
Situation Monitoring for Active Databases?

Arnon Rosenthal’. Sharma Chakravarthy’. Barbara Blaustein’

Xerox Advanced Information Technology
Email: <lastname>@xait.xerox.com

JosC Blakeley
Texas instruments Information Technologies Laboratory

MS 238. P.O. Box 655474. Dallas. TX 75265 Email: blakeleyQcsc.ti.com

Abstract
paper is concerned with ways of specifying situations and
evaluating them efficiently. The techniques described in
this paper were developed as part of the HiPAC (High Per-
formance Active) DBMS. a prototype active DBMS
(DAYA88a. DAYA88b. CHAK89], parts of which have
been implemented. However. the algebra and transforma-
tions described in this paper can be applied more generally.
The situation evaluation mechanism can either be a com-
ponent integrated tightly with a DBMS. or coupled with a
heterogeneous array of applications or databases that sig-
nal it when specified events occur.

We present a basis for efficiently evaluating the situation
(event and condition) portion of situation/action rules.
either in an active database or in a standalone situation
monitor. A common framework handles situations involv-
ing both database changes and nondatabase situations. We

introduce ARelations to represent net changes to a stored
or derived relation. We define an operator that computes
ARelations for derived relations. Evaluation of expres-
sions involving changes is optimized by defining incremen-
tal forms of relational operators and by providing a chain
rule that extends incremental computation to data derived
by arbitrary expressions.

1. Introduction

An active Database Management System monitors
situations triggered by events representing database

updates or occurrences external to the database. This

‘Address: 4 Cambridge Center. Cambridge MA 02142
2Address: 1800 Diagonal Road, Alexandria VA 22314

tThis work was supported by the Defense Advanced
Research Projects Agency and by Rome Air Development
Center under contract No. F3OGO2-87-C-0029. The views
and conclusions contained in this paper are those of the
authors and do not necessarily represent the official policies
of the Defense Advanced Research Projects Agency. the
Rome Air Development Center. or the U.S. Government.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
direct commewial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Bose
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

We use the relational model to specify situations and
operations - all data objects will be relations. and all
operators will map relations to relations. The relational
model is not essential to our approach. but it simplifies the
representation of database changes. allows use of the rela-
tional algebra, and avoids the need to explain the seman-
tics of a particular object model.

1.1 Expressing Events and Situations

The problem addressed in this paper is the expression
and evaluation of a single situation. A situation is an

. event/condition pair. An event may be a combination of
more primitive pre-defined events. Informally. a situation
describes a logical condition to be evaluated when one or
more of a set of pre-defined events occur. Each situation is
associated with a set of actions to be taken depending on
the result of evaluating the condition.

An event is typed and associated with a relation
scheme that describes certain data relevant to the event.
In Example 1.1. the event of checking the status of a net-
work link is related to a relation scheme including link
identification. occurence. and severity information. An

occurrence of an event is reported in a signal- a message
that includes a signal relation (conforming to the event’s
associated relation scheme). The signal relation contains
information about this particular event occurrence. and

Amsterdam, 1989

- 455 -

may also include some information obtained from the data-
base at the time of the event. We require that signal rela-
tions be nonempty. (If an event does not generate data, a
dummy value is passed.)

The condition part of a situation is a relational
expression whose inputs are: 1)signal relations from events
in the situation’s event set, and 2)zero or more database
relations. The condition is evaluated when one or more
events in the situation’s event set have occurred. The
situation fires (i.e.. the action is invoked) if the condition
result is a nonempty relation; the condition result is made
available to the action.

1.2 The Evaluator

The situation evaluation component of the system.
the evaluator. is kept simple by limiting its concerns. We
depend on event detectors to detect events and send sig-
nals. (Any piece of software/hardware that sends event
signals is an event detector.) The signals are collected and
sent to the evaluator. The evaluator produces a signal
that causes invocation of the appropriate action(s). The
signal relation of this signal may be used by the action(s).

