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Abstract 

One major source of confusion, and consequent c&i- 
cisms, about object-oriented databases has been the lack 
of a comprehensive model of queries. Although there is a 
reasonable degree of agreement about an object-ori- 
ented data model, few operational systems support a 
query model for object-oriented databases. In this paper, 
we present a rather comprehensive query model which is 
consistent with object-oriented concepts embodied in the 
object-oriented data model. The model takes into ac- 
count the semantics of the class hierarchy and nested ob- 
jects, and as such is inherently richer than the relational 
or nested relational model of queries. A significant sub- 
set of the model has been cast into a query language which 
is supported in the ORION object-oriented database sys- 
tem. 

1. INTRODUCTION 

An object-oriented database system is a database sys- 
tem which directly supports an object-oriented data 
model. Further, an object-oriented data model includes 
a number of concepts found in many object-oriented pro- 
gramming lan 

fl guages. An o 
uages and knowledge representation lan- 

vide 
ject-oriented database system must pro- 

tors 
inte I 

e&tent storage for the objects and their descrip- 
schema). The system must provide the user with an 
ace for schema definition and modification, and for 

creating and accessing objects by sending messages to the 
objects. 

This basic system may be extended in several dimen- 
sions, just as several types of features had to be added to 
the relational database systems during the past decade. 
These features include a declarative query language; in- 
tegrity features, such as transaction management and 
triggering; perform ante-related features, such as secon- 
dary indexing and clustering; and concurrency control and 
authorization for a multi-user environment. 

One of the important shortcomings in most object- 
oriented database systems operational today is the query 
capabilities. In most systems, the query model captured 
in the query language fails to take mto account some of 
the fundamental object-oriented concepts. Some s- 
tems, such as VBase [ANDR87], merely provide an S 8 L 
relational query interface. Some attempt to provide a 
new query language which is backward-compatible with a 
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relational query language: SQL in the case of IRIS 
[FISH87], and QUEL 
POSTGRES [STON86, R 6 

STON76] in the case of 
WE87]. Other systems, such 

as ORION [BANE87a, KIM88a, KIM891 and Gemstone 
[MAIE86], support a new query language which is based 
more on the nested-relational model [MAKI77, ABIT84, 
ABIT86, JAES82, IEEESB]. 

[BANE881 presents a query model for object-ori- 
ented databases and compares it with the relational query 
model; the model is subsequently extended in [KIMK89] 
to better account for cyclic queries. Although the model 
is limited in a number of important ways, to our knowl- 
edge it is the first attempt to define a query model for ob- 
ject-oriented databases which is consistent with basic ob- 
ject-oriented concepts. The model takes into account the 
two-dimensional nature of the schema of an object-ori- 
ented database: a class has a number of attributes whose 
types (domains) are also classes, and a class may have a 
number of superclasses and a number of subclasses. 

The model of [BANE88, KIMK89] is not compre- 
hensive: it does not include any consideration for opera- 
tions comparable to relational joins, set operations, and 
views. Further, the model, even in its limited form, has 
not been adequately formalized. The objectives of this 
paper are to extend the query model to a significantly 
more corn 
the exten dp 

rehensive model, and to attempt to formalize 
ed model. 

2. CORE OBJECT-ORIENTED DATA 
MODEL 

In this section we will review a core object-oriented 
data model, which is based on what we consider a minimal 
set of fundamental object-oriented concepts, and empha- 
size the importance of these concepts from a database 
perspective. A more detailed discussion of the minimal 
set of object-oriented concepts is given in [KIM88b (m 
fact, part of this section has been taken from [KIM8 b 1). 
The reader will need to clearly understand this section m 
order to follow the query model we will develop. 
object and object identifier 

In object-oriented systems and languages any entity 
is uniformly modeled as an ob’ect. Further, an object is 
associated with a unique ident’ d ier; an identifier is not re- 
used even when the object with which it was associated is 
deleted from the system. The uniform treatment of an 
entity as an object simplifies the user’s view of the worl d . 
The object identifier is used to pin-point an object to re- 
trieve. 
attributes and methods 

Every object encapsulates a state and a behavior. The 
state of an object is the values for the attributes of the ob- 
ject, and the behavior of an object is the set of methods 
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which operate on the state of the object. The value of an 
attribute of an object is also an object in its own right. Fur- 
ther, an attribute of an object may take on a single value 
or a set of values. 

class 

All the objects which share the same set of attributes 
and methods are grouped into a higher level object called 
a class. An object must belong to only one class as an in- 
stance of that class. The relationship between an object 
and its class is the familiar instance-of relationship. A 
class is similar to an abstract data type. A class may be a 
primitive class, such as integer, string, and boolean; a 
primitive class is a class with no attributes. 

The concept of a class as a set of instances provides 
the basis on which a query may be formulated. In rela- 
tional databases, a query 1s issued against a relation or a 
collection of relations; sunilarly, in object-oriented data- 
bases, a query must be issued against a class or a collection 
of classes. Without the notion of a class, or a set of in- 
stances, to aggregate together related objects, it will be 
very difficult to conceptualize (and evaluate) a query. 

