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Abstract 

This paper suggests an improvement to the scheme 
by Bayer and Metzger for the encipherment of B- 
Tmes. Search keys are “disguised” instead of en- 
crypted, and together with the data pointers and 
tree pointers which remain encrypted, prevents the 
opponent or attacker from recreating the correct 
shape of the B-Tree. Combinatorial block designs 
are used as a method to substitute the search keys 
contained within the nodes of the B-Tree. The 
substitution provides advantages in terms of the 
number of decryptions necessary to traverse the B- 
Tnze, while the use of block designs are advanta- 
geous in terms of the small amount of information 
that needs to be kept secret. The method is aimed 
at enhancing the use of encryption for the nodes 
of the B-Tree, and not as a replacement of the en- 
cryption algorithm. Although in this paper it is 
used in the context of B-Trees, the method may be 
applicable to other reconi storage organizations. 
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1 Introduction 

In recent years there has been a considerable inter- 
est in the area of database security, and computer 
security in general. One of the security mechanism 
that can be used to secure the records stored inside 
a database system is based on cryptographic tech- 
niques, more specifically on the use of encryption 
to prevent illegal users from reading the contents 
of the database [1,2,3,4]. 

In many database encryption schemes that have 
been proposed the encryption module is not a part 
of the database management system. Instead, the 
module is located outside the database system. 
such as in a trusted front-end or a trusted “fil- 
ter” system. In general, this placement of the 
encryption module results in the reduced flexi- 
bility on the part of the database management 
system. Records are encrypted and passed-on to 
the database mana.gement functions which places 
them according to their cryptogram values, not ac- 
cording to their original plaintext value. This re- 
sults in the “scrambling” of the shape of the data 
structure that is used for the organization of the 
records. The inflexibility becomes obvious when 
range searches and partial-match queries are per- 
formed over encrypted records. The only search 
that can be performed without having to decrypt 
every record in the database is that of exact- 
matching between encrypted query elements and 
the cryptogram records. Using exact-matching as 
the only possible method for da.taba.se searches, 
the operations of the database system becomes 
very limited. 

One possible solution was suggested by Bayer 
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and Metzger in [5] in the context of B-Trees [6]. 
Instead of having the encryption module external 
to the database system and the data encryption 
performed at “high-level” in the sequence of the 
handling of the records, the encryption module 
should be placed inside of the database manage- 
ment system and data encryption performed at 
the “low level” close to the disk-write stage of the 
B-Tree node blocks and data blocks. The place- 
ment of records in data blocks and the shape of 
the B-Tree would then be the same as the case 
when encryption was not performed. The B-Tree 
that organizes the records has no knowledge of the 
encryption software or hardware. Before a node 
block or data block is written to the physical disk 
from the main memory, it is encrypted first. The 
process of decryption is applied to any node block 
or data block which is read from disk into main 
memory. This provides security in that the blocks 
used to store the records are completely encrypted 
and the opponent or attacker cannot distinguish 
one block from the next. Bayer and Metzger [5] 
suggest the use of hardware encryption module 
to perform this “on-the-fly” encryption and de- 
cryption. Note that in many commercial database 
packages access to the low-level database functions 
is not provided. The library of functions for the 
database customization usually limits the access 
to the database mechanisms that manages records. 
Thus, the scheme presented by Bayer and Metzger, 
and the improvements presented in this paper, are 
only applicable in the case where low level access 
to the database management system components 
is possible. Database systems which are developed 
“in-house” or commercial database systems that 
provide the source code access would be a suitable 
candidate for this scheme. In the following sec- 
tion we will briefly discuss the B-Tree encipher- 
ment scheme presented by Bayer and Metzger. 