The major data structure used by the evaluator is a
directed acyclic signal graph (shortened here to graph).

that represents a situation. This is an operator graph. in
which nodes represent relations: a leaf is bound either to
an event (and its signal relation) or to a database relation.
To aid in execution. nodes and edges on paths upward
from event leaves are called active: the remainder are
called passive. The value associated with each node is
defined (though not necessarily computed) by the usual
operator graph rule of bottom-up execution.

Because situation evaluation imposes overhead on
every database update and other primitive event. it must
be very efficient. The challenge is that the number of
situations may be large. and some may require disk
accesses or extensive calculations.

We show two situations that might be defined for a
network-control application. We assume that a status-
checking program examines the state of links. and occa-
sionally sends a signal “Link-Status”. listing all interesting
test results. Note that this situation involves an event
that does not necessarily do a database update. and that
the condition uses an ordinary relational operator.

Example 1.1: Severe Failures

Event: Link-Status with relation scheme
[Link#, Occurrence-Type, Severity]

Condition: Select(,,,,ity,S)(Link-Status)

For the signal relation X(link1, occ-a, 11,
(link2, occ-b,6)). the condition evaluates to
f(link2, occ-b, 6)). The situation fires. and makes
this result available to the action.

For the next example. assume that the database contains
a relation Link-Technology [L#, Mode] that describes
the implementation of each link. The join query below
combines the incoming signal with database information.

Example 1.2: Severe Failures on Microwave
Links.

Event: Link-Status with relation scheme
[Linki), Occurrence-Type, Severity]

Condition:
Join[Select,5,,,ity,S)(Link-Status).

Select(~~e=~miuowave.)(lillk_Technology).

Link-Status.Link# = Link-Technology.L#]

51 (Linlrz,oc~-b,6,link2,'microwave‘)

Figure 1: Signal Graph for Example 1.2

- 456 -

Figure 1 shows the signal graph for Example 1.2.
The figure also shows the node values that would be com-
puted during graph execution. Note that values need not
be computed for all the passive nodes (shown with dashed
lines). For example, if Link-Technology is a large rela-
tion, it is not advisable to explicitly evaluate
Select Made=.micr,,wave. (Link-Technology). Note also
that if the output of Select,s,v,rity,5) (Link-Status)
had been empty. it would be unnecessary to examine any
node above it.

Section 2 describes operators that express situations
involving database changes. Section 3 discusses optimiza-
tion techniques for such situations. and general techniques
for optimizing signal graphs. Section 4 discusses related
work and presents our conclusions.

2. Database Changes

We now define a relation. called a ARelation. that can
represent changes to another relation, and operators for
manipulating such relations. We look at the net additions.
deletions. and modifications to the relation instance. We
do not look at individual operations. The goal is a unified
treatment of changes, not separate treatments of inser-
tions. deletions. and modifications resulting in several algo-
rithms for generating and combining individual results.
Section 2.1 describes conventions satisfied by Arelations
that represent changes. and gives some basic manipulation
operators. Section 2.2 discusses an operator that exam-
ines updates to some of the objects underlying a derived
relation (e.g.. view), and determines the corresponding
change to a derived relation. Section 2.3 describes efficient
ways of implementing this operator. both for familiar rela-
tional operators and for arbitrary relational expressions.

Let R denote a relation scheme specifying a set of
attributes and let R denote a relation (or. more precisely. a
relation instance of R) consisting of a set of tuples whose
values are taken from the domains of the set of attributes
of R. t.A denotes the value of attribute A for tuple t.
Each tuple has an attribute (denoted tid) that provides a
unique immutable identifier. We use relational operators
\m Select, Project (which discards tuples that are
entirely null), Join, Outerjoin, Difference, and
Union. The unique tid makes it easier to connect tuples
that hold values of the same object before and after
changes: we will assume that every updatable relation
includes the tid column that provides a unique immutable
identifier. For readability, pairs of parentheses may be

denoted either as “(...)” or as “I...]“.