The value of an attribute of an object, since it is nec- 
essarily an object, also belongs to some class. This class is 
called the domam of the attribute of the object. The do- 
main of an attribute may be any class, including a primi- 
tive class. This re 
the normalized f resents a significant difference from 

re ational model in which the domain of 
an attribute is restricted to a primitive class. The fact that 
the domain of an attriiute may be an arbitrary class gives 
rise to the nested structure of the definition of a class. 
That is, a class consists of a set of attributes (and meth- 
ods); the domains of some or all of the attributes ma be 
classes with their own sets of attributes; and so on. &en 
the definition of a class results in a directed graph of 
classes rooted at that class; as in [KIM88b] we will call this 
gra 

P 
h a class-compasitin hierarchy. If the graph for the 

de m&ion of a class is restricted to a strict hierarchy, the 
class becomes a nested relation. 
class hierarchy and inheritance 

Object-oriented systems allow the user to derive a 
new class from an existing class; the new class, called a 
subclass of the existing class, inherits all the attnbutes and 
methods of the existing class, called the superclass of the 
new class, and the user may specify additional attributes 
and methods for the subclass. 
ber of subclasses. 

A class may have any num- 
Some systems allow a class to have only 

one superclass, while others allow a class to have any 
number of superclasses. In the former, a class inherits at- 
tributes and methods from only one class; this is called 
single inheritance. In the latter, a class inherits attributes 
and methods from more than one superclass; this is called 
multiple inheritance. In a system which sup arts single in- 
heritance, the classes form a hierarchy, cal P ed a class hier- 
archy. If a system su 
classes form a rooted cr 

ports multiple inheritance, the 
irected acyclic graph, sometimes 

called a class lattice. 
The concept of a class hierarchy is completely or- 

thogonal to that of a class-composition hierarchy. A class 
hierarchy captures the generalization relationship be- 
tween one class and a set of classes specialized from it. A 
class-composition hierarchy has nothing to do with in- 

heritance of attributes and methods. Figure 1 shows an 

L -1 \ 
AutoComDanvTrl rckcompany 

/ \ I- 
] D;me’aticAut~m~ 

IomesticAutoC&mpany JapaneseAut&ompany 

I 0 

- class / subclass link 
attribute I domain link 

Figure 1. An Example Schema Graph 

example schema. The class Vehicle is the root of a class- 
composition 0 hierarch 

z* 
which includes the classes 

VehlcleDrivetrain, Ve IcleEngine, Company, and Em- 
ployee. The class Vehicle is also the root of a class hierar- 
chy involving the classes Automobile, Domes- 
ticAutomobile, and ‘I&k. The class Company is in turn 
the root of a class hierarchy with subclasses AutoCom- 
pany, Ja 
and l?uc f 

aneseAutoCompany, DomesticAutoCompany, 
Company. It is also the root of a class-composl- 

tion hierarchy mvolving the class Employee. 

3. QUERY MODEL 
The query model implemented in ORION, despite 

its limitations, is the first to be based on a consideration of 
the power and constraints of object-oriented wnce ts. 
The model restricts the target of a query to a single P c ass 
or a class hierarchy rooted at that class. This is an impor- 
tant restriction, since this excludes operations wmpara- 
ble to relational joins and set operations. However, the 
model explicitly takes into wnslderation some of the im- 

of a class may be regarded as belonging to the class and all 
classes on the superclass chain starting from the class. In 
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fact, the domain of an attribute of a class is the specified 
class and all direct and indirect subclasses of the class. 

In this section we will use the model of [BANE@] as 
the basis for what we hope to be a comprehensive query 
model for object-oriented databases. We will define our 
query model for a set of operations defined for relational 
database systems, namely, selection, projection, join, and 
set operations. We hasten to note that, althou h we will 
use the relational terminolo 

Y 
, the semantics o B these op- 

erations are rather different rom those used in relational 
systems. 

In Section 3.1 we first define our model for a single- 
operand query, that is, a query whose target is only one 
class or a class hierarchy rooted at one class; the relevant 
operations are those comparable to relational restriction 
and projection. In Section 3.2, we will extend the model 
to account for a multiple-operand query, that is, a query 
which captures operations comparable to relational joins 
and set operations. The current implementation of 
ORION includes single-operand acyclic queries. In the 
remainder of this paper, we will use, without any detailed 
explanation? a rather intuitive syntax for a query language 
for illustrattve purpose. We restrict the scope of this pa- 
per to a presentation of an ob’ect-oriented query model, 
and defer to a future paper a 1 ull description of the query 
language that captures the model. 
3.1 SINGLE-OPERAND QUERIES 

schema graph 

As we have seen, the definition of a nonprimitive 
class forms a two-dimensional directed graph of classes 
which we will call a schema graph for the class. Figure 1 is 
an example of a schema graph. The following is a formal 
definition of the schema graph SG for a class C. 

1. SG is a rooted directed graph consisting of a set of 
classes N and a set of arcs E between pairs of classes. 
C is the root of SG, and is a nonprimitive class. 

