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Abstract 

Starburst is an experimental database management sys- 
tem prototype whose objectives include extensibility, sup- 
port for knowledge databases, use of memory-resident 
database techniques, and support for large objects. We 
describe the structure of the Starburst long field manager, 
which was designed to manage large database objects such 
as voice, image, sound and video. The long field manager 
uses the buddy system for managing disk space, which al- 
lows it to allocate a range of small to very large disk extents 
(buddy segments) quickly and efficiently. When possible, 
a small number of large buddy segments are used to store 
long fields, which allows the long field manager to perform 
fewer disk seeks when transferring large objects to and from 
disk. The long field manager uses shadow-based recovery 
for long field data and write-ahead-log recovery for long field 
descriptor and allocation data. Internal space management 
synchronization is enforced by a combination of long-term 
and instantaneous locks. 
Keywords: Starburst, relational database, long fields, stor- 
age methods, buddy system. 

1 Introduction 

The main goal of the Starburst experimental database 
management system (DBMS) is to provide a flexible plat- 
form on which research personnel can perform DBMS ex- 
perimentation well into the 1990s. So far, this experimenta- 
tion has been directed toward improving the structure and 
performance of the internals of the DBMS, e.g., new recov- 
ery and logging mechanisms [Rothermel89], extensible data 
management [Lindsay 871, new optimizer methods [Lee 881 
[Lohman 881, new query processing methods [Haas 891, new 
methods for handling data types [Wilms 881, and new sig- 
nature access methods [Chang 891. 

As user-interface technology advances, user interfaces will 
make more use of multimedia presentations by manipulat- 
ing voice, sound, image, video and animation. From the 
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database perspective, each of these multimedia objects will 
require large amounts of storage. Furthermore, presenting 
images, playing sound, producing video signals, and display- 
ing animation in real time provide significant challenges for 
a relational database. 

The Starburst long field manager was designed with these 
applications in mind. The long field manager design goals 
include high data bandwidth with low CPU overhead and ef- 
ficient storage management techniques. We have combined 
existing storage management techniques from database sys- 
tems and file systems in a novel way to achieve these goals. 
The rest of the paper describes the design of the Starburst 
long field manager and is organized as follows. 

Section 2 discusses the goals and the motivation behind 
the design of the Starburst long field manager, along with 
previous work in the area of data storage. Section 3 presents 
the storage design of the long field manager, including the 
space allocation data structures and algorithms. Section 4 
discusses concurrency control and recovery for long fields. 
Section 5 summarizes the work and gives the project im- 
plementation status. Last, appendix A describes the SQL 
interface and long field operations. 

For space considerations, this version of the long field pa- 
per has omitted some details and many diagrams. For more 
details, the interested reader should obtain the correspond- 
ing IBM technical report. 

a 

2 Starburst Long Field Manager Design Moti- 
vation 

2.1 Design Goals 

Three main goals drove the design of the Starburst Long 
Field Manager: 

1. Storage allocation and deallocation must be efficient. 
We expect long field sizes to be large, on the order 
of 100 megabytes. It is important that the aUoca- 

tion mechanism minimize the time spent allocating and 
deallocating space to hold a long field. 

2. The long field manager must have excellent I/O per- 
formance; long field read and write operations should 
achieve I/O rates near disk transfer speeds. 

3. Long fields must be recoverable, but the recovery mech- 
anism must not substantially slow down the long field 
operations. 

To see how we might achieve these goals, we look at existing 
work in storage systems. 

Amsterdam, 1989 
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2.2 Previous Work in Storage Systems 

Storage management of some kind is required by almost 
all large software systems. Overall, database systems and 
file systems have spent the most effort on designing fast and 
efficient storage mechanisms. 

Database Systems 

Past database systems were designed to manage simple 
facts - values that could be represented in fields of255 bytes 
or less. Larger fields, such as those containing thousands or 
millions of bytes, presented problems to the database record 
manager, so the large fields were typically implemented via 
a separate long field mechanism. 

The first SQL relational database system, System R [As- 
trahan 761, supported long fields with lengths up to 32,767 
bytes. The System R long field manager divided long fields 
into a linked list of small manageable segments, each 255 
bytes in length. Operations were restricted to reading and 
writing entire long fields; partial reads or updates were not 
supported. Later, an extension to SQL was proposed that 
provided operators for manipulating long fields [Haskin 821. 
A new interface, the long field cursor, provided the ability 
for partial reading and updating of long fields. Along with 
the language extension, a storage mechanism was proposed 
that stored long fields as a sequence of 4 kilobyte data pages 
(rather than the previous scheme of a linked list of 255 byte 
records). The maximum length of a long field in extended 
SQL was about 2 gigabytes [SQL 851. 

The Wisconsin Storage System (WiSS) [Chou 851 concur- 
rently developed a similar mechanism for storing long fields. 
A WiSS long field was split into 4 kilobyte data pages, called 
slices. To reduce internal fragmentation, a crumb, a partially 
filled slice managed similarly to a database record, was used 
to hold the last segment of a long field if it did not occupy 
a full slice. A long field was represented by a directory of 
slices, plus a crumb. WiSS long fields had a size limit of 1.6 
megabytes. 

