
Search Key Substitution in, the Encipherment of B-Trees

Thomas Hardjono and Jennifer Seberry

Department of Computer Science, University College
University of New South Wales, Australian Defence Force Academy

Canberra, ACT 2600, AUSTRALIA

Abstract

This paper suggests an improvement to the scheme
by Bayer and Metzger for the encipherment of B-
Tmes. Search keys are “disguised” instead of en-
crypted, and together with the data pointers and
tree pointers which remain encrypted, prevents the
opponent or attacker from recreating the correct
shape of the B-Tree. Combinatorial block designs
are used as a method to substitute the search keys
contained within the nodes of the B-Tree. The
substitution provides advantages in terms of the
number of decryptions necessary to traverse the B-
Tnze, while the use of block designs are advanta-
geous in terms of the small amount of information
that needs to be kept secret. The method is aimed
at enhancing the use of encryption for the nodes
of the B-Tree, and not as a replacement of the en-
cryption algorithm. Although in this paper it is
used in the context of B-Trees, the method may be
applicable to other reconi storage organizations.

Keywords: Data encryption, Security, Database
systems.

CR Categories: E.3, H.2.0, H.3

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distrihutcd for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Bare

Endowment. To copy otherwise. or to rcpuhlish. requires a l'cc

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

1 Introduction

In recent years there has been a considerable inter-
est in the area of database security, and computer
security in general. One of the security mechanism
that can be used to secure the records stored inside
a database system is based on cryptographic tech-
niques, more specifically on the use of encryption
to prevent illegal users from reading the contents
of the database [1,2,3,4].

In many database encryption schemes that have
been proposed the encryption module is not a part
of the database management system. Instead, the
module is located outside the database system.
such as in a trusted front-end or a trusted “fil-
ter” system. In general, this placement of the
encryption module results in the reduced flexi-
bility on the part of the database management
system. Records are encrypted and passed-on to
the database mana.gement functions which places
them according to their cryptogram values, not ac-
cording to their original plaintext value. This re-
sults in the “scrambling” of the shape of the data
structure that is used for the organization of the
records. The inflexibility becomes obvious when
range searches and partial-match queries are per-
formed over encrypted records. The only search
that can be performed without having to decrypt
every record in the database is that of exact-
matching between encrypted query elements and
the cryptogram records. Using exact-matching as
the only possible method for da.taba.se searches,
the operations of the database system becomes
very limited.

One possible solution was suggested by Bayer

50

and Metzger in [5] in the context of B-Trees [6].
Instead of having the encryption module external
to the database system and the data encryption
performed at “high-level” in the sequence of the
handling of the records, the encryption module
should be placed inside of the database manage-
ment system and data encryption performed at
the “low level” close to the disk-write stage of the
B-Tree node blocks and data blocks. The place-
ment of records in data blocks and the shape of
the B-Tree would then be the same as the case
when encryption was not performed. The B-Tree
that organizes the records has no knowledge of the
encryption software or hardware. Before a node
block or data block is written to the physical disk
from the main memory, it is encrypted first. The
process of decryption is applied to any node block
or data block which is read from disk into main
memory. This provides security in that the blocks
used to store the records are completely encrypted
and the opponent or attacker cannot distinguish
one block from the next. Bayer and Metzger [5]
suggest the use of hardware encryption module
to perform this “on-the-fly” encryption and de-
cryption. Note that in many commercial database
packages access to the low-level database functions
is not provided. The library of functions for the
database customization usually limits the access
to the database mechanisms that manages records.
Thus, the scheme presented by Bayer and Metzger,
and the improvements presented in this paper, are
only applicable in the case where low level access
to the database management system components
is possible. Database systems which are developed
“in-house” or commercial database systems that
provide the source code access would be a suitable
candidate for this scheme. In the following sec-
tion we will briefly discuss the B-Tree encipher-
ment scheme presented by Bayer and Metzger.

