
Cooperative Transaction Hierarchies:
A Transaction Model to Support Design Applications+

Marian H. Nodine and Stanley B. Zdonik
Brown University, Providence, RI 02912

Abstract

Traditional atomic and nested transactions are not, al-
ways well-suited to cooperative applications. Cooper-
ative applications place requirements on the database
which may conflict with the serializability requirement.
We define a new transaction framework, called a coop-
erative transaction hierarchy, which allows us to relax
the requirement for atomic, serializable transactions.
Each internal node (transaction group) in the transac-
tion hierarchy can enforce its own constraints on how
objects can be shared among its children (members).

Patterns specify the constraints imposed on an op-
eration history for it, to be correct. At a given node in
the hiera.rchy, we use a type of augmented finite state
automaton called an operation machine to enforce cor-
rectness. We provide intentions to manage the propa-
gation of object copies and their associated privileges
through the transaction hierarchy. We show that us-
ing intentions enforces that the overall history of the
hierarchy is correct.

Logs record the information required by the coop-
erative transaction hierarchy for recovery. We specify
what must be logged for each transaction group, which
includes information about the transaction group’s ex-
ecution and about the dependencies among operations
in that execution.

Finally, we show how to use cooperative transaction
hierarchies to enforce multilevel atomicity [Lyn83].

t Support for this research is provided by IBM under contract
No. 559716, by DEC under award No. DEC686, by ONR under
Contract N00014-83-I<-0146, by Apple Computer, Inc., and by
US West.

Permission to copy without fee alI or part of this m;ttcrial ih

granted provided that the copies arc not made or distrihutcd for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice i> gi\cn

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to rcpuhli~h. rcquircs a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

1 Introduction

Cooperative applications such as CAD tools have gen-
erated requirements for underlying database support
that do not conform well to traditional database strut- ’
ture. Traditional databases were developed to support
on-line data processing applications and are optimized
for short, atomic transactions. Cooperative applica-
tions interact with each other. When using a database,
cooperative applications tend to generate long transac-
tions that are not necessarily atomic. However, we can
assume that the users of such applications are human
and can respond intelligently to certain problems.

Transactions that support cooperative applications
are correct when they interact and share data only in
ways acceptable to the application environment. We
do not believe that, a single, monolithic correctness
criterion such as serializability suffices. We provide
a hierarchical scheme for these cooperative transac-
tions that allows different parts of a shared task to
use different correctness criteria, and a mechanism by
which these correctness criteria can be explicitly pro-
grammed.

As an example of a design application, we will use
Lynch’s Utopian Planning example [Lyn83]. There are
several people working on a city design. Objects rep-
resent buildings, parks, maps, etc. Each person is re-
sponsible for a specific task, though a group of people
may be working on the same object. For example,
several architects may be working to design City Hall
while a landscaper plans the shrubs which surround
it,. As the design progresses, the members of the group
interact naturally, both informally and through the ob-
jects in the database. For example, a change in the size
or placement of the windows in City Hall may affect the
shrubs surrounding it. These new problems must be
dealt with by other designers before the initial changes
can be “committed”.

We see from this example that each designer is re-
sponsible for the set of changes to the database associ-
ated with his specific task, but these changes may in-
teract with the work of other designers. Therefore, the
changes associated with a specific task maintain only
partial consistency in the database. The designers also

83

(City Plan >

Ann Bob Carl

Figure 1: Utopian Planners Hierarchy.

may iterate through several refinements or changes in
the initial design as they work.

The design process often decomposes hierarchically.
For example, the city planning task breaks up into sub-
tasks such as parks design, traffic design, etc. There
are additional subtasks such as publicity which do not
relate to the design directly. Each of these subtasks
may be constrained in one or more ways, e.g., a park
has to fit in the space allocated for it. These subtasks
may be divided in turn among several designers.

We propose a structure called a cooperative transac-
tion hierarchy for modeling and managing interactive
design applications. The hierarchy for a particular de-
sign task is typically structured according to the task’s
natural decomposition. For example, a piece of the
city planning task described above is shown in Fig-
ure 1. The external nodes (e.g. Ann, Bob) represent
the transactions associated with the individual design-
ers. The internal nodes (e.g. Publicity, Landscaping)
are called transaction groups. The root of the tree
is the transaction group which manages the city plan
database. Except for this group, each other transac-
tion or transaction group is a member of some other
transaction group (called its parent).

In our model, cooperative transactions are collec-
tions of atomic read and write operations by a single
member. Cooperative transactions need not be seri-
alizable or atomic. Transaction groups correspond to
some task, and that task is done cooperatively by its
members. The root transaction group, which is at the

top of the transaction hierarchy, has the special task
of managing the database.

Because cooperative transactions are not necessar-
ily atomic, we define a correctness criterion for our
database different from serializability. Correctness is
enforced within a transaction group. That is, each
transaction group has a notion of how its members
should operate and how their operations should inter-
leave in its own history. We use a notion of patterns
and conflicts to specify correct histories for each trans-
action group. Patterns define acceptable sequences of
operations in a transaction group’s history. For exam-
ple, a pattern might say, “Ann must read the Shrubs
object before writing it.” Conflicts are defined within
the context of patterns, and specify sequences of oper-
ations that must not occur. For example, “Once Ann
has written the Shrubs object, Bob cannot read it until
Ann’s transaction commits.” Every transaction group
has many patterns and conhicts defined for the ob-
jects and members, and they work together to define
correctness.

