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Abstract 

A method is described for actively interfac- 
ing an Object-Oriented Database Manage- 
ment System (OODBMS) to application pre 
grams. The method, called a database moni- 
tor, observes how values of derived or stored 
attributes of database objects change over 
time. Whenever such a value change is ob- 
served, the OODBMS invokes tracking pro- 
cedures within running application programs. 
The OODBMS associates tracking procedures 
and the object attributes they monitor, and it 
invokes appropriate tracking procedures when 
data changes. Use is made of atomic transac- 
tions in the OODBMS. 
The applicability of monitors is localized both 
in time and space, so that only a minimal 
amount of data is monitored during as short 
a time as possible. Such localization reduces 
the frequency of tracking procedure invoca- 
tion, makes it easy to add and remove mon- 
itors dynamically, and permits efficient imple- 
mentation. 
To demonstrate these ideas, an implementa- 
tion is described for the Iris OODBMS [lo]. 
The implementation uses a technique of partial 
view materialization for efficient implementa- 
tion. 

1 Introduction 

Database monitors are computer programs that observe 
changes in the contents of database objects, e.g. the 
current price of some commodity or the location of some 
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ship. In addition to stored facts one often wants to mon- 
itor derived information, e.g. the highest paid employee 
in a department or the expenses of a department rela- 
tive to its sales. Other monitoring applications include 
real time systems where a process is invoked or where 
a user is alerted upon pre-specified data changes. The 
need for similar concepts has been indicated by others 
[7, 18,, 20, 30, 311. 

The monitoring mechanism described in this paper is 
integrated with the Iris object-oriented database system 
[lo]. In Iris, both derived and stored object attributes 
can be defined using functions expressed by an object- 
oriented query language, OSQL [3]. 

A tracking procedure is a procedure in a running ap 
plication program to be invoked if the value of an as- 
sociated object attribute has changed because of state 
changes to the database. We use OSQL to specify the 
derived or stored associated attribute. The DBMS does 
not transmit monitored data to tracking procedures; 
it merely signals that the state of derived data has 
changed by invoking tracking procedures. It is up to 
the tracking procedures to retrieve data by accessing 
the database. Possible tasks for tracking procedures in- 
clude notifying the end user that data have changed, re- 
freshing data browsers, or passing information to other 
systems. In case the application program caches data 
retrieved from the DBMS, tracking procedures can be 
used to inform the application that pieces of the cached 
data have been invalidated by database updates, so that 
caches can be refreshed and computations dependent on 
the old caches can be undone. 

. 

In the architecture presented here, the DBMS 
stores associations between tracking procedures, the at- 
tributes they monitor, identifiers of application pr+ 
cesses, and the physical workstations in which they re- 
side. After the DBMS has detected changes in moni- 
tored data it uses this information to call the appropri- 
ate tracking procedures. We then say that the appli- 
cation process has been notified or that the DBMS has 
sent a notification to the process. 

In conventional database interfaces the DBMS be- 
haves as a ‘passive object’ in that an application pro- 
gram always must request service from the DBMS. With 
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monitors, the DBMS becomes an ‘active object’; a re- 
quest from an application process to the DBMS may 
result in procedure invocations in other application pro- 
cesses. 

Tracking procedure invocations can be either local or 
external. An invocation is local if the process contain- 
ing the invoked tracking procedure also requested the 
triggering database updates. An invocation is external 
if it is the result of a database update by some other 
process. External tracking procedure invocations do 
not occur until after the updates have been committed, 
while local invocations occur before the commit. Thus 
at the end of an update transaction, the DBMS first in- 
vokes local tracking procedures in the updating process 
and then immediately after the commit, the DBMS in- 
vokes external tracking procedures. The local tracking 
procedures are invoked synchronously, i.e. the system 
waits for them to return, while the external tracking 
procedures are invoked asynchronously and the system 
does not wait for them to return. Since a process may 
be performing unrelated work when the tracking proce- 
dure is invoked asynchronously, the system provides a 
no-interrupt option. In this mode the DBMS accumu- 
lates notifications and the application process can check 
for them synchronously. 

