
A MODEL OF QUERIES FOR OBJECT-ORIENTED DATABASES

Won Kim

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Dnve

Austin, Texas 78759

Abstract

One major source of confusion, and consequent c&i-
cisms, about object-oriented databases has been the lack
of a comprehensive model of queries. Although there is a
reasonable degree of agreement about an object-ori-
ented data model, few operational systems support a
query model for object-oriented databases. In this paper,
we present a rather comprehensive query model which is
consistent with object-oriented concepts embodied in the
object-oriented data model. The model takes into ac-
count the semantics of the class hierarchy and nested ob-
jects, and as such is inherently richer than the relational
or nested relational model of queries. A significant sub-
set of the model has been cast into a query language which
is supported in the ORION object-oriented database sys-
tem.

1. INTRODUCTION

An object-oriented database system is a database sys-
tem which directly supports an object-oriented data
model. Further, an object-oriented data model includes
a number of concepts found in many object-oriented pro-
gramming lan

fl guages. An o
uages and knowledge representation lan-

vide
ject-oriented database system must pro-

tors
inte I

e&tent storage for the objects and their descrip-
schema). The system must provide the user with an
ace for schema definition and modification, and for

creating and accessing objects by sending messages to the
objects.

This basic system may be extended in several dimen-
sions, just as several types of features had to be added to
the relational database systems during the past decade.
These features include a declarative query language; in-
tegrity features, such as transaction management and
triggering; perform ante-related features, such as secon-
dary indexing and clustering; and concurrency control and
authorization for a multi-user environment.

One of the important shortcomings in most object-
oriented database systems operational today is the query
capabilities. In most systems, the query model captured
in the query language fails to take mto account some of
the fundamental object-oriented concepts. Some s-
tems, such as VBase [ANDR87], merely provide an S 8 L
relational query interface. Some attempt to provide a
new query language which is backward-compatible with a

Permission to copy without fee all or part of this material ia

granted provided that the copies are not made or distributed for
direct commwcial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

relational query language: SQL in the case of IRIS
[FISH87], and QUEL
POSTGRES [STON86, R 6

STON76] in the case of
WE87]. Other systems, such

as ORION [BANE87a, KIM88a, KIM891 and Gemstone
[MAIE86], support a new query language which is based
more on the nested-relational model [MAKI77, ABIT84,
ABIT86, JAES82, IEEESB].

[BANE881 presents a query model for object-ori-
ented databases and compares it with the relational query
model; the model is subsequently extended in [KIMK89]
to better account for cyclic queries. Although the model
is limited in a number of important ways, to our knowl-
edge it is the first attempt to define a query model for ob-
ject-oriented databases which is consistent with basic ob-
ject-oriented concepts. The model takes into account the
two-dimensional nature of the schema of an object-ori-
ented database: a class has a number of attributes whose
types (domains) are also classes, and a class may have a
number of superclasses and a number of subclasses.

The model of [BANE88, KIMK89] is not compre-
hensive: it does not include any consideration for opera-
tions comparable to relational joins, set operations, and
views. Further, the model, even in its limited form, has
not been adequately formalized. The objectives of this
paper are to extend the query model to a significantly
more corn
the exten dp

rehensive model, and to attempt to formalize
ed model.

2. CORE OBJECT-ORIENTED DATA
MODEL

In this section we will review a core object-oriented
data model, which is based on what we consider a minimal
set of fundamental object-oriented concepts, and empha-
size the importance of these concepts from a database
perspective. A more detailed discussion of the minimal
set of object-oriented concepts is given in [KIM88b (m
fact, part of this section has been taken from [KIM8 b 1).
The reader will need to clearly understand this section m
order to follow the query model we will develop.
object and object identifier

In object-oriented systems and languages any entity
is uniformly modeled as an ob’ect. Further, an object is
associated with a unique ident’ d ier; an identifier is not re-
used even when the object with which it was associated is
deleted from the system. The uniform treatment of an
entity as an object simplifies the user’s view of the worl d .
The object identifier is used to pin-point an object to re-
trieve.
attributes and methods

Every object encapsulates a state and a behavior. The
state of an object is the values for the attributes of the ob-
ject, and the behavior of an object is the set of methods

Amsterdam, 1989

- 423 -

which operate on the state of the object. The value of an
attribute of an object is also an object in its own right. Fur-
ther, an attribute of an object may take on a single value
or a set of values.

class

All the objects which share the same set of attributes
and methods are grouped into a higher level object called
a class. An object must belong to only one class as an in-
stance of that class. The relationship between an object
and its class is the familiar instance-of relationship. A
class is similar to an abstract data type. A class may be a
primitive class, such as integer, string, and boolean; a
primitive class is a class with no attributes.

The concept of a class as a set of instances provides
the basis on which a query may be formulated. In rela-
tional databases, a query 1s issued against a relation or a
collection of relations; sunilarly, in object-oriented data-
bases, a query must be issued against a class or a collection
of classes. Without the notion of a class, or a set of in-
stances, to aggregate together related objects, it will be
very difficult to conceptualize (and evaluate) a query.

The value of an attribute of an object, since it is nec-
essarily an object, also belongs to some class. This class is
called the domam of the attribute of the object. The do-
main of an attribute may be any class, including a primi-
tive class. This re
the normalized f resents a significant difference from

re ational model in which the domain of
an attribute is restricted to a primitive class. The fact that
the domain of an attriiute may be an arbitrary class gives
rise to the nested structure of the definition of a class.
That is, a class consists of a set of attributes (and meth-
ods); the domains of some or all of the attributes ma be
classes with their own sets of attributes; and so on. &en
the definition of a class results in a directed graph of
classes rooted at that class; as in [KIM88b] we will call this
gra

P
h a class-compasitin hierarchy. If the graph for the

de m&ion of a class is restricted to a strict hierarchy, the
class becomes a nested relation.
class hierarchy and inheritance

Object-oriented systems allow the user to derive a
new class from an existing class; the new class, called a
subclass of the existing class, inherits all the attnbutes and
methods of the existing class, called the superclass of the
new class, and the user may specify additional attributes
and methods for the subclass.
ber of subclasses.