2 Background: Encipherment 
of B-Trees 

In [5] Bayer and Metzger proposed a page I;ey 
scheme for paged file structures (such as B-Trees), 
whereby each Page in a file F has a page number 

P; (1 2 i 5 m) which is used to derive an en- 
crypting key for that page. More specifically, two 
encryption functions were proposed, namely T for 
text encryption and PK for page key encryption. 
Each page number P; has a corresponding page id 
which is &,j. 

For any page Pi having page id Pid, the contents 
of that page is encrypted using T with the page 
key Iip, which is calculated as follows: 

KPi = PK& (P&j) 

where ICE is the fire key or tree key. Then the page 
contents h4p, of page P; is encrypted using T with 
Kp, as follows: 

and decrypted as: 

Two kinds of encryption systems were proposed 
for B-Trees, namely block ciphers and progressive 
(stream) ciphers. In this paper we only consider 
the use of block ciphers, which is more applicable 
to fields of records or whole records. 

3 Encryption of Node Blocks 

In section 2 the units of storage used with respect 
to the encryption functions were pages within a 
given file. In the following sections we will ad- 
here to the notation found in [7], in which the 
term block will be used to indicate the unit of sec- 
ondary storage which holds a defined set of records 
of the database. The nodes of the B-Tree which do 
not hold any records are referred to as node blocks 
while those that do contain the actua1 records are 
referred to as data blocks. In the case where the 
records are stored in the node blocks the two terms 
are used interchangeably. Each node block will 
consist of the triplets [search key, data pointer, tree 
pointer]. The tree pointers of a node point to its 
children nodes, the search key is used to navigate 
through the nodes and the data pointer associated 
with a search key points to the block in secondary 
stora,ge which contains the record wit,h that, search ’ 
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key. To aid the discussion, the i-th triplet out of 
the n triplets in a node block b will be denoted as 
<&-4,Pi”> or (k %P):. 

F’rom section 2 we see that one of the disadvan- 
tages of the scheme in [5] is that the contents of 
a given node of the B-Tree depends on some iden- 
tifier (Pid) associated with that node. This de- 
pendency on the identifier ensures that each,node 
has a unique encryption key, and that the encryp- 
tion of two identical data items within two differ- 
ent nodes will result in two different cryptograms, 
making the attacks by an opponent harder. From 
the point of view of the insert and delete oper- 
ations this dependency may result in too much 
overhead in the case of the B-Tree reconfiguration. 
Regardless of whether each node actually holds the 
data or holds a pointer to the data, when the con- 
tents of two child nodes are merged into one par- 
ent node each triplet (lcp, af , pi) in the two child 
nodes must be decrypted, merged into the parent 
node and then re-encrypted. If the parent node oc- 
cupies a new storage block, then a new identifier 
must be generated and a new encrypting key must 
be calculated. Out of the three elements of the 
triplet, the tree pointer pf almost always changes 
when the triplet moves to a new node block. The 
search key kf hardly ever changes, while the data 
pointer a! only changes when the actual records 
are moved from one data block to another. Hence 
the scheme can be improved by removing the need 
to decrypt and re-encrypt static search keys within 
the triplets. 

One result of keeping all the triplets (kj, ai, pf) 
encrypted together is the need to decrypt more 
than one triplet within a given node block. In [5] 
Bayer and Metzger suggested a binary search-and- 
decrypt method to find the suitable tree pointer 
to follow. In the worst case this may take logzn 
decryptions, where n is the number of triplets in a 
node block. An improvement to this scheme is to 
keep the search key ki in node block b as plaintext, 
and disguise it in some way. Even if the search key 
is compromised, the fact that the tree pointer pf 
and data pointer a: are encrypted prevents the 
opponent from reconstructing the B-Tree. Hence 
a suitable format for the encryption of the triplet 

(kf,uf,pi) is as follows: 

where E is the encryption function, f is the dis- 
guising function, b is the block number and the 
symbol “II” denotes concatenation. A node block 
with n triplets would have n + 1 search keys ki, 
n tree pointers pf and n data pointers up [7]. The 
one tree pointer which does not have an accompa- 
nying tree pointer and data pointer should simply 
be disguised through the function f. 