2 Background: Encipherment
of B-Trees

In [5] Bayer and Metzger proposed a page I;ey
scheme for paged file structures (such as B-Trees),
whereby each Page in a file F has a page number

P; (1 2 i 5 m) which is used to derive an en-
crypting key for that page. More specifically, two
encryption functions were proposed, namely T for
text encryption and PK for page key encryption.
Each page number P; has a corresponding page id
which is &,j.

For any page Pi having page id Pid, the contents
of that page is encrypted using T with the page
key Iip, which is calculated as follows:

KPi = PK& (P&j)

where ICE is the fire key or tree key. Then the page
contents h4p, of page P; is encrypted using T with
Kp, as follows:

and decrypted as:

Two kinds of encryption systems were proposed
for B-Trees, namely block ciphers and progressive
(stream) ciphers. In this paper we only consider
the use of block ciphers, which is more applicable
to fields of records or whole records.

3 Encryption of Node Blocks

In section 2 the units of storage used with respect
to the encryption functions were pages within a
given file. In the following sections we will ad-
here to the notation found in [7], in which the
term block will be used to indicate the unit of sec-
ondary storage which holds a defined set of records
of the database. The nodes of the B-Tree which do
not hold any records are referred to as node blocks
while those that do contain the actua1 records are
referred to as data blocks. In the case where the
records are stored in the node blocks the two terms
are used interchangeably. Each node block will
consist of the triplets [search key, data pointer, tree
pointer]. The tree pointers of a node point to its
children nodes, the search key is used to navigate
through the nodes and the data pointer associated
with a search key points to the block in secondary
stora,ge which contains the record wit,h that, search ’

51

key. To aid the discussion, the i-th triplet out of
the n triplets in a node block b will be denoted as
<&-4,Pi”> or (k %P):.

F’rom section 2 we see that one of the disadvan-
tages of the scheme in [5] is that the contents of
a given node of the B-Tree depends on some iden-
tifier (Pid) associated with that node. This de-
pendency on the identifier ensures that each,node
has a unique encryption key, and that the encryp-
tion of two identical data items within two differ-
ent nodes will result in two different cryptograms,
making the attacks by an opponent harder. From
the point of view of the insert and delete oper-
ations this dependency may result in too much
overhead in the case of the B-Tree reconfiguration.
Regardless of whether each node actually holds the
data or holds a pointer to the data, when the con-
tents of two child nodes are merged into one par-
ent node each triplet (lcp, af , pi) in the two child
nodes must be decrypted, merged into the parent
node and then re-encrypted. If the parent node oc-
cupies a new storage block, then a new identifier
must be generated and a new encrypting key must
be calculated. Out of the three elements of the
triplet, the tree pointer pf almost always changes
when the triplet moves to a new node block. The
search key kf hardly ever changes, while the data
pointer a! only changes when the actual records
are moved from one data block to another. Hence
the scheme can be improved by removing the need
to decrypt and re-encrypt static search keys within
the triplets.

One result of keeping all the triplets (kj, ai, pf)
encrypted together is the need to decrypt more
than one triplet within a given node block. In [5]
Bayer and Metzger suggested a binary search-and-
decrypt method to find the suitable tree pointer
to follow. In the worst case this may take logzn
decryptions, where n is the number of triplets in a
node block. An improvement to this scheme is to
keep the search key ki in node block b as plaintext,
and disguise it in some way. Even if the search key
is compromised, the fact that the tree pointer pf
and data pointer a: are encrypted prevents the
opponent from reconstructing the B-Tree. Hence
a suitable format for the encryption of the triplet

(kf,uf,pi) is as follows:

where E is the encryption function, f is the dis-
guising function, b is the block number and the
symbol “II” denotes concatenation. A node block
with n triplets would have n + 1 search keys ki,
n tree pointers pf and n data pointers up [7]. The
one tree pointer which does not have an accompa-
nying tree pointer and data pointer should simply
be disguised through the function f.

Having this configuration reduces the number of
triplets that needs to be decrypted in a. node block
during a search. The function f can be a one way
function, or even an encryption function. How-
ever, one of the motivations for not encrypting kp
is to reduce the number of necessary decryptions
and reduce the amount of space required for stor-
age of the cryptograms. The process of disguising
the search. keys and the encryption of the data and
tree pointers should take place at the “low level”,
internal within the database management system
after the shape of the B-Tree has been determined.
In the following section we will describe a possible
method of disguising the search key using combi-
natorial block designs.