A class may have any num-
Some systems allow a class to have only

one superclass, while others allow a class to have any
number of superclasses. In the former, a class inherits at-
tributes and methods from only one class; this is called
single inheritance. In the latter, a class inherits attributes
and methods from more than one superclass; this is called
multiple inheritance. In a system which sup arts single in-
heritance, the classes form a hierarchy, cal P ed a class hier-
archy. If a system su
classes form a rooted cr

ports multiple inheritance, the
irected acyclic graph, sometimes

called a class lattice.
The concept of a class hierarchy is completely or-

thogonal to that of a class-composition hierarchy. A class
hierarchy captures the generalization relationship be-
tween one class and a set of classes specialized from it. A
class-composition hierarchy has nothing to do with in-

heritance of attributes and methods. Figure 1 shows an

L -1 \
AutoComDanvTrl rckcompany

/ \ I-
] D;me’aticAut~m~

IomesticAutoC&mpany JapaneseAut&ompany

I 0

- class / subclass link
attribute I domain link

Figure 1. An Example Schema Graph

example schema. The class Vehicle is the root of a class-
composition 0 hierarch

z*
which includes the classes

VehlcleDrivetrain, Ve IcleEngine, Company, and Em-
ployee. The class Vehicle is also the root of a class hierar-
chy involving the classes Automobile, Domes-
ticAutomobile, and ‘I&k. The class Company is in turn
the root of a class hierarchy with subclasses AutoCom-
pany, Ja
and l?uc f

aneseAutoCompany, DomesticAutoCompany,
Company. It is also the root of a class-composl-

tion hierarchy mvolving the class Employee.

3. QUERY MODEL
The query model implemented in ORION, despite

its limitations, is the first to be based on a consideration of
the power and constraints of object-oriented wnce ts.
The model restricts the target of a query to a single P c ass
or a class hierarchy rooted at that class. This is an impor-
tant restriction, since this excludes operations wmpara-
ble to relational joins and set operations. However, the
model explicitly takes into wnslderation some of the im-

of a class may be regarded as belonging to the class and all
classes on the superclass chain starting from the class. In

- 424 -

fact, the domain of an attribute of a class is the specified
class and all direct and indirect subclasses of the class.

In this section we will use the model of [BANE@] as
the basis for what we hope to be a comprehensive query
model for object-oriented databases. We will define our
query model for a set of operations defined for relational
database systems, namely, selection, projection, join, and
set operations. We hasten to note that, althou h we will
use the relational terminolo

Y
, the semantics o B these op-

erations are rather different rom those used in relational
systems.

In Section 3.1 we first define our model for a single-
operand query, that is, a query whose target is only one
class or a class hierarchy rooted at one class; the relevant
operations are those comparable to relational restriction
and projection. In Section 3.2, we will extend the model
to account for a multiple-operand query, that is, a query
which captures operations comparable to relational joins
and set operations. The current implementation of
ORION includes single-operand acyclic queries. In the
remainder of this paper, we will use, without any detailed
explanation? a rather intuitive syntax for a query language
for illustrattve purpose. We restrict the scope of this pa-
per to a presentation of an ob’ect-oriented query model,
and defer to a future paper a 1 ull description of the query
language that captures the model.
3.1 SINGLE-OPERAND QUERIES

schema graph

As we have seen, the definition of a nonprimitive
class forms a two-dimensional directed graph of classes
which we will call a schema graph for the class. Figure 1 is
an example of a schema graph. The following is a formal
definition of the schema graph SG for a class C.

1. SG is a rooted directed graph consisting of a set of
classes N and a set of arcs E between pairs of classes.
C is the root of SG, and is a nonprimitive class.

2. E has two types of arcs. One is between a pair of
classes Cl and C2, such that C2 is the domain of one
of the attributes of Cl. Another is between a pair of
classes Cl and Sl, such that Sl is an immediate sub-
class of Cl. The direction of an arc is from a class to
the domain of its attribute, and from a class to its
subclass.

3. An arc from an attribute of a class to the domain of
the attribute may be either single-valued or set-val-
ued. A single-valued arc means that the attribute
can have only one value from its domain; while a set-
valued arc means that the attribute has as its value a
set of instances of its domain.

4. The set of arcs from any class Ci on SG to the direct
and indirect subclasses of Ci forms a directed acyclic
graph; that is, the class hierarchy rooted at Ci on SG
is a directed acyclic graph.

5. The set of arcs from the root class C to the direct
and indirect domains of the attributes of C forms a
directed graph rooted at C; that is, the class-compo-
sition hierarchy of SG is a rooted directed graph
which may be cyclic.

wry graph

In relational databases, the schema graph for a rela-
tion is the relation itself. The selection operation on a re-
lation, that is, a single-relation query on a relation with a
Boolean combination of predicates on the attributes of
the relation, identifies the tuples of the relation which
satisfies all the predicates. In terms of the schema graph,
the predicates apply on the lone node of the graph. To
define the selection operation on a class in an object-ori-
ented database, we extend this observation. The selec-
tion operation on a class C retrieves instances of the class
C which satisfies a Boolean combination of predicates on
a subgraph of the schema graph for C; we will call such a
graph a query graph.