2. E has two types of arcs. One is between a pair of 
classes Cl and C2, such that C2 is the domain of one 
of the attributes of Cl. Another is between a pair of 
classes Cl and Sl, such that Sl is an immediate sub- 
class of Cl. The direction of an arc is from a class to 
the domain of its attribute, and from a class to its 
subclass. 

3. An arc from an attribute of a class to the domain of 
the attribute may be either single-valued or set-val- 
ued. A single-valued arc means that the attribute 
can have only one value from its domain; while a set- 
valued arc means that the attribute has as its value a 
set of instances of its domain. 

4. The set of arcs from any class Ci on SG to the direct 
and indirect subclasses of Ci forms a directed acyclic 
graph; that is, the class hierarchy rooted at Ci on SG 
is a directed acyclic graph. 

5. The set of arcs from the root class C to the direct 
and indirect domains of the attributes of C forms a 
directed graph rooted at C; that is, the class-compo- 
sition hierarchy of SG is a rooted directed graph 
which may be cyclic. 

wry graph 

In relational databases, the schema graph for a rela- 
tion is the relation itself. The selection operation on a re- 
lation, that is, a single-relation query on a relation with a 
Boolean combination of predicates on the attributes of 
the relation, identifies the tuples of the relation which 
satisfies all the predicates. In terms of the schema graph, 
the predicates apply on the lone node of the graph. To 
define the selection operation on a class in an object-ori- 
ented database, we extend this observation. The selec- 
tion operation on a class C retrieves instances of the class 
C which satisfies a Boolean combination of predicates on 
a subgraph of the schema graph for C; we will call such a 
graph a query graph. 

Let us consider an example que 
7 

and its correspond- 
ing query graph. Using the schema or the class Vehicle 
shown in Figure 1, we may formulate a query to “find all 
blue vehicles manufactured by a company located in De- 
troit and whose president is under 50 years of age” as fol- 
lows. 

Ql: (select Vehicle ( Color = “blue” 
and Manufacturer Location = “Detroit” 
and Manufacturer President Age c 50)) 

The query graph for this query on the class Vehicle is 
shown in Figure 2; it is a subgraph of the schema graph for 
the class Vehicle. 

Vehicle 

n 

Automobile Truck 

AutoCompany TruckCompany 
-II 

1 D[mesticAut[mx 

DomesticAutoCompany JapaneseAutoCompany 
I 1 I I 

I I I I 
- class I subclass link 

attribute I domain link 

Figure 2. An Example Query Graph 
I- 
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value > . The value may be an instance of a primitive class 
(string, integer, etc.) or an object identifier of an instance 
of some class. The latter is important, since it maybe used 
for testing the object equality [KHOS86], that is, equality 
of referenced objects. This is excluded by an oversight 
from the definition of a simple predicate given in 
[BANE88]. The predicate (Color = “blue”) in the exam- 
ple query above is a simple predicate. 

Another type of predicate is a complexpredicate; this 
conce 

P 
t is also explored in [ZANI83 . The definition of a 

camp ex predicate given in [BANE8 4 ] as a predicate on a 
corn 

8 
lex attribute of a class is inaccurate. A complex 

pre icate is actually a predicate on a contiguous sequence 
of attributes along a branch of the class-composition hier- 
arch 
= “ ii 

of a class. The predicate (Manufacturer Location 
etroit”) in the above example is a complex predi- 

cate. All classes (and the class hierarchies rooted at 
them) to which any of the attributes in the sequence of 
attributes s 
cluded in t R 

ecified in a complex predicate belong are in- 
e query graph. 

So far we have assumed a predicate to simply be an 

“p 
ression of the form <attribute-name operator 

va ue > , without specifying what the operator is. In tradi- 
tional database systems the operator 1s a scalar compari- 
son operator (= , =z , > , etc.) or a set comparison operator 
(contained-m, contains, set-equality, etc.). In object-ori- 
ented 
meth cl! 

stems, the user may define methods on a class, a 
may be used for any part of a predicate, that is, as 

the attribute-name, the operator, or the value. The use 
of a method in a predicate, as an attribute-name or as an 
operator, cause difficulties with query compilation and 
optimization. 

Next, since any subclass of the domain of ,an attribute 
is also a valid domain of the attribute. it is certainlv useful 
to be able to specify in a query a subclass of the do&&of 
an attribute as the domain of the attribute. In other 
words, an arc in a schema graph from an attribute of a 
class to the domain of the attribute may be changed in the 
ue 

?J t e 
graph to one from the attribute to any subclass of 

omam. For example, it may be useful to be able to 
change the example query Ql such that the domain of the 
attribute Manufacturer IS the class DomesticAutoCom- 
pany, rather than the class Company as ecified in the 
schema. The query model presented in BANE881 im- T 
plies that the domam of an attribute in the schema is nec- 
essarily preserved in queries, thereby placing an unneces- 
sary restriction on the expressiveness of a query. 

The following is a formal definition of a query graph 
QG for a single-operand query on a class C. The result of 
a single-operand query is a set of instances from the scope 
of the target class which satisfy the query predicates. 