2.1 Representation and Basic Manipulations

To provide a single object that captures an arbitrary
change to a relation. we introduce the concept of a ARela-
tion. For each relation scheme R 3 (tid. A,.. . . , A,),
define scheme AR to be (7id. -A,.. ,-A,, tid’, A,“..
. , An-). When a ARelation represents changes. attribute
names with a --sufhx (e.g., A”) refer to new attribute
values. and attribute names with a ‘-prefix (e.g., “A) refer
to old attribute values. In any tuple t. if both t.tid- and
t.-tid are non-null. they must be equal: if t.tid” is null, so
are all t.Ai’: if t.“tid is null. so are all t.-Ai. 1 I i 5 n:
?.tid and t’.tid cannot both be null: no tid can appear in
multiple rows (even in different columns).

ARelations can represent tuples (or objects) where
only the tid field is nonnull. Jointid is used to indicate a
join that uses predicate [‘Iid=tid’]. ’

Example 2.1 shows a ARelation that expresses
changes due to a transaction. A ARelation can be parti-
tioned horizontally. i.e.. expressed as the disjoint union of
insertions, deletions. and modifications. (For insertions.
the *-prefix attributes are null: for deletions the ‘-suffix
attributes are null).

Example 2.1: Consider the Employee
relation EMP and the transaction T:

EMP tid Name Salary

6123 Joe 30k
0456 Lynn 40k
0321 Ann 28k

Transaction T:

CModify(Ol23, new-tuple = (Qi23, Joe, 33k));
Insert (Q789, Ed, 25k);
Delete (0456))

The following ARelation (here called AEMP)
captures the changes that T makes to EMP:

'tid 'Hame 'Salary tid' Name' Salary'

0123 Joe 30k 0123 Joe 33k
Q789 Ed 25k

Q456 Lynn 40k - -

- 457 -

To express conditions that involve changes, we pro-
vide several operators that manipulate ARelations. Here
we describe some basic operators; the next section uses
them to define a more powerful construct.

We first define renaming functions that add or delete
tildes from attribute names in a relation scheme. Let R =
{tid. A,. A,. A,}. Then pretilde(R) = {‘tid. *A,.

&."so a”R = pretilde(R) U postilde(R).
‘A }, and postilde(R) = {tid”. A -. A,“.

We define analogous renaming functions on relation
instances. If R is a relation. pretilde(R) is the relation with
the same tuples. but with all attribute names preceded by
a single tilde (and similarly for postilde(R)). For relations
where all attributes have pretildes. or all have postildes.
untilde removes tildes from all attribute names.

The next set of operators project the old or new tuple
values from a ARelation. Some of the operators are illus-
trated in Exampie 2.2. Removals' takes a ARelation
and returns the relation consisting of tuples removed by
either deletion or modification. Removals returns the
corresponding relation without the “-prefix on attribute
names. Additions' returns the relation consisting of
tupies added by either insertion or modification. and Addi-
tions returns the corresponding relation without ‘-suffix.
Formally.

Removals' = Project[AR. pretilde(R)]
Removals = untilde[Removals'(AR)]
Additions'(AR) 3 Project[AR. postilde(R)]
Additions(AR) = untilde[Additions'(AR)]

Example 2.2
Remavals'(AEMP)

'tid -Name -Salary

Q123 Joe
6456 Lynn

30k
40k

Additions (AEMP)
tid Name Salary

0123 Joe
0789 Ed

33k
25k

The main use of ARelations is to represent the net
effect of a collection of updates to a relation. In such
cases. if the “before value” is the relation R. the updates
will be represented as AR. and the updated relation will be
denoted R’. We now define operators that relate these
three values.

Definition: The pair (R. AR) is composable if:
(1) The relation scheme for AR is pretilde(R) u

postilde(R);
(2) Removals c R. : and
(3) Additions(AR) n R = 0.

Composability requires thar the ARelation contain
only the net updates. The restrictions can be loosened
somewhat, at the cost of some extra complications for
Compose and other operators. If the restrictions are
sufficiently loosened, a ARelation will resemble an
undo/redo log.