Let us consider an example que
7

and its correspond-
ing query graph. Using the schema or the class Vehicle
shown in Figure 1, we may formulate a query to “find all
blue vehicles manufactured by a company located in De-
troit and whose president is under 50 years of age” as fol-
lows.

Ql: (select Vehicle (Color = “blue”
and Manufacturer Location = “Detroit”
and Manufacturer President Age c 50))

The query graph for this query on the class Vehicle is
shown in Figure 2; it is a subgraph of the schema graph for
the class Vehicle.

Vehicle

n

Automobile Truck

AutoCompany TruckCompany
-II

1 D[mesticAut[mx

DomesticAutoCompany JapaneseAutoCompany
I 1 I I

I I I I
- class I subclass link

attribute I domain link

Figure 2. An Example Query Graph
I-

- 425 -

value > . The value may be an instance of a primitive class
(string, integer, etc.) or an object identifier of an instance
of some class. The latter is important, since it maybe used
for testing the object equality [KHOS86], that is, equality
of referenced objects. This is excluded by an oversight
from the definition of a simple predicate given in
[BANE88]. The predicate (Color = “blue”) in the exam-
ple query above is a simple predicate.

Another type of predicate is a complexpredicate; this
conce

P
t is also explored in [ZANI83 . The definition of a

camp ex predicate given in [BANE8 4] as a predicate on a
corn

8
lex attribute of a class is inaccurate. A complex

pre icate is actually a predicate on a contiguous sequence
of attributes along a branch of the class-composition hier-
arch
= “ ii

of a class. The predicate (Manufacturer Location
etroit”) in the above example is a complex predi-

cate. All classes (and the class hierarchies rooted at
them) to which any of the attributes in the sequence of
attributes s
cluded in t R

ecified in a complex predicate belong are in-
e query graph.

So far we have assumed a predicate to simply be an

“p
ression of the form <attribute-name operator

va ue > , without specifying what the operator is. In tradi-
tional database systems the operator 1s a scalar compari-
son operator (= , =z , > , etc.) or a set comparison operator
(contained-m, contains, set-equality, etc.). In object-ori-
ented
meth cl!

stems, the user may define methods on a class, a
may be used for any part of a predicate, that is, as

the attribute-name, the operator, or the value. The use
of a method in a predicate, as an attribute-name or as an
operator, cause difficulties with query compilation and
optimization.

Next, since any subclass of the domain of ,an attribute
is also a valid domain of the attribute. it is certainlv useful
to be able to specify in a query a subclass of the do&&of
an attribute as the domain of the attribute. In other
words, an arc in a schema graph from an attribute of a
class to the domain of the attribute may be changed in the
ue

?J t e
graph to one from the attribute to any subclass of

omam. For example, it may be useful to be able to
change the example query Ql such that the domain of the
attribute Manufacturer IS the class DomesticAutoCom-
pany, rather than the class Company as ecified in the
schema. The query model presented in BANE881 im- T
plies that the domam of an attribute in the schema is nec-
essarily preserved in queries, thereby placing an unneces-
sary restriction on the expressiveness of a query.

The following is a formal definition of a query graph
QG for a single-operand query on a class C. The result of
a single-operand query is a set of instances from the scope
of the target class which satisfy the query predicates.

1. QG is a connected sub ra h of the schema
SG for C. C is the root o B1;: Q ; that is, QG for E

raph
and

SG for C have the same root. C is a nonprimitive
class.

2. QG includes only those nodes of the corresponding
SG on which at least one predicate of the query is
specified.

3. An arc from an attribute of a class to the domain in
SG may be changed in QG to one from the attribute
to a subclass of the domain. Then only the class hier-
archy rooted at the new domain is included in QG.

4. The set of arcs from the root class C to the direct
and indirect domains of the attributes of C included
in QG form a directed graph rooted at C; that is, the
class-composition hierarchy of QG is a rooted di-
rected graph, in which some branches contain cycles
and others do not. (The nature of the cycles will be
described further below.)

5. The leaf node of an acyclic branch has only simple

s
redicates on it. The interior nodes of any branch
cyclic or acyclic) may have both simple and complex

predicates defined on them.

cyclic branch in a class-composition hierarchy

Now we will characterize precise1
of the class-composition hierarchy either in a query
graph or m a schema gra h).

T
the cyclic branch

tion hierarchy is cychc, iF
A branch of a class-composi-

it contains a class Ci and a class
Cj on the branch, such that Cj is the (indirect) domain of
an attribute of Ci, and Ci is the domain of an attniute of
Cj; or Cj is the (indirect) domain of an attniute of Ci, and
a superclass or a subclass of Ci is the domain of an attni-
ute of Cj. This definition brings to ether four different
types of cycle shown in Figure 3. #v o of them, namely,

type n-s

legend:
* attribute-domain arc

class-subclass arc

Figure 3. Cyclic Branches

type-ns and type-ss, may be regarded as quasi-cycles,
since they are not cycles in conventional sense. They may
be viewed as the type-n and

??
e-s cycles, respectively,

with additional conditions on t e que
lustrate this shortly). The following de ines the four types !I!

result (we will il-

of cycle for a branch of a class-composition hierarchy. We
will assume that the branch has n nodes, such that each
node may in turn be the root of a class hierarchy.

- 426 -

1. A type-n cycle is a cycle formed by n > 1 nodes on
the branch.

2. A type-ns cycle is a quasi-cycle corresponding to a
type-n cycle. It is formed by n > 0 nodes on the
branch, and a superclass or a subclass of one of the n
nodes.