2 Related work 

This section discusses related techniques from several 
research areas. The database field has the notions of 
alerters, triggers, and integrity constraints, while the 
programming language field has the idea of active val- 
ues. These ideas are somewhat related to data driven 
expert systems. 

In [7] it is proposed that alerters be displayed when 
database updates cause certain boolean conditions to 
become true. This is a common special caSe of mon- 
itoring a boolean value. The RETRIEVE ALWAYS 
mechanism of Postgres [30] re-retrieves the results of 
queries into ‘portals’ associated with each client when- 
ever there is a data change. Our monitoring mechanism 
is different from the above methods because the DBMS 
calls procedures in the client processes instead of send- 
ing data. In addition we employ methods, described 
below, that localize the applicability of monitors both 
in time and space. 

Some DBMSs, e.g. System R [l], use database pro- 
cedures called ‘triggers’ that are invoked upon updates 
of either user-specified base relations or by other ac- 
tions [8, 161. The ECA model [8] is a generalization 
of triggers in which the programmer can declare a pre- 
condition for the trigger. Triggers can be chained so 
that one update triggers another. This is useful for 
maintaining integrity constraints. However, the compli- 
cated cascading of triggers can make the database struc- 
ture tangled and difficult to understand and maintain. 
Moreover, improper use of cascading triggers may slow 
down database updates considerably. In contrast, the 

invocation mechanism described here is non-procedural. 
The user specifies a database query whose value states 
are to be monitored, leaving the system to keep track 
of actions that may change a monitored state. In ad- 
dition, the system creates an optimized mechanism to 
invoke tracking procedures when appropriate. 

The technique called access-oriented programming, or 
‘active values’, used in object-oriented programming 
languages such as Loops [28] is similar to traditional, 
procedural database triggers. But unlike DBMSs, ac- 
tive values are restricted to a single-user environment. 
Active values typically set properties or display some 
value. It is important that active values can be dynam- 
ically added to and removed from running systems [21], 
so that their use does not interfere with the logic of the 
rest of the system. 

Declarative integrity constraint methods [4, 11, 18, 
20, 23, 27, 291 are related to the monitor model in that 
they monitor boolean conditions, typically cancelling 
the updating transaction if the boolean conditions are 
unsatisfied at commit time. Tracking procedures, by 
contrast, are local to the application program process, 
are active during limited time periods, are triggered by 
value changes of any data type, can perform many tasks, 
and can be invoked both locally inside the updating 
transaction and asynchronously in processes outside the 
transaction. The tracking procedure may cancel the 
transaction only when invoked locally. 

Database integrity constraints typically have perfor- 
mance problems [2]. The reason for this is that they 
may be very expensive to check for every update. Sev- 
eral techniques have been proposed to attack this prob- 
lem, e.g. limit the assertions so that only those relevant 
to the updates of the particular file are checked [ll, 191; 
symbolically simplify the constraints checked per file 
[7, 111; maintain intermediate aggregation data [4, 151; 
exploit semantic constraint simplification [23]; simplify 
and check all constraints after many updates [12]; dis- 
tribute constraints over several processors [24]; or auto- 
matically generate consistency maintenance code from 
declarative integrity constraints [18, 19, 20, 231. These 
techniques are applicable to the monitor model as well. 
The monitor model avoids the efficiency problems of 
global integrity constraints, by being localized both in 
time and in the amount of data monitored, and by al- 
lowing asynchronous execution outside updating trans- 
actions. 

Cactis [13] is an OODBMS to support software en- 
vironments in which each data item is time stamped 
when updated. This allows the system to know what 
to recompile when the user retrieves an object. By con- 
trast, our method checks if monitored data have actu- 
ally changed, in which case the tracking procedures are 
invoked. 

