
The Starburst Long Field Manager

Tobin J. Lehman
Bruce G. Lindsay

IBM Almaden Research Center

Abstract

Starburst is an experimental database management sys-
tem prototype whose objectives include extensibility, sup-
port for knowledge databases, use of memory-resident
database techniques, and support for large objects. We
describe the structure of the Starburst long field manager,
which was designed to manage large database objects such
as voice, image, sound and video. The long field manager
uses the buddy system for managing disk space, which al-
lows it to allocate a range of small to very large disk extents
(buddy segments) quickly and efficiently. When possible,
a small number of large buddy segments are used to store
long fields, which allows the long field manager to perform
fewer disk seeks when transferring large objects to and from
disk. The long field manager uses shadow-based recovery
for long field data and write-ahead-log recovery for long field
descriptor and allocation data. Internal space management
synchronization is enforced by a combination of long-term
and instantaneous locks.
Keywords: Starburst, relational database, long fields, stor-
age methods, buddy system.

1 Introduction

The main goal of the Starburst experimental database
management system (DBMS) is to provide a flexible plat-
form on which research personnel can perform DBMS ex-
perimentation well into the 1990s. So far, this experimenta-
tion has been directed toward improving the structure and
performance of the internals of the DBMS, e.g., new recov-
ery and logging mechanisms [Rothermel89], extensible data
management [Lindsay 871, new optimizer methods [Lee 881
[Lohman 881, new query processing methods [Haas 891, new
methods for handling data types [Wilms 881, and new sig-
nature access methods [Chang 891.

As user-interface technology advances, user interfaces will
make more use of multimedia presentations by manipulat-
ing voice, sound, image, video and animation. From the

Permiaaion to copy without fee all or part of this material ia
granted provided that the copies are not made OT diatribated jot
direct commercial advantage, the VLDB copyright notice and
the title of the publication and ita date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requiTea a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

database perspective, each of these multimedia objects will
require large amounts of storage. Furthermore, presenting
images, playing sound, producing video signals, and display-
ing animation in real time provide significant challenges for
a relational database.

The Starburst long field manager was designed with these
applications in mind. The long field manager design goals
include high data bandwidth with low CPU overhead and ef-
ficient storage management techniques. We have combined
existing storage management techniques from database sys-
tems and file systems in a novel way to achieve these goals.
The rest of the paper describes the design of the Starburst
long field manager and is organized as follows.

Section 2 discusses the goals and the motivation behind
the design of the Starburst long field manager, along with
previous work in the area of data storage. Section 3 presents
the storage design of the long field manager, including the
space allocation data structures and algorithms. Section 4
discusses concurrency control and recovery for long fields.
Section 5 summarizes the work and gives the project im-
plementation status. Last, appendix A describes the SQL
interface and long field operations.

For space considerations, this version of the long field pa-
per has omitted some details and many diagrams. For more
details, the interested reader should obtain the correspond-
ing IBM technical report.

a

2 Starburst Long Field Manager Design Moti-
vation

2.1 Design Goals

Three main goals drove the design of the Starburst Long
Field Manager:

1. Storage allocation and deallocation must be efficient.
We expect long field sizes to be large, on the order
of 100 megabytes. It is important that the aUoca-

tion mechanism minimize the time spent allocating and
deallocating space to hold a long field.

2. The long field manager must have excellent I/O per-
formance; long field read and write operations should
achieve I/O rates near disk transfer speeds.

3. Long fields must be recoverable, but the recovery mech-
anism must not substantially slow down the long field
operations.

To see how we might achieve these goals, we look at existing
work in storage systems.

Amsterdam, 1989

- 375 -

2.2 Previous Work in Storage Systems

Storage management of some kind is required by almost
all large software systems. Overall, database systems and
file systems have spent the most effort on designing fast and
efficient storage mechanisms.

Database Systems

Past database systems were designed to manage simple
facts - values that could be represented in fields of255 bytes
or less. Larger fields, such as those containing thousands or
millions of bytes, presented problems to the database record
manager, so the large fields were typically implemented via
a separate long field mechanism.

The first SQL relational database system, System R [As-
trahan 761, supported long fields with lengths up to 32,767
bytes. The System R long field manager divided long fields
into a linked list of small manageable segments, each 255
bytes in length. Operations were restricted to reading and
writing entire long fields; partial reads or updates were not
supported. Later, an extension to SQL was proposed that
provided operators for manipulating long fields [Haskin 821.
A new interface, the long field cursor, provided the ability
for partial reading and updating of long fields. Along with
the language extension, a storage mechanism was proposed
that stored long fields as a sequence of 4 kilobyte data pages
(rather than the previous scheme of a linked list of 255 byte
records). The maximum length of a long field in extended
SQL was about 2 gigabytes [SQL 851.