Definition: Suppose the pair (R. AR) is composable.
Then define
Compose(R. AR) = (R - Removals(u

Additions(AR).
The result will often be denoted R’.

Example 2.3: Given EMP and AEMP as in
Example 2.1:

EMP' z Compose(EMP, AEMP)

EMP' tid Name Salary

0123 Joe
0789 Ed
0321 Ann

33k
25k
28k

Definition: Adifference takes any pair (RI. RJ
of relations on the same scheme. and produces a ARela-
tion that describes their differences. Null values are used
to pad tuples that appear in only R, - R, or R, - R,. It
can be expressed as the Outerjoin of tuples in R, - R,
(supplying the ‘-prefix attributes) and R, - R, (supplying
the ‘-suffix attributes). That is.
Adifference(Ri.R2) E

Outerjoin,id[pretilde(RI - R2), postilde(R2-RI)]

The following lemmas show some of the algebraic
properties of these operators.

lemma 1A:
AR= Outerjoi~[Removalsw(AR). Additions'(AR)]

lemma 16: For any relations R, and R, having the same
scheme, Compoee[R1. Adifference(R1. R2)] = R,

- 458 -

2.2 The Changes Operator

We now introduce a new high-level operator. called
Changes. to express how a derived relation (e.g., view)
changes when at least one of its input relations changes.
Let E denote an algebraic expression that defines a derived
relation, and let E denote the scheme of the relation pro-
duced by E. The output of the Changes operator is a
ARelation with scheme AE. Changes can be useful in
writing situations. and is easy for a compiler to recognize
and optimize.

Notation: Let E(R,. R,,) denote an expression defined
on relation schemes R,...R,; let each Ri denote an arbi-
trary relation: let ARi denote a relation that is composable
with Ri. and let Rei denote Compose(Ri. ARi). A pair L =
{(Ri. 1 5 i 5 n). (ARi. 1 5 i 5 n} is called a substitution
list.

Definition:
Changes(E; L) = Adifference(E(R1..... R,), E(R’l.....R’,))

lemma 2: Let AR be composable with R. Then
ChangesIR: (R. AR)] = AR

The following lemma states that Changes(E: L)
correctly computes the changes to the relation derived by
E.

lemma 3:
E(R’,..... R’,)=Compose(E(R,.....R,)), Changes(E: L))

Example 2.4 High-Salaried Employees
Consider the EMP and AEMP relations in Example
2.1. To monitor changes to the view
High-Salary-EMP = Select,Sa,ary,32k,(EI\IP). define
the situation:

Event: Update to El@
Condition: Changes(High-Salary-ElrlP; [EMP, AEMP])

Substituting the definition of High-Salary-EMP. the
condition becomes Changes(Select(S,,,,y,32k,: [El@,
AEMP]). The result of evaluating this condition for the
updates of Example 2.1 is given by the relation

-tid -Ilame -Salary tid- Name’ Salary-
0123 Joe 33k

Q456 Lynn 40k - - -

If the user wants to monitor all changes to a view.
there is no need to specify explicitly which base-relations’
updates should be monitored - in fact. encapsulation is
improved if the system rather than the user fills in that

list. The explicit form allows specification of a situation
that monitors changes caused only by certain kinds of
events (e.g.. an abstract event Hire-Employee).

3. Optimizations

Efficiency is critical to situation monitoring, but
evaluation of Changes directly from its definition is very
inefficient. requiring retrieval or materialization of Ri and
R’i. for all i. This section describes three ways in which
the evaluator’s performance can be improved. The first
two subsections define transformations on expressions
involving the Changes operator. Section 3.1 presents
efficient “incremental” implementations of Changes(F: L)
where F is Select, Project, or Join: Section 3.2 treats
the case where F is an arbitrary expression. It describes a
chain rule that obtains an incremental form of F by com-
posing incremental forms of the operators within F. Sec-
tion 3.3 discusses issues involved in determining execution
strategies for signal graphs.