In addition to enforcing correctness within a trans-
action group, we coordinate operations by members of
different transaction groups on a single object so that
the overall set of operations at the level of the root
transaction group is correct. Problems occur when
some member M tries to read an object 0, do several
modifications over time, then write the results. When
it4 finishes its modifications its write operations in the
member are collapsed (batched) into a single write op-
eration in the transaction group. No other operations
that conflict with the batched write operation should
occur in the transaction group during this time span.
Intentions (see section 4.2) are used to hold the capa-
bility in the transaction group to do the batched write
operation while the sequence of modifications is being
done in the member.

Because we have defined a new correctness criterion,
we need to log different information about the history
of each transaction group so that the system can re-
store the database to a correct state after a failure.
We specify what information must be kept in the log
to ensure that recovery is correct.

2 Related Research

Several proposals have been made for supporting
more flexible and long-lived transactions. The ap-
proaches related to ours include nesting the transac-
tions [Mos85, KKB87], augmenting traditional lock-
ing protocols [SZRSS], and specifying a longer transac-
tion as an envelope that contains a sequence of shorter
transactions [GMS87].

Nested transactions [Mos85] provide a framework for

84

decomposing a transaction hierarchically. A transac-
tion may define subtransactions that execute concur-
rently. The subtransactions must all be serializable
with respect to the parent transaction. If a subtrans-
action fails or aborts, the parent transaction has the
option to restart it. Kim et.al. [KLMP84] presents a
three-layer hierarchy tailored for design transactions.
It differs from nested transactions in that it allows
copies of objects to be “checked out” from a parent
transaction into a private database.

Nesting works well in design environments where the
tasks decompose easily into small, independent sub-
tasks. However, serializability prohibits cooperation
and data sharing among the subtasks. Haerder and
Rothermel [HR87] examined what was required to al-
low data sharing while preserving the serializability of
subtransactions, and concluded the behavior after a
failure was unacceptable due to the large number of
dependencies that were formed.

Klahold et.al. [KSUW85] proposed a transaction
model that allows cooperating user 2ransac2ions to
work together in the context of a group transaction.
While the group transactions maintain a two-phase
locking protocol, the user transactions within a group
transaction may share data. The group transactions
use a relaxed locking scheme that allows data sharing,
but does not guarantee that the data remains consis-
tent.

The constraint-based models [KKB87] allow more
cooperation by relaxing serializability at the lower lev-
els of the transaction hierarchy. At these levels, trans-
actions can cooperate as long as each transaction pre-
serves its specified consistency constraint. The con-
straints are enforced using a modified locking protocol
(predicatewise two-phase locking). This model defines
the constraints implicitly; the users cannot tailor them
to the task at hand. Although it weakens serializabil-
ity, it does not allow as much expressiveness as our
model. For example, it does not allow a designer to
read an object while another designer is writing it.

Multilevel atomicity [Lyn83] is a framework for re-
laxing atomicity. It allows the specification of a hier-
archy of breakpoints between operations for a particu-
lar transaction execution. The breakpoint specification
states how other transactions can interleave their op-
erations with this one (see section 6). Multilevel atom-
icity assumes that the set of transactions in the system
is fairly static; adding a new transaction requires spec-
ifying its relationships to all other transactions. It is
also not clear how to specify the breakpoint hierarchy
for an interactive transaction before it has executed.

Other approaches used to increase the flexibility of
design transactions include the NT/PV model of Korth

and Speegle [KS90], the flexible transaction model pro-
posed by Kaiser [KaiSO] and operation transformation
for groupware systems by Ellis and Gibbs [EG89].

An apporach to process synchronization similar to
our transaction synchronization mechanism is path ex-
pressions [CH84]. Path expressions are regular expres-
sions that define how operations on a single module
should be synchronized. Our notion of patterns is more
general, in that a pattern can be defined over multi-
ple objects. Also, patterns can restrict who does an
operation, as well as when an operation may occur.

In this paper, we have taken the use of patterns
and conflicts to specify correct histories from Skarra’s
work [Ska89]. Her model uses the methods defined on
abstract data types in the database as the underlying
operation set, while we restrict our operations to read
and write operations. The basic concept of transaction
groups that we use was first defined by Fernandez and
Zdonik [FZ89].

3 The Model

The design process tends to decompose hierarchically.
In our model, we allow cooperative transactions and
transaction groups to be nested in a tree-like manner
to form a cooperative transaction hieraFchy, with trans-
action groups as the internal nodes and cooperative
transactions as the leaves. A transaction group con-
tains a set of members that cooperate to do a single
task. It actively controls the interaction of its cooper-
ating members. A member may be either an individual
cooperative transaction or another transaction group.
No member may have more than one parent.

3.1 Transaction Groups

Each transaction group is tailored to the task its mem-
bers are working on. The procedures and rules defining
the operation of a transaction group (e.g. its definition
of correct operation) are called its protocols. A trans-
action group’s internal protocols specify the allowable
interactions among its members. Its external protocols
specify how the transaction group may interact with its
siblings in the transaction hierarchy. At any level in
the tree, the external protocols of a transaction group
member must be identical to the internal protocols of
its parent.