1. QG is a connected sub ra h of the schema 
SG for C. C is the root o B1;: Q ; that is, QG for E 

raph 
and 

SG for C have the same root. C is a nonprimitive 
class. 

2. QG includes only those nodes of the corresponding 
SG on which at least one predicate of the query is 
specified. 

3. An arc from an attribute of a class to the domain in 
SG may be changed in QG to one from the attribute 
to a subclass of the domain. Then only the class hier- 
archy rooted at the new domain is included in QG. 

4. The set of arcs from the root class C to the direct 
and indirect domains of the attributes of C included 
in QG form a directed graph rooted at C; that is, the 
class-composition hierarchy of QG is a rooted di- 
rected graph, in which some branches contain cycles 
and others do not. (The nature of the cycles will be 
described further below.) 

5. The leaf node of an acyclic branch has only simple 

s 
redicates on it. The interior nodes of any branch 
cyclic or acyclic) may have both simple and complex 

predicates defined on them. 

cyclic branch in a class-composition hierarchy 

Now we will characterize precise1 
of the class-composition hierarchy either in a query 
graph or m a schema gra h). 

T 
the cyclic branch 

tion hierarchy is cychc, iF 
A branch of a class-composi- 

it contains a class Ci and a class 
Cj on the branch, such that Cj is the (indirect) domain of 
an attribute of Ci, and Ci is the domain of an attniute of 
Cj; or Cj is the (indirect) domain of an attniute of Ci, and 
a superclass or a subclass of Ci is the domain of an attni- 
ute of Cj. This definition brings to ether four different 
types of cycle shown in Figure 3. #v o of them, namely, 

type n-s 

legend: 
* attribute-domain arc 

class-subclass arc 

Figure 3. Cyclic Branches 

type-ns and type-ss, may be regarded as quasi-cycles, 
since they are not cycles in conventional sense. They may 
be viewed as the type-n and 

?? 
e-s cycles, respectively, 

with additional conditions on t e que 
lustrate this shortly). The following de ines the four types !I! 

result (we will il- 

of cycle for a branch of a class-composition hierarchy. We 
will assume that the branch has n nodes, such that each 
node may in turn be the root of a class hierarchy. 
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1. A type-n cycle is a cycle formed by n > 1 nodes on 
the branch. 

2. A type-ns cycle is a quasi-cycle corresponding to a 
type-n cycle. It is formed by n > 0 nodes on the 
branch, and a superclass or a subclass of one of the n 
nodes. 

3. A type-s cycle is a cycle formed for a single node. 
4. A type-ss cycle is a quasi cycle corresponding to a 

type-s cycle. 
or a subclass. 

It is formed by a class and its superclass 

Assuming that the class Employee has an additional 
attribute Drives whose domain is the class Vehicle. a 
meaningful query is to “find all blue vehicles driven by the 
president of the company that manufactured them.” This 
1s an example of a query with a type-n cycle in its query 
graph. The following is an intuitive syntax for expressing 
the query. We leave it as a sim le exercise for the reader 
to construct the query graphs or the following example F 
queries. 

Q-cl: (select (Vehicle :Vj 
( Color = “blue’ 

and Manufacturer President Drives = V)) 

In this query, the variable :V is used for binding each in- 
stance of the class Vehicle, as the set of instances of Vehi- 
cle is scanned one at a time. The class Vehicle is the target 
class. 

A query to “find all blue vehicles manufactured b a 
company whose president drives a Japanese automob Y e” 
is an example of a query with a type-ns cycle in the query 
graph. This query may be expressed as follows. 

Q-&z (select Vehicle 
:J is-a JapaneseAutomobile) 
Color = ‘blue” 

and Manufacturer President Drives = J)) 

The expression (:J is-a JapaneseAutomobile) adds a con- 
straint to the value the complex attribute (Manufacturer 
President Drives) may take on to instances of the class 
JapaneseAutomobile. Note that the class Vehicle is still 
the target class. 

For the next two examples, let us add the Manager 
attribute to the class Emplo 

? 
ee; the domain of Manager is 

the class Employee. The ollowing is an example query 
with a type-s cycle. The query is to find “all managers of 
an employee named Johnson.” 

Q-c3: (select Employee 
recurse Manager) 
Name = “Johnson”)) 

The expression (recurse Manager) specifies that, once an 
instance of the class Employee 1s found which satisfies the 
predicate (Name = “Johnson”), the recursive values of 
the Manager attribute of the instance are retrieved. 

For our final example, let us assume that the class 
Employee has a subclass FemaleEmployee. The follow- 
ing 1s an example query with a type-ss cycle, which finds 
“all female managers of an employee named Johnson.” 