4 Disguising Search Keys

In this section we discuss a possible method for dis-
guising the search key kf instead of encrypting it.
It is important to realize that disguising the search
key offers less security than encryption. However,
the encryption of the tree pointer pi and the data
pointer a! should prevent the opponent from re-
constructing the B-Tree. Disguising the search key
will make the effort to compromise the tree more
difficult since the opponent cannot make an asso-
ciation between the disguised search key and the
other two elements of the triplet. In this section
the term block in block design should not be con-
fused with block in node blocks. The first refers
to constructs in combinatorial mathematics, while
the later refers to database storage units. In dis-
cussing combinatorial block designs we will use the
notations and definitions found in [8].

52

First, consider a difference set with parameters
{v, k, X}. Such a difference set is also recognized as
a {v, b, T, k, X} balanced incomplete block design,
with b = v and r = k. Here v is the number of
objects or treatments in a finite set S, and a block
design which is based on the set 5’ consists of a col-
lection of k-sets from S, having the property that
each object appears in T of the k-sets. The num-
ber T is also referred to as the replication number.
In order to be useful for the encryption of node
blocks, we must have that v > R? where R is the
number of records in the database. This is to en-
sure that the process of disguising the search keys
cannot be easily inverted by an opponent. Note
that here the symbol k (as in k-sets) has no rela-
tion to that in the search key kf.

A useful way to ilbrstrate the possible use of
block designs for disguising search keys is to con-
sider the blocks as lines in the finite projective
planeoforder n with w = n2+n+l, k = n+l and
X = 1. In this instance the blocks {Bu,. . . ,B,-1)
can be treated as lines {Lo,. . . , L,,r}. The in-
cidence matrix for this block design consists of v
rows of l’s and O’s, with a 1 in row z and column y
of the incident matrix indicating that the point P,
(x = 0,. . . ,k-l)liesonIineLy(y=O ,..., v-l).
To disguise the search key of a given triplet, we
can employ a two-step “scrambling” of the set
of integers that make up the search keys in the
B-Tree. The first step consists of the mapping
from the search keys to the “integers” that rep-
resents points P, (z = 0,. . . , k - 1) on lines L,
(y = o,...,w - 1). This step can take the form
of a natural mapping between the search keys and
the treatments in the block designs. Of more in-
terest is the second step, in which the points P,
(z = 0,. . . , k - 1) are mapped to other combinato-
rial “structures”, hiding the original block design.
In order to be useful for disguising the triplets, the
two step mapping must be invertible to allow the
recovery of the original block design and hence the
original integer search keys in the triplets.

One possibility for the ‘second step is to map
the points P, (2 = 0,. . . , k - 1) on lines L, (y =
0 “7 v-l)topointsonovalsOy(y=O,...,v-1).
In-this case an oval is defined to be a set of k
points no three of which are collinear [9]. In pra.c-

tical terms, an instance of the mapping of lines
to ovals can be achieved by simply multiplying
the set of “integers” that represent the points P,
(x = O,...,k - 1) on lines L, (y = O,...,v- 1)
by a suitable value t modulo V, resulting in the
set of “integers” that represent the ovals 0, (y =
0 * - 9 u - 1). A very small example of such a mul-
ti$ication modulo V, mapping lines to ovals, is
given below. Here we have a (13,4,1) block de-
sign. With t = 7 the points {PO,. . . , P3) on lines
{Lo, * - . , LIZ} are mapped to ovals (00,. . . ,Orz}:

0 1 3 9 0 7 8 11
1 2 4 10 7 1 2 5
2 3 5 11 1 8 9 12
3 4 6 12 8 2 3 6
4 5 7 0 2 9 10 0
5 6 8 1 9 3 4 7
6 7 9 2 3 10 11 1
7 8 10 3 10 4 5 8
8 9 11 4 4 11 12 2
9 10 12 5 11 5 6 9
10 11 0 6 5 12 0 3
11 12 1 7 12 ‘6 7 10
12 0 2 8 6 0 1 4

In this example there are 13 lines whereby 4 points
occur on every line. The rows of the left-hand
block design consists of the points occurring on the
lines, whereas the right-hand block design shows
the same points on ovals.

