3 (j(S) 72, f(S’))) q 

Theorem 4. Let X be a history ojT,dep(T) and 
CT whose initial state is S. If the histories Xdep(~) 
and XCT R-commute, X is E WSR, the programs of all 
transactions in dep(T) are linear, R is transitive, and 
the operations of dep(T) p reserve ‘R, then X is partially 
R-sound. 0 

Example 6. Consider the set entities of Example 
4, with the addition of a private entity u that belongs 
to some transaction in dep(T). We use the relation 
S’ ‘R S” ijj ((S’(b) 2 S’(a)) * (S”(b) 1 S”(u))). 
The history X is as follows: 

X =< T : a := a + 1, dep(T) : u := a, 
dep(T) : b :=u+lO, CT:a:=a-l> 

Observe that XCT and Xdep(~) R-commute (but do not 
commute), dep(T) is linear (but not fixed), and X is 
(partially) R-sound. 0 

Finally, based on Lemma 1 from Section 2, we derive 
the following corollary. 

Corollary 1. Theorems 8 and 4 hold when X is 
PWSRc or SR instead of EWSR. 0 

The requirements from the dependent transactions in 
Theorems 2,3, and 4 are quite severe. Besides the R- 
commutativity requirement ‘imposed on the operations 
of the dependent transactions, there are restrictions on 
the shape of the programs (e.g., fixed or linear pro- 
grams) in each of the theorems’ premises. Clearly, in 
practical systems, there are many transactions that do 
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not stand up to any of these criteria. The practical 
ramification of this observation is that externalization 
of uncommitted data items should be done in a con- 
t,rolled manner if a degree of soundness is of importance. 
Tha.t is, uncommitted data should be externalized only 
t,o transa.ctions that do satisfy the requirements speci- 
fied in the premises of the theorems. In the context of 
locks, locks should be released only to qualified trans- 
actions, that is, those transactions that do satisfy the 
requirements. Other transactions must be delayed and 
are subject to the standard concurrency control and re- 
covery policies. 

7 Implementation Issues 

In this section we discuss several implementation issues 
that need to be considered in order for compensation to 
be of practical use. We envision that a compensating 
transaction would be driven by a scan of the log starting 
from the first record of the compensated-for transaction 
and up to its own begin-transaction log record. It is 
important to provide convenient on-line access to the 
log information for these purposes. Without a suitable 
logging architecture, these accesses might translate to 
I/O traffic that would interrupt the sequential log I/O 
that is performed on behalf of executing transactions. 
In addition, log records should contain enough semantic 
information in order to guide the execution of the com- 
pensating transaction. Therefore, it is likely that some 
form of operation logging will be used [7]. 

There are some subtle ramifications on concurrency 
control which are discussed next in the context of lock- 
ing. We have required that CT’s execution is serial- 
izable with respect to other concurrent transactions. 
(Constraint 2). Also, if it is reasonably assumed that 
update(CT,X) E update(T,X), then this leads to the 
conclusion that the compensating transaction and the 
dependent transactions should follow a 2-Phase Lock- 
ing protocol [2] with respect to entities in update(T, X). 
Otherwise, it possible to violate Constraint 2. A viable 
strategy that might simplify matters for the implemen- 
tation can be as follows. Once CT is invoked, the en- 
tities in update(T, X) should be identified by analyzing 
the log and then CT should exclusively lock all entities 
in this set. After performing the necessary updates, CT 
can release these locks. 

The recovery issues of compensating transactions 
themselves must be also considered. As was noted ear- 
lier, we should disallow a compensating transaction to 
be aborted either externally (by user, or an applica- 
tion), or internally (e.g., as a deadlock resolution vic- 
tim). Still, there is the problem of system failures. We 
think that the preferred way to handle this problem is to 
resume uncompleted compensating transactions rather 

than undoing them. To accomplish this, we need to re- 
sume a compensating transaction from a point where 
its internal state was saved along with the necessary 
concurrency control information. We emphasize that 
the principle for recovery of compensating transaction 
is that once a begin-transaction record of CT appears 
in stable storage, CT must be completed. An imple- 
mentation along the lines of the ARIES system [12] 
can support the persistence of compensating transac- 
tions across system crashes. In ARIES, undo activity 
is logged using Compensating Log Records (CLRs). It 
is guaranteed that actions are not undone more than 
once, and that undo actions are not undone even if the 
undo of a transaction is interrupted by a system crash. 

8 Related Work 

The idea of compensating transactions as 
a semantically-rich recovery mechanism is mentioned, 
or at least referred to, in several papers. However, to 
the best of our knowledge, a formal and comprehensive 
treatment of the issue and its ramifications is lacking. 

Strong motivation for our work can be found in Gray’s 
early paper [6]. Th e notion of compensation (counter- 
steps) is mentioned in the context of histories that pre- 
serve consistency without being s&ializable in [4, 31. 

Compensating transactions are also mentioned in the 
context of a saga, a long-duration transaction that can 
be broken into a collection of subtransact.ions that can 
be interleaved in any way with other transactions [5]. 
A saga must execute all its subtransa.ctions, hence com- 
pensating transactions are used to amend partial exe- 
cution of sagas. In [5] and in [4] the idea that a com- 
pensating transaction cannot voluntarily abort itself is 
introduced. 

A noteworthy approach, which can be classified as a 
simple type of compensation, is employed in the XPRS 
system [15]. Th ere, a notion of failure commutativity 
is defined for complete transactions. Two transactions 
failure commute if they commute, and if they can both 
succeed then a unilateral abort by either transaction 
cannot cause the other to abort. Transactions that are 
classified as failure commutative can run concurrently 
without any conflicts. Handling the abort of such a 
transaction is done by a log-based special undo function, 
which is a special case of compensation as we define it. 

In [l], semantics of operations on abstract data types 
are used to define recoverability, which is a weaker no- 
tion than commutativity. Conflict relations are based 
on recoverability rather than commutativity. Conse- 
quently, concurrency is enhanced since the potential for 
conflicts is reduced. When an operation is recoverable 
with respect to an uncommitted operation, the former 
operation can be executed; however a commit depen- 
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dency is forced between the two operations. This depen- 
dency affects the order in which the operations should 
commit, if they both commit. If either operation aborts, 
the ot.her can still commit, thereby avoiding cascading 
aborts. This work is more conservative than ours in the 
sense that it narrows the domain of interest to serializ- 
able histories. 

9 Conclusions 

In this paper, we have argued that exposing uncommit- 
ted data is very useful for many database a.pplications 
employing long-duration, nested and/or collaborative 
transactions. Compensating transactions are proposed 
as the means for recovery management in the presence 
of early externalization. Several types of compensa- 
tion soundness criteria were introduced and were found 
to be predicated on notions of commutativity. Even 
the approximated forms of soundness can be used to 
guarantee that compensation results in desirable conse- 
quences and does not abrogate dependent transactions’ 
outcome. A semantically-rich model that is adequate for 
dealing with non-serializable and non-recoverable histo- 
ries was set up, and was offered as a viable tool for the 
understanding of these intricate histories and compen- 
sation issues. 

We believe that future database applications will re- 
quire the rethinking of the traditional transaction model 
that is founded on serializability and permanence of 
commitment. Contemporary applications in the do- 
mains of CAD and CASE exemplify our belief. The 
work presented in this paper is a step towards the es- 
tablishment of this new model. 
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