3. A type-s cycle is a cycle formed for a single node.
4. A type-ss cycle is a quasi cycle corresponding to a

type-s cycle.
or a subclass.

It is formed by a class and its superclass

Assuming that the class Employee has an additional
attribute Drives whose domain is the class Vehicle. a
meaningful query is to “find all blue vehicles driven by the
president of the company that manufactured them.” This
1s an example of a query with a type-n cycle in its query
graph. The following is an intuitive syntax for expressing
the query. We leave it as a sim le exercise for the reader
to construct the query graphs or the following example F
queries.

Q-cl: (select (Vehicle :Vj
(Color = “blue’

and Manufacturer President Drives = V))

In this query, the variable :V is used for binding each in-
stance of the class Vehicle, as the set of instances of Vehi-
cle is scanned one at a time. The class Vehicle is the target
class.

A query to “find all blue vehicles manufactured b a
company whose president drives a Japanese automob Y e”
is an example of a query with a type-ns cycle in the query
graph. This query may be expressed as follows.

Q-&z (select Vehicle
:J is-a JapaneseAutomobile)
Color = ‘blue”

and Manufacturer President Drives = J))

The expression (:J is-a JapaneseAutomobile) adds a con-
straint to the value the complex attribute (Manufacturer
President Drives) may take on to instances of the class
JapaneseAutomobile. Note that the class Vehicle is still
the target class.

For the next two examples, let us add the Manager
attribute to the class Emplo

?
ee; the domain of Manager is

the class Employee. The ollowing is an example query
with a type-s cycle. The query is to find “all managers of
an employee named Johnson.”

Q-c3: (select Employee
recurse Manager)
Name = “Johnson”))

The expression (recurse Manager) specifies that, once an
instance of the class Employee 1s found which satisfies the
predicate (Name = “Johnson”), the recursive values of
the Manager attribute of the instance are retrieved.

For our final example, let us assume that the class
Employee has a subclass FemaleEmployee. The follow-
ing 1s an example query with a type-ss cycle, which finds
“all female managers of an employee named Johnson.”

Q-c4: (select Employee
(recurse Manager :M

(:M is-a FemaleEm
(Name =

loyee))
“Johnson’) ‘5

The expression (:M is-a FemaleEmployee) restricts the
result of the query to instances of the class
FemaleEmployee.
query result

In relational databases, the result of a single-relation
query is a subset of the tu les of the relation that satisfies
the selection predicates. f-h e concept of a class hierarchy
in object-oriented databases captures the generalization
abstraction, which means that a class, when used as a gen-
eralized concept, subsumes all its subclasses. This obser-
vation leads to two equally valid interpretations for the
access scope of a query; the access scope of a query on a
class C is either the set of instances of C, or the set of in-
stances of the entire class hierarchy rooted at C. There-
fore, the result of a single-operand query on a class C may
be the set of instances of the class C or the set of instances
of the entire class hierarchy rooted at C which satisfy the
query predicates. For example, the access scope of a
query against the class Vehicle may be restricted to the in-
stances of Vehicle, or may be interpreted to also include
the instances of all types of Vehicle, that is, all subclasses
of Vehicle.

If a query involves a projection operation, only the
desired attributes in the instances that satisfy the predi-
cates will be returned, regardless of whether the access
scope of the query is a sin

8’ the scope is a class hierarc
e class or a class hierarchy. If
y, we need to take into consid-

eration the consequences of inheritance of attributes.
First, attributes may be renamed in classes which

have inherited them, as observed in [BANE87b]. For the
purposes of queries, a renamed attriiute should be re-
garded as the ori
that the attribute t!

inal attniute. For example, suppose
olor, defined in the class Vehicle, 1s re-

named as AutoColor in the class Automobile. Although
the attribute has two different names, the distinction
should be ignored in queries.

Second, in the case of multiple inheritance, a class
may inherit an attniute from one of its superclasses
[BANE87b]. If the attniutes in all superclasses are iden-
tical, that is, the have the same name and same domain,
there is no prob r em. However, complications arise if the
attributes are only equivalent, that is, they were all defined
in the same class somewhere higher in the class hierarchy,
but they have been renamed or their domains have been
changed. Suppose that the superclasses Si and Sj of a
class C have equivalent attniutes Ai and Aj, and that C
inherits only the attribute Ai of Si. Now consider a query
on Sj whose scope of evaluation is the class hierarchy
rooted at Sj, and the attniute Aj is tobe output. Then the
values of the attribute Ai inherited into the class C (and
its subclasses

a2
should also be output, since Ai and Aj are

equivalent ter all.
If the access sco e of a query on a class C is the class

hierarchy rooted at E , the result of the query is a hetero-
geneous set of instances, since the instances belong to a
number of different classes with different number of at-
tributes. The application (or the user) which issues the
query must obviously be prepared to deal with this hetero-

- 427 -

geneous mix of instances. One approach is for the data-
base system to return only a list of object identifiers (along
with the class identifiers) of the instances in the query re-
sult, and have the application make explicit requests for
all or some of the actual instances. This approach has
been implemented in ORION [KIM#a]; and it is in a
sense similar to the cursor mechanism in SQL/DS
[IBM811 or portals in POSTGRES [STON86]. If the
query involves a projection operation, the database sys-
tern may return the set of object identifiers and the values
of the projected attributes of the corresponding objects.