The Wisconsin Storage System (WiSS) [Chou 851 concur-
rently developed a similar mechanism for storing long fields.
A WiSS long field was split into 4 kilobyte data pages, called
slices. To reduce internal fragmentation, a crumb, a partially
filled slice managed similarly to a database record, was used
to hold the last segment of a long field if it did not occupy
a full slice. A long field was represented by a directory of
slices, plus a crumb. WiSS long fields had a size limit of 1.6
megabytes.

A more recent database system, EXODUS [Carey 861,
stores all data objects in a general-purpose storage mech-
anism that can handle objects of any size - the limit is
imposed by the amount of physical storage available. EX-
ODUS uses a data structure that was inspired by the or-
dered relation data structure proposed for use in INGRES
[Stonebraker 831. The data structure is basically a Bt Tree
indexed on byte position within the object, with the Bt
Tree leaves as the data blocks. Objects smaller than a page
are stored as single records (in a sense, a degenerate case
of the B+ Tree structure - a single node). The EXODUS
data structure is designed more for random access than for
sequential access, although the leaves (the data blocks) may
be configured to comprise several sequential disk pages if
scan performance is being emphasized.

None of the database systems we’ve examined have em-
phasized high performance with respect to reading and writ-
ing large objects. Typically, performance issues are re-
stricted to transaction processing systems involving “nor-
mal” database fields, those fields that are smaller than 255
bytes in length. The majority of the work involving the
movement of large amounts of data at high speed has been
in the area of file systems.

File Systems

File systems were used to manage large objects before
database management systems existed. File systems associ-
ated with batch-oriented operating systems were designed to
keep data stored either contiguously or clustered in physical
extents, as data was read and written sequentially at high
speed. Files with sequentially allocated disk blocks had ex-
cellent I/O performance, but sequential allocation caused
problems with disk space due to external fragmentation.
The next best thing to sequential allocation was physically
clustered allocation in extents, or cylinder groups.

Early IBM operating systems such as DOS had file sys-
tems that left disk allocation up to the user; the user speci-
fied the number and location of disk extents required to hold
the file. Later systems, such as IBM’s OS/MVS, used hints
from the user to plan for initial storage amounts as well as
for future growth. IBM’s CMS file system running under
VM provided both automatic sizing and placement. Using
the reasoning that blocks recently written will be read soon,
the CMS file system allocated extents (disk tracks) that were
close to the current position of the virtual disk arm.

The DEMOS file system [Powell 771, designed for CRAY
computers, used the notion of physically clustered 4 kilobyte
disk pages to enhance I/O performance. The inventors real-
ized that sequential scamring of files, as opposed to random
access, was the more frequent mode of access, so they de-
signed accordingly. When a new disk block was added to the
end of a file, it was allocated as physically close to the last
block as possible. In order to prevent multiple files being
written simultaneously from confusing the system, DEMOS
also used a preallocation strategy to allocate a set of blocks
for a file rather than single blocks.

The original UNIX file system [Ritchie 741 used 512 byte
data pages that were allocated from random disk locations.
The inventors seemed to follow the reasoning that, com-
pared to batch systems, timesharing systems have less strict
disk organization requirements. For example, with multiple
users making disk requests, disk traffic can appear random.
Even when two clients have contiguously allocated iiles, if
their read requests are interleaved the disk arm can oscil-
late between the two file areas and eliminate any advan-
tage of file clustering. The UNIX random page allocation
scheme provided only medium-level performance at best, as
virtually every disk page fetch operation resulted in a disk
seek. Stonebraker noted that this results in poor perfor-
mance for database systems that use the UNIX operating
system [Stonebraker al].

The UNIX Fast File System [McKusick 841 is an improve-
ment over the original UNIX file system because it uses the
idea of physical clustering of disk pages. The Fast File Sys-
tern uses larger data pages that are allocated from cylinder
groups, thus sequential scan performance is improved signif-
icantly. For large files, a maximum of a megabyte of space
is allocated from each cylinder group. The justification .for
this is that no single file should get all the space in a cylinder
group, and that a megabyte of data between disk seek oper-
ations produces a respectably high transfer rate. To reduce
internal fragmentation, the last large page can be split into
smaller pages (fragments).’

The file system used by the Dartmouth Time Sharing SYS-
tern (DTSS) [Koch 871 uses the bmary buddy system [Knuth

‘Many page and fragment &es are mentioned in [McKusick
841, but a common choice has been a 4 kilobyte page and a 1
kilobyte fragment.

- 376 -

751 for space allocation. The binary buddy system provides
DTSS with variable size disk extents whose sizes are powers
of two (units are disk pages).