4.1 Substitution using ovals

One way of using block designs to disguise search
keys is simply to renumber the search keys based
on the result of mapping lines to ovals. The first of
the two-step “scrambling” of the search keys can
be ignored, and the actual search keys are used in
the second step of the scrambling.

The substitution of the search keys is as fol-
lows. First, the treatments that make up points
{PO, * * - 7 p&l} on lines {LO,. . . , L,-1) are used as
the actual search keys, and they are “disguised” or
replaced using the treatments that make up the
same points on oval (00,. . . ,O+i}. In effect, the
search key kf is multiplied by t modulo w, result-
ing in a new integer used as the substitute for the
search key. In doing so, the appa.rent sha.pe of the

53

B-Tree as viewed by the opponent will not follow
the expected shape of a normal B-Tree. Having
access only to the B-Tree representation on a se-
quential set of disk blocks, the opponent will face
difficulty in determining the most likely children
node blocks of a given parent block. An example
of a small B-Tree before and after the search key
substitution based on the above set of points is
given in Figure 1.

cl 5 Search Key k!

0 l Tree Pointer pp

Null Tree Pointer

Data Pointer a:

Encrypted elements

Figure 1: Example of the search key substitution
using treatments on ovals

The substitution of a given search key is per-
formed starting with line LO. The k points on the
line are compared with the search key. If none
of the points on the line matches the search key,
the next line Lr is generated. The comparison is
repeated again between the search key with the
k points on the line. This process of comparison
is repeated until a successful match is achieved,
hence the requirement that v > R, where R is
the number of records in the database. If one of
the points on a line matches the search key, then
an oval is generated corresponding to that line.
The search key kf, which matches the point on
the line, is substituted by the equivalent point on
the oval. In this instance, a “match” between the
search key and a point means that their integer
representations are equal. To prevent confusion,
we will denote the “new” search key as rc,b. Thus,
with respect to the previous block design and oval,

the search key 1 is substituted by 7, 2 by 1, 3 by
8,4 by 2 and so on.

In this scheme, the only information that has to
be kept secret are the para.meters {v, k, A} of the
block design, the first line Lo and the mapping
from the lines to ovals. This presents a consid-
erable advantage in terms of space used to hold
cryptographic information. Conversion tables to
maintain the correspondence between the actual
and the disguised search keys are not required. In
fact, the parameters of the block design and first
block PO can be stored in “tamper-proof” devices,
such as smartcards, which are carried by the legal
users of the database system.

Note that we do not place triplets in node blocks
based on the value of the disguised search key. The
position of the triplets throughout the tree is the
same as when the search keys are not disguised.
This implies that the substitution of the search
key kf by q is done after the correct tree pointer
pf and data pointer a! have been obtained and
the triplet is ready to be written onto the physical
disk. This ensures that range searches tha.t require
access to a whole subtree within the B-Tree can
still be performed.

4.2 Substitution using exponentiation
modulus

Although the encryption of the search keys pro-
vides the best security, it is disadvantageous in
terms of the resulting cryptograms that have to
be substituted for the search keys. Depending on
the space available and other computer resources,
the encryption of the search keys may be suitable.
However, this will result in triplets that consume
large storage spaces on the node blocks. Fewer
triplets can be fitted onto a given node block, and
the depth of the B-Tree would then increase sub-
stantially.