Q-c4: (select Employee 
(recurse Manager :M 

(:M is-a FemaleEm 
( Name = 

loyee)) 
“Johnson’ ) ‘5 

The expression (:M is-a FemaleEmployee) restricts the 
result of the query to instances of the class 
FemaleEmployee. 
query result 

In relational databases, the result of a single-relation 
query is a subset of the tu les of the relation that satisfies 
the selection predicates. f-h e concept of a class hierarchy 
in object-oriented databases captures the generalization 
abstraction, which means that a class, when used as a gen- 
eralized concept, subsumes all its subclasses. This obser- 
vation leads to two equally valid interpretations for the 
access scope of a query; the access scope of a query on a 
class C is either the set of instances of C, or the set of in- 
stances of the entire class hierarchy rooted at C. There- 
fore, the result of a single-operand query on a class C may 
be the set of instances of the class C or the set of instances 
of the entire class hierarchy rooted at C which satisfy the 
query predicates. For example, the access scope of a 
query against the class Vehicle may be restricted to the in- 
stances of Vehicle, or may be interpreted to also include 
the instances of all types of Vehicle, that is, all subclasses 
of Vehicle. 

If a query involves a projection operation, only the 
desired attributes in the instances that satisfy the predi- 
cates will be returned, regardless of whether the access 
scope of the query is a sin 

8’ the scope is a class hierarc 
e class or a class hierarchy. If 
y, we need to take into consid- 

eration the consequences of inheritance of attributes. 
First, attributes may be renamed in classes which 

have inherited them, as observed in [BANE87b]. For the 
purposes of queries, a renamed attriiute should be re- 
garded as the ori 
that the attribute t! 

inal attniute. For example, suppose 
olor, defined in the class Vehicle, 1s re- 

named as AutoColor in the class Automobile. Although 
the attribute has two different names, the distinction 
should be ignored in queries. 

Second, in the case of multiple inheritance, a class 
may inherit an attniute from one of its superclasses 
[BANE87b]. If the attniutes in all superclasses are iden- 
tical, that is, the have the same name and same domain, 
there is no prob r em. However, complications arise if the 
attributes are only equivalent, that is, they were all defined 
in the same class somewhere higher in the class hierarchy, 
but they have been renamed or their domains have been 
changed. Suppose that the superclasses Si and Sj of a 
class C have equivalent attniutes Ai and Aj, and that C 
inherits only the attribute Ai of Si. Now consider a query 
on Sj whose scope of evaluation is the class hierarchy 
rooted at Sj, and the attniute Aj is tobe output. Then the 
values of the attribute Ai inherited into the class C (and 
its subclasses 

a2 
should also be output, since Ai and Aj are 

equivalent ter all. 
If the access sco e of a query on a class C is the class 

hierarchy rooted at E , the result of the query is a hetero- 
geneous set of instances, since the instances belong to a 
number of different classes with different number of at- 
tributes. The application (or the user) which issues the 
query must obviously be prepared to deal with this hetero- 
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geneous mix of instances. One approach is for the data- 
base system to return only a list of object identifiers (along 
with the class identifiers) of the instances in the query re- 
sult, and have the application make explicit requests for 
all or some of the actual instances. This approach has 
been implemented in ORION [KIM#a]; and it is in a 
sense similar to the cursor mechanism in SQL/DS 
[IBM811 or portals in POSTGRES [STON86]. If the 
query involves a projection operation, the database sys- 
tern may return the set of object identifiers and the values 
of the projected attributes of the corresponding objects. 

The projection operation entails the familiar prob- 
lem of eliminating duplicates from the query result. For 
object-oriented databases, unlike relational databases, 
two different criteria exist for determining the uni ue- 
ness of an instance from a collection of instances. 8 ne 
criterion is the equality of the object identifiers, which 
may be called objecr equality; while another is the equality 
of the contents of the instances, which maybe called value 
equality, that is, the values of the user-defined attributes in 
the instances. We note that an instance may contain a 
number of system-defined attributes, such as the version 
number, update timestamp, and so on, to support various 
functionality of the system [CHOUSS]. The values of sys- 
tem-defined attributes really should not be included in 
testing value equality of objects, since the users do not ex- 
plicitly create their values. In relational databases, only 
value equality is used. For object-oriented databases, 
both may be useful; however, value equality requires 
some additional consideration. A class m general does 
not have the same set of attributes as its superclass, since 
a class inherits all attributes from its superclass and may 
have additional attributes defined on it. This means that 
value equality between classes with different sets of at- 
tributes need not be tested. 

It is interesting to note that our 
queries are recursive queries and that 
is, the result of such a query is a finite set o 
because a primitive class is never the target of a query. 

Throughout our discussion so far, we have assumed 
that the query result is simply returned to the application 
(or the user). Now we need to consider the problem of 
saving the result of a query. As we discussed earlier, an 
object belongs to a class, and a class has a position some- 
where in the class hierarchy. These simple principles im- 
pose some difficult constramts on the query model for ob- 
lect-oriented databases. In relational databases, the re- 
sult of a query is itself a relation, and it may snnply be 
saved as a new relation. In object-oriented databases, the 
result of a query is a set of objects belonging to a class or a 
class hierarchy rooted at some class. Let us consider a 
query on a class C whose scope of access is the class hier- 
archy rooted at C. The result of the query will in general 
be a heterogeneous set of instances that form a separate 
class hierarchy each of whose class is derived from a cor- 
responding class in the original class hierarchy; let us de- 
note the root of the new class subhierarchy by C-new. 
The instances in the newly created classes must all have 
different object-identifiers from those in the correspond- 
ing instances of the original classes. 