We may also contrast the present work with some 
data driven expert system tools like Syntel [Q, 25, 261 
and OPS5 (61. Syntel is a tight integration of a 
database, an expert system tool and a user interface, 
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specialized for financial applications. Syntel monitors 
a moderate amount of virtual memory data retrieved 
from persistent data and user input. In Syntel all shared 
data is passive, and there is no feedback from the persis- 
tent data to Syntel. By contrast, the method presented 
here monitors interactions between multiple users and 
their active and shared persistent large database inde- 
pendent of applications and user interfaces. The meth- 
ods presented here may be used to extend the scope 
of data-driven systems like Syntel or forward chaining, 
rule-based systems like OPS5, making it possible to de- 
sign systems where several expert systems cooperate. 

3 An example 

The following example of an Iris database will be 
used later to illustrate the monitor model. Assume a 
database of ‘Person’ and ‘Department’ objects with the 
attributes Name, Income, and Dept for objects of type 
Person and the attributes DeptName and Manager for 
objects of type Department. 

The objects types can be defined by the OSQL state- 
ments: 

create Type Person; 
create Type Department; 

The attributes of the above types are accessed using 
eztensional Iris functions with OSQL definitions: 

create Function Name(Person) -> String; 
create Function Income(Person) -> Integer; 
create Function Dept(Person) -> Department; 
create Function DeptName(Depaxtment) -> String; 
create Function Manager(Depsutment) -> Person; 

For example, given an object identifier (i.e. a surro- 
gate), p, for a person, we may access its income and 
department name by the OSQL queries: 

select Income(p); 
select DeptName(Dept (p>) ; 

We may also set the value of an attribute by OSQL 
statements, e.g.: 

set Income(p) = 41000; 

These statements define the object types Person and 
Department. Iris also allows different views of objects 
by defining intensional Iris functions. For example, we 
may want to work with a view of the Person object with 
the attributes Name, Income, DeptName (as a string), 
MgrName (as a string), EarnsMoreThanManager (as a 
Boolean), and ColleaguesEarningMore (as a set of tu- 
ples of their names and incomes). 

Such view of a Person object can be defined by the 
following Iris functions: 

create function Name(Person) -> String; 
/* extensional */ 

create function Income(Person) -> Integer; 
/* extensional */ 

create function DeptName(Person p) -> String 
as select DeptName(Dept(p)); 

/* intensional */ 
create function MgrName(Person p) -> String 

as select Name(Manager(Dept(p))); 
/* intensional */ 

create function EarnsHoreThanManager(Person p) 
-> Boolean 

as select where 
Income(Manager(Dept(p))) < Income(p); 

/* intensional */ 
create function ColleaguesEarningMore(Person p) 

-> <Person, Integer> 
as select each Person ~011, Integer inc 
where inc = Income(col1) and 

inc > Income(p) and 
Dept(col1) = Dept(p); 

/* intensional */ 

Thus an application may have the above view of the Per- 
son object, not even knowing how attributes are physi- 
cally stored. 

Iris functions can also have more than one argument, 
e.g. to retrieve those persons earning more than agiven 
income in a given department: 

create function HighInc(Department d, Integer i) 
-> Boolean 

as select each Person p 
where Income(p) > i and Dept(p) = d; 

4 Design overview 

We will now continue by discussing some critical aspects 
of the architecture: 

Efficiency is gained by minimizing the amount of 
monitored data and by allowing monitors to be ac- 
tive only while applications need them. 

We also gain efficiency by separately performing 
the expensive process of compiling monitor defini- 
tions, and storing the analyzed definitions in the 
database for later use. 

Application processes may’ receive asynchronous 
notifications while performing an unrelated task. 
Such processes will be interrupted by the DBMS 
to invoke the tracking procedures asynchronously. 
The DBMS does not wait for such asynchronous 
calls to return, to maximize system performance. 

Notifications of external tracking procedures must 
be delayed until just after transactions are commit- 
ted. 

The DBMS must handle distributed notifications 
to client processes executing on separate machines. 

Finally, we must efficiently detect when values of 
monitored queries have changed. 

- 447 - 



4.1 Localizing Monitors 

The monitor model handles common situations occur- 
ring in a serverized, shared, object-oriented DBMS such 
as Iris. Efficient execution is obtained from a relatively 
simple implementation. 