A more recent database system, EXODUS [Carey 861, 
stores all data objects in a general-purpose storage mech- 
anism that can handle objects of any size - the limit is 
imposed by the amount of physical storage available. EX- 
ODUS uses a data structure that was inspired by the or- 
dered relation data structure proposed for use in INGRES 
[Stonebraker 831. The data structure is basically a Bt Tree 
indexed on byte position within the object, with the Bt 
Tree leaves as the data blocks. Objects smaller than a page 
are stored as single records (in a sense, a degenerate case 
of the B+ Tree structure - a single node). The EXODUS 
data structure is designed more for random access than for 
sequential access, although the leaves (the data blocks) may 
be configured to comprise several sequential disk pages if 
scan performance is being emphasized. 

None of the database systems we’ve examined have em- 
phasized high performance with respect to reading and writ- 
ing large objects. Typically, performance issues are re- 
stricted to transaction processing systems involving “nor- 
mal” database fields, those fields that are smaller than 255 
bytes in length. The majority of the work involving the 
movement of large amounts of data at high speed has been 
in the area of file systems. 

File Systems 

File systems were used to manage large objects before 
database management systems existed. File systems associ- 
ated with batch-oriented operating systems were designed to 
keep data stored either contiguously or clustered in physical 
extents, as data was read and written sequentially at high 
speed. Files with sequentially allocated disk blocks had ex- 
cellent I/O performance, but sequential allocation caused 
problems with disk space due to external fragmentation. 
The next best thing to sequential allocation was physically 
clustered allocation in extents, or cylinder groups. 

Early IBM operating systems such as DOS had file sys- 
tems that left disk allocation up to the user; the user speci- 
fied the number and location of disk extents required to hold 
the file. Later systems, such as IBM’s OS/MVS, used hints 
from the user to plan for initial storage amounts as well as 
for future growth. IBM’s CMS file system running under 
VM provided both automatic sizing and placement. Using 
the reasoning that blocks recently written will be read soon, 
the CMS file system allocated extents (disk tracks) that were 
close to the current position of the virtual disk arm. 

The DEMOS file system [Powell 771, designed for CRAY 
computers, used the notion of physically clustered 4 kilobyte 
disk pages to enhance I/O performance. The inventors real- 
ized that sequential scamring of files, as opposed to random 
access, was the more frequent mode of access, so they de- 
signed accordingly. When a new disk block was added to the 
end of a file, it was allocated as physically close to the last 
block as possible. In order to prevent multiple files being 
written simultaneously from confusing the system, DEMOS 
also used a preallocation strategy to allocate a set of blocks 
for a file rather than single blocks. 

The original UNIX file system [Ritchie 741 used 512 byte 
data pages that were allocated from random disk locations. 
The inventors seemed to follow the reasoning that, com- 
pared to batch systems, timesharing systems have less strict 
disk organization requirements. For example, with multiple 
users making disk requests, disk traffic can appear random. 
Even when two clients have contiguously allocated iiles, if 
their read requests are interleaved the disk arm can oscil- 
late between the two file areas and eliminate any advan- 
tage of file clustering. The UNIX random page allocation 
scheme provided only medium-level performance at best, as 
virtually every disk page fetch operation resulted in a disk 
seek. Stonebraker noted that this results in poor perfor- 
mance for database systems that use the UNIX operating 
system [Stonebraker al]. 

The UNIX Fast File System [McKusick 841 is an improve- 
ment over the original UNIX file system because it uses the 
idea of physical clustering of disk pages. The Fast File Sys- 
tern uses larger data pages that are allocated from cylinder 
groups, thus sequential scan performance is improved signif- 
icantly. For large files, a maximum of a megabyte of space 
is allocated from each cylinder group. The justification .for 
this is that no single file should get all the space in a cylinder 
group, and that a megabyte of data between disk seek oper- 
ations produces a respectably high transfer rate. To reduce 
internal fragmentation, the last large page can be split into 
smaller pages (fragments).’ 

The file system used by the Dartmouth Time Sharing SYS- 
tern (DTSS) [Koch 871 uses the bmary buddy system [Knuth 

‘Many page and fragment &es are mentioned in [McKusick 
841, but a common choice has been a 4 kilobyte page and a 1 
kilobyte fragment. 
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751 for space allocation. The binary buddy system provides 
DTSS with variable size disk extents whose sizes are powers 
of two (units are disk pages). 