Having this configuration reduces the number of 
triplets that needs to be decrypted in a. node block 
during a search. The function f can be a one way 
function, or even an encryption function. How- 
ever, one of the motivations for not encrypting kp 
is to reduce the number of necessary decryptions 
and reduce the amount of space required for stor- 
age of the cryptograms. The process of disguising 
the search. keys and the encryption of the data and 
tree pointers should take place at the “low level”, 
internal within the database management system 
after the shape of the B-Tree has been determined. 
In the following section we will describe a possible 
method of disguising the search key using combi- 
natorial block designs. 

4 Disguising Search Keys 

In this section we discuss a possible method for dis- 
guising the search key kf instead of encrypting it. 
It is important to realize that disguising the search 
key offers less security than encryption. However, 
the encryption of the tree pointer pi and the data 
pointer a! should prevent the opponent from re- 
constructing the B-Tree. Disguising the search key 
will make the effort to compromise the tree more 
difficult since the opponent cannot make an asso- 
ciation between the disguised search key and the 
other two elements of the triplet. In this section 
the term block in block design should not be con- 
fused with block in node blocks. The first refers 
to constructs in combinatorial mathematics, while 
the later refers to database storage units. In dis- 
cussing combinatorial block designs we will use the 
notations and definitions found in [8]. 
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First, consider a difference set with parameters 
{v, k, X}. Such a difference set is also recognized as 
a {v, b, T, k, X} balanced incomplete block design, 
with b = v and r = k. Here v is the number of 
objects or treatments in a finite set S, and a block 
design which is based on the set 5’ consists of a col- 
lection of k-sets from S, having the property that 
each object appears in T of the k-sets. The num- 
ber T is also referred to as the replication number. 
In order to be useful for the encryption of node 
blocks, we must have that v > R? where R is the 
number of records in the database. This is to en- 
sure that the process of disguising the search keys 
cannot be easily inverted by an opponent. Note 
that here the symbol k (as in k-sets) has no rela- 
tion to that in the search key kf. 

A useful way to ilbrstrate the possible use of 
block designs for disguising search keys is to con- 
sider the blocks as lines in the finite projective 
planeoforder n with w = n2+n+l, k = n+l and 
X = 1. In this instance the blocks {Bu,. . . ,B,-1) 
can be treated as lines {Lo,. . . , L,,r}. The in- 
cidence matrix for this block design consists of v 
rows of l’s and O’s, with a 1 in row z and column y 
of the incident matrix indicating that the point P, 
(x = 0,. . . ,k-l)liesonIineLy(y=O ,..., v-l). 
To disguise the search key of a given triplet, we 
can employ a two-step “scrambling” of the set 
of integers that make up the search keys in the 
B-Tree. The first step consists of the mapping 
from the search keys to the “integers” that rep- 
resents points P, (z = 0,. . . , k - 1) on lines L, 
(y = o,...,w - 1). This step can take the form 
of a natural mapping between the search keys and 
the treatments in the block designs. Of more in- 
terest is the second step, in which the points P, 
(z = 0,. . . , k - 1) are mapped to other combinato- 
rial “structures”, hiding the original block design. 
In order to be useful for disguising the triplets, the 
two step mapping must be invertible to allow the 
recovery of the original block design and hence the 
original integer search keys in the triplets. 