A transaction group has a local set of object ver-
sions being accessed by its members. There may be
several versions of an object scattered throughout the
hierarchy. For a given transaction group, the object
versions in its set may be accessed (read or written)
by any member below it in the hierarchy, but by no
other members. The root transaction group has a ver-
sion of every object in its set, and this version may be

85

accessed by all members.
An object version is copied automatically into a

member transaction group’s set from that of its parent
when the member initiates a read operation on that
object. A new version of the object is written back
to the parent transaction group’s set when the mem-
ber indicates that it has finished modifying the object.
All read and write operations must be allowed by the
transaction group’s internal protocols. To its mem-
bers, a transaction group appears to be the database
server responsible for storing objects and controlling
member access to objects.

Because the members of a transaction group cooper-
ate, they are no longer self-contained. This means that
the sequence of operations by a single member might
not leave the database in a correct state. The trans-
action group is responsible for ensuring that the com-
bined history produced by its members is correct ac-
cording to its internal protocols. These protocols spec-
ify the group’s notion of correct interactions among its
members, among other things.

When a transaction group M is itself a member of
another transaction group TG, it must translate the
combined history of its members, which conforms to its
internal protocols, into an equivalent history ’ compat-
ible with its external protocols. In this way, each level
in the transaction hierarchy adheres to its own view of
correctness. This translating function also hides the in-
ternal operations of the transaction group’s members
from its parent, generally by collapsing sequences of
operations by the members into shorter sequences of
operations by the transaction group itself. For exam-
ple, a write operation followed by a sequence of read
and write operations on a single object in the member
may be collapsed into a single write operation by the
transaction group. This allows encapsulated groups of
non-serializable transactions to be members of other
serializable groups.

Because we cannot determine the transaction groups
a priori, the transaction hierarchy can be modified dy-
namically. The root transaction group, whose task is
to maintain the database, always exists. Other trans-
action groups and transactions may join the hierarchy
as the design effort progresses.

3.2 Cooperative Transactions

In our model, cooperative transactions represent de-
signers or intelligent design applications. Because the
lifetime of a design task is indeterminate, we assume

1 An equivalent history is either an identical history or one
where the operations by the members of M are collapsed into
a shorter sequence of operations by M on TG’s object versions
that affect the data in the same way.

that cooperative transactions are long-lived and open-
ended. We also assume that cooperative transac-
tions can interact with each other both externally and
through the objects in the database. Thus, they may
have a reasonable notion of what the other members
in their transaction group are doing.

During its lifetime, a cooperative transaction issues
read and write operations on object versions in its
transaction group. These operations are executed by
the transaction group if they conform to its patterns
and conflicts. Operations may be queued or refused by
the transaction group. Queueing an operation means
that the cooperative transaction is notified when it can
resubmit the operation. In the meantime, it is allowed
to dequeue its operation and/or continue processing.
As with transaction groups, operations are individu-
ally checkpointed or aborted by the cooperative trans-
action as the design task progresses.

3.3 Operational Overview

This section describes how members begin, access the
database, and terminate. These operations are similar
in spirit to the familiar transaction begin, commit, and
abort operations, though there are differences because
cooperative applications place different requirements
on the object server.

Members are created using the member-begin com-
mand. The command specifies the new member’s name
and its parent. If the member is a transaction group,
its internal protocols must be specified as well. These
indicate how the members of the transaction group in-
teract, including information such as

l either an enumeration of its members or a procedure
for authenticating new members;

l a synchronization mechanism to control the inter-
leaving of member operations;

l the rules for mapping internal operations (i.e., op-
erations by the members of the transaction group
on the transaction group’s object versions) into ex-
ternal operations (i.e., operations by the transaction
group on its parent’s object versions).

The new member also must authenticate itself to its
parent, using its parent’s authentication procedure.

There are several functions that are not specified
during the member definition process, but rather are
inherent in the way the transaction hierarchy is man-
aged. These include the transaction group’s external
protocols, which are inherited from its parent, and the
rules for managing object versions.

86

Once a member has been established, it may oper-
ate on the database in any way allowable by the syn-
chronization mechanism defined by its parent’s inter-
nal protocols. When the sequence of operations in a
transaction group completes some set of changes, they
can be checkpointed using a member-checkpoint oper-
ation. The decision to checkpoint may be made either
manually or automatically. Because the patterns cap-
ture the structure of all interactions among the mem-
bers of the transaction group, all patterns a member
participates in must be complete when it checkpoints.

The checkpoint operation causes the internal opera-
tion history containing the operations by the members
to be mapped into an equivalent external history con-
taining the operations by the group. Since we restrict
the operation set in this paper to (read, write), this
means that new versions of the objects that have been
modified by the members of the group are propagated
up to its parent. To do this, the transaction group
issues its own (external) write request to the parent
for each such object. These requests must be accept-
able to the parent. Each write introduces new object
versions to the parent transaction group, making the
changes accessible by the transaction group’s other sib-
lings. The changes also become recoverable from the
parent transaction group in the case where the member
fails. Since the different groups in the transaction hi-
erarchy may guarantee different levels of permanence2
the member-checkpoint procedure only guarantees that
the new object versions are as permanent as the parent
transaction group guarantees them to be.