When the file size is known in advance, DTSS allocates 
its disk extents in a manner that minimizes internal frag- 
mentation. DTSS uses the bit representation of the size 
of the file (in pages) to determine the sizes of the extents 
needed to contain the file. Using N extents for file storage, 
the size of the file (in pages) is rounded up to the smallest 
binary number that contains N or fewer ones. For exam- 
ple, using 3 for N, 2310 (101112) would be rounded up to 
2410 (110002) (one segment of 16 pages and one segment 
of 8 pages), 7510 (10010112) would be rounded up to 7610 
(10011002) (one segment of 64 pages, one segment of 8 pages 
and one segment offour pages), and 23110 (11100101) would 
be rounded up to 25610 (1000000002) (one segment of 256 
pages). When the file size is not known in advance, DTSS 
allocates extents increasing in size until the file is contained. 
Later, the storage for the file is reallocated using the scheme 
described above once the file size is known. 

Lessons Learned 

Most database systems are quite primitive in their treat- 
ment of long fields. They treat the long fields as single val- 
ues; although larger than simple scalar values, the long fields 
are read or written in a single operation. Those few database 
systems that handle long fields somewhat gracefully still do 
not pay particular attention to performance. 

File system designers have addressed the I/O performance 
problem for large files and have found effective solutions. 
A file system using large disk extents can provide better 
performance than file systems using physically clustered disk 
pages, such as the UNIX Fast File System. A comparison of 
DTSS against the UNIX Fast File System shows that DTSS 
is much more efficient in allocating disk space, and through 
the use of large disk extents supplied by the buddy system, 
DTSS is able to sustain a high disk throughput with much 
less CPU usage. DTSS uses an average of three extents to 
hold a file, although it is able to allocate as many as twenty- 
four extents per file. The average number of extents per file 
is a system parameter, and is chosen to minimize the number 
of disk seeks per iile scan, while providing a maximum of 3 
percent disk space loss to fragmentation. 

A survey of four systems using DTSS showed that the 
median static file size ranged between 6.4 kilobytes and 25 
kilobytes, and that 98 percent of the files were under 64 
kilobytes [Koch 8’71. Using an average of three disk extents 
to hold files with these sizes was reasonable, but larger sizes, 
such as 100 megabytes, would probably require both larger 
extents and a larger number of them. The Starburst long 
field manager does exactly that. 

3 The Long Field Manager Storage Design 

3.1 Storage Design Overview 

Figure 1 presents an overview of the data structures used 
for long field storage management. Given that it is not prac- 
tical to store a long field directly in a relationl, the next best 
thing is to store a long field descriptor in the relation. The 
long field descriptor is a single level directory of disk extents. 

21BM’s Database 2 (DB2) actually does this, but it also re- 
stricts the sise of a long field to 32 kilobytes-the size of the 
largest DB2 data page. 

We chose a size limit of 255 bytes for the long field descrip- 
tor because it is stored in a tuple as a field value, and since 
tuples may not span pages, it is important to minimize the 
size of the descriptor. 

The variable disk extents, called buddy segments, are 
taken from buddy spaces which are large fixed-size sections 
of disk that are reserved for long field use. Buddy spaces 
are taken from an even larger (variable size) portion of disk, 
labeled DB Spacein figure 1. DB Space is a Starburst term 
for an area of disk typically used to hold a set of tables or 
indices. A buddy space comprises an allocation page and 
a data area. The allocation page describes the state and 
size of the individual buddy segments in the buddy space 
data area. Buddy segments contain only data-no control 
information-and therefore (given suitable system facilities) 
the data can be transferred directly from disk to an appli- 
cation’s buffers. 

3.2 The Buddy System 

Discussion 

The buddy system works well at managing block sizes 
that diier by several orders of magnitude [Knuth 75]. It is 
known for fast allocation and automatic coalescing of blocks 
on deallocation, but it has also been reported to suffer from 
poor space utilization due to fragmentation [Bromley 85, 
Chowdhury 87, Lloyd 85, Page 86, Peterson 771. Many of the 
negative reports about the buddy system come from those 
trying to use the buddy system to allocate a single block of 
storage rather than a set of blocks. All buddy systems (bi- 
nary, weighted, and fibonacci) have poor storage utilization 
due to external fragmentation when single extents are used 
to store data. 

However, when multiple blocks are used, both internal 
and external fragmentation can be reduced greatly. The 
bounded fragmentation work done by Bryant and Franaszek 
[Bryant 851 at IBM’s Yorktown Research Laboratory shows 
that the buddy system can be used effectively to address the 
problems of internal fragmentation and external fragmenta- 
tion. Since the bin&y buddy system can supply buddy seg- 
ment sizes in 2N units (the units typically being disk pages), 
it is possible to allocate the correct sizes of buddy segments 
so that there is less than a single disk page lost to internal 
fragmentation for any long field. 

Therefore, despite the Buddy System’s reputation for 
poor space utilization, it is our choice as the space allocation 
method for the long field manager because we plan to use 
it effectively. We use a set of blocks in a range of sizes (in- 
cluding the smaller sizes) to reduce external fragmentation 
and trimmin g of blocks (into smaller buddy system blocks) 
to reduce internal fragmentation. 