One possibility for the ‘second step is to map 
the points P, (2 = 0,. . . , k - 1) on lines L, (y = 
0 “7 v-l)topointsonovalsOy(y=O,...,v-1). 
In-this case an oval is defined to be a set of k 
points no three of which are collinear [9]. In pra.c- 

tical terms, an instance of the mapping of lines 
to ovals can be achieved by simply multiplying 
the set of “integers” that represent the points P, 
(x = O,...,k - 1) on lines L, (y = O,...,v- 1) 
by a suitable value t modulo V, resulting in the 
set of “integers” that represent the ovals 0, (y = 
0 * - 9 u - 1). A very small example of such a mul- 
ti$ication modulo V, mapping lines to ovals, is 
given below. Here we have a (13,4,1) block de- 
sign. With t = 7 the points {PO,. . . , P3) on lines 
{Lo, * - . , LIZ} are mapped to ovals (00,. . . ,Orz}: 

0 1 3 9 0 7 8 11 
1 2 4 10 7 1 2 5 
2 3 5 11 1 8 9 12 
3 4 6 12 8 2 3 6 
4 5 7 0 2 9 10 0 
5 6 8 1 9 3 4 7 
6 7 9 2 3 10 11 1 
7 8 10 3 10 4 5 8 
8 9 11 4 4 11 12 2 
9 10 12 5 11 5 6 9 
10 11 0 6 5 12 0 3 
11 12 1 7 12 ‘6 7 10 
12 0 2 8 6 0 1 4 

In this example there are 13 lines whereby 4 points 
occur on every line. The rows of the left-hand 
block design consists of the points occurring on the 
lines, whereas the right-hand block design shows 
the same points on ovals. 

4.1 Substitution using ovals 

One way of using block designs to disguise search 
keys is simply to renumber the search keys based 
on the result of mapping lines to ovals. The first of 
the two-step “scrambling” of the search keys can 
be ignored, and the actual search keys are used in 
the second step of the scrambling. 

The substitution of the search keys is as fol- 
lows. First, the treatments that make up points 
{PO, * * - 7 p&l} on lines {LO,. . . , L,-1) are used as 
the actual search keys, and they are “disguised” or 
replaced using the treatments that make up the 
same points on oval (00,. . . ,O+i}. In effect, the 
search key kf is multiplied by t modulo w, result- 
ing in a new integer used as the substitute for the 
search key. In doing so, the appa.rent sha.pe of the 
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B-Tree as viewed by the opponent will not follow 
the expected shape of a normal B-Tree. Having 
access only to the B-Tree representation on a se- 
quential set of disk blocks, the opponent will face 
difficulty in determining the most likely children 
node blocks of a given parent block. An example 
of a small B-Tree before and after the search key 
substitution based on the above set of points is 
given in Figure 1. 

cl 5 Search Key k! 

0 l Tree Pointer pp 

Null Tree Pointer 

Data Pointer a: 

Encrypted elements 

Figure 1: Example of the search key substitution 
using treatments on ovals 

The substitution of a given search key is per- 
formed starting with line LO. The k points on the 
line are compared with the search key. If none 
of the points on the line matches the search key, 
the next line Lr is generated. The comparison is 
repeated again between the search key with the 
k points on the line. This process of comparison 
is repeated until a successful match is achieved, 
hence the requirement that v > R, where R is 
the number of records in the database. If one of 
the points on a line matches the search key, then 
an oval is generated corresponding to that line. 
The search key kf, which matches the point on 
the line, is substituted by the equivalent point on 
the oval. In this instance, a “match” between the 
search key and a point means that their integer 
representations are equal. To prevent confusion, 
we will denote the “new” search key as rc,b. Thus, 
with respect to the previous block design and oval, 

the search key 1 is substituted by 7, 2 by 1, 3 by 
8,4 by 2 and so on. 

In this scheme, the only information that has to 
be kept secret are the para.meters {v, k, A} of the 
block design, the first line Lo and the mapping 
from the lines to ovals. This presents a consid- 
erable advantage in terms of space used to hold 
cryptographic information. Conversion tables to 
maintain the correspondence between the actual 
and the disguised search keys are not required. In 
fact, the parameters of the block design and first 
block PO can be stored in “tamper-proof” devices, 
such as smartcards, which are carried by the legal 
users of the database system. 