When the file size is known in advance, DTSS allocates
its disk extents in a manner that minimizes internal frag-
mentation. DTSS uses the bit representation of the size
of the file (in pages) to determine the sizes of the extents
needed to contain the file. Using N extents for file storage,
the size of the file (in pages) is rounded up to the smallest
binary number that contains N or fewer ones. For exam-
ple, using 3 for N, 2310 (101112) would be rounded up to
2410 (110002) (one segment of 16 pages and one segment
of 8 pages), 7510 (10010112) would be rounded up to 7610
(10011002) (one segment of 64 pages, one segment of 8 pages
and one segment offour pages), and 23110 (11100101) would
be rounded up to 25610 (1000000002) (one segment of 256
pages). When the file size is not known in advance, DTSS
allocates extents increasing in size until the file is contained.
Later, the storage for the file is reallocated using the scheme
described above once the file size is known.

Lessons Learned

Most database systems are quite primitive in their treat-
ment of long fields. They treat the long fields as single val-
ues; although larger than simple scalar values, the long fields
are read or written in a single operation. Those few database
systems that handle long fields somewhat gracefully still do
not pay particular attention to performance.

File system designers have addressed the I/O performance
problem for large files and have found effective solutions.
A file system using large disk extents can provide better
performance than file systems using physically clustered disk
pages, such as the UNIX Fast File System. A comparison of
DTSS against the UNIX Fast File System shows that DTSS
is much more efficient in allocating disk space, and through
the use of large disk extents supplied by the buddy system,
DTSS is able to sustain a high disk throughput with much
less CPU usage. DTSS uses an average of three extents to
hold a file, although it is able to allocate as many as twenty-
four extents per file. The average number of extents per file
is a system parameter, and is chosen to minimize the number
of disk seeks per iile scan, while providing a maximum of 3
percent disk space loss to fragmentation.

A survey of four systems using DTSS showed that the
median static file size ranged between 6.4 kilobytes and 25
kilobytes, and that 98 percent of the files were under 64
kilobytes [Koch 8’71. Using an average of three disk extents
to hold files with these sizes was reasonable, but larger sizes,
such as 100 megabytes, would probably require both larger
extents and a larger number of them. The Starburst long
field manager does exactly that.

3 The Long Field Manager Storage Design

3.1 Storage Design Overview

Figure 1 presents an overview of the data structures used
for long field storage management. Given that it is not prac-
tical to store a long field directly in a relationl, the next best
thing is to store a long field descriptor in the relation. The
long field descriptor is a single level directory of disk extents.

21BM’s Database 2 (DB2) actually does this, but it also re-
stricts the sise of a long field to 32 kilobytes-the size of the
largest DB2 data page.

We chose a size limit of 255 bytes for the long field descrip-
tor because it is stored in a tuple as a field value, and since
tuples may not span pages, it is important to minimize the
size of the descriptor.

The variable disk extents, called buddy segments, are
taken from buddy spaces which are large fixed-size sections
of disk that are reserved for long field use. Buddy spaces
are taken from an even larger (variable size) portion of disk,
labeled DB Spacein figure 1. DB Space is a Starburst term
for an area of disk typically used to hold a set of tables or
indices. A buddy space comprises an allocation page and
a data area. The allocation page describes the state and
size of the individual buddy segments in the buddy space
data area. Buddy segments contain only data-no control
information-and therefore (given suitable system facilities)
the data can be transferred directly from disk to an appli-
cation’s buffers.

3.2 The Buddy System

Discussion

The buddy system works well at managing block sizes
that diier by several orders of magnitude [Knuth 75]. It is
known for fast allocation and automatic coalescing of blocks
on deallocation, but it has also been reported to suffer from
poor space utilization due to fragmentation [Bromley 85,
Chowdhury 87, Lloyd 85, Page 86, Peterson 771. Many of the
negative reports about the buddy system come from those
trying to use the buddy system to allocate a single block of
storage rather than a set of blocks. All buddy systems (bi-
nary, weighted, and fibonacci) have poor storage utilization
due to external fragmentation when single extents are used
to store data.

However, when multiple blocks are used, both internal
and external fragmentation can be reduced greatly. The
bounded fragmentation work done by Bryant and Franaszek
[Bryant 851 at IBM’s Yorktown Research Laboratory shows
that the buddy system can be used effectively to address the
problems of internal fragmentation and external fragmenta-
tion. Since the bin&y buddy system can supply buddy seg-
ment sizes in 2N units (the units typically being disk pages),
it is possible to allocate the correct sizes of buddy segments
so that there is less than a single disk page lost to internal
fragmentation for any long field.

Therefore, despite the Buddy System’s reputation for
poor space utilization, it is our choice as the space allocation
method for the long field manager because we plan to use
it effectively. We use a set of blocks in a range of sizes (in-
cluding the smaller sizes) to reduce external fragmentation
and trimmin g of blocks (into smaller buddy system blocks)
to reduce internal fragmentation.