3.1 Incremental Operators

For many operations F. Changes(F: L) can be com-
puted more efficiently than by evaluating the definition for
Changes. These computations use ARelations heavily
(and sometimes exclusively), instead of computing on
database relations. which tend to be much larger.

We study instantiations of Changes(F: L) for partic-
ular operations F. Define the incremental form for F as
the operator IncrF(substitution list) --> (ARelation)
where IncrF(L) z Changes(F; L)

If the optimizer has been informed of an efficient
implementation for IncrF. it will use that in place of
Changes(F: L). Many authors (e.g., [KOEN81. BLAK86])
have defined efficient incremental forms of Select. Pro-
ject, and Join to deal with insertions or with deletions or
with modifications. Here we show efficient implementa-
tions of IncrSelect. IncrProject. and IncrJoin that
handle an entire ARelation as a unit.

An extensible active DBMS would allow users to
define new incremental forms. For example, the definer of
a new function could be invited to provide an incremental
form, which the DBMS would then register with the
optimizer.

- 459 -

Incremental Select: Let pred denote a predicate defined
on R. and Select+,,,, denote the associated selection
operator. Let ‘pred and pred- denote the predicates
obtained from pred by replacing each attribute by its --
prefix (respectively. ‘-suffix) form.

The following formulas give an implementation of
IncrSelect that does not reference the base relation. Let
AS G IncrSelectp,d(R.AR)).

Sl= Select-
s2=

pred(Removals-(AR))

AS=
Selectp,,d- (Additions'(AR))

Outerjoix+,(Sl. S2) /* by lemma 1A */

Note that Sl and S2 represent Removals" and
Additions'(AS). respectively. The expression for
IncrSelect can be implemented by one pass over AR.
determining for each tuple of AR whether it induces an
insertion. deletion. or modification to Select(R). The
proof that the above formulas are indeed implementations
of Changes(Selectp,dicat, (R): [R. AR]) appears in the
appendix.

The optimizer transforms signal graphs. replacing
changes by efficient incremental forms. Figure 2a shows
the initial signal graph, and Figure 2b shows the final sig-
nal graph, for Chauges(High-Salary-Emp; [Emp. AEMP])
from Example 2.4.

EMP AEMP

Figure 2a: Initial Signal Graph of
Situation in Example 2.4

Incremental Project. Let A = {AI....Ak} denote a subset
of the attributes in R. where tid E A. IncrProj(AR. A)
ZG Changes[Project(R. A); (R. AR)]. Let the predicate
“differ” state that for some attribute Ai in A. t.“Ai differs
from t.Aei. Then an efficient implementation of IncrProj
is to select tuples for which at least one attribute has
changed. i.e.,

IncrProj(AR.A)= Select,,ifier[Project(AR.'A u A’)]

(I> IncrSe1'%lary>32K

Figure 2b: Optimized Signal Graph of
Situation in Example 2.4

Incremental Join. In the case of join. changes to the
resulting relation can be induced by changes to either of
the individual operands or to both of them. First. suppose
that just R, changes.

Let join-pred denote a predicate on R, and R,; and
let tid, E R, and tid, E R,. respectively. Let ‘join-pred
(join-pred’) denote th e predicate obtained from join-pred
by replacing each attribute by its “-prefix (“-suffix) form.
Then
LeftIncrJoin(ARi. R,. join-pred)=
Outerjoin(

Pretilde[Join(Removals(ARi). R2.join-pred)].
Postilde[Join(Additions(ARi). R2.join-pred)].
(?id, = tid,*) AND (‘tid, = tid2-))

RightIncrJoin(Ri. AR,. join-pred) is defined simi-
larly, for the case where just R, changes. IncrJoin.
defined below. is used when both R, and R, change. To
capture the interaction of simultaneous changes to R, and
R,. the notation Both(AR1.AR2.join-pred) denotes
Outerjoin[

Join(Removals"(AR1). Removals'(ARz). ‘join-pred).
Join(Additions'(ARi). Additions-(ARZ). join-pred’).