Description 

We refer to a variable-size segment allocated with the 
buddy system as a buddy segment. In the Binary Buddy Sys- 
tem, the size of a buddy segment is a power of two, where the 
units are disk pages. Segments of the same size sharing an- 
cestors are considered buddies (e.g. segments 0000 and 0001 
are buddies at the 1 unit level, segments 1000 and 1100 are 
buddies at the 4 unit level). Calculating the address of a 
buddy for a particular size is straightforward in the binary 
buddy system. The address of a segment XOR’d with its 
size gives the address of its buddy. For example, to find the 
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Long Field Descriptor 

Buddy Space 

Buddy Segment 

Figure 1: A Storage Overview of the Long Field Manager 

size 4 buddy of block 1100, take the XOR of 1100 and 100, 
which gives 1000 - the size 4 buddy of block 1100 is 1000. 

3.3 The Starburst Long Field Descriptor 

A long field descriptor completely describes the storage of 
a long field. The descriptor is small, less than 255 bytes, yet 
it holds the disk storage information for long fields as large 
as 100 megabytes.’ The descriptor contains a directory of 
buddy segment pointers, which allow direct access to long 
field data pages. The long field descriptor makes use of the 
property that the variable size segments are powers of two, 
thus segment sizes can be expressed as logs(.&ze), rather 
than sire which would require more storage. 

3.4 Long Field Manager Algorithms 

Creating a Long Field 

Creating a long field involves: creating a long field de- 
scriptor, allocating buddy segments to hold the long field, 
and setting the array of offsets in the long field descriptor 
to point to the buddy segments. A long field may be allo- 
cated with or without prior knowledge of size. When the 
eventual size of a long field is not. known a priori, successive 
segments allocated for storage double in size, (e.g. the first 
segment iz a single page (1024 bytes), then the next segment 
is two pages (2048 bytes), then 4 pages, then 8 pages and 
so on until the maximum size of 2048 pages (2 megabytes) 
is reached). Once the segment size reaches the maximum, a 
sequence of maximum size segments is used until the entire 
long field is stored, up to the maximum long field size (120 
megabytes). When the size of a long field is known before 
creation, maximum segments are used, rather than increas- 
ing sizes. The use of doubling sizes has three advantages: 

1. It does not unnecessarily allocate large blocks that 
would then be broken into smaller blocks during the 
trimming process. (Long Field Trimming is explained 
in the next section.) 

2. It uses the smaller sizes, thus reducing external frag- 
mentation. 

3The design allows us to support up to approximately 400 
megabytes if necessary. If even larger fields are needed, then the 
application must manage a set of maximum length long fields. 

3. It avoids storing size information for each segment in 
the long field descriptor, since the segment size is im- 
plicit given the size of the first segment and the known 
pattern of growth. 

Sometimes, the exact size of a long field is not known, but 
an approximate size is available. Given a hint of approxi- 
mate size from the long field append function, the long field 
manager will start with an appropriately sized first segment 
and allocate doubling segment sizes from there. 

When allocating buddy segments for a long field, the al- 
locator attempts to allocate buddy segments from the same 
buddy space, which is roughly similar to a contiguous group 
of cylinders. Therefore, we expect that disk seeks will be 
small even between buddy segments. 

Long Field Trimming 

To reduce internol fragmentation, the last long field seg- 
ment is trimmed to the nearest page boundary whenever 
an application closes a long field (typically upon transac- 
tion commit). Consider how a segment of 16 pages would 
be trimmed to hold a string of bytes that occupy 11 pages. 
The sequence of segment sizes needed is straightforward; it 
is the binary representation of the number of pages needed 
to hold the long field. 1110 is 1011~, thus there’s a segment 
of size eight, a segment of zize two, and a segment of zize 
one. The remaining segments (sire one and four) are re- 
leased. After trimmin g, the last segment is logically a ret of 
buddy segments, not a single segment. However, since they 
are contiguous, the last buddy segment pointer in the long 
field descriptor may still point to the first buddy segment in 
the set of segments. This representation may change if ap 
pend operations (explained below) are performed on a long 
field that has been trimmed. 

Appending to a Long Field 

We believe that most long field applications, such as those 
involving voice, image, sound, or video, will read and write 
whole long fieIds and not perform update operations that 
affect only parts of long fields. There are some applications, 
however, that may find it necessary to perform partial up- 
dates to a long field. An application using the long field 
mechanism to contain a log Me, for example, might perform 
append operations on a long field. 

In most cases, the last segment of a long field wiIl be 
trimmed to some fraction of its original sise (to reduce in- 
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Figure 2: Allocation page structure 

ternal fragmentation). In keeping with the design of the 
long field descriptor, an append operation that required 
more space than the existing trimmed segment would re- 
quire a new segment with a size equal to the original size of 
the trimmed segment. The data from the trimmed segment 
would be copied to the new segment, and then the new data 
would be written to the new segment. If the new segment 
had extra space after the append operation, it would also 
be trimmed. Clearly, this would not be an efficient mecha- 
nism, as appending to very long fields would result in several 
megabytes of data being copied for each append operation. 