A difficult question is where we should place the class 
C-new in the class hierarchy for the entire database. In- 
tuitivel there are two options to consider. One is t0 
place F -new as a new subclass of the superclasses of the 

class C; and the other is to treat C-new as an immediate 
subclass of the class OBJECT, which is the root of the 
class hierarchy for the entire database. These options are 
shown in Figure 4, where the class AutoCompany-new is 
the root of a new class hierarchy which is created to save 
the result of a query on the class-hierarchy rooted at the 
class AutoCompany. 

Let us consider option-l, where C-new is made a 
subclass of the superclasses of the class C. If the query 
involves a projection operation, this solution would result 
in a subclass with fewer attributes than its superclass, 
thereby violating the fill-inheritance invariant in schema 
evolution as observed in [BANE87b]. In particular, if any 
attribute which C inherited from its superclasses is 
dropped from the query result, C-new will have fewer at- 
tributes than the superclasses of C; for example, in Figure 
4, the class AutoCompany-New may have fewer attrib- 
utes than the class Company. This su 

h with fewer attributes than C should per 
gests that C-new 
aps be made a su- 

!A 
erclass (rather than a subclass) of a superclass of C. 
owever, this fix does not work either, if C-new contains 

any attribute which was defined in C (rather than inher- 
ited into C). C-new will then end up with an attriiute 
which its subclass does not have. 

There is another problem with option-l, regardless 
of whether the query mvolves a projection operation. If 
C-new is placed on the class hierarchy, it becomes subject 
to schema evolution on its superclasses. In other words, 
changes to the definition of any of its new superclasses 

F 
ropagate down to C-new, agam in accordance with the 
t&inheritance invariant. For example, if an attribute is 

dropped from the class Company, the same attribute 
must be dropped from the class AutoCompany-New. This 
defeats the purpose of saving the result of a query. 

Let us now consider option-2, where C-new is made 
an immediate subclass of the stem-defined class OB- 
JECT. One drawback of this so ution is that all attributes 7 
and methods inherited into C-new must now be explicitly 
replicated in C-new. This requires extra storage; how- 
ever, it does not appear to be a serious drawback. Op- 
tion-2 is our choice. 
32 MULTIPLE-OPERAND QUERIES 

32.1 Join 

A relational database consists of a number of rela- 
tions. Join is used to correlate n different relations (n > 
1) on the basis of the values in attriiutes co.rnmon to the 
relations. It is important to realize that lam 1s a crud 
operation in relational databases largely because of the 
limitations of the relational model of data. In particular, 
the relational model of data restricts the attribute of a re- 
lation to a single 
have only one va P 

rimitive value; that is, an attribute may 
ue, and the value must be of a pnmltive 

data type (integer, float, string, boolean). These limita- 
tions have been removed in obIect-oriented and nested- 
relational models of data. 
implicit joins in a class-composition hierarchy 

Let us consider the three classes Vehicle, Corn 
$ 

ny, 
and Employee in Figure 1. These classes may be de ined 
as relations as follows. 

Vehicle (ID, Color, DriveTrain, 
Manufacturer) 

Company (CompanyName, Location, 
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Domestic Domestic Japanese Japanese 
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(b) Option-2 (b) Option-2 
Figure 4. Figure 4. Disposition of the Query Result Disposition of the Query Result 

President) 
Employee (SSN, EmployeeName, Age) 

The attributes Manufacturer and CompanyName 
have the same domain; and 
the President and EmployeeName attributes share 
the same domain. 

To find all blue vehicles manufactured by a company lo- 
cated in Detroit and whose president is under 50 years of 
age (example query Q l), the query must be formulated as 
a join of the above three relations, and the user must ex- 
plicitly specify the join attributes. As we have seen al- 
ready, however, the same query may be formulated in ob- 
ject-oriented databases as a retrieval from a class-com- 
position hierarchy in which joins between the classes are 
defined in the schema between an attribute of a class and 
the domain of the attribute. 

A single-operand query in object-oriented databases 
is then one type of join; it is an implicit join of the classes 
on a class-composition hierarchy rooted at the target 
class of the query. However, it has a few important limita- 
tions relative to the relational join. One is that the output 
attributes are restricted to those in the target class; that is, 
it is not possible to output any attribute in any class which 
is not the root of the query graph for a query. This may be 

easily remedied. The que 
with some means of spec’ 

syntax needs to be augmented 
L ’ g the output attributes; the 

output attriiutes may be spectfied in a single list, or they 
may be specified in a separate list associated with each of 
the classes in the query. 