(“tid, = tid,‘) AND (‘tid, = tid,*)]

We can now express IncrJoin([Ri. R,. AR,. AR,].
join-pred) as

LeftIncrJoin(ARi. Rz. join-pred) u

RightIncrJoin(R1.AR2. join-pred) u

Both(AR,.AR,. join-pred)

3.2 Transforming Expressions
Inside Changes

The Chain Rule is an identity that is used to create
an incremental form of an algebraic expression (denoted

- 460 -

Expr) from incremental forms of its constituent operators.
Each application of the chain rule moves the outermost
operator of Expr outside Changes. Where Expr is a single
function F. recall that Changes(F. L) = IncrF(L).
Applying the chain rule repeatedly and using this base
case. the optimizer removes all appearances of the special
operator Changes. We present the identity only for the
case where the root of Expr is a unary operator (denoted
F). so that Expr can be written as a composition of func-
tions. denoted F ’ G. Let [RList. ARList] denote the
substitution list L.

Chain Rule:
Changes (F ’ G: [RList. ARList]) =

IncrF (G(RList), Changes(G: [RList. ARList]))

The chain rule is proved in the appendix. There are
three benefits to using the chain rule to open up the
Changes expression. 1) IncrP now appears explicitly.
and it may have an efficient implementation. 2) IncrF
now needs to be executed only if Changes(G; [RList.
ARList]) is non-empty. 3) It may be easier to derive
optimizing transformations (e.g., Selections before Outer-
joins) using the incremental forms that replace the
Changes operator.

We will illustrate this with an example. Consider rela-
tion Sensor-Data[tid, Temperature, Pressure,
other-attributes]. Let Filter denote a user-defined
function that removes outliers and smoothes the data in a
relation with schema [tid, Temperature, Pressure].
And let ProjTp denote the operator

Project[tid Temperature. Pressure]

Example 3: Change To Filtered Temperature/
Pressure

Event: Update to Sensor-Data
Condition:
Changes(Filter ' ProjTp:

[Sensor-Data. ASensor-Data])

If we apply the chain rule to the outermost
operator (i.e.. Filter). we get the Condition:
Incr-Filter[

ProjTP(Sensor-Data). Changes(ProjTp;
[Sensor-Data. ASensor-Data]]

We now replace the inner projection by its incremen-
tal form, to obtain

IncrFilter(
Pro jTp(Sensor-Data). IncrProjectTp
(Sensor-Data. ASensor-Data]

IncrProjectTp does not need the base relation
Sensor-Data as an input. The result is the signal graph of
Figure 3.

The chain rule has permitted two major improve-
ments in the execution strategy. First. IncrFilter need
not be evaluated if output of IncrProjTp is empty.
Second. it exposed Changes(ProjTp; [...I) so that it could
be replaced by IncrProjTp.

IncrFitter 0
,d \

Figure 3: Optimized Signal Graph of
Filtered Sensor Data

3.3 Compilation and Evaluation of Situations

Once a final signal graph has been obtained. it is
necessary to determine its execution strategy. A good
execution strategy will exploit the expected small size of
signal relations and relations derived from them.

A leaf of the signal graph that corresponds to an
event’s signal relation is called active. Any node or edge
that is on a directed path from an active node is also called
active. Other nodes and edges (Le.. those defined strictly
over stored relations) are called passive.

The passive/active distinction leads to the following
simple guidelines for execution strategy:

l For many multi-input operators (e.g.. Join,
Changes), when the active input is 8. the result is
0.

l Complete evaluation of passive subgraphs is often
unnecessary.

l Active nodes often have much smaller relations than
passive nodes. Furthermore. they are often com-

- 461 -

puted directly from a signal and hence require no
disk accesses. Therefore nested-loops is often a
good implementation for a join operator. It requires
accessing only those of the inner-relation’s tuples
that match a tuple from the outer relation (assuming
that an index is available). For instance. in Example
1.2. the Link-Technology relation may contain
thousands of microwave links. but only the tuple for
link2 is required for the join.