Instead, when the long field manager receives an append 
request for a few bytes on a large object, it modifies the long 
field descriptor to handle appends more gracefully. The last 
segment offset in a long field descriptor typically points to 
a trimmed buddy segment, which consists of several smaller 
contiguous segments that are treated as a single segment. 
When an append operation is performed on a long field, 
the set of segments making up the trimmed segment is bro- 
ken into separate segments, and the segment pointer for the 
trimmed segment becomes a directory for the new set of seg- 
ments. Hence, just as the descriptor uses increasingly larger 
blocks for unknown sizes, it uses decreasingly smaller sizes 
for frequent append operations. 

3.5 Long Field Manager Space Allocation 

Long Field Descriptor Parameters 

As we stated earlier, the long field descriptor must be 
minimized. The first five fields use 14 bytes, leaving about 
240 bytes for the array of segment offsets (80 entries). Us- 
ing a conservative estimate, a long field may have both in- 
creasing segment sizes, starting with a single page segment, 
and may also have decreasing segment sizes (because of ap- 
pending). Using a 1 kilobyte data page, a maximum buddy 
segment size of 2 megabytes (211 pages), would result in up 
to 11 slots being used for increasing sizes (the 11 slots hold 
a total of approximately 2 megabytes), up to 11 descriptor 
slots being used for decreasing sizes (also approximately 2 
megabytes), and 58 slots being used for maximum size seg- 
ments (116 megabytes), for a total of about 120 megabytes. 
(Notice that a long field composed of only maximum size 
buddy segments would hold more, but we chose to set the 
maximum long field length to the minimum of the possible 
maximum sizes.) Since the maximum length of the long field 
descriptor is fixed, the maximum length of a long field varies 

with the maximum buddy segment size. A maximum buddy 
segment size of 1 megabyte would result in a maximumlong 
field size of 62 megabytes, a maximum buddy segment size of 
4 megabytes would hold a long field of 232 megabytes and a 
maximum buddy segment size of 8 megabytes would hold a 
long field of 448 megabytes. Our current design, based on a 
4 kilobyte allocation page, does not support buddy segments 
larger than 8 megabytes. 

Page Allocation and Bitmap Encoding 

Space in a long field DB Space is controlled by oilocation 
pages stored in the long field DB Space. Recall from Figure 
1 that the DB Space is divided into buddy spaces, and each 
buddy space contains an allocation page at the beginning of 
the space. Each allocation page controls about 16 megabytes 
of disk storage. Figure 2 shows the structure of an alloca- 
tion page and the allocation bitmap representation. The 
allocation page controlling a buddy space has three parts: 
the allocation bitmap, the buddy segment Count Array, and 
the buddy segment Pointer Array. 

The Count Array and the Pointer Array increase the effi- 
ciency of the search for a buddy segment. The Count Array 
shows the number of buddy segments of each size available 
in the space controlled by an allocation page, so that an allo- 
cator can determine immediately if it should look in a given 
allocation page for a given segment size. The Pointer Array 
provides a place to start looking for a segment of a particular 
size, so rather than starting each search from the beginning 
of the bitmap, the Pointer Array shows the first place where 
an available segment was last seen (by anyone updating the 
allocation page). On some occasions, the Pointer Array may 
point to a segment that is available, but on other occasions, 
the segment may have recently been allocated, hence the 
Pointer Array actually provides a hint rather than an abso- 
lute location. However, the pointer for a particular buddy 
size is guaranteed to be at least a correct starting point for 
a search for that size buddy segment. As segments are al- 
located, the Count Array is updated and the Pointer Array 
is updated to point to the location of the newly allocated 
segment (this is how the segment pointer moves forward). 
As segments are freed, the Count Array iz updated and the 
Pointer Array is set to point to the segment closest to the be- 
ginning (this is how the segment pointer moves backward). 
Upon initialization, all of the pointers in the Pointer Array 
point to the first available segment of each size. 

An obvious method for representing allocation informa- 
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Bits 

Examples 

MeaninlZ 

11 A segment of 1 page (Allocated) 

01 A segment of 1 page (F’ree) 

1010 A segment of 2 pages (Allocated) 

0010 A segment of 2 pages (be) 

loololoo A segment of 16 pages (Allocated) 

ooollooo A segment of 256 pages (F’ree) 
.----------_---_-_--____________________---------------------------------------~ 

Figure 3: Allocation bitmap encoding 

tion in bitmap form would be to use a single bit for each 
page, where a ‘1’ in a page’s bit position means that the 
page is allocated and a ‘0’ means that the page is free. With 
the buddy system, however, more information is needed: 
namely, the size of the buddy segment (in pages). We use 
two bits per disk page so that we can represent both the 
allocation status and the size of the buddy segment. 