Occasionally, a member may wish to abort one or
more of its uncheckpointed operations. This means
that the operation is no longer a part of the opera-
tion history of the transaction group, and that any ob-
ject version created by the operation no longer prop-
erly exists in the object server. Operations can be
aborted either because the member actually failed in
some way, causing its transaction group to abort the
uncheckpointed operations by the member, or because
the member decided that its changes were inappropri-
ate in some way and aborted its own operations. The
member-abort operation causes a specified set of oper-
ations to become invalid. The operations need not be
contiguous, and aborting an operation does not neces-
sarily mean aborting all subsequent operations by the
member. The abort makes it appear to the transaction
group members as if those operations had never hap-
pened. Other operations may depend on the aborted
operations, for example if one of the operations created

2Permanence implies the ability to recover object versions
from the object server even in conditions such as system failure
or storage media’failure.

a version that was read by another member, or if other
operations participate in the same pattern. These op-
erations also must become invalid. The invalidation
can propagate through the transaction group’s history
to all operations that are transitively dependent on the
aborted operations. Thus, many members’ operations
may be invalidated, and these members must in turn
recover as much as possible any invalidated changes
they made.

When a member is completely finished and all its
valid operations are checkpointed, it may remove itself
from the transaction group using the member-termi-
nate command. However, some of the operations done
by the member may be dependent on other members’
operations, and consequently may become invalid if
one of those members aborts. When a member h4
terminates, its transaction group becomes responsible
for recovery if any of M’s operations are subsequently
invalidated.

The member operations differ from the traditional
transaction operations begin, commit, and abort in two
ways. First, member-checkpoint and member-abort do
not terminate the member. This is because we view the
member as an ongoing operator doing a long sequence
of operations, each of which it may selectively commit
or abort. The second reason is that they may be done
by any member, not just by a leaf transaction. This is
necessary because we want the operations done within
the context of a transaction group to be local to that
group, and not affected by other members closer to the
leaves of the hierarchy.

At any time, each member in the transaction hier-
archy is in one of the following states:

RUNNING means there may be some outstanding
uncheckpointed operations by this member.

CHECKPOINTED means all existing operations are
correct and final, according to the member and the
transaction group’s synchronization specification.

TERMINATED means the member has explicitly
terminated itself.

,.4 Data Structures

A cooperative transaction is a sequence of operations
that share some local control structure. It is not neces-
sarily atomic. The sequence of operations for a single
transaction does not have to be individually correct
and consistent, but must be validated according to its
parent transaction group’s internal protocols.

A cooperative transaction is a tuple

CT =< TID, P, S >,

where

a7

TID is the unique member ID,
P is the member ID of the parent transaction

group,
S E (RUNNING, CHECKPOINTED, TERMI-

NATED} is the member’s state.

A transaction group is responsible for a single task
within the database, and that task is accomplished
through the cooperation of its members. Because of
this, it also controls the interaction among its mem-
bers, only allowing operations that are consistent with
its internal synchronization protocols. The transac-
tion group records each of its members’ operations,
as well as all of its own operations. When one of its
members fails or when some operation is aborted, the
transaction group also ensures that its object versions
are recovered to some consistent state.

A transaction group acts on behalf of its members
when submitting operations to its parent. This means
that it must map sets of operations by its members
which are correct according to its internal protocols
into single operations by itself which are correct ac-
cording to its parent’s internal protocols.

A transaction group is a tuple

‘irg=< TID,P,S,M,IP,EP>,

where

TID, P, S are defined as for cooperative transac-
tions,

M contains the member IDS of TG’s members,
IP specifies TG’s internal protocols,
EP specifies TG’s external protocols,

4 Synchronization

Synchronization in this context is the constraining of
operations in each transaction group to conform to
some correct history. The patterns and conflicts de-
fined in the root transaction group indicate the syn-
chronization constraints on the database. The patterns
and conflicts defined in other transaction groups indi-
cate their synchronization constraints. There is also
a mechanism to arbitrate permission to do operations
on the various versions of an object. This is done us-
ing a variant of a checkout/checkin process called an
intention.

4.1 Operation Machines

Synchronization protocols for cooperative transaction
hierarchies need to control not only the concurrent ac-
cess of objects, but also the order in which different
objects are accessed by different members. They need
not necessarily constrain the members’ operations to a

specific execution; rather they should specify the gen-
eral form of the allowable memberrinteractians. We use
patterns and conflicts to specify required and iprdhib-
ited operation sequences by the mtrmbars.df;a’t~~ns~c-
tion group, as well as the interleaving of-the members’
operation sequences.

Operation machines are user-definable synchroniza-
tion mechanisms for specifying patterns and conflicts.
They were first proposed by Skarra,[SkaSO]. An opera-
tion machine (UM) is a finite-state automaton. Each
transition in an operation machine is labeled with the
symbol u that defines the operation associated with it,
where

u=<M,O,o,P>

and

A4 E {any, mi, mi} is the TID of some member,
where any is any member, mi identifies some
member i, and mi is any member except mi.