Note that we do not place triplets in node blocks 
based on the value of the disguised search key. The 
position of the triplets throughout the tree is the 
same as when the search keys are not disguised. 
This implies that the substitution of the search 
key kf by q is done after the correct tree pointer 
pf and data pointer a! have been obtained and 
the triplet is ready to be written onto the physical 
disk. This ensures that range searches tha.t require 
access to a whole subtree within the B-Tree can 
still be performed. 

4.2 Substitution using exponentiation 
modulus 

Although the encryption of the search keys pro- 
vides the best security, it is disadvantageous in 
terms of the resulting cryptograms that have to 
be substituted for the search keys. Depending on 
the space available and other computer resources, 
the encryption of the search keys may be suitable. 
However, this will result in triplets that consume 
large storage spaces on the node blocks. Fewer 
triplets can be fitted onto a given node block, and 
the depth of the B-Tree would then increase sub- 
stantially. 

An alternative to the encryption of the search 
keys is to use the treatments in a block design as 
the exponents of a given integer modulo the num- 
ber of objects v in the design. Another way of 
looking at this is to consider the treatments as ex- 
ponents of a primitive element g E ZN, where N is 
prime. Here N should never be less than v. Sub- 
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stitution is performed as follows. First, a suitable 
treatment t,p of point Pp on line L, must be found 
such that gtao mod N equals the search key kf to 
be substituted. Once such a treatment is found, 
the corresponding treatment on oval 0, can also 
be found. The substitution is not done using the 
treatment on oval 0,. The treatment on the oval 
is instead used as the exponent of g modulo N, 
the resulting integer of which is used for the sub- 
stitution. Here the value of g and N must be kept 
secret, in addition to the secret block design. A 
small example using the previous (13, 4, 1) block 
design with g = 7 and N = 13 is given below, 
where each exponentiation is reduced modulo N 
(Figure 2): 

0 5 Search Key kt 0 Null Tree Pointer 

II l Tree Pointer Pf Cl IJ Data Pointer a: 

Encrypted elements 

Figure 2: Example of the search key substitution 
using,exponentiation modulus 

70 71 73 7g 
7l 72 74 71° 
i: 73 74 75 76 712 7l’ 

74 75 7’ 7O 

77 7g 71° 73 
78 7g 711 74 
79 710 712 75 

710 711 70 76 

711 712 71 77 

712 7O 72 78 

7O 77 76 711 
77 7’ 72 75 

ti 72 78 73 7g 712 76 

;z 7g 73 71° 74 7O 77 

73 710 711 71 

710 74 75 78 

74 7** 712 72 

7l' 75 76 7g 

75 712 7O 73 

712 76 77 71° 
76 7O 7l 74 

This method of substitution can be made 
stronger by choosing N to be greater than V, and 
the only requirement is that g be a primitive el- 
ement in .??N. The larger the value of N, the 
more security is achieved. As mentioned previ- 
ously, the only limit to N is the amount of space 
available on a node block. Similar to substitution 
using treatments on ovals, this substitution must 
be performed at a low-level, just before the actual 
disk-write stage of the node block. 

4.3 Substitution using the sum of 
treatments in blocks 

Instead of being associated with a given treat- 
ment in a block, the search keys can be associ- 
ated with whole blocks in the design. First, a 
continuous subset of R blocks must be selected 
from the set of all blocks in a {o, k,X} block de- 
sign. Similar to the block designs used in the 
previous sections, the blocks can be considered 
as a set of points {PO,. . . ,&-I} lying on lines 
{Lo, . . . , L,,-I}. Then each search key can be as- 
signed one line, either starting at LO or at L, 
for some integer w > 0. If L, is used as the 
starting line, then the number of lines v must 
be large enough to allow a continuous subset 

V W7.‘.7 Lw+R} (w+ R < v - 1) to be selected 
from the set of v lines. Thus, for R records in the 
database we must have v > R. The “integers” 
that form the treatments in a given line, which is 
associated to one search key, can be used as the 
input to another disguising function, the output of 
which is u&d as the substitute for the search key. 