Two bits are suflicient for representing the size and al- 
location status of a single page buddy segment. When a 
buddy segment is larger than a single page, for every page 
in the buddy segment there are two additional bits avail- 
able for size and status information. Eight bits are sufllcient 
for representing the allocation status and size of segments 
that range from 1 page to 32768 pages.’ Therefore, when 
eight bits are available, that is, when a segment is at least 
four pages long, the general purpose representation is used. 
When the segment size is one or two pages, then the specific 
representation for one or two pages is used. Figure 3 shows 
the bit encoding used to store the size and allocation infor- 
mation of various sizes of buddy segments. Notice that at 
most eight bits per segment are used to hold information, 
while any remaining bits are left unused.s 

Encoding the size in the page allocation bitmap gives a 
considerable advantage when looking for a particular seg- 
ment size. First, at most eight bits must be examined, re- 
gardless of the segment size, to determine the segment size 
and allocation status. Second, when a segment is freed, a 
simple arithmetic operation on the freed segment’s address 
gives the address of the buddy which can then be checked 
immediately for possible coalescing. 

Also, because of the buddy system, a segment of size 2N 
can appear only on boundaries where the address is 0 mod- 
ulo 2N. Thus, looking at the size of a segment on those 
boundaries provides an immediate direction of where to look 
next. 

With our allocation bitmap encoding, the bitmap must be 
read on valid segment boundaries. This invariant is main- 
tained by the pointer array, which guarantees that the start- 
ing place for a search is valid. Without this invariant, an al- 
locator searching the bitmap could easily become confused. 
Notice in Figure 2 that the segment of size 8 has 16 bits avail- 
able, but uses only 8 bits. The trailing 8 bits do not carry 

‘The number 32768 could be pushed to 262144, since we don’t 
need to represent 2O, 2l, or 22, as they’re done with a different 
encoding. However, we didn’t need to add this extra bit of com- 
plexity because we plan on using a maximum of only 2048 pages 
in OUT design. 

5Those bits would be used if the segment is split into smaller 
segments. 

any useful information, and could mislead an allocator that 
tried to read the bitmap on that nonsegment boundary. 

4 Concurrency and Recovery for Long Fields 

Concurrency control is managed by the database system 
at the record level, hence there is no user-level concurrency 
control mechanism needed for the long field manager. Lock- 
ing the record that contains a long field descriptor also locks 
the long field associated with that record. 

We examined the two main techniques for recovery of long 
fields: logging and shadow techniques. Shadowing [Lorie 771 
is a recovery technique in which current page contents are 
never overwritten. Instead, new pages are allocated and 
written, while the pages whose values are being replaced are 
retained as shadow copies until they are no longer needed 
to support the restoration of the system state due to trans- 
action rollback. Logging [Gray 811 is a well-known database 
recovery technique which supports state restoration and re- 
construction of values that are updated iu place by record- 
ing in a system log the old and new values of the updated 
data items. We chose the shadow technique for long field 
data because of its simplicity [Traiger 821 and its potential 
for causing fewer I/O operations. However, since the shadow 
technique does not provide protection against media failures 
some additional measures are necessary; the long field data 
can be stored on duplexed disks or logged. Duplexed disks 
allow higher throughput, but they are costly. Logging is 
less expensive, but it allows less throughput and has the ad- 
ditional problem of potentially degrading the performance 
of the entire system. We are currently investigating these 
alternatives. 

When the Starburst long field manager updates (inserts 
or deletes) a long field, it creates a new copy of the updated 
long field data segments (which it transfers directly to disk) 
and logs the changes to the long field descriptor and the 
long field allocation page(s). The replaced long field data 
segments remain as shadow copies until the updating trans- 
action commits. When a long field data value is deleted 
or replaced, the allocation information for the correspond- 
ing space in the long field file is marked free, but the al- 
location information itself is locked against all transactions 
(even the deleting transaction) until the deleting tranzac- 
tion completes, thus ensuring that deletes will be undoable. 
Should a delete operation need to be undone, the deleted 
space will be reclaimed and the long field descriptor will be 
reset to reference its original set of data segments. Locking 
the freed storage presents an interesting problem, since at 
the time the space is freed, the buddy system may auto- 
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matically coalesce the released buddy segment into a larger 
buddy segment, which could possibly be coalesced into an 
even larger buddy segment, and so on. The newly freed (and 
possibly coalesced) buddy segment may have a different ad- 
dress from the originally freed buddy segment. As a result, 
simply locking the address of the released buddy segment is 
not adequate. 

Our solution uses a set of exclusive-mode locks, intention- 
mode locks and instant conditional locks. Allocate (A) and 
intention allocate (IA) locks are instant conditional locks; 
they are not actually held like regular locks. Setting an in- 
stant conditional lock on a segment simply tests the lock 
status of the segment; it does not actually lock a segment, 
nor does it cause the requester to block in the event the 
segment is already locked. When an allocate lock is denied, 
the requester simply moves on to the next available buddy 
segment and tries again. An allocation bitmap structure is 
protected by an allocation page latch while a requestor at- 
tempts to set allocate locks, so mutual exclusion of multiple 
requestors is guaranteed. 