0 E {r, 20) is an operation, where r is read and w
is write,

o is an object identifier,
P E {a, T, q} is a return value, where a is accept,

T is refuse and q is queue.

In an operation machine, the start state represents
the beginning of a pattern. Machine transitions repre-
sent operations on an object by some member. They
are annotated with return values that are either accept
if the operation conforms to the pattern, refuse if the
operation conflicts, or queue if the operation conflicts
now but may conform to the pattern if done later. The
lack of a transition for an operation from some state
indicates that the operation is not relevant to the pat-
tern at that time, therefore the pattern cannot cause
the operation to be rejected or queued. The final states
of an operation machine indicate when its pattern is
complete in the history. A database is consistent if
every member checkpoints only when every machine
associated with the member is in a final state.

At any given time, a transaction group uses its en-
tire set of operation machines together to enforce the
correctness of its history. Each operation may partici-
pate in one or more.patterns and must be accepted by
the operation machines enforcing each such pattern.

As an example, let us assume that the members of
the CH^Blo&.ransaction group :gre currently working
on the two objects CH and Pa&. The member Arch
is modifying the design of the facade of City Hall, and
the member Land is adjusting the shrubs around City
Hall to fit the new design. Figure 2 shows the oper-
ation machines defined for the ‘CH-Block transaction
group that enforce the different constraints on the his-
tory. The operation machine in Figure 2(a) enforces

88

(4
Arch,w, CH,a

Arch, w, CH,a

(b) Arch.r. CH.a

Arch, w, CH,

Arch,r/w, CH,a

Land.r.CH,a

Land,r,Shrubs,a

Land, wu,

Figure 2: Operation machine examples: (a) Enforces
a pattern that spans multiple members and objects;
(b) Corporately enforce a cooperative synchronization
protocol.

that the member Land must read the last version of
the CH object last written by the architects (Arch)
before redoing the shrubs around City Hall. It ensures
that the Shrubs object is current with the latest City
Hall design before the modification task is “complete”.
Figure 2(b) shows the three operation machines that
ensure that changes to objects are not overwritten. For
instance, the first machine ensures that member Arch
reads the latest version of the Cl1 object before modi-

fying it. These machines specify an underlying cooper-
ative synchronization protocol. In a transaction group,
there is one such machine for each member-object pair
where the member is currently interacting with the ob-
ject.

As an example of how operation machines work, con-
sider the machines in Figure 2. If all machines are in
the start state, the operation <Arch, w, CH> would be
refused by the first machine in (b). However, the op-
eration <Arch,r, CH> would be accepted, because it is
accepted by the first machine in (b) and not relevant
to the machine in (a) or the other machines in (b).

For comparison, let us assume that we want to en-
force serializability at the level of the City Plan trans-
action group. Since serializable transactions are inde-
pendent, there are no patterns involving multiple mem-
bers and objects. We only need to define a pattern that
mimics read/write locking for each member-object in-
teraction. Since there is one operation machine per
pattern, the number of operation machines in a trans-
action group that enforces serializability is roughly the
same as the number of locks there would be if a locking
protocol were used.

From these examples we can begin to see how a
transaction group’s operation machines are created
and deleted. Machines such as those in Figure 2(b)
all serve the same purpose but for different member-
object interactions, and consequently differ only in the
member and object bindings. A transaction group ad-
ministrator can define an operation machine template
for the specific purpose (e.g., to prevent overwriting),
and the transaction group can instantiate operation
machines automatically from the template as needed.
Operation machines such as the one in Figure 2(a) are
one-of-a-kind, and must be defined explicitly by the
administrator.

Since we use operation machines to enforce the pat-
terns and conflicts defined at any given point in an
operation sequence, we can formalize our definition of
correctness within a transaction group in terms of op-
eration machines. We define a traversal as a sequence
of operations associated with consecutive accept arc
transitions in an operation machine, beginning at the
start state and ending at the current state. A complete
traversal ends at some final state. For each operation
in a history, we know which transitions occurred as a
result of its execution. Define the sequence IIOM asso-
ciated with operation machine OM as

IIOM = { 0 1 operation 0 caused
an arc traversal in machine OM}

That is, IIOJ,J is the projection of the pattern defined
by the machine OMfrom the history. These operations
were accept,able according to the pattern specification

89

at the time they were executed. A history is correct
when all projections IIOM for the machines OM that
were active during the history are traversals. A his-
tory is complete when all such projections are complete
traversals. For more details, see [NFSZSO].

4.2 Intentions for Maintaining Overall
Correctness

Each transaction group in a hierarchy has a local set
of versions of the objects that it is currently accessing.
Since multiple versions of an object may exist, there is
a potential for inconsistency. We use intentions to con-
trol the way members access object copies in the trans-
action hierarchy so that the correctness of the overall
sequence of operations on each object is maintained.
Intentions reserve the capability for a member to do a
single operation on a single object in its parent. When
a member M of a transaction group TG is granted an
intention to do an operation, TG’s version of the object
is restricted in such a way that no other operations can
be done that will later cause the intended operation to
be rejected.

When the member M is a transaction group, the
intended operation represents the combined effects of a
sequence of operations by M’s members on the object.
For example, many reads and writes by the members
of M can be consolidated into a single write by M to
TG. Thus;there may be more complex patterns in M
associated with the single operation in TG. We call
this phenomenon batching.