One common situation involves monitoring values of 
properties of a given object. The properties may be 
either stored or derived from other properties. Often, 
monitoring is needed only during the execution of par- 
ticular sections of an application process. 

For example, we may wish to monitor the values of 
attributes Income, ColleaguesEarningMore, and 
EaxnsMoreThanHanager of a Person object view, p, in- 
voking the tracking procedures Mpl, Mp2, and Mp3, re- 
spectively, when any of these values changes. 

We provide restricted monitors for efficient execution 
of common situations, as follows: 

l The monitors can be time localized so they are ac- 
tive only during a limited time, e.g. when a seg- 
ment of an application program requires them to 
be active. We must therefore provide for efficient 
activation and deactivation of monitors. 

l The monitors can be client localized by associating 
monitors with client processes. The system deacti- 
vates monitors when no client needs them. 

l The monitors can be object localized by monitoring 
values of particular, or focused database objects, 
e.g. properties of specific persons. During the ex- 
ecution of an application program the monitor’s 
focus may change from one object to another, i.e. 
the functions will be monitored for different argu- 
ments. Therefore the system should be reasonably 
efficient in refocusing from one object to another. 

l The monitors can be property localized so that not 
every property of a database object is monitored. 
In the example, only the attributes Income, Col- 
leaguesEarningMore, and EarnsMoreThanMan- 
ager are monitored, not, e.g. Manager and Name. 
This restriction is important, since an object view 
may have many attributes. 

In Iris, all the above localizations are supported. 

4.2 Monitor Definition and Activation 

Time localization requires efficient monitor activation 
and deactivation. This is achieved by separating mon- 
itor activation and deactivation from monitor creation 
and deletion, thereby performing as much work as early 
as possible at monitor creation time. 

Monitor creation analyzes the monitored query and 
dynamically builds persistent tables and indexes to sup- 
port efficient tracking. Monitor creation is therefore 
relatively slow. Monitors remain in the database un- 
til they are explicitly deleted. Monitors are generic in 
that they may be subsequently activated for different 
sets of arguments; we say that there are many monitor 
instances for a given monitor definition. 

An application program typically focuses on differ- 
ent database objects during different time periods. The 
system thus has to support efficient changes in the set 
of focused objects. In Iris this amounts to an efficient 
method to vary arguments of monitored Iris functions. 
To refocus a monitor from one object to another we 
simply deactivate the monitor for one object and then 
activate it for another object. 

Iris also supports overloaded functions. These cur- 
rently cannot be monitored. 

The following functions are provided for monitor cre- 
ation and activation: 

DefineMonitor( creates a new monitor; Iris 
data structures are created to support subsequent 
activation of the created monitor. Any Iris query 
can be monitored by first defining it as an Iris func- 
tion and then defining a monitor for that function. 

ActivateMonitor(Fn,Arglist,Proc), activates a 
monitor for a given Iris function, set of arguments, 
and tracking procedure within the current applica- 
tion process. The system will subsequently invoke 
the tracking procedure on changes to monitored 
object values. 

DeactivateMonitor(Fn,Arglist), deactivates a 
monitor for the given Iris function and arguments 
in the current process. 

DeleteHonitor(Fn), deletes a monitor definition 
permanently. 

Def inenonitor creates a new table for each monitor, 
definition called the instance client table. The instance 
client table is later updated by ActivateMonitor to 
store the network address and process identifier of each 
application process monitoring a given instance. The 
system also assigns a unique tracking procedure iden- 
tifier to each tracking procedure in each process and 
stores it in the instance client table. Thus, by loot- 
ing up the instance client table, the system will know 
which tracking procedures in which processes in which 
machines to notify when the instance is changed. 

4.3 Notifying clients 

After the database has been updated, one or more track- 
ing procedures may be invoked in case their monitored 
function values were changed. The database server 
must detect value changes of monitored Iris functions, 
and notify client processes to invoke their tracking pro- 
cedures. 

The system only sends notifications after it has de- 
tected change to monitored data. 