The projection operation entails the familiar prob-
lem of eliminating duplicates from the query result. For
object-oriented databases, unlike relational databases,
two different criteria exist for determining the uni ue-
ness of an instance from a collection of instances. 8 ne
criterion is the equality of the object identifiers, which
may be called objecr equality; while another is the equality
of the contents of the instances, which maybe called value
equality, that is, the values of the user-defined attributes in
the instances. We note that an instance may contain a
number of system-defined attributes, such as the version
number, update timestamp, and so on, to support various
functionality of the system [CHOUSS]. The values of sys-
tem-defined attributes really should not be included in
testing value equality of objects, since the users do not ex-
plicitly create their values. In relational databases, only
value equality is used. For object-oriented databases,
both may be useful; however, value equality requires
some additional consideration. A class m general does
not have the same set of attributes as its superclass, since
a class inherits all attributes from its superclass and may
have additional attributes defined on it. This means that
value equality between classes with different sets of at-
tributes need not be tested.

It is interesting to note that our
queries are recursive queries and that
is, the result of such a query is a finite set o
because a primitive class is never the target of a query.

Throughout our discussion so far, we have assumed
that the query result is simply returned to the application
(or the user). Now we need to consider the problem of
saving the result of a query. As we discussed earlier, an
object belongs to a class, and a class has a position some-
where in the class hierarchy. These simple principles im-
pose some difficult constramts on the query model for ob-
lect-oriented databases. In relational databases, the re-
sult of a query is itself a relation, and it may snnply be
saved as a new relation. In object-oriented databases, the
result of a query is a set of objects belonging to a class or a
class hierarchy rooted at some class. Let us consider a
query on a class C whose scope of access is the class hier-
archy rooted at C. The result of the query will in general
be a heterogeneous set of instances that form a separate
class hierarchy each of whose class is derived from a cor-
responding class in the original class hierarchy; let us de-
note the root of the new class subhierarchy by C-new.
The instances in the newly created classes must all have
different object-identifiers from those in the correspond-
ing instances of the original classes.

A difficult question is where we should place the class
C-new in the class hierarchy for the entire database. In-
tuitivel there are two options to consider. One is t0
place F -new as a new subclass of the superclasses of the

class C; and the other is to treat C-new as an immediate
subclass of the class OBJECT, which is the root of the
class hierarchy for the entire database. These options are
shown in Figure 4, where the class AutoCompany-new is
the root of a new class hierarchy which is created to save
the result of a query on the class-hierarchy rooted at the
class AutoCompany.

Let us consider option-l, where C-new is made a
subclass of the superclasses of the class C. If the query
involves a projection operation, this solution would result
in a subclass with fewer attributes than its superclass,
thereby violating the fill-inheritance invariant in schema
evolution as observed in [BANE87b]. In particular, if any
attribute which C inherited from its superclasses is
dropped from the query result, C-new will have fewer at-
tributes than the superclasses of C; for example, in Figure
4, the class AutoCompany-New may have fewer attrib-
utes than the class Company. This su

h with fewer attributes than C should per
gests that C-new
aps be made a su-

!A
erclass (rather than a subclass) of a superclass of C.
owever, this fix does not work either, if C-new contains

any attribute which was defined in C (rather than inher-
ited into C). C-new will then end up with an attriiute
which its subclass does not have.

There is another problem with option-l, regardless
of whether the query mvolves a projection operation. If
C-new is placed on the class hierarchy, it becomes subject
to schema evolution on its superclasses. In other words,
changes to the definition of any of its new superclasses

F
ropagate down to C-new, agam in accordance with the
t&inheritance invariant. For example, if an attribute is

dropped from the class Company, the same attribute
must be dropped from the class AutoCompany-New. This
defeats the purpose of saving the result of a query.

Let us now consider option-2, where C-new is made
an immediate subclass of the stem-defined class OB-
JECT. One drawback of this so ution is that all attributes 7
and methods inherited into C-new must now be explicitly
replicated in C-new. This requires extra storage; how-
ever, it does not appear to be a serious drawback. Op-
tion-2 is our choice.
32 MULTIPLE-OPERAND QUERIES

32.1 Join

A relational database consists of a number of rela-
tions. Join is used to correlate n different relations (n >
1) on the basis of the values in attriiutes co.rnmon to the
relations. It is important to realize that lam 1s a crud
operation in relational databases largely because of the
limitations of the relational model of data. In particular,
the relational model of data restricts the attribute of a re-
lation to a single
have only one va P

rimitive value; that is, an attribute may
ue, and the value must be of a pnmltive

data type (integer, float, string, boolean). These limita-
tions have been removed in obIect-oriented and nested-
relational models of data.
implicit joins in a class-composition hierarchy

Let us consider the three classes Vehicle, Corn
$

ny,
and Employee in Figure 1. These classes may be de ined
as relations as follows.

Vehicle (ID, Color, DriveTrain,
Manufacturer)

Company (CompanyName, Location,

- 428 -

Company

Domestic Ja anese Domestic Ja anese
AutoCompany Auto ompany rz AutoCompany-new Auto Iii ompany-new

(a) Option 1
OBJECT

I

Tt 0Com p;n y -new

I
Company Company I I

I I

I I I
1

Domestic Domestic Ja anese Ja anese
AutoCompany-new Auto AutoCompany-new Auto 8 8 ompany-nev ompany-nev

1 I I I I I

Domestic Domestic Japanese Japanese
AutoCompany AutoCompany AutoCompany AutoCompany

(b) Option-2 (b) Option-2
Figure 4. Figure 4. Disposition of the Query Result Disposition of the Query Result

President)
Employee (SSN, EmployeeName, Age)

The attributes Manufacturer and CompanyName
have the same domain; and
the President and EmployeeName attributes share
the same domain.

To find all blue vehicles manufactured by a company lo-
cated in Detroit and whose president is under 50 years of
age (example query Q l), the query must be formulated as
a join of the above three relations, and the user must ex-
plicitly specify the join attributes. As we have seen al-
ready, however, the same query may be formulated in ob-
ject-oriented databases as a retrieval from a class-com-
position hierarchy in which joins between the classes are
defined in the schema between an attribute of a class and
the domain of the attribute.