An alternative to the encryption of the search
keys is to use the treatments in a block design as
the exponents of a given integer modulo the num-
ber of objects v in the design. Another way of
looking at this is to consider the treatments as ex-
ponents of a primitive element g E ZN, where N is
prime. Here N should never be less than v. Sub-

54

stitution is performed as follows. First, a suitable
treatment t,p of point Pp on line L, must be found
such that gtao mod N equals the search key kf to
be substituted. Once such a treatment is found,
the corresponding treatment on oval 0, can also
be found. The substitution is not done using the
treatment on oval 0,. The treatment on the oval
is instead used as the exponent of g modulo N,
the resulting integer of which is used for the sub-
stitution. Here the value of g and N must be kept
secret, in addition to the secret block design. A
small example using the previous (13, 4, 1) block
design with g = 7 and N = 13 is given below,
where each exponentiation is reduced modulo N
(Figure 2):

0 5 Search Key kt 0 Null Tree Pointer

II l Tree Pointer Pf Cl IJ Data Pointer a:

Encrypted elements

Figure 2: Example of the search key substitution
using,exponentiation modulus

70 71 73 7g
7l 72 74 71°
i: 73 74 75 76 712 7l’

74 75 7’ 7O

77 7g 71° 73
78 7g 711 74
79 710 712 75

710 711 70 76

711 712 71 77

712 7O 72 78

7O 77 76 711
77 7’ 72 75

ti 72 78 73 7g 712 76

;z 7g 73 71° 74 7O 77

73 710 711 71

710 74 75 78

74 7** 712 72

7l' 75 76 7g

75 712 7O 73

712 76 77 71°
76 7O 7l 74

This method of substitution can be made
stronger by choosing N to be greater than V, and
the only requirement is that g be a primitive el-
ement in .??N. The larger the value of N, the
more security is achieved. As mentioned previ-
ously, the only limit to N is the amount of space
available on a node block. Similar to substitution
using treatments on ovals, this substitution must
be performed at a low-level, just before the actual
disk-write stage of the node block.

4.3 Substitution using the sum of
treatments in blocks

Instead of being associated with a given treat-
ment in a block, the search keys can be associ-
ated with whole blocks in the design. First, a
continuous subset of R blocks must be selected
from the set of all blocks in a {o, k,X} block de-
sign. Similar to the block designs used in the
previous sections, the blocks can be considered
as a set of points {PO,. . . ,&-I} lying on lines
{Lo, . . . , L,,-I}. Then each search key can be as-
signed one line, either starting at LO or at L,
for some integer w > 0. If L, is used as the
starting line, then the number of lines v must
be large enough to allow a continuous subset

V W7.‘.7 Lw+R} (w+ R < v - 1) to be selected
from the set of v lines. Thus, for R records in the
database we must have v > R. The “integers”
that form the treatments in a given line, which is
associated to one search key, can be used as the
input to another disguising function, the output of
which is u&d as the substitute for the search key.

Given that there is a set of integers associated
to a given search key, there are various possibili-
ties in using the integers to diguise the search key.
One possible method is to simply use the sum of
the “integer” treatments of each line as the substi-
tute for the search key associated with that line.
More specifically, given that the starting line is L,,
where w > 0 and .‘u, + R < v - 1, and given that
the search key ki is associated with a given line
L, (w 5 z 5 w + R) then ki ca.n be substituted

55

by c, where

T kc-l

and t,p is the “integer” treatment forming point
Pp on line L,. Here the summation is done with-
out reducing modulo u. In simple terms, for a
given line L, (‘w 5 x 5 w + R), besides taking
the sum of the integer treatments on the line L,,
all the other integer treatments starting at line L,
until line L,-1 is also added to the sum of treat-
ments of line L,. Using the (13,4, 1) block design
above, we have the following values for q

g
0139 1;
1 2 4 10 30
2 3 5 11 51
3 4 6 12 76
4 5 7 0 92
5 6 8 1 112
6 7 9 2 136
7 8 10 3 164
8 9 11 4 196
9 10 12 5 232
10 11 0 6 259
11 12 1 7 290
12 0 2 8 312

with Figure 3 showing the resulting B-Tree with
the substituted search keys.