There are two architectural approaches to finding exe-
cution strategies. The first approach is simply to use the
heuristics mentioned above, plus perhaps some other sim-
ple ones (e.g., Select before Join. cheap selection predi-
cates before expensive ones). This approach might be
most appropriate if one did not have access to an appropri-
ate query optimizer.

An alternative approach is to have a DBMS query
optimizer generate the strategies. The signal graph can be
regarded as a query to a database that consists of data-
base plus signal relations. Given statistics on signal rela-
tions (i.e. their expected small size and lack of indexes).
the optimizer will presumably select nested-loops imple-
mentations. A further benefit is that the DBMS will sup-
ply implementations of relational operators (selection. pro-
jection, etc) and an interpreter for the strategies that are
produced; otherwise we need to implement these capabili-
ties as part of the situation evaluator.

But there are also serious drawbacks to using a con-
ventional DBMS - software integration and efficiency.
Software integration may be difficult or impossible with a
non-extensible DBMS. One must find a way to add opera-
tors that manipulate ARelations. and to accept operator
trees as input (rather than SQL). Efficiency is a problem
if signals that originate in main memory need to be stored
on disk to appear in DBMS queries. Also. existing optim-
izers may not do a very good job of exploiting a node value
of 0. an occurrence that may be more common in situa-
tion evaluation than for ordinary queries.

4. Summary

4.1 Related Work

Work related to condition monitoring is found spread
over several traditional problem areas of the design of
database management systems. Such areas include
integrity constraint enforcement, support of views. triggers

and alerters. rule management, and production systems in
general.

Recent contributions include [STON87. DARN87.
DITT86]. [STON87] triggers condition evaluation upon
database operations, and for a pre-defined set of other
events (e.g.. date). Conditions are expressed in QUEL.
and therefore can be evaluated by the regular query pro-
cessor. [DITT86] separates events from actions and
triggers are defined explicitly using an event, action pair.
Our work separates events. conditions, and actions expli-
citly and the emphasis is on optimizations and algebraic
structure. [DARN871 describes a commercial implementa-
tion (Sybase). Events are limited to inserts, deletes, and
modifies, described by a structure resembling a ARelation.
Our approach generally differs in that we have provided
special constructs to make it easier to express situations
involving database changes, and to optimize them. Data
from user-defined events may be referenced in conditions.

An algorithm to incrementally compute the changes
on materialized views defined by Select. Project, and
Join is described in [BLAK86]. However, that paper does
not address the issues of representation for database
changes (i.e. ARelations). changes to general expressions.
and optimization of the expressions that compute the
changes. [KOEN81] transforms programs containing data-
base update operations so that they will maintain derived
data. The transformations require recompiling the pro-
gram; also, Insert. Delete, and Modify are not given a
uniform treatment.

4.2 Conclusions

In this paper we have presented key concepts of a
situation evaluator for HiPAC. The main contributions of
this paper are:

. a unified treatment of database updates and nonda-
tabase events. This allows the situation evaluator
to be implemented in any system that provides the
desired event detectors.

. ARelations as a compact representation for all data-
base updates. Even transition constraints requiring
values from different database states can be natur-
ally expressed using Changes and Arelations.

. an algebra for computations about database
changes. The algebra includes efficient implementa-
tions of incremental forms of familiar operators and
accommodates user-defined operators. Previous
work generally provides a separate form for inser-
tions, deletions, and modifications. but one transac-
tion can include all three.

- 462 -

l the Chain Rule as a key transformation in optimizing
changes to views. With the exception of [KOEN81].
most previous work is limited to
Select/Project/Join expressions; we make
improvements even with user-defined operators.