When a buddy segment is freed, a release lock (R) is 
placed on its address and size, and an intention release lock 
(IR) is placed on all of its ancestors. These locks are held 
until transaction completion. When a transaction attempts 
to allocate a buddy segment, it sets instant conditional in- 
tention allocate (IA) locks on all ancestors of the intended 
buddy segment, and then sets an instant conditional allocate 

Kslfo;ows: 
oc on the intended buddy segment. The lock matrix 

Lock Held I 

If an ancestor is locked with a release (R) lock, the in- 
tention allocate lock will be denied, as the ancestor must 
remain unallocated until its holding transaction completes. 
If the intended buddy segment is locked with either an in- 
tention release lock (IR) or a release lock (R) then all or 
part of the buddy segment must remain unallocated until 
its holding transaction completes. 

An important aspect of any hierarchical locking scheme 
is the number of lock granularities. With 12 sizes of buddy 
segments (our current design), releasing a buddy segment of 
size 1 would require setting 1 release lock and 11 intention 
release locks. Rather than set a lock at each level, locks 
are set at only certain specified levels (granularities). For 
example, Figure 4 shows how we might set locks only at 
segment sizes 2 and 8 in a system with only 5 sizes. Setting 
locks at only certain levels trades concurrency for overall 
locking cost, as each lock may cover more segments than 
just the segment requiring a lock. In Figure 4 for example, 
segment 0011 is locked along with segment 0010, and pages 
1000-1011 are locked along with segment 1100. 

Related Work in Recovery 

Numerous other methods have been used for supporting 
recoverable long fields or long sequential byte strings. An 
IBM database product, DB2, stores long fields directly in 
normal database records. DB2 records may not cross page 

boundaries, and since the largest page size in DB2 is 32 
kilobytes, the maximumlong field size in DB2 is 32 kilobytes. 
Recovery of long fields is the same as for other types - write- 
ahead logging. Another IBM database product, SQL/DS, 
has a long field manager that stores the long field value in a 
sequence of blocks, each block being small enough to fit into 
a database page. Each of these blocks has the format of a 
database record and the blocks are linked into a linear list 
whose head is in the database record which logically contains 
the long field. The values of the block of the long field are 
recovered using the “standard” database log techniques. As 
a result, the contents of an updated long field are written 
both to the log and to the database. 

The remaining related work in recovery comes from the 
domain of “transactional file systems”. A useful survey of 
several file systems which support transactions can be found 
in [Svobodova 841. The predominant approach for these sys- 
tems is the use of shadow, copies which is similar to our ap- 
proach. Most of the systems rely upon specialized techniques 
to recover control and allocation information following a fail- 
ure. XDFS and CFS [Mitchell 821 both use shadow pages 
but depend upon careful replacement of control and alloca- 
tion information to insure failure recovery. Both of these 
systems require extensive scanning of secondary storage to 
validate and reconstruct control information. 

Paxton [Paxton 791 describes a shadow based file system 
which uses a form of careful replacement for control informa 
tion known as intentions lists. Paxton’s approach to storing 
long byte string values is similar to our method in that it 
uses shadow page replacement as the basic recovery mecha- 
nism. However, the use of intentions lists as the mechanism 
for transaction commit requires at least 3 extra write oper- 
ations to reliably update the control information associated 
with the long byte string value. Our method requires only 
1 extra (log) write of control information (the long field de- 
scriptor) to recoverably update a long field. 

The Alpine file system [Brown 851 logs file content updates 
and copies file content from the log to the file following the 
commitment of the transaction modifying the file. This leads 
to 3 I/O operations per file page modified by the transac- 
tion. While file content changes in Alpine use a redo only 
log, file allocation operations are propagated immediately 
to secondary storage and use an undo log to support trans- 
action abort. The disadvantages of the Alpine approach in- 
clude the copying needed to propagate logged changes to the 
file proper and the need for synchronous I/O to log the up- 
date fle control information. Our method writes long field 
content changes only to the long field file blocks and relies 
upon database recovery logging for control and allocation in- 
formation recovery which implies that these changes do not 
need to be written synchronously and can be piggybacked 
on other log I/O operations. 

The work closest to our method of long field recovery is 
the new file system for the Cedar Operating System [Hag- 
mann 871. The new Cedar file system uses the shadow tech- 
nique to recover file content pages and uses a log to recover 
changes to file control information. File data pages are not 
logged and are vulnerable to media failure. Allocation data 
is not logged either, but it can be recovered by scanning the 
extent tables of all files. The logging and recovery granular- 
ity is the page and the log is a redo only log. Reservation 
of space for released pages is accomplished by postponing 
the allocation table updates until transaction commit. Our 
method uses record-level (sub-page) logging and recovery 
and uses the log for recovery of both control information 
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Figure 4: Sparse locking of buddy segment sizes. 

and allocation data. 

6 surMlary 

We designed the Starburst long field manager to manip 
ulate long fields, with sizes in the 100 megabyte range, with 
great speed and efficiency. The long field manager uses the 
buddy system to manage disk space, which is compatible 
with growth and tr’ mu&g algorithms that increase storage 
efficiency. Long field data segments contain only user data, 
which allows the long field manager to transfer data directly 
from disk storage to application buffers without copying data 
to an intermediate system buffer. 