The summation method given in the example
above does not have strong security when R is
small. The subset of blocks ranging from w to
w + R is chosen to prevent the opponent from
discovering the first block Be in the design. One
advantage of the summation of the treatments is
that is can be used for the substitution of search
keys in high-level Security Filters [2,10] or front-
ends retrofitted onto commercial “off-the-shelf”
database management systems, which usually pro-
vide no access to low-level record routines except
through a library of customization functions. For
a given set of unique search keys kf in an as-
cending order of size, the corresponding substi-
tute search keys @ derived through the summa-
tion of treatments is a set of integers maintaining

0 5 Search Key kf 0 Null Tree Pointer

cl l Tree Pointer P: 0 0 Data Pointer a:

lrl @ Encrypted elements

Figure 3: Example of the search
using the sum of the treatments

key substitution

that ascending order. Hence, whether substitu-
tion of the actual search keys is done a.t a “high
level” before records are passed-on by the filter to
the database management system, or at a “lower
level” within the database management system
components near to the disk-write stage, the shape
of the B-Tree is still maintained. In the high level
security filter, each record may have a plaintext
search field which is included in the checksum cal-
culation for that record. Instead of placing the
actual plaintext search key in that field, a substitu-
tion can be performed before the security filter caI-
culates the checksum. The database management
system then creates its B-Tree based on the values
in the plaintext substituted search key. Since the
substitution using the sum of treatments preserves
the ordering of the original search keys, the shape
of the B-Tree would be the same as in the case
when no substitution was performed. The sum-
mation of the treatments in the blocks or lines is
by no means the only way to disguise search keys.
With a search key being associated to a. line, and
thus to a set of “integer” treatments, many other
substitution methods can be devised based on the
treatments.

56

5 Encryption of Tree Point-
ers, Data Pointers and Data
Blocks

There are a number of ways in which the triplet
(k~,a~,p~) can be encrypted. However, as men-
tioned earlier, increase in flexibility is obtained
when the search key kb is not encrypted The tree
pointers pf and data pointers at remain encrypted
as in [5] together with the node block number.

Currently, two of the most commonly used
cryptosystems are the Data Encrypted Stan-
dard (DES) [ll] and the Rivest-Shamir-Adleman
(RSA) [12] cryptosystem. The DES can be used to
encrypt data segments or blocks of 64 bits, while
the RSA cryptosystem can encrypt any data seg-
ments of length less than its modulus N. In this
paper we consider the use of the RSA cryptosys-
tern (or exponentiation modulus) for the encryp-
tion of the tree and data pointers. This choice is
motivated by the fact that this cryptosystem is be-
coming increasingly available on hardware imple-
mentations, which may be suitable for low levels
accesses to the disk blocks in the database sys-
tem. In addition, the properties and weaknesses
of the RSA cryptosystem are widely known and
much research have gone into understanding the
cryptosystem.

The RSA cryptosystem is known also as a
“public-key” or “asymmetric” cryptosystem, and
a number of possible attacks have been suggested
and are discussed in [13]. These attacks are usually
performed using the publicly known information,
such as the modulus N and the public encryp-
tion (or decryption) key. Note, however, that the
strength of the RSA cryptosystem is “increased”
when it is used not in the usual public-oriented
manner. More specifically, when the RSA cryp-
tosystem is used to encrypt a message and none of
the encryption parameters are made public, then
the attacks by opponents are made considerably
harder. The opponent may not even start to solve
the factorization and discrete logarithm problems,
since there is no public information available ex-
cept for the cryptograms. A multilevel organiza-
tion of encryption keys based on the RSA cryp-
tosystem is presented in [14]. This multilevel

scheme can be applied to the encryption of the
tree and data pointers in the B-Tree, and also
the data blocks. It may also allow each triplet
in a node block to be assigned a security level, re-
stricting access to da,ta by users of lower security
clearances.

The encryption algorithm used for the encryp-
tion of data blocks can be different and indepen-
dent to that used for the tree and data pointers
in the node blocks. Having a different encryption
algorithm or a different set of encryption param-
eters may provide better security. The compro-
mise of node blocks will only provide the location
of data blocks, and such a compromise may not
necessarily aid the opponent in breaking the data
blocks. Note, however, that the compromise of the
B-Tree node blocks can lead to the compromise of
the search key substitution parameters. The il-
legal reconstruction of the whole B-Tree may in-
evitably show the substituted search keys in the
B-Tree, and the opponent can proceed to deduce
the possible values of the original search keys.