A single-operand query in object-oriented databases
is then one type of join; it is an implicit join of the classes
on a class-composition hierarchy rooted at the target
class of the query. However, it has a few important limita-
tions relative to the relational join. One is that the output
attributes are restricted to those in the target class; that is,
it is not possible to output any attribute in any class which
is not the root of the query graph for a query. This may be

easily remedied. The que
with some means of spec’

syntax needs to be augmented
L ’ g the output attributes; the

output attriiutes may be spectfied in a single list, or they
may be specified in a separate list associated with each of
the classes in the query.

Another, much more serious, limitation of the im-
plicit join in a single-operand que is that the join is re-
stricted to the attribute-domain re ationship specified in r
the schema; that is, the implicit join is essential1 the ma-
terialization of the values of an attriiute. Consi J era class
Ci with an attribute A whose domain is the class Cj. As
observed in [BANE88], the materialization of the in-
stances of Ci 1s e uivalent to a join of Ci and Cj, in which

9 the attriiute A o Ci and the object-identifier attriiute of
Cj are the join attributes. Below, we elaborate on the
limitations of the implicit join, and propose solutions to
overcome these limitations.
explicit joins of classes

The limitation of a join implied in a single-operand
query is essentially that it statically determines the classes
to be joined, and the join ordering of the classes. Let us
examine this in more detail. The implicit join statically de-
termines the join ordering between a pair of classes Ci
and C’ where Cj is the domain of an attribute of Ci, such
that d? . 1 IS always the ‘outer class’ and Cj the ‘inner class’

- 429 -

(analogous to the outer and inner relations in a join order-
ing for a pair of relations in relational databases). This
means that it is not possible to formulate a query whose
semantics require implicit reversal of an attribute-do-
main link specified in the schema. For example, the class
Company is the domain of the attribute Manufacturer of
the class Vehicle in Figure 1. It is possible to find all vehi-
cles manufactured by certain companies. However, it is
not possible to find all companies that manufacture cer-
tain vehicles; the class Company has no attribute, say,
Manufactures, whose domain is the class Vehicle.

class Company define an implicit attribute of the class
Company whose domain is the class Vehicle. Then a sin-
gle-operand query on the class Company may be formu-
lated in which instances of the class Vehicle are material-
ized as values of the implicit attribute of the class Vehicle.

In relational databases, the existence of a common
attribute in a pair of relations implies, correctly, the at-
tribute-domain relationship in both directions between
the relations. It is certainly useful to extend our model of
single-operand queries by postulating, for any attribute of
a class C whose domain is the class D, an implicit attribute
?f the class D whose domain is the class C; and by allowing
Implicit joins to be formulated along the attribute-do-
main links defined b
the attribute Manu r

the implicit attribute. For example,
acturer of the class Vehicle, and the

I

However, the implicit join also statically determines
the classes which may be joined to those pairs of classes Ci
and Cj such that Cj is the domain of an attribute of Ci.
This means that it excludes joins between an arbitrary pair
of classes with attributes which share a common domain.
For example, suppose that, as shown in Figure 5, the class
Employee has an additional attribute Address, and that
the domains of Address and the attribute Location of the
class Company are the same, say a class City. Then a
meaningful query may be to find all employees who live in
the city in which their companies are located. However,
as long as there is no attribute-domain relationship be-
tween the attribute Address and the class Company, or
between the Location attribute and the class Employee, it ..- ^ - _. 1s not possible to formulate this query.

Company

14

Employee

v/

‘n BigCity ‘A’ u SmallCity

class I subclass link

Figure 5.
attribute I domain link

An Example Query Graph for a Join

We now extend our query model to admit joins of
classes on user-specified arbitrary join attributes. Again,
the extended model must be consistent with the object-
oriented data model. To fully define the semantics of
joins, we need to introduce the notion of attribute com-
patibility. Two attributes Ai and Aj are compatible, if the
domain of Ai is identical to the domain of Aj, or is a super-
class or a subclass of the domain of Aj. Unlike relational
joins, in which the domains of the join attributes must be
identical, we require the join attributes to only be compat-
ible. For example, in Figure 5 the attributes Address and
Location are compatible, since the share the same do-
main. Suppose now that the domain of the Location at-
tribute is the class BigCity, which is a subclass of City. The
attributes Address and Location are still compatible,
since the domain of Location is a subclass of the domain
of Address.

Next, we must account for the class hierarchy in the
scope of query evaluation. Each class to be joined is the
root of a class hierarchy. The scope of query evaluation,
for each class to be joined, may be either instances of the

class alone or instances of the class hierarchy rooted at
the class. The query syntax must allow the user to specify
the scope for each class in a join, just as was the case for a
single-operand query.

The result of a join is a set of instances formed by con-
catenating instances from different classes. This presents
a problem for systems like ORION which first return the
list of object identifiers and then return specific instances
on demand; this problem does not arise in systems which
directly return the actual set of concatenated instances.
The problem is whether to return a set of n object identifi-
ers (one for each class containing an output attribute from
the join) for each concatenated instance or to return a
new object identifier for the concatenated instance. If the
system simply returns a set of n object identifiers for each
concatenated instance, the user must in general send the
entire list back to the system to re uest the retrieval of
the actual concatenated instance. I-7 owever, if the system
must return a new object identifier for each concatenated
instance, it must incur the overhead of generating the
identifiers, and temporarily saving all the concatenated

- 430 -

instances along with their identifiers. If the query result is
not to be saved, this is a rather high overhead; therefore
we adopt the first approach.