Given that there is a set of integers associated 
to a given search key, there are various possibili- 
ties in using the integers to diguise the search key. 
One possible method is to simply use the sum of 
the “integer” treatments of each line as the substi- 
tute for the search key associated with that line. 
More specifically, given that the starting line is L,, 
where w > 0 and .‘u, + R < v - 1, and given that 
the search key ki is associated with a given line 
L, (w 5 z 5 w + R) then ki ca.n be substituted 
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by c, where 

T kc-l 

and t,p is the “integer” treatment forming point 
Pp on line L,. Here the summation is done with- 
out reducing modulo u. In simple terms, for a 
given line L, ( ‘w 5 x 5 w + R), besides taking 
the sum of the integer treatments on the line L,, 
all the other integer treatments starting at line L, 
until line L,-1 is also added to the sum of treat- 
ments of line L,. Using the (13,4, 1) block design 
above, we have the following values for q 

g 
0139 1; 
1 2 4 10 30 
2 3 5 11 51 
3 4 6 12 76 
4 5 7 0 92 
5 6 8 1 112 
6 7 9 2 136 
7 8 10 3 164 
8 9 11 4 196 
9 10 12 5 232 
10 11 0 6 259 
11 12 1 7 290 
12 0 2 8 312 

with Figure 3 showing the resulting B-Tree with 
the substituted search keys. 

The summation method given in the example 
above does not have strong security when R is 
small. The subset of blocks ranging from w to 
w + R is chosen to prevent the opponent from 
discovering the first block Be in the design. One 
advantage of the summation of the treatments is 
that is can be used for the substitution of search 
keys in high-level Security Filters [2,10] or front- 
ends retrofitted onto commercial “off-the-shelf” 
database management systems, which usually pro- 
vide no access to low-level record routines except 
through a library of customization functions. For 
a given set of unique search keys kf in an as- 
cending order of size, the corresponding substi- 
tute search keys @ derived through the summa- 
tion of treatments is a set of integers maintaining 

0 5 Search Key kf 0 Null Tree Pointer 

cl l Tree Pointer P: 0 0 Data Pointer a: 

lrl @ Encrypted elements 

Figure 3: Example of the search 
using the sum of the treatments 

key substitution 

that ascending order. Hence, whether substitu- 
tion of the actual search keys is done a.t a “high 
level” before records are passed-on by the filter to 
the database management system, or at a “lower 
level” within the database management system 
components near to the disk-write stage, the shape 
of the B-Tree is still maintained. In the high level 
security filter, each record may have a plaintext 
search field which is included in the checksum cal- 
culation for that record. Instead of placing the 
actual plaintext search key in that field, a substitu- 
tion can be performed before the security filter caI- 
culates the checksum. The database management 
system then creates its B-Tree based on the values 
in the plaintext substituted search key. Since the 
substitution using the sum of treatments preserves 
the ordering of the original search keys, the shape 
of the B-Tree would be the same as in the case 
when no substitution was performed. The sum- 
mation of the treatments in the blocks or lines is 
by no means the only way to disguise search keys. 
With a search key being associated to a. line, and 
thus to a set of “integer” treatments, many other 
substitution methods can be devised based on the 
treatments. 
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5 Encryption of Tree Point- 
ers, Data Pointers and Data 
Blocks 

There are a number of ways in which the triplet 
(k~,a~,p~) can be encrypted. However, as men- 
tioned earlier, increase in flexibility is obtained 
when the search key kb is not encrypted The tree 
pointers pf and data pointers at remain encrypted 
as in [5] together with the node block number. 