The sequence of steps required to gain and release
intentions is very similar to that of locks. When a
member M wants an intention, it makes an intention
request to the transaction group TG. Once TG ascer-
tains that the operation can be done immediately, it
accepts the intention. Once an intention has been ac-
cepted, TG ensures that M can do the operation at
any time by preventing any conflicting operations from
being processed. . -- M may release the intention at any
time.

Intentions differ from locks in that they reserve the
capability to do only one operation, while locks reserve
the capability to do an arbitrary number of operations
from a fixed operation set. Locking is used to pre-
vent transactions from interleaving their operations,
and would further restrict the allowable operation se-
quences in the transaction group. Intentions are more
flexible because they do not generate these restrictions.

A member may request an operation without hav-
ing acquired an intention. The operation is still done,
provided that it is currently acceptable according to
the patterns and conflicts defined in its parent. It also
may be queued or refused.

4.2.1 Intention Machines

Two restrictions need to be enforced for intentions to
work properly. At the transaction group level (TG),
we need to ensure that no other member does an op-
eration that conflicts with the operation requested by
member M. If M is itself a transaction group, we need
to ensure that its members do operations only accord-
ing to a pattern that will batch to the single intended
operation. We associate two operation machines with
each type of intention (read or write), one to be bound
to the object copy at TG’s level and one to be bound to
the object copy at M’s level if M itself is a transaction
group. These machines are bound to their respective
transaction groups for the duration of the intention.

Figure 3 shows an example of the intention machines
that are put in place when the CH-Block transaction
group accepts an intention request for the operation
<Arch,w, CH>. Figure 3(a) shows the machine bound
to the CH object at CH-Block’s level. It prevents any
write of the object by any other member, while al-
lowing exactly one write by Arch. This machine also
allows anyone to read the original version of CH until
the new version is created, assuming the read opera-
tion neither causes a change of state in any existing
machine bound to the object nor modifies the object.
Figure 3(b) shows the machine specifying the allowable
operations by the members of Arch that can be batched
into the single intended write in CHJllock. It allows
many read and write operations by its members, but
at least one member must do a write operation first.
These patterns assume that Arch has already read the
CH object.

4.2.2 Implementation

A member M declares its intention to do an operation
by sending an intention request to its parent transac-
tion group TG. This request is either accepted, queued,
or refused depending on whether the intended opera-
tion would be accepted, queued, or refused. If TG
accepts the intention, it associates an additional opera-
tion machine with its version of the object to block any
operations that conflict with the intended one. If M is
a transaction group, it associates an operation machine
with its object version to ensure that the combined ef-
fect of all of its member operations is as intended.

Intention requests cascade up the transaction hier-
archy until the object copy is found. Occasionally, the
requested intention may be strengthened by a transac-
tion group before it is propagated further. This trans-
lation is governed by each transaction group’s internal
protocols.

Members may wish to change their intentions if they
decide to do something else or augment their inten-

90

(4

(b)

Dan any,r/ur,CH,a

Figure 3: Intention machines: (a) at CH-Block’s level;
(b) at Arch’s level.

tions if they have completed the intended operation
and want to do another one. As with intention re-
quests, the database may accept, queue, or refuse these
requests. If the change or augment request is refused,
the old intention is still retained. Change and augment
requests have priority over initial requests.

Intentions may be released at any time, regardless
of whether the operation has been done. OI;lce an op-
eration’s effects can no longer be revoked by any mem-
ber-abort, its intention is released automatically.

5 Dependencies and Logging

A log records the actual sequence of operations on the
object copies in each transaction group in the hierar-
chy. Its main purpose is to keep the information needed
for recovery. A mechanism for recovery based on these
logs is discussed in [NFSZSO].

5.1 Logs

A transaction group’s log records information about
the following operations, ordered chronologically by
execution time:

l All operations by each member of the transaction
group on its object versions (member entries).

l All operations by the transaction group on its par-
ent’s object versions (group entries).

The log is created as the transaction group and its
members execute their operations. If a member M of
TG is a transaction group, each operation by M is

recorded in both logs. In TG’s log there is a mem-
ber entry for the operation, and in h!‘s log there is a
group entry. A log entry is of the form

L& =< M,O,o >,

where

A4 is the TID of some member,
0 E {r, w} is an operation, where r is read and w

is write,
o is an object identifier,

The logs in Figure 4 show correlations between log en-
tries in the transaction groups for CH-Block and Land
for the transaction hierarchy shown in the introduc-
tion (Figure 1). The history for the transaction group

CH-Block loe

Arch,r,CH

Arch, w, CH

Land,r,Shrubs

Land,r,CH

Land, w,Shrubs

H

H

H

Land loe

Land,r,Shrubs

Park,r.Shrubs

Park. w.Shrubs

Land,r, CH

Park, r, CH

Park,w,Shrubs

(Park,checkpoint)

Land, w,Shrubs

Figure 4: Example logs of a transaction group
(CH-Block) and its member (Land).