Description

We refer to a variable-size segment allocated with the
buddy system as a buddy segment. In the Binary Buddy Sys-
tem, the size of a buddy segment is a power of two, where the
units are disk pages. Segments of the same size sharing an-
cestors are considered buddies (e.g. segments 0000 and 0001
are buddies at the 1 unit level, segments 1000 and 1100 are
buddies at the 4 unit level). Calculating the address of a
buddy for a particular size is straightforward in the binary
buddy system. The address of a segment XOR’d with its
size gives the address of its buddy. For example, to find the

- 377 -

Long Field Descriptor

Buddy Space

Buddy Segment

Figure 1: A Storage Overview of the Long Field Manager

size 4 buddy of block 1100, take the XOR of 1100 and 100,
which gives 1000 - the size 4 buddy of block 1100 is 1000.

3.3 The Starburst Long Field Descriptor

A long field descriptor completely describes the storage of
a long field. The descriptor is small, less than 255 bytes, yet
it holds the disk storage information for long fields as large
as 100 megabytes.’ The descriptor contains a directory of
buddy segment pointers, which allow direct access to long
field data pages. The long field descriptor makes use of the
property that the variable size segments are powers of two,
thus segment sizes can be expressed as logs(.&ze), rather
than sire which would require more storage.

3.4 Long Field Manager Algorithms

Creating a Long Field

Creating a long field involves: creating a long field de-
scriptor, allocating buddy segments to hold the long field,
and setting the array of offsets in the long field descriptor
to point to the buddy segments. A long field may be allo-
cated with or without prior knowledge of size. When the
eventual size of a long field is not. known a priori, successive
segments allocated for storage double in size, (e.g. the first
segment iz a single page (1024 bytes), then the next segment
is two pages (2048 bytes), then 4 pages, then 8 pages and
so on until the maximum size of 2048 pages (2 megabytes)
is reached). Once the segment size reaches the maximum, a
sequence of maximum size segments is used until the entire
long field is stored, up to the maximum long field size (120
megabytes). When the size of a long field is known before
creation, maximum segments are used, rather than increas-
ing sizes. The use of doubling sizes has three advantages:

1. It does not unnecessarily allocate large blocks that
would then be broken into smaller blocks during the
trimming process. (Long Field Trimming is explained
in the next section.)

2. It uses the smaller sizes, thus reducing external frag-
mentation.

3The design allows us to support up to approximately 400
megabytes if necessary. If even larger fields are needed, then the
application must manage a set of maximum length long fields.

3. It avoids storing size information for each segment in
the long field descriptor, since the segment size is im-
plicit given the size of the first segment and the known
pattern of growth.

Sometimes, the exact size of a long field is not known, but
an approximate size is available. Given a hint of approxi-
mate size from the long field append function, the long field
manager will start with an appropriately sized first segment
and allocate doubling segment sizes from there.

When allocating buddy segments for a long field, the al-
locator attempts to allocate buddy segments from the same
buddy space, which is roughly similar to a contiguous group
of cylinders. Therefore, we expect that disk seeks will be
small even between buddy segments.

Long Field Trimming

To reduce internol fragmentation, the last long field seg-
ment is trimmed to the nearest page boundary whenever
an application closes a long field (typically upon transac-
tion commit). Consider how a segment of 16 pages would
be trimmed to hold a string of bytes that occupy 11 pages.
The sequence of segment sizes needed is straightforward; it
is the binary representation of the number of pages needed
to hold the long field. 1110 is 1011~, thus there’s a segment
of size eight, a segment of zize two, and a segment of zize
one. The remaining segments (sire one and four) are re-
leased. After trimmin g, the last segment is logically a ret of
buddy segments, not a single segment. However, since they
are contiguous, the last buddy segment pointer in the long
field descriptor may still point to the first buddy segment in
the set of segments. This representation may change if ap
pend operations (explained below) are performed on a long
field that has been trimmed.

Appending to a Long Field

We believe that most long field applications, such as those
involving voice, image, sound, or video, will read and write
whole long fieIds and not perform update operations that
affect only parts of long fields. There are some applications,
however, that may find it necessary to perform partial up-
dates to a long field. An application using the long field
mechanism to contain a log Me, for example, might perform
append operations on a long field.

In most cases, the last segment of a long field wiIl be
trimmed to some fraction of its original sise (to reduce in-

- 378 -

1010 01 11 00010010 10010011xxxxxxxx 0010 1010 00010010 10010010 0010 1010 +--

2 4 ‘42, 2 2
T

“,,ddy Segnlnt ;in
size

pa:cs) sl
Conceptual view of allocation information ----I

Actual allocation bitmap encoding-

Count
Array

Size Pointer
Array

Figure 2: Allocation page structure

ternal fragmentation). In keeping with the design of the
long field descriptor, an append operation that required
more space than the existing trimmed segment would re-
quire a new segment with a size equal to the original size of
the trimmed segment. The data from the trimmed segment
would be copied to the new segment, and then the new data
would be written to the new segment. If the new segment
had extra space after the append operation, it would also
be trimmed. Clearly, this would not be an efficient mecha-
nism, as appending to very long fields would result in several
megabytes of data being copied for each append operation.