Currently, two of the most commonly used 
cryptosystems are the Data Encrypted Stan- 
dard (DES) [ll] and the Rivest-Shamir-Adleman 
(RSA) [12] cryptosystem. The DES can be used to 
encrypt data segments or blocks of 64 bits, while 
the RSA cryptosystem can encrypt any data seg- 
ments of length less than its modulus N. In this 
paper we consider the use of the RSA cryptosys- 
tern (or exponentiation modulus) for the encryp- 
tion of the tree and data pointers. This choice is 
motivated by the fact that this cryptosystem is be- 
coming increasingly available on hardware imple- 
mentations, which may be suitable for low levels 
accesses to the disk blocks in the database sys- 
tem. In addition, the properties and weaknesses 
of the RSA cryptosystem are widely known and 
much research have gone into understanding the 
cryptosystem. 

The RSA cryptosystem is known also as a 
“public-key” or “asymmetric” cryptosystem, and 
a number of possible attacks have been suggested 
and are discussed in [13]. These attacks are usually 
performed using the publicly known information, 
such as the modulus N and the public encryp- 
tion (or decryption) key. Note, however, that the 
strength of the RSA cryptosystem is “increased” 
when it is used not in the usual public-oriented 
manner. More specifically, when the RSA cryp- 
tosystem is used to encrypt a message and none of 
the encryption parameters are made public, then 
the attacks by opponents are made considerably 
harder. The opponent may not even start to solve 
the factorization and discrete logarithm problems, 
since there is no public information available ex- 
cept for the cryptograms. A multilevel organiza- 
tion of encryption keys based on the RSA cryp- 
tosystem is presented in [14]. This multilevel 

scheme can be applied to the encryption of the 
tree and data pointers in the B-Tree, and also 
the data blocks. It may also allow each triplet 
in a node block to be assigned a security level, re- 
stricting access to da,ta by users of lower security 
clearances. 

The encryption algorithm used for the encryp- 
tion of data blocks can be different and indepen- 
dent to that used for the tree and data pointers 
in the node blocks. Having a different encryption 
algorithm or a different set of encryption param- 
eters may provide better security. The compro- 
mise of node blocks will only provide the location 
of data blocks, and such a compromise may not 
necessarily aid the opponent in breaking the data 
blocks. Note, however, that the compromise of the 
B-Tree node blocks can lead to the compromise of 
the search key substitution parameters. The il- 
legal reconstruction of the whole B-Tree may in- 
evitably show the substituted search keys in the 
B-Tree, and the opponent can proceed to deduce 
the possible values of the original search keys. 

6 Remarks and Conclusion 

In this paper we have suggested a method to sub- 
stitute search keys in the context of the encipher- 
ment node blocks in a B-Trees. This method is 
based on the use of combinatorial block designs. 
The main aim of the search keys substitution is 
to allow faster traversal of the B-Tree by reduc- 
ing the number of decryptions required in a given 
node blocks. Search keys are substituted instead of 
encrypted, and in determining the pa.th to follow 
down the tree, comparisons of substituted search 
keys is faster than decryptions. Given that an op- 
ponent or attacker is trying to reconstruct the en- 
crypted B-Tree, the substituted search keys will 
not provide the correct shape of the original B- 
Tree. This is also due to the fact that the tree and 
data pointers are encrypted. Another advantage is 
in terms of storage space. Substituted search keys 
require less space than an encrypted search key. 
Combinatorial block designs have been employed 
as a method for substituting search keys. From 
the security point of view the main advantage of 
the method lies in the sma.11 amount of informa- 
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tion that needs to be stored, namely the block de- 
sign parameters and the first block of the design. 
The method is aimed at enhancing the encryption 
algorithm employed for the encipherment of the 
B-Trees, and not as a replacement the encryption 
algorithm. The encryption algorithm that is used 
to encrypt the tree and data pointers must be a 
secure one. The encryption algorithm and param- 
eters used for the encryption of node blocks can be 
different to that used for data blocks. The method 
of disguising search keys proposed in this paper is 
by no means restricted to B-Trees, and it may be 
applicable to other record maintenance schemes 
used in database management systems. 
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