CH-Block, as reflected in its log, is correct according to
the operation m.achines defined for it in Figure 2. The
history of the Land transaction group, as reflected in
its log, is correct according to the machines defined
below in Figure 5(a). The double-headed arrows cor-
relate entries in the two logs for the same operation.
Note that each initial read of an object by a member
of Land is preceded by a read by Land itself to get a
current copy of the object in its local cache. Also, the
checkpoint of the Park transaction group causes the
modified version of the Shrubs object to be written up
to the CH-Block transaction group.

When a transaction group’s history as recorded in
its log is correct, its internal protocols guarantee that

91

the effects of the changes done by its members on its
object copies are identical to the changes done by its
operations on its parent’s copies. Otherwise, the trans-
action group’s internal protocols are incorrect.

5.2 Dependencies

We use dependencies among operations to determine
what is affected directly and indirectly when an oper-
ation aborts, so that we can recover the database to a
correct state. These dependencies are recorded in the
transaction groups’ logs.

For each defined pattern in a transaction group, pat-
tern dependencies are formed among operations that
participate in that pattern. Since patterns define al-
lowable operation sequences, each operation in the se-
quence relevant to some pattern depends on the cor-
rectness of the previous operations in that sequence.
Pattern dependencies are recorded for each operation
on the operation directly preceding it in each pattern
in which it it participates.

Reads-from dependencies occur because a read of an
object version by member M is only correct if the op-
eration that wrote that version is also correct. If the
write operation later becomes invalid, then M’s read
operation read incorrect information, and is also in-
valid.

Parent-child dependencies occur among operations
at different levels of the transaction hierarchy. For ex-
ample, when a member M of a transaction group TG
first reads an object, the object must be copied into
TG first. M’s read is correct only if TG read a cor-
rect version. If that version is later invalidated as a
result of some abort, then M’s read is also invalid. A
similar situation exists with writes; when TG writes a
version to its parent, the validity of that write is based
on the validity of the last write operation by one of its
members.

Figure 5 shows synchronization machines bound to
the member Park of the Land transaction group, and
the piece of the log for the Land transaction group
copied from Figure 4. The dependency chains are
shown at the left of the log. The left chain shows the
dependencies from the traversal of the cooperative syn-
chronization machine bound to member Park and ob-
ject Shrubs. There are no dependencies related to the
other machine. The right chains show the parent-child
dependencies.

6 Implementing Multilevel Atomicity

Lynch’s multilevel atomicity [Lyn83] provides a frame-
work for relaxing atomicity in transactions that natu-
rally decompose into a hierarchy of tasks. Multilevel
atomicity allows the specification of allowable inter-

Park,r,CH,a

I Park,w,CH,r

6 Park, r/w, CH,a

Park.r.Shrub3.a

Park,r/w,Shrubs,a

(b) Land

Land,r,Shrubs

Park;r,Shrubs

Park,w,Shrubs

Land,r,CH

Park,r, CH

Park,w,Shrubs

(Park,checkpoint)

Land,w,Shrubs

Figure 5: Example dependencies: (a) Synchronization
machines, (b) Dependencies.

leavings of transactions in an execution. Lynch defines
an application database that uses a set of equivalence
relations T and a breakpoint specification B to deter-
mine which executions are multilevel atomic.

The equivalence relations R define for each pair of
transactions (i, d’) the set of places 2 can interrupt
1’, i.e., how much they trust each other. Figure 6
shows the equivalence relation for the subset of the
Utopian Planning example. This equivalence relation
corresponds to the transaction hierarchy in Figure 1,
with the different equivalence dasses in the relation
named as transaction groups. Two transactions share
an equivalence class at some level if they have the same
transaction group as an ancestor at that level in the

92

a(l): {Ann, Bob, Carl, Dave, Fred}
r(2): {Ann, Bob, Carl, Dave} {Fred}
n(3): {Ann, Bob, Carl} {Dave} {Fred}
n(4): {Ann, Bob} {Carl} {Dave} {Fred}
a(5): {Ann} {Bob} {Carl} {Dave} {Fred}

Figure 6: Equivalence relation 7~ for the Utopian Plan-
ners example.

hierarchy.
The k-level breakpoint specification B is defined for a

system of transactions S as a list of individual break-
point specifications for each possible execution of S.
The individual breakpoint specifications define hier-
archically for each transaction 1 the points at which
each other transaction 2’ can interleave its operations.
These points naturally depend on the lowest level at
which t and t’ share an equivalence class in ?r.

Each transaction group in a cooperative transaction
hierarchy has a set of operation machines that specify
the allowable executions for the transaction. Because
each level in the transaction hierarchy corresponds to
a level in the breakpoint specification, we can mod-
ify these operation machines to define and enforce the
breakpoint specifications for its members. We do this
by inserting conflict arcs into the operation machines
to enforce atomicity. For every two consecutive oper-
ations that must form an atomic sequence at the cur-
rent level, insert a refuse arc from the state between
the two operations in the the operation machine asso-
ciated with the corresponding transaction group. The
intermediate state must not be a final state. Every
two consecutive operations that have a breakpoint be-
tween them at this level have no conflict arc between
them. These two situations are shown in Figure 7. We
can use this technique to define allowable sequences
and breakpoints at each level for the set of transac-
tions in the form of operation machines. We can also
use batching to simplify the definition of the operation
machines while still ensuring that operations which are
atomic at one level are atomic at all higher levels in the
hierarchy.