Instead, when the long field manager receives an append
request for a few bytes on a large object, it modifies the long
field descriptor to handle appends more gracefully. The last
segment offset in a long field descriptor typically points to
a trimmed buddy segment, which consists of several smaller
contiguous segments that are treated as a single segment.
When an append operation is performed on a long field,
the set of segments making up the trimmed segment is bro-
ken into separate segments, and the segment pointer for the
trimmed segment becomes a directory for the new set of seg-
ments. Hence, just as the descriptor uses increasingly larger
blocks for unknown sizes, it uses decreasingly smaller sizes
for frequent append operations.

3.5 Long Field Manager Space Allocation

Long Field Descriptor Parameters

As we stated earlier, the long field descriptor must be
minimized. The first five fields use 14 bytes, leaving about
240 bytes for the array of segment offsets (80 entries). Us-
ing a conservative estimate, a long field may have both in-
creasing segment sizes, starting with a single page segment,
and may also have decreasing segment sizes (because of ap-
pending). Using a 1 kilobyte data page, a maximum buddy
segment size of 2 megabytes (211 pages), would result in up
to 11 slots being used for increasing sizes (the 11 slots hold
a total of approximately 2 megabytes), up to 11 descriptor
slots being used for decreasing sizes (also approximately 2
megabytes), and 58 slots being used for maximum size seg-
ments (116 megabytes), for a total of about 120 megabytes.
(Notice that a long field composed of only maximum size
buddy segments would hold more, but we chose to set the
maximum long field length to the minimum of the possible
maximum sizes.) Since the maximum length of the long field
descriptor is fixed, the maximum length of a long field varies

with the maximum buddy segment size. A maximum buddy
segment size of 1 megabyte would result in a maximumlong
field size of 62 megabytes, a maximum buddy segment size of
4 megabytes would hold a long field of 232 megabytes and a
maximum buddy segment size of 8 megabytes would hold a
long field of 448 megabytes. Our current design, based on a
4 kilobyte allocation page, does not support buddy segments
larger than 8 megabytes.

Page Allocation and Bitmap Encoding

Space in a long field DB Space is controlled by oilocation
pages stored in the long field DB Space. Recall from Figure
1 that the DB Space is divided into buddy spaces, and each
buddy space contains an allocation page at the beginning of
the space. Each allocation page controls about 16 megabytes
of disk storage. Figure 2 shows the structure of an alloca-
tion page and the allocation bitmap representation. The
allocation page controlling a buddy space has three parts:
the allocation bitmap, the buddy segment Count Array, and
the buddy segment Pointer Array.

The Count Array and the Pointer Array increase the effi-
ciency of the search for a buddy segment. The Count Array
shows the number of buddy segments of each size available
in the space controlled by an allocation page, so that an allo-
cator can determine immediately if it should look in a given
allocation page for a given segment size. The Pointer Array
provides a place to start looking for a segment of a particular
size, so rather than starting each search from the beginning
of the bitmap, the Pointer Array shows the first place where
an available segment was last seen (by anyone updating the
allocation page). On some occasions, the Pointer Array may
point to a segment that is available, but on other occasions,
the segment may have recently been allocated, hence the
Pointer Array actually provides a hint rather than an abso-
lute location. However, the pointer for a particular buddy
size is guaranteed to be at least a correct starting point for
a search for that size buddy segment. As segments are al-
located, the Count Array is updated and the Pointer Array
is updated to point to the location of the newly allocated
segment (this is how the segment pointer moves forward).
As segments are freed, the Count Array iz updated and the
Pointer Array is set to point to the segment closest to the be-
ginning (this is how the segment pointer moves backward).
Upon initialization, all of the pointers in the Pointer Array
point to the first available segment of each size.

An obvious method for representing allocation informa-

- 379 -

Bits

Examples

MeaninlZ

11 A segment of 1 page (Allocated)

01 A segment of 1 page (F’ree)

1010 A segment of 2 pages (Allocated)

0010 A segment of 2 pages (be)

loololoo A segment of 16 pages (Allocated)

ooollooo A segment of 256 pages (F’ree)
.----------_---_-_--____________________---------------------------------------~

Figure 3: Allocation bitmap encoding

tion in bitmap form would be to use a single bit for each
page, where a ‘1’ in a page’s bit position means that the
page is allocated and a ‘0’ means that the page is free. With
the buddy system, however, more information is needed:
namely, the size of the buddy segment (in pages). We use
two bits per disk page so that we can represent both the
allocation status and the size of the buddy segment.