6 Remarks and Conclusion

In this paper we have suggested a method to sub-
stitute search keys in the context of the encipher-
ment node blocks in a B-Trees. This method is
based on the use of combinatorial block designs.
The main aim of the search keys substitution is
to allow faster traversal of the B-Tree by reduc-
ing the number of decryptions required in a given
node blocks. Search keys are substituted instead of
encrypted, and in determining the pa.th to follow
down the tree, comparisons of substituted search
keys is faster than decryptions. Given that an op-
ponent or attacker is trying to reconstruct the en-
crypted B-Tree, the substituted search keys will
not provide the correct shape of the original B-
Tree. This is also due to the fact that the tree and
data pointers are encrypted. Another advantage is
in terms of storage space. Substituted search keys
require less space than an encrypted search key.
Combinatorial block designs have been employed
as a method for substituting search keys. From
the security point of view the main advantage of
the method lies in the sma.11 amount of informa-

57

tion that needs to be stored, namely the block de-
sign parameters and the first block of the design.
The method is aimed at enhancing the encryption
algorithm employed for the encipherment of the
B-Trees, and not as a replacement the encryption
algorithm. The encryption algorithm that is used
to encrypt the tree and data pointers must be a
secure one. The encryption algorithm and param-
eters used for the encryption of node blocks can be
different to that used for data blocks. The method
of disguising search keys proposed in this paper is
by no means restricted to B-Trees, and it may be
applicable to other record maintenance schemes
used in database management systems.

Acknowledgments
The authors would like to thank Dr. Mirka

Miller for the valuable discussions concerning B-
Trees and for the comments and suggestions re-
garding the paper.

References

PI

PI

PI

PI

PI

D. E. Denning, “Field encryption and authen-
tication,” in Advances in Cryptology: Pm-
ceedings of CRYPT0 83 (D. Chaum, ed.),
pp. 231-247, Plenum Press, 1983.

D. E. Denning, “Cryptographic checksums for
multilevel database security,” in Proceedings
of the 1984 IEEE Symposium on Security and
Privacy, pp. 52-61, IEEE Computer Society
Press, 1984.

N. R. Wagner, “Shared database access using
composed encryption keys,” in Proceedings of
the 1982 IEEE Symposium on Security and
Privacy, pp. 104-110, IEEE Computer Soci-
ety, Apr 1982.

G. I. Davida, D. L. Wells, and J. B. Kam,
“A database encryption system with sub-
keys,” ACM Transactions on Database Sys-
tem, vol. 6, pp. 312-328, Jun 1981.

R. Bayer and J. K. Metzger, “On the enci-
pherment of search trees and random access

161

171

PI

PI

WI

WI

WI

P31

PI

files,” ACM Transactions on Database Sys-
tems, vol. 1, pp. 37-52, Mar 1976.

R. Bayer and E. McCreight, “Organization
and maintenance of large ordered indexes,”
Acta Informaticu, vol. 1, no. 3, pp. 173-189,
1972.

R. Elmasri and S. B. Navathe, Fundamentals
of Database Systems. Benja.min-Cummings,
1989.

A. P. Street and D. J. Street, Combinatorics
of Experimental Design. Oxford University
Press, 1987.

P. Dembowski, Finite Geometries. Berlin:
Springer-Verlag, 1968.

D. E. Denning, “Commutative filters for
reducing inference threats in multilevel
database systems,” in Proceedings of the 1985
Symposium on Security and Privacy, pp. 134-
146, IEEE Computer Society Press, Apr
1985.

NBS, “Data Encryption Standard DES.”
FIPS PUB46, US National Bureau of Stan-
dards,Washington, DC, January 1977.

R. L. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and
public-key cryptosystems,” Communications
of the ACM, vol. 21, pp. 120-128, Feb 1978.

J. Seberry and J. Pieprzyk, Cryptography: An
Introduction to Computer Security. Sydney:
Prentice Hall, 1989.

T. Hardjono and J. Seberry, “A multilevel
encryption scheme for database security,” in
Proceedings of the 12th Australian Computer
Science Conference, (mllongong), pp. 209-
218, Feb 1989.