Just as is the case with a single-operand query, if the
result of a ‘oin needs to be saved as a snapshot, the in-
stances in t h e result must be given unique identifiers and
assigned to a class. The same considerations we had for
saving the result of a single-operand query apply here,
and the result of a ioin is to be saved in a new class which is
an immediate su&lass of the class OBJECT, the root of
the class hierarchy for the entire database.

Figure 5 is the query graph for a query involving a join
of two classes Company and Em
are Location and Address. The

ee; the join attributes

1. Ci and Cj each is the root of a query raph corre-
spondin

‘i
to a single-operand query on E i and Cj, re-

spective y. That is, each query graph is the root of a
class hierarchy and a class-composition hierarchy
rooted at the class to be joined.

2. The query graphs for Ci and Cj partially overla ,
because of the compatibility in the loin attributes. ;F i
and Sj each is the root of a class-composition hierar-
chy, each of whose node is in turn the root of a class
hierarchy. If Si = Sj, the entire class-composition
hierarchy is shared by Ci and Cj via their respective
join attributes. If Si is a superclass of Sj, the class-
composition hierarchy rooted at Si is the domain of
the join attribute of Ci; while the domain of the join
attribute in Cj is the class-composition hierarchy
rooted at Sj.

322 Set Operations

The set operations for object-oriented databases also
require some extensions to the corresponding operations
for relational databases. As in relational databases., these
operations are useful largely for further manipulatmg the
results of queries, that is, when the operands are queries.

The operand is a set of instances; more s ecifically, it
may be the set of instances of a class define cf in the data-
base, or it may be a set of instances obtained as the result
of a query. On the surface, the semantics of the set opera-
tions for object-oriented databases are identical to those
for relational databases. Actually, however, they differ in
three interesting ways.

First, for object-oriented databases, the operand,
and the result of the operation, may be a heterogeneous
set of instances, that is the instances of the o

P
erand may

not all belong to the same class; in relationa databases,
the operand 1s a homogeneous set of tuples.

Second, as we have seen already, for object-oriented
databases, two different criteria exist for determining the
uniqueness of an instance from a collection of instances,
namely, object equality and value equality.

Third, as usual, the scope of evaluation for an oper-
and which is a database class may be instances of the class
or the instances of a class hierarchy rooted at the class.
The user may specify the scope for each class in the opera-
tion.
4. COMPARISON WITH OTHER QUERY

MODELS
There are three common, and major, differences be-

tween our query model and other query models, including
those for hierarchical, relational, nested relational, and
object-oriented data models. First, our query model re-
flects the semantics of the class hierarchy. The concept of
a class hierarchy is not a part of a nonobject-oriented data
model, and therefore, of a query model derived from it.
Unhappily, even the few query models proposed for ob-
ject-onented database systems [COPE84, BEEC87,
ROWE87, ALAS881 neglect to account for the impacts of
the class hierarchy on queries.

Second, the record-
‘p

e hierarchy in hierarchical da-
tabases and the nested re ations in nested relational data-
bases are similar to the class-composition hierarchy in an
object-oriented data model. However, the record-type
hierarchy and nested relations form a directed acyclic
graph, unlike our class-composition hierarchy which may
include cyclic branches. The query model based on the
normalized relational model does not give rise to a nested
structure of relations.

Third, other query models use only value equality,
that is, equality testing between entities 1s done on the ba-
sis of the contents of the entities, rather than object
equality based on the object identifiers. This difference is
significant in the definition of a predicate and the defini-
tion of the semantics of the set operations.

One additional major difference between our query
model and other models proposed for object-oriented da-
tabases is the treatment of a snapshot, that is, the query
result which is saved and becomes a part of the ersistent
database. Our model solves an important prob P em posed
in [KIM88b].
SUMMARY

In this paper, we rovided what we believe now to be
a comprehensive m J el of queries for object-oriented da-
tabases. The work represents a significant formalization
and extensiosn of the

1
uery model first ro sed in

[BANE88 .
d

The mode roposed in [B lNr 881 and
elaborate somewhat in [Iti MK89] is based on the view
that a query model may be defined as a subschema of the
database schema; the database schema is reduced to a
query model by applyin
erations. To our know edge, it is the first query model f

the selection and projection op-

which made serious efforts to capture the semantics of ob-
ject-oriented concepts. However, the model defined only
limited type of a sin
whose target is a sing P

le-operand query, that is, a query
e class or a class hierarchy rooted at

that class. Further, the model contained some important
oversights, notably in its treatment of the projection op-
eration, and the directionality of the arcs in the class-
composition hierarchy.

In this paper, we first provided a considerably more
rigorous treatment of the smgle-operand query, and cor-
rected the mistakes in the model given m [BANE88 .
Next, we significantly extended the model of [BANE8 s]

- 431 -

to provide a formal basis for a query which involves more
than one operand, namely, object-oriented equivalents
of the relational join and set o
summarized the essential dif P

erations. Then, we briefly
erences between our query

model, and the query models for traditional data models
and the models proposed by other researchers for object-
oriented databases.

ACKNOWLEDGEMENTS

This paper is a compendium of the ideas about que-
ries in object-oriented databases during the past three
years. Past and present, both permanent and temporary,
members of the ORION project have provided some of
the ideas which have helped me to shape my conclusions
about queries for object-oriented databases. I owe spe-
cial thanks to Jay Banerjee (now with Unisys) and Faust0
Rabitti (with C.N.R., Italy) for their ideas and discussions.
In addition, Elisa Bertino (with C.N.R., Italy) and Fred
Mellender (Eastman Kodak), and the anonymous refe-
rees, gave me a number of msightful and helpful com-
ments on an initial draft of this paper.