Two bits are suflicient for representing the size and al-
location status of a single page buddy segment. When a
buddy segment is larger than a single page, for every page
in the buddy segment there are two additional bits avail-
able for size and status information. Eight bits are sufllcient
for representing the allocation status and size of segments
that range from 1 page to 32768 pages.’ Therefore, when
eight bits are available, that is, when a segment is at least
four pages long, the general purpose representation is used.
When the segment size is one or two pages, then the specific
representation for one or two pages is used. Figure 3 shows
the bit encoding used to store the size and allocation infor-
mation of various sizes of buddy segments. Notice that at
most eight bits per segment are used to hold information,
while any remaining bits are left unused.s

Encoding the size in the page allocation bitmap gives a
considerable advantage when looking for a particular seg-
ment size. First, at most eight bits must be examined, re-
gardless of the segment size, to determine the segment size
and allocation status. Second, when a segment is freed, a
simple arithmetic operation on the freed segment’s address
gives the address of the buddy which can then be checked
immediately for possible coalescing.

Also, because of the buddy system, a segment of size 2N
can appear only on boundaries where the address is 0 mod-
ulo 2N. Thus, looking at the size of a segment on those
boundaries provides an immediate direction of where to look
next.

With our allocation bitmap encoding, the bitmap must be
read on valid segment boundaries. This invariant is main-
tained by the pointer array, which guarantees that the start-
ing place for a search is valid. Without this invariant, an al-
locator searching the bitmap could easily become confused.
Notice in Figure 2 that the segment of size 8 has 16 bits avail-
able, but uses only 8 bits. The trailing 8 bits do not carry

‘The number 32768 could be pushed to 262144, since we don’t
need to represent 2O, 2l, or 22, as they’re done with a different
encoding. However, we didn’t need to add this extra bit of com-
plexity because we plan on using a maximum of only 2048 pages
in OUT design.

5Those bits would be used if the segment is split into smaller
segments.

any useful information, and could mislead an allocator that
tried to read the bitmap on that nonsegment boundary.

4 Concurrency and Recovery for Long Fields

Concurrency control is managed by the database system
at the record level, hence there is no user-level concurrency
control mechanism needed for the long field manager. Lock-
ing the record that contains a long field descriptor also locks
the long field associated with that record.

We examined the two main techniques for recovery of long
fields: logging and shadow techniques. Shadowing [Lorie 771
is a recovery technique in which current page contents are
never overwritten. Instead, new pages are allocated and
written, while the pages whose values are being replaced are
retained as shadow copies until they are no longer needed
to support the restoration of the system state due to trans-
action rollback. Logging [Gray 811 is a well-known database
recovery technique which supports state restoration and re-
construction of values that are updated iu place by record-
ing in a system log the old and new values of the updated
data items. We chose the shadow technique for long field
data because of its simplicity [Traiger 821 and its potential
for causing fewer I/O operations. However, since the shadow
technique does not provide protection against media failures
some additional measures are necessary; the long field data
can be stored on duplexed disks or logged. Duplexed disks
allow higher throughput, but they are costly. Logging is
less expensive, but it allows less throughput and has the ad-
ditional problem of potentially degrading the performance
of the entire system. We are currently investigating these
alternatives.

When the Starburst long field manager updates (inserts
or deletes) a long field, it creates a new copy of the updated
long field data segments (which it transfers directly to disk)
and logs the changes to the long field descriptor and the
long field allocation page(s). The replaced long field data
segments remain as shadow copies until the updating trans-
action commits. When a long field data value is deleted
or replaced, the allocation information for the correspond-
ing space in the long field file is marked free, but the al-
location information itself is locked against all transactions
(even the deleting transaction) until the deleting tranzac-
tion completes, thus ensuring that deletes will be undoable.
Should a delete operation need to be undone, the deleted
space will be reclaimed and the long field descriptor will be
reset to reference its original set of data segments. Locking
the freed storage presents an interesting problem, since at
the time the space is freed, the buddy system may auto-

- 380 -

matically coalesce the released buddy segment into a larger
buddy segment, which could possibly be coalesced into an
even larger buddy segment, and so on. The newly freed (and
possibly coalesced) buddy segment may have a different ad-
dress from the originally freed buddy segment. As a result,
simply locking the address of the released buddy segment is
not adequate.

Our solution uses a set of exclusive-mode locks, intention-
mode locks and instant conditional locks. Allocate (A) and
intention allocate (IA) locks are instant conditional locks;
they are not actually held like regular locks. Setting an in-
stant conditional lock on a segment simply tests the lock
status of the segment; it does not actually lock a segment,
nor does it cause the requester to block in the event the
segment is already locked. When an allocate lock is denied,
the requester simply moves on to the next available buddy
segment and tries again. An allocation bitmap structure is
protected by an allocation page latch while a requestor at-
tempts to set allocate locks, so mutual exclusion of multiple
requestors is guaranteed.