Promising areas for future work include: materialized
data for condition monitoring: rules to maintain derived
data: dispatching strategies for accumulating update
events before evaluation: a generalized chain rule for n-ary
functions: and simultaneous evaluation of multiple condi-
tions. Larger problems include transposing situation
evaluation techniques to distributed and object-oriented
systems.

5. Acknowledgements

The authors appreciate the helpful suggestions of the
anonymous referees. The authors would also like to thank
Dr. Alex P. Buchmann for his comments on earlier ver-
sions of this paper.

6. References

[BLAK86] J. A. Blakeley. P. Larson. and F. W. Tompa..
Efficiently Updating Materialized Views. ACM SlGMOD
Con& pp. 61-71, Washington. D.C. (May 1986).

[CHAK89] Chakravarthy. S.. et al.. HiPAC :A Research
Project in Active, Time-Constrained Database Manage-
ment. Final Project Report. XAIT. 1989.

[DARN871 M. Darnovsky, J. Bowman. “TRANSACT-
SQL USER’S GUIDE.” Document 3231-2.1. Sybase Inc.
1987.

[PA’dACQa] Dayal. U.. et al., The HiPAC Project: Combin-
ing Active Databases and Timing Constraints. ACM SIG-
MOD Record, March 1988.

[DAYA88b] U. Dayal. Active Database Management Sys-
tems. Conf. of Data and Know/edge Bases. Jerusalem.
1988.

[DITT86] K. R. Dittrich. A. M. Kotz. J. A. Mulle. “An
Event/Trigger Mechanism to Enforce Complex Con-
sistency Constraints in Design Databases,” SlGMOD

Record 15. No. 3. 1986. pp. 22-36.

[KOEN81] S. Koenig and R. Paige.. A Transformational
Framework for the Automatic Control of Derived Data.,
In VLDB Conf.. pp. 306-318. Cannes. (1981).

[STON87] M. Stonebraker. M. Hanson. S. Potamianos.
“A Rule manager for Relational Database Systems.”
Technical Report. Dept. of Electrical Engineering and Com-
puter Science. Univ. of California. Berkeley. 1987.

Appendix

Proof of IncrSelect identity: To shorten the formulas,

we will use D to denote Select pred and aR to denote

Select pred(R). From the definition of Changes we have:

Changes(uR:[R.AR]) =

Adifference[uR. a(Compose(R. AR))]. We need to

show that this equals the expression given for IncrSel.
From the definition of Compose. this equals:

Adifference(aR.
a[(R -Removals(AR))UAdditions(AR)])

Substituting the definition of Adifference. we obtain:

Onterjointid(
(uR - u[(R -Removals(u Additions(AR)]).

(u[(R -Removals(U Additions(AR)] -u(R)))
Now by the distributive law of selection over difference and

union. we pull out each selection. to obtain:

Onterjoingd(
u(R - [R -RemovaIs(AR) U Additions(AR)]).
o([R -Removals U Additions(AR)]- R))

This simplifies to the formula for IncrSel(AR. pred):

Cnterjoin(u(Removals(AR)).u(Additions(AR)))

Proof of Chain Rule: We need to show:

Changes (F ’ G: [RList. ARList]) =

IncrF(G(RList). Changes(G: [RList. ARList])).

Let RHS denote the right hand side of the equality to be

demonstrated. Substituting the definition of IncrF:
RHS =

Changes(F: [G(RList). Changes(G; [RList. ARList])])

Replace the “inner” Changes by its definition. to get:

Changes(F: [G(RList).

Adifference(G(RList).

G(Compose(RList.ARList)))]).

- 463 -

Now replace the “outer” Changes by its definition:

RHS = Adifference(F(G(RList)).

F(Compose[G(RList).

Adifference(G[RList].

G[Compose(RList. ARList)])]))

We now apply Lemma 1B with G(RList) in the role of Rl

and G[Compose(RList. ARList)] in the role of R2:

RHS = Adifference[F(G(RList)).

F(G[Compose(RList. ARList)])].

This expression is just Changes(F ’ G: [RList. ARList]).

- 464 -