The actual time to check if updates make notifica- 
tions necessary may vary. The most common case is 
that monitor notifications are checked only at the end 
of a transaction, when the database is in a consistent 
state. Therefore, in the current implementation, checks 
for notifications are made at transaction commit. How- 
ever, the system provides an option for the application 
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program to check for notifications even before a trans- 
action is committed, by explicitly calling a procedure, 
CheckMonitors. 

If CheckMonitors is called before a transaction is 
committed, and there have been updates to values mon- 
itored by that process, the system will invoke local 
tracking procedures of the application process. How- 
ever, notifications of monitors activated by other pro- 
cesses will always be delayed until just after the transac- 
tion is committed. The system works this way because 
transactions hide updates from other clients until they 
are committed. (If ‘dirty reads’ were allowed we could 
eventually relax this delay.) 

Another option is to defer checking monitors alto- 
gether. Instead, CheckMonitors is called explicitly af- 
ter any number of transactions have been committed, 
or perhaps in some separately running process. This 
option has not been implemented. 

Local tracking procedures are invoked because of lo- 
cal database updates. By contrast, external tracking 
procedures are invoked because of database updates by 
other processes. The external invocation may happen 
at any time, even when the application process is do- 
ing unrelated work. The notified client process is inter- 
rupted asynchronously when the notification arrives, in 
order to invoke the tracking procedure. 

It is important to have the option of ignoring exter- 
nal monitor notifications, e.g. while processing a crit- 
ical section of code. When external notifications are 
accepted, we say the application process is in listening 
mode. The system provides a procedure to toggle be- 
tween listening mode and not listening mode. 

When an application process is not in listening mode 
its monitor notifications will be collected by the system. 
Tracking procedure invocations will then be delayed un- 
til the procedure CheckMonitors is explicitly called or 
the process is toggled to listening mode. 

4.4 Distributed Notification 

Since the application process may run on a worksta- 
tion other than the Iris server, we need a mechanism 
to handle the network communication involved in noti- 
fying a client. Such a communication architecture has 
been designed, by using the Network File System proto 
co1 for remote procedure calls. Figure 1 illustrates this 
architecture. 1 

The basic idea is that every workstation running an 
Iris client must also run a monitor aeruer that takes care 
of receiving notifications and interrupting application 
processes az appropriate. 

Given a notification, a remote procedure call, 
NotifyMonitor(ProcId,NonId), is made to the af- 
fected monitor server, informing the monitor server that 

‘The inter process communication in the current imple- 
mentation is slightly more complicated than illustrated in 
Figure l., because the code to detect ‘changes is actually 
implemented as part of the client interface to Iris. 

a notification has occurred to the monitor identified by 
Monid of the process identified by ProcId . 

The monitor server saves the tracking procedure iden- 
tifiers for a given process in a main memory data struc- 
ture. It then interrupts the appropriate application pro- 
cess, signalling that some of its tracking procedures have 
been activated. In case the notified process has been 
terminated the system deletes the tracking procedure 
identifiers of that process from the monitor server and 
deactivates the monitor. When control returns back to 
the Iris server, the DBMS knows that the application 
process has been notified, but it is up to the application 
process to do something when the notification interrupt 
arrives. 

If the application process is not in listening mode 
the interrupt signals are ignored. A later call to 
CheckMonitors first does a remote procedure call, 
GetNotifications(ProcId,MonIds), to the moni- 
tor server to access the tracking procedure identi- 
fiers activated for the application process identifier. 
GetNotifications then deletes the tracking procedure 
identifiers from the global data structure of the monitor 
server. 

Given these tracking procedure identifiers, 
CheckMonitors knows which application process proce- 
dure to invoke for the activated monitors. 

If the application process is in listening mode, 
it catches all notification interrupts and then calls 
CheckMonitors immediately to asynchronously invoke 
notified tracking procedures. 

If one or more notification interrupts arrive while an- 
other tracking procedure is running, the system will call 
CheckMonitors again after the first tracking procedure 
has finished executing. By this sequentialization, pro- 
grammers need not worry about recursive notifications 
of tracking procedures. 