REFERENCES
[ABIT84] Abiteboul, S., and N. Bidoit. “Non First

Normal Form Relations to Represent Hierarchically
Organized Data,” Rot. ACM Symp. on Principles of
Database Systems, Waterloo, Canada,1984.

[ABIT86] Abiteboul, S., and N. Bidoit. “Non First
Normal Form Relations: An Algebra Allowin Data
Restructuring,” Journal of Corn uter and
Sciences, no. 33, pp 361-393, 19&

d ystem

[ALAS881 Alashqur, A., et al. “OQL - An
Object-Oriented Query Language,” technical
report, Database S stems R/D Center, University of
Florida, Gained e, Florida, 1988. 3

[ANDR87] Andrews, T., and C. Harris, “Combining
Language and Database Advances in an
Object-Oriented Developmant Environment,”
cro$ OOPSLA 87 Conference, Orlando, Florida,

[BANE8ia] Banerjee, J., et al. “Data Model Issues for
Ob’ect-Oriented Applications,” ACM Trans. on
old If ce n ormation Systems, January 1987.

[BANE87b] Banerjee, J., W. Kim, H.J. Kim, and H.F.
Korth. “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases,” in Proc.
fg$y SIGMOD Intl. Con$ on Management of Data,

[BANE881 Bane ‘ee, J., W. Kim, and K.C. Kim.
“Queries in a bject-Oriented Databases,” in Proc.
4th Intl. Con. on Data Engineering, Los Angeles,
Calif. Feb. 1 d 88.

[BEEC87] Beech, D. “OSQL: A Language for
Migratin from SQL to Object Databases,” working
y; 7e’,

Ii
8 ewlett-Packard Lab., Palo Alto, Calif.,

[COPE84’
I’

Copeland, G., and D. Maier. “Making
Sma ltalk a Database System,” in Proc. ACM
SIGMOD Intl. Conf on Management of Data, June
1984, pp. 316-325.

[DESH88] Deshpande, A., and D. Van Gucht. “An
Im lementatlon for Nested Relational Databases,”
in Jr oc. Intl. Conf on Very Large Data Bases, 1988.

[FISH871 Fishman, D., et al. “IRIS: an
Object-Oriented Database Mana
ACM Trans. on Oflice Information B

ement System,”

1, Jan. 1987, pp. 48-69.
ystems, vol. 5. no.

[IBM811 SQL/Data System: Concepts and Facilities.
GH24-5013-0, File No. S370-50, IBM Corporation,
Jan. 1981.

[IEEE881 IEEE Computer Society, Database
Engmeering, special issue on Non-First Normal
Form Relational Databases (ed. Z.M. Ozsoyoglu),
Sept. 1988.

[JAES82] Jaeschke, G., and H. Schek. “Remarks on
the Algebra of Non First Normal Form Relations,”
Proc. ACM Sym .
Los Angeles, E

on Principles of Database Systems,
A, 1982.

[KHOS86] Khoshafian, S., and G. Copeland. “Object
Identity,” in Proc. 1st Intl. Conf: on Object-Oriented
Programming Systems, Lan
Portland, Oregon, Oct. 19 ITi?

ages, and Applications,
.

[KIM88a] Kim, W., et al.
Object-Oriented Programming

“Integrating an

Database System,”
System with a

in Proc. 2nd Intl. Con5 on
Object-Oriented Programming Systems, Lan
and Applications, San Diego, Calif., Sept.

ages,
19 i 8.

[KIM88b] Kim, w. “Object-Oriented Databases:
Definition and Research Directions” submitted for
publication, Sept. 1988.

[KIM891 Kim, W., et al. “Features of the ORION
Object-Oriented Database System,n
Object-Oriented Concepts, Applications, and
Databases, (ed. W. Kim, and F. Lochovsky),
Addison-Wesley, 1989.

[KIMK89] Kim, KC., W. Kim, and A. Dale. “Cyclic
Query Processin in Object-Oriented Databases,”
in Proc. 5th Int . Conf: on Data Engineering, Los B
Angeles, Calif., Feb. 1989.

[MAIE86] Maier, D., et al. “Development of an
Object-Oriented DBMS,” in Proc. 1st Intl. Conf on
Object-Oriented Programming Systems, Languages,
and Applications, Portland, Oregon, Oct. 1986.

[MAKI77] Makinouchi, A. “A Consideration of
Normal Form of Not-necessarily Normalized
Relations in the Relational Data Model,” in Proc.
WQ~;$ on Very Large Data Bases, 1977, pp.

[ROWE87 iowe, L., and M. Stonebraker. “The
11 POS GRES Data Model,” in Proc. Intl. Conf: on

Very Large Data Bases, Brighton, England, Sept.
1987, pp. 83-95.

[STEF861 --Stefik, M., and D.G. Bobrow.
“Ol?Je+Ot;iented Prograqming: Themes and
V&‘&F The AI Magazme, January 1986, pp.

[STO&J;g ’ Stonebrake!, M., E. Wong, F? Kreps. G.
“The Design and Implementation of

INGRES,” ACM Trans. on Database Systems, vol. 1.
no. 3, Sept. 1976, pp. 189-222.

[STON86
of P A

Stonebraker, M., and L. Rowe. “The Design
STGRES,” in Proc. ACM SIGMOD Intl. Con{

on Management of Data, May 1986.
[ZANIFA ,,Za$olo, C. “The Database Language

111 Proc. ACM SIGMOD Inrl. Co@ on
Manaiement of Data, May 1983, pp. 207-2 IX.

- 432 -