Another, much more serious, limitation of the im- 
plicit join in a single-operand que is that the join is re- 
stricted to the attribute-domain re ationship specified in r 
the schema; that is, the implicit join is essential1 the ma- 
terialization of the values of an attriiute. Consi J era class 
Ci with an attribute A whose domain is the class Cj. As 
observed in [BANE88], the materialization of the in- 
stances of Ci 1s e uivalent to a join of Ci and Cj, in which 

9 the attriiute A o Ci and the object-identifier attriiute of 
Cj are the join attributes. Below, we elaborate on the 
limitations of the implicit join, and propose solutions to 
overcome these limitations. 
explicit joins of classes 

The limitation of a join implied in a single-operand 
query is essentially that it statically determines the classes 
to be joined, and the join ordering of the classes. Let us 
examine this in more detail. The implicit join statically de- 
termines the join ordering between a pair of classes Ci 
and C’ where Cj is the domain of an attribute of Ci, such 
that d? . 1 IS always the ‘outer class’ and Cj the ‘inner class’ 
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(analogous to the outer and inner relations in a join order- 
ing for a pair of relations in relational databases). This 
means that it is not possible to formulate a query whose 
semantics require implicit reversal of an attribute-do- 
main link specified in the schema. For example, the class 
Company is the domain of the attribute Manufacturer of 
the class Vehicle in Figure 1. It is possible to find all vehi- 
cles manufactured by certain companies. However, it is 
not possible to find all companies that manufacture cer- 
tain vehicles; the class Company has no attribute, say, 
Manufactures, whose domain is the class Vehicle. 

class Company define an implicit attribute of the class 
Company whose domain is the class Vehicle. Then a sin- 
gle-operand query on the class Company may be formu- 
lated in which instances of the class Vehicle are material- 
ized as values of the implicit attribute of the class Vehicle. 

In relational databases, the existence of a common 
attribute in a pair of relations implies, correctly, the at- 
tribute-domain relationship in both directions between 
the relations. It is certainly useful to extend our model of 
single-operand queries by postulating, for any attribute of 
a class C whose domain is the class D, an implicit attribute 
?f the class D whose domain is the class C; and by allowing 
Implicit joins to be formulated along the attribute-do- 
main links defined b 
the attribute Manu r 

the implicit attribute. For example, 
acturer of the class Vehicle, and the 

I 

However, the implicit join also statically determines 
the classes which may be joined to those pairs of classes Ci 
and Cj such that Cj is the domain of an attribute of Ci. 
This means that it excludes joins between an arbitrary pair 
of classes with attributes which share a common domain. 
For example, suppose that, as shown in Figure 5, the class 
Employee has an additional attribute Address, and that 
the domains of Address and the attribute Location of the 
class Company are the same, say a class City. Then a 
meaningful query may be to find all employees who live in 
the city in which their companies are located. However, 
as long as there is no attribute-domain relationship be- 
tween the attribute Address and the class Company, or 
between the Location attribute and the class Employee, it ..- ^ - _. 1s not possible to formulate this query. 

Company 

14 

Employee 

v/ 

‘n BigCity ‘A’ u SmallCity 

class I subclass link 

Figure 5. 
attribute I domain link 

An Example Query Graph for a Join 

We now extend our query model to admit joins of 
classes on user-specified arbitrary join attributes. Again, 
the extended model must be consistent with the object- 
oriented data model. To fully define the semantics of 
joins, we need to introduce the notion of attribute com- 
patibility. Two attributes Ai and Aj are compatible, if the 
domain of Ai is identical to the domain of Aj, or is a super- 
class or a subclass of the domain of Aj. Unlike relational 
joins, in which the domains of the join attributes must be 
identical, we require the join attributes to only be compat- 
ible. For example, in Figure 5 the attributes Address and 
Location are compatible, since the share the same do- 
main. Suppose now that the domain of the Location at- 
tribute is the class BigCity, which is a subclass of City. The 
attributes Address and Location are still compatible, 
since the domain of Location is a subclass of the domain 
of Address. 

Next, we must account for the class hierarchy in the 
scope of query evaluation. Each class to be joined is the 
root of a class hierarchy. The scope of query evaluation, 
for each class to be joined, may be either instances of the 

class alone or instances of the class hierarchy rooted at 
the class. The query syntax must allow the user to specify 
the scope for each class in a join, just as was the case for a 
single-operand query. 

The result of a join is a set of instances formed by con- 
catenating instances from different classes. This presents 
a problem for systems like ORION which first return the 
list of object identifiers and then return specific instances 
on demand; this problem does not arise in systems which 
directly return the actual set of concatenated instances. 
The problem is whether to return a set of n object identifi- 
ers (one for each class containing an output attribute from 
the join) for each concatenated instance or to return a 
new object identifier for the concatenated instance. If the 
system simply returns a set of n object identifiers for each 
concatenated instance, the user must in general send the 
entire list back to the system to re uest the retrieval of 
the actual concatenated instance. I-7 owever, if the system 
must return a new object identifier for each concatenated 
instance, it must incur the overhead of generating the 
identifiers, and temporarily saving all the concatenated 
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instances along with their identifiers. If the query result is 
not to be saved, this is a rather high overhead; therefore 
we adopt the first approach. 

Just as is the case with a single-operand query, if the 
result of a ‘oin needs to be saved as a snapshot, the in- 
stances in t h e result must be given unique identifiers and 
assigned to a class. The same considerations we had for 
saving the result of a single-operand query apply here, 
and the result of a ioin is to be saved in a new class which is 
an immediate su&lass of the class OBJECT, the root of 
the class hierarchy for the entire database. 