When a buddy segment is freed, a release lock (R) is
placed on its address and size, and an intention release lock
(IR) is placed on all of its ancestors. These locks are held
until transaction completion. When a transaction attempts
to allocate a buddy segment, it sets instant conditional in-
tention allocate (IA) locks on all ancestors of the intended
buddy segment, and then sets an instant conditional allocate

Kslfo;ows:
oc on the intended buddy segment. The lock matrix

Lock Held I

If an ancestor is locked with a release (R) lock, the in-
tention allocate lock will be denied, as the ancestor must
remain unallocated until its holding transaction completes.
If the intended buddy segment is locked with either an in-
tention release lock (IR) or a release lock (R) then all or
part of the buddy segment must remain unallocated until
its holding transaction completes.

An important aspect of any hierarchical locking scheme
is the number of lock granularities. With 12 sizes of buddy
segments (our current design), releasing a buddy segment of
size 1 would require setting 1 release lock and 11 intention
release locks. Rather than set a lock at each level, locks
are set at only certain specified levels (granularities). For
example, Figure 4 shows how we might set locks only at
segment sizes 2 and 8 in a system with only 5 sizes. Setting
locks at only certain levels trades concurrency for overall
locking cost, as each lock may cover more segments than
just the segment requiring a lock. In Figure 4 for example,
segment 0011 is locked along with segment 0010, and pages
1000-1011 are locked along with segment 1100.

Related Work in Recovery

Numerous other methods have been used for supporting
recoverable long fields or long sequential byte strings. An
IBM database product, DB2, stores long fields directly in
normal database records. DB2 records may not cross page

boundaries, and since the largest page size in DB2 is 32
kilobytes, the maximumlong field size in DB2 is 32 kilobytes.
Recovery of long fields is the same as for other types - write-
ahead logging. Another IBM database product, SQL/DS,
has a long field manager that stores the long field value in a
sequence of blocks, each block being small enough to fit into
a database page. Each of these blocks has the format of a
database record and the blocks are linked into a linear list
whose head is in the database record which logically contains
the long field. The values of the block of the long field are
recovered using the “standard” database log techniques. As
a result, the contents of an updated long field are written
both to the log and to the database.

The remaining related work in recovery comes from the
domain of “transactional file systems”. A useful survey of
several file systems which support transactions can be found
in [Svobodova 841. The predominant approach for these sys-
tems is the use of shadow, copies which is similar to our ap-
proach. Most of the systems rely upon specialized techniques
to recover control and allocation information following a fail-
ure. XDFS and CFS [Mitchell 821 both use shadow pages
but depend upon careful replacement of control and alloca-
tion information to insure failure recovery. Both of these
systems require extensive scanning of secondary storage to
validate and reconstruct control information.

Paxton [Paxton 791 describes a shadow based file system
which uses a form of careful replacement for control informa
tion known as intentions lists. Paxton’s approach to storing
long byte string values is similar to our method in that it
uses shadow page replacement as the basic recovery mecha-
nism. However, the use of intentions lists as the mechanism
for transaction commit requires at least 3 extra write oper-
ations to reliably update the control information associated
with the long byte string value. Our method requires only
1 extra (log) write of control information (the long field de-
scriptor) to recoverably update a long field.

The Alpine file system [Brown 851 logs file content updates
and copies file content from the log to the file following the
commitment of the transaction modifying the file. This leads
to 3 I/O operations per file page modified by the transac-
tion. While file content changes in Alpine use a redo only
log, file allocation operations are propagated immediately
to secondary storage and use an undo log to support trans-
action abort. The disadvantages of the Alpine approach in-
clude the copying needed to propagate logged changes to the
file proper and the need for synchronous I/O to log the up-
date fle control information. Our method writes long field
content changes only to the long field file blocks and relies
upon database recovery logging for control and allocation in-
formation recovery which implies that these changes do not
need to be written synchronously and can be piggybacked
on other log I/O operations.

The work closest to our method of long field recovery is
the new file system for the Cedar Operating System [Hag-
mann 871. The new Cedar file system uses the shadow tech-
nique to recover file content pages and uses a log to recover
changes to file control information. File data pages are not
logged and are vulnerable to media failure. Allocation data
is not logged either, but it can be recovered by scanning the
extent tables of all files. The logging and recovery granular-
ity is the page and the log is a redo only log. Reservation
of space for released pages is accomplished by postponing
the allocation table updates until transaction commit. Our
method uses record-level (sub-page) logging and recovery
and uses the log for recovery of both control information

- 381 -

L%s Locks

16

a

4

2

1

t;;y;
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 + l * 1cr

Segment 0010 (size 1) segment 1100 (size 4)

Figure 4: Sparse locking of buddy segment sizes.

and allocation data.