Given these machine definitions, we can use the syn-
chronization mechanisms for cooperative transaction
hierarchies to enforce that the resulting executions are
correct multilevel atomic executions.

7 Summary

In this paper, we presented a scheme that allows us
to program the correctness criteria for a database to

(4

Land,w,Shrubs,a 6 0

Figure 7: Multilevel atomicity examples: (a) two op-
erations which execute atomically, (b) two operations
with a breakpoint between them.

fit specific needs. We have shown how to use coop-
erative transaction hierarchies to support interactive
design transactions. However, we feel that this scheme
can also be used to support a wide variety of other
cooperative applications.

Cooperative transaction hierarchies allow the de-
composition of a task into a hierarchy of subtasks. In-
ternal nodes in the hierarchy, called transaction groups,
manage the interactions among their children and
propagate the effects of their children’s operations up
the hierarchy in a controlled manner. The leaf nodes
are the cooperative transactions, and themselves may
not be atomic. The transaction hierarchy may be mod-
ified as the design task progresses.

Operation machines are used to define task-specific
patterns of interaction among the members of a trans-
action group. The set of correct histories for a transac-
tion group contains exactly those which are allowable
by its set of operation machines.

Operations done by members of a transaction group
are done on versions of the object in the group’s local
set. A version of an object is copied into a transaction
group’s set when one of its members first reads the
object. A member may protect its ability to do an
operation on an object using an intention. Intentions
ensure that the overall stream of operations on the
object remains consistent. Special operation machines,
called intention machines, are used like locks to enforce
the intentions.

In cooperative transaction hierarchies, the effects of
operations done at. one level may propagate to other
parts of the hierarchy before the changes become irre-
vocable because of an abort or failure. Also, the use
of patterns and operation machines causes new types
of dependencies among operations. A log associated
with each transaction group records the execution of
its members and the dependencies among the opera- ’

93

tions in that execution, for recovery purposes. A mem-
ber’s log is linked to that of its parent because there is
an entry for each of its operations in both logs.

8 Acknowledgments

The authors would like to thank Andrea Skarra and
Mary Fernandez for many helpful discussions.

References

[CH84]

[EG89]

--m

[GMS87]

[HR87]

[KaiSO]

[KKB87]

R. H. Campbell and A. N. Habermann.
The specification of process synchroniza-
tion by path expressions. In Lecture Notes
in Computer Science, volume 16, pages 89-
102. Springer-Verlag, 1984,

C. A. Ellis and S. J. Gibbs. Concurrency
control in groupware systems. In ACM
SIGMOD Proceedings, 1989.

Mary Fernandez and Stanley Zdonik.
Transaction groups: A model for control-
ling cooperative transactions. In 3rd In-
ternational Workshop On Persistent Ob-
ject Systems, January 1989.

Hector Garcia-Molina and Kenneth Salem.
Sagas. In ACM SIGMOD Proceedings,
pages 249-259, 1987.

Theo Haerder and Kurt Rothermel. Con-
cepts for transaction recovery in nested
transactions. In ACM SIGMOD Proceed-
ings, pages 239-248, 1987.

Gail E. Kaiser. A flexible transaction
model for software engineering. In Proceed-
ings of the 6th International Conference on
Data Engineering, 1990.

H. Korth, W. Kim, and F. Bancilhon. On
long-duration CAD transactions. Informa-
tion Systems, 13, 1987.

[KLMP84] W. Kim, R. Lorie, D. McNabb, and
W. Plouffe. A transaction mechanism for
engineering design databases. In VLDB
Proceedings, Singapore, 1984.

[KSUWSS]

Pm831

[Mos85]

[NFSZSO]

[Ska89]

[SkaSO]

[SZRSS]

P. Klahold, G. Schlageter, R. Unland, and
W. Wilkes. A transaction model support-
ing complex applications in integrated in-
formation systems. In ACM SIGMOD
Proceedings, 1985.

Nancy A. Lynch. Multilevel atomicty - a
new correctness criterion for database con-
currency control. ACM Transactions on
Database Systems, 8(4), December 1983.

J. Eliot B. Moss. Nested Transactions: an
Approach to Reliable Distributed Comput-
ing. MIT Press, 1985.

Marian H. Nodine, Mary F. Fernandez,
Andrea H. Skarra, and Stanley B. Zdonik.
Cooperative transaction hierarchies. Tech-
nical Report CS-90-03, Brown University
Computer Science Department, February
1990.

Andrea Skarra. Concurrency control for
cooperating transactions in an object-
,oriented database. SIGPLA N Notices,
24(4), April 1989.

Andrea Skarra. Localized correctness spec-
ifications for cooperating transactions in
an object-oriented database. Office h’nowl-
edge Engineering, 4, 1990.

Andrea H. Skarra, Stanley B. Zdonik, and
Steven Reiss. An object server for an
object-oriented database system. In Pro-
ceedings of the International Workshop on
Object-Oriented Database Systems, 1986.

[KS901 Henry F. Korth and Gregory D. Speegle.
Long-duration transactions in software de-
sign projects. In Proceedings of the 6th In-
ternational Conference on Data Engineer-
ing, 1990.

94