Figure 5 is the query graph for a query involving a join 
of two classes Company and Em 
are Location and Address. The 

ee; the join attributes 

1. Ci and Cj each is the root of a query raph corre- 
spondin 

‘i 
to a single-operand query on E i and Cj, re- 

spective y. That is, each query graph is the root of a 
class hierarchy and a class-composition hierarchy 
rooted at the class to be joined. 

2. The query graphs for Ci and Cj partially overla , 
because of the compatibility in the loin attributes. ;F i 
and Sj each is the root of a class-composition hierar- 
chy, each of whose node is in turn the root of a class 
hierarchy. If Si = Sj, the entire class-composition 
hierarchy is shared by Ci and Cj via their respective 
join attributes. If Si is a superclass of Sj, the class- 
composition hierarchy rooted at Si is the domain of 
the join attribute of Ci; while the domain of the join 
attribute in Cj is the class-composition hierarchy 
rooted at Sj. 

322 Set Operations 

The set operations for object-oriented databases also 
require some extensions to the corresponding operations 
for relational databases. As in relational databases., these 
operations are useful largely for further manipulatmg the 
results of queries, that is, when the operands are queries. 

The operand is a set of instances; more s ecifically, it 
may be the set of instances of a class define cf in the data- 
base, or it may be a set of instances obtained as the result 
of a query. On the surface, the semantics of the set opera- 
tions for object-oriented databases are identical to those 
for relational databases. Actually, however, they differ in 
three interesting ways. 

First, for object-oriented databases, the operand, 
and the result of the operation, may be a heterogeneous 
set of instances, that is the instances of the o 

P 
erand may 

not all belong to the same class; in relationa databases, 
the operand 1s a homogeneous set of tuples. 

Second, as we have seen already, for object-oriented 
databases, two different criteria exist for determining the 
uniqueness of an instance from a collection of instances, 
namely, object equality and value equality. 

Third, as usual, the scope of evaluation for an oper- 
and which is a database class may be instances of the class 
or the instances of a class hierarchy rooted at the class. 
The user may specify the scope for each class in the opera- 
tion. 
4. COMPARISON WITH OTHER QUERY 

MODELS 
There are three common, and major, differences be- 

tween our query model and other query models, including 
those for hierarchical, relational, nested relational, and 
object-oriented data models. First, our query model re- 
flects the semantics of the class hierarchy. The concept of 
a class hierarchy is not a part of a nonobject-oriented data 
model, and therefore, of a query model derived from it. 
Unhappily, even the few query models proposed for ob- 
ject-onented database systems [COPE84, BEEC87, 
ROWE87, ALAS881 neglect to account for the impacts of 
the class hierarchy on queries. 

Second, the record- 
‘p 

e hierarchy in hierarchical da- 
tabases and the nested re ations in nested relational data- 
bases are similar to the class-composition hierarchy in an 
object-oriented data model. However, the record-type 
hierarchy and nested relations form a directed acyclic 
graph, unlike our class-composition hierarchy which may 
include cyclic branches. The query model based on the 
normalized relational model does not give rise to a nested 
structure of relations. 

Third, other query models use only value equality, 
that is, equality testing between entities 1s done on the ba- 
sis of the contents of the entities, rather than object 
equality based on the object identifiers. This difference is 
significant in the definition of a predicate and the defini- 
tion of the semantics of the set operations. 

One additional major difference between our query 
model and other models proposed for object-oriented da- 
tabases is the treatment of a snapshot, that is, the query 
result which is saved and becomes a part of the ersistent 
database. Our model solves an important prob P em posed 
in [KIM88b]. 
SUMMARY 

In this paper, we rovided what we believe now to be 
a comprehensive m J el of queries for object-oriented da- 
tabases. The work represents a significant formalization 
and extensiosn of the 

1 
uery model first ro sed in 

[BANE88 . 
d 

The mode roposed in [B lNr 881 and 
elaborate somewhat in [ Iti MK89] is based on the view 
that a query model may be defined as a subschema of the 
database schema; the database schema is reduced to a 
query model by applyin 
erations. To our know edge, it is the first query model f 

the selection and projection op- 

which made serious efforts to capture the semantics of ob- 
ject-oriented concepts. However, the model defined only 
limited type of a sin 
whose target is a sing P 

le-operand query, that is, a query 
e class or a class hierarchy rooted at 

that class. Further, the model contained some important 
oversights, notably in its treatment of the projection op- 
eration, and the directionality of the arcs in the class- 
composition hierarchy. 

In this paper, we first provided a considerably more 
rigorous treatment of the smgle-operand query, and cor- 
rected the mistakes in the model given m [BANE88 . 
Next, we significantly extended the model of [BANE8 s ] 
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to provide a formal basis for a query which involves more 
than one operand, namely, object-oriented equivalents 
of the relational join and set o 
summarized the essential dif P 

erations. Then, we briefly 
erences between our query 

model, and the query models for traditional data models 
and the models proposed by other researchers for object- 
oriented databases. 
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