Recovery for long fields is based on shadows for long field 
data and write-ahead-log for long field allocation and de- 
scriptor information. The use of shadows prevents old and 
new values from both being saved - only the new pages 
need to be recorded. Locking of buddy segments for space 
reservation purposes uses exclusive-mode locks, intention- 
mode locks, and instant conditional locks in order to update 
the allocation information in place and perform concurrent 
space coalescing without allowing other transactions to see 
the updates to the allocation tables until the holding trans- 
action completes. 

Long Field Manager Status 

The majority of the Starburst long field manager design 
and implementation took place during the summer of 1985. 
After some preliminary testing validated the low levels of 
the space allocation mechanism, further implementation on 
the Starburst prototype was postponed until several other 
necessary components were finished. We are just now fin- 
ishing the implementation of the long field manager. We 
plan to run numerous benchmarks, comparing our long field 
manager performance to that of available tile systems. One 
special benchmark in our plans involves storing a full length 
feature film (a Fred Astaire video - uncolorized) using the 
long field manager and then playing the video in its entirety 
in an application window. An uncompressed 2 hour video 
digitized for a 1 megabyte screen would be approximately 
216 gigabytes, but using video compression hardware, we 
calculate that a 2 hour video will require approximately 500 
megabytes. 

The basic design of the Starburst long field manager was 
also implemented for IBM’s Operating System/2 (OS/2) and 
incorporated in IBM’s OS/2 Extended Edition Database 
Manager. 
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A The SQL Interface and Long Field Opera- 
tions 

In order to meet its extensibility goal, Starburst must 
accept the incorporation of new data types, new storage 
methods, and new access methods in a straightforward man- 
ner. The long field, as we have defined it, is a new storage 
method, and the “large unstructured byte stream” is a new 
data type. The creator of a new data type defines the inter- 
face to instances of the data type, defines the operations on 
instances of the data type, and specifies the storage method. 

In the Starburst project, the large byte stream is the first 
data type to be implemented that does not fit into the stan- 
dard mold for data types. Unlike scalar values such as inte- 
gers, floating point numbers, or even the original System R 
long field, a byte stream value is not manipulated directly. 
The user of a byte stream type first selects a “handle” on it 
through an SQL SELECT statement or a CURSOR opera- 
tion. 

In general, an application may define a “handle” for any 
type instance. A handle for a type instance is similar to an 
open file descriptor; it is used to reference that type instance 
when performing operations on it. Functions can manipulate 
type instances via a handle, or in some cases, they can ma- 
nipulate the type instance itself. Instances of scalar types, 
for example, can be manipulated directly, but byte streams 
may be manipulated only though a handle. 

Defining the external interface to byte streams requires 
two steps. First, we must extend the standard SQL lan- 
guage with a special “apply” operator to provide a mecha- 
nism for calling the new operations. Second, we define a set 
of operations that manipulate byte streams. 

A.1 The SQL Interface 

In order to extend the System R interface to long fields, 
Ha&in and Lorie proposed an extended definition of cursors 
to manipulate long fields [Haskin 821. The proposed exten- 
sion to SQL applied specifically to long fields, and was not 
usable by other data types. The APPLY function, as sug- 
gested here, is a general interface that allows an application 
to call operations defined on instances of any extended data 
types. 

We extend SQL with an APPLY operation, in addition to 
its SELECT, UPDATE, INSERT, and DELETE operations. 
Although we have not yet determined the exact syntax of 
the APPLY operation, the general idea is that an applica- 
tion will use the APPLY operation when it asks the database 
system to manipulate instances of extended data types. His- 
torically, database systems simply store data, and leave the 
manipulation up to the application. With long fields, how- 
ever, it is more efficient to have the database perform some 
of the operations. 

An example of the APPLY operation is: 

EXEC SQL APPLY Read( dfhandle, :position, 
:count, :b&er ); 

A.2 Operations 

When an application opens a byte stream through an 
SQL SELECT or CURSOR operation, it is given a han- 
dle that refers to the open long field. The application then 
supplies that handle when calling the operations defined for 
long fields. The supported byte stream operations are: 

Clear( If-handle ) Clear the long field and set its value 
to NULL. (We make the distinction between a NULL 
value and zero length.) 

Truncate( Ifhandle, position ) Delete the bytes from 
<position> to the end of the long field. 

Read( lfhandle, position, count, BUFFER ) Read 
<count> bytes from the long field at <position> and 
put them into <BUFFER>. 

Append( lfhandle, count, BUFFER, hint ) Append 
<count> bytes, taken from <BUFFER>, to the end of 
the long field. If the long field is zero length or NULL, 
then use <hint> as a value for estimated size. <hint> 
is used when the long field is being written over several 
append operations and the actual size of the long field 
is not known. 

R.eplace( lfhandle, position, count, BUFFER ) 
Overwrite <count> bytes at <position>, taken from 
<BUFFER>. 

Length( If-handle, length ) Return the length of the 
long field in <length>. 
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