4.5 Change detection 

The purpose of the change detection algorithm is to de- 
termine if the values of a monitored Iris function have 
changed since the last time its monitoring clients were 
notified. This process is initialized by notifying the 
monitoring client at the end of the transaction in which 
the monitor was activated. Then the system determines 
if the value of the monitored function has changed since 
the previous notification. 

The current algorithm is rather simple, assuming that 
only a few objects are monitored per function and that 
the values of monitored properties are not very volumi- 
nous. It also assumes that the definitions of Iris func- 
tions are simple and fast to evaluate, a reasonable as- 
sumption if the functions are used to do simple deriva- 
tions such as those in the example. 

The algorithm is designed to minimize the overhead 
of database operations when no monitor is created or 
active. It also minimizes the notification traffic; in par- 
ticular, notification occurs only when there is actually 
a value change and then only at monitor checking time. 
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The algorithm can be viewed as a variant of view 
materialization [5, 15, 171 whereby only the monitored 
instances of an Iris function are materialized, rather 
than the complete function traditionally materialized; 
thus we call the method partial view materialization. 
When an Iris function is defined, the system will also 
access-path-optimize the query to retrieve function val- 
ues given that all arguments are known. If there has 
been an update invalidating some partial view mate- 
rialization, the algorithm re-executes the access-path- 
optimized monitored function call for each monitored 
instance and compares the new values with the materi- 
alized values. If they are different, the new values are 
cached and the monitoring application processes are no- 
tified. 

The change detection algorithm has four steps: 

l A local update detection procedure is called for ev- 
ery Iris operation that updates the value of a stored 
Iris function [lo], independent of whether the func- 
tion is monitored or not. For every transaction, 
the system keeps track of Iris functions that have 
been updated. This procedure holds no locks and 
is very fast, associating with each transaction a 
virtual memory table of update-detected Iris func- 
tions. The size of this table is limited by the num- 
ber of Iris functions updated by the transaction. 

l At monitor checking time, for every update- 
detected Iris function, a monitor detection test is 
made to see if the updated functions participated 
in some monitor for some set of arguments. This 
is done by referring to a table, SupportsMonitors, 
that is updated by the system when monitors are 
created. This table maintains relationships be- 
tween updatable Iris functions and their associated 
monitored Iris functions. For example these are 
some value sets of SupportsMonitors: 

SupportsMonitors(Income) = 
{Income, EarnsMoreThanManager, 

ColleaguesEarningMore) 
SupportsMonitors(Dept) = 

{EarnsMoreThanManager, 
ColleaguesEarningMore) 

SupportsMonitors(Manager) = 
{EarnsMoreThanManager) 

SupportsMonitors is of limited size and can be 
kept in main memory. 

l For every Iris function that was monitor-detected, 
a more expensive instance detection is done to test 
if its value changed. This detection is much slower 
than the previous ones, requiring re-execution of 
the pre-defined (and access-path-optimized) moni- 
tored Iris function in order to materialize the mon- 
itored instances and compare the new and old ma- 
terialized values. 
The materialized values are stored in a system- 
generated table called the instance cache table. For 

example, the monitor for ColleaguesEarningMore 
will generate an instance cache table 

-MCA-ColleaguesEarningMore(Person) 
-> (Person, Integer> 

l For every instance detection, a notification is sent 
to the client processes that had activated that in- 
stance. The process identifier is found in the in- 
stance client table that maps each monitored in- 
stance to a list of its client processes and track- 
ing procedures. Three levels of identification are 
needed : 

A client ident$eridentifies the name (network 
address) of the workstation running each ap- 
plication process. 

A process identifier identifies each (Unix) pre 
cess per workstation. 

A tracking procedure identifier identifies each 
tracking procedure in each process. 

4.6 Fetching notified data 

The notification mechanism does not transmit any data 
to the client. Instead the application process may decide 
to re-retrieve monitored instances. This can be done 
using the standard Iris query language. However, since 
the partial view materialization algorithm also caches 
monitored instances, we make use of the instance cache 
table when fetching notified data. This is implemented 
by an interface between the notification mechanism and 
the Iris query language, so that queries are modified to 
make use of the instance cache table. 

For example, assume that the application program 
makes the OSQL query: 

select ColleaguesEarningMore(p); 

and that ColleaguesEarningMore is monitored for Per- 
son p. The system wiIl modify the above query to access 
the instance cache table: 

select JlCA~ColleaguesEarningMore(p); 

thus avoiding any access path search. That is 
ColleaguesEarningMore is a derived function defined 
in terms of the stored Iris functions Income and Dept. 
It is not required to compute the derived value again 
since it is already cached. This simple query modifica- 
tion can be made in the client process without accessing 
the Iris server. 

When a tracking procedure is invoked, the system 
passes the system-created tracking procedure identifier 
and a flag indicating whether the tracking procedure 
is invoked locally or externally. By passing the track- 
ing procedure identifier, it is possible to write generic 
tracking procedures that can be used for many monitor 
definitions. A special primitive is provided to fetch the 
monitored data given such a tracking procedure identi- 
fier, using the instance cache table. 
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5 Summary and Discussion 

We have proposed and implemented a method to in- 
terface application programs to the Iris object-oriented 
database system by using monitors that activate ap- 
plication program tracking procedures whenever values 
of derived or stored attributes of objects change. The 
attributes are specified declaratively, using an object- 
oriented query language. Monitors are localized both 
in space and time by limiting the amount of monitored 
data to be object attribute values, and by being active 
only while application processes need them. 

The time localization strategy requires fast methods 
to turn monitors on and off. Therefore we separate the 
(slow) process of defining monitors from their activa- 
tion and deactivation. Thus, monitor definition involves 
creation and update of database tables as well as opti- 
mizations for later monitor activations. A monitor that 
is created but not activated generates little overhead to 
database operations. 

The application may run on a client workstation other 
than the database server. The system keeps track of 
which application processes on which workstations mon- 
itor which data, and automatically notifies application 
processes when monitored data change. Notification 
is done by invoking tracking procedures; external in- 
vocations may interrupt application processes and exe- 
cute asynchronously, without the DBMS waiting for the 
tracking procedures to terminate. 

Monitors may improve the concurrency of object- 
oriented database systems by allowing for very short 
transactions instead of long transactions, and letting 
the notification mechanism broadcast notifications to 
affected clients when database updates are committed. 

The monitor model is also useful for the construction 
of systems of data-driven cooperative processes by let- 
ting the DBMS activate processes given data updates, 
rather than letting the cooperative processes directly 
call each other. In this way concurrent process invoca- 
tions can be stated declaratively. 

It is important that monitors execute efficiently and 
do not slow down the database server for applications 
not using them. The current implementation is effi- 
cient enough for some typical uses of database objects, 
where attribute definitions are specified using simple 
(thus fast) queries. More research is needed to extend 
the technique to handle complex queries. 

The present change detection strategy could be com- 
bined with other strategies, such as those used for in- 
tegrity constraint checking [4, 7, 11, 12, 15, 18, 19, 20, 
23,241. Sometimes the system should not need not save 
values to determine that a change has occurred. For ex- 
ample if a monitored query specifies the sum of a set of 
values of which only one has changed, we may deduce 
that the sum has changed without doing any material- 
ization. 

The methods presented here are also applicable to 
relational DBMSs, by regarding Iris functions as re- 
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lational views. The method proposed by Wiederhold 
[32] can be used to define derived objects by relational 
views. (Iris has many additional object features, includ- 
ing a persistent hierarchical type system, and persistent 
object identifiers.) 

The ‘monitor model could be generalized to handle 
integrity constraints, which can be regarded as uni- 
versal monitors activated continuously for all applica- 
tions. The tracking procedure for an integrity con- 
straint would always be locally invoked whenever the 
constraint is violated and it would always cancel the 
transaction. However, more research is needed to get 
good performance for such integrity constraint moni- 
tors, since they would not be localized and since they 
could not use asynchronous tracking procedure invoca- 
tions. 
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