6 surMlary

We designed the Starburst long field manager to manip
ulate long fields, with sizes in the 100 megabyte range, with
great speed and efficiency. The long field manager uses the
buddy system to manage disk space, which is compatible
with growth and tr’ mu&g algorithms that increase storage
efficiency. Long field data segments contain only user data,
which allows the long field manager to transfer data directly
from disk storage to application buffers without copying data
to an intermediate system buffer.

Recovery for long fields is based on shadows for long field
data and write-ahead-log for long field allocation and de-
scriptor information. The use of shadows prevents old and
new values from both being saved - only the new pages
need to be recorded. Locking of buddy segments for space
reservation purposes uses exclusive-mode locks, intention-
mode locks, and instant conditional locks in order to update
the allocation information in place and perform concurrent
space coalescing without allowing other transactions to see
the updates to the allocation tables until the holding trans-
action completes.

Long Field Manager Status

The majority of the Starburst long field manager design
and implementation took place during the summer of 1985.
After some preliminary testing validated the low levels of
the space allocation mechanism, further implementation on
the Starburst prototype was postponed until several other
necessary components were finished. We are just now fin-
ishing the implementation of the long field manager. We
plan to run numerous benchmarks, comparing our long field
manager performance to that of available tile systems. One
special benchmark in our plans involves storing a full length
feature film (a Fred Astaire video - uncolorized) using the
long field manager and then playing the video in its entirety
in an application window. An uncompressed 2 hour video
digitized for a 1 megabyte screen would be approximately
216 gigabytes, but using video compression hardware, we
calculate that a 2 hour video will require approximately 500
megabytes.

The basic design of the Starburst long field manager was
also implemented for IBM’s Operating System/2 (OS/2) and
incorporated in IBM’s OS/2 Extended Edition Database
Manager.

6 References

[All&in 601 J. E. Allchin et al., “FLASH: A Language-
Independent, Portable File Access System,” Pwe. ACM
SIGiifOD

’ &M. Astraimn et al., lAstrahan 761
May 1980)

“System R: Relational Ap-
proach to-Database Management,” 2 CM TODS, Vol. 1, No.
2 (June 1976).

[Bromley SO] A. G. Bromley, “Memory Fragmentation in
Buddy Methods for Dynamic Storage Allocation,” Acto In-
formatica, Vol. 14, pp. 107-117(1980).

[Brown 861 M. Brown et al., “The Alpine File System,” ACdd
TOCS, Vol. 3, No. 4 (November 1986).

[Bryant 851 FL Bryant and P. Franaszek, “Storage Allocution
Policies vie Bounded Fragmentation,” IBM Rcrtarch Prt-
rtntation, S- er 1985.

[Carey 861 M. J. Carey et ol., “Object and File Menagement
in the EXODUS Extensible Database System,” Prot. ltth

[Cha$~ (&%tz$%d Ii. Schek, “A Signature Access
Method for the Starburst Database System,” Pmt. 15th
VLDB (August 1989).

[Chou 661 H-T Chou et al., “Design and Implementation of the
Wisconsin Storage System,” Sofrwarc P+actict and Ezptti-
tntt, Vol. 15, No. 10 (October 1985).

[Cho;vvy;zfir] S. K. Choqdhury and P. K. Srimani, “Worst
rmame of Werghted Buddy Systems,” Acta In-

fomatica, Vol. 24, pp. 556-564 1987
[Eswarau 761 K. P. Eswaran et aZ., “ 4 he N&ions of Consistency

and Predicate Locks in a Database System,” CACM, Vol. ’
19, No. 11 (November 1976).

[Gray 761 J. Gray et al., “Granularity of Lo& in a Shared Data
ihse-,” Proc. -VLDa (September-1975

[Gray 811 J. Gray et al., “The Recovery hi
.
anager of the System

R Database Manager,” ACM Camp. Surotyr, Vol. 13, No.
2 (June 1981).

[Haas 88] L. Hsas et al., “Extensible Query Processing in Star-
burst,” Proc. ACM SIGMOD (May 1989).

[Hagmann 871 R. Hagmann, “Reimplementing the Cedar File
System UsingLogging and Group Commit,” P+oc. SOSP
(November 1987

[Haskin 821 R. L. I? askin and R. A. Lorie, “On Extending the
Functions of a Relational Database System,” Proc. ACM
SIGMOD (June 1982).

[Knuth 761 D. E. Knuth, “The A+r of Computer Programming.
Vol 1, Fundamental Algotithmr, ” Addison-Wesley, Reading
Mass., 1969.

[Koch 671 P. D. L. Koch, “Disk File Allocation Based on the
Buddy System,” ACM TOG’S, Vol. 6, No. 4 (November

“Implementing an Interpreter for Func-
gtally in a Query Optimizer,” Proc. 14th VLDB (Au-

[Lindsay 871 li . Lindsay et al., “A Data Management Extension
Architecture,” Ptoc. ACM SIGMOD May 1987).

[Lehman aa] G. Lehman, “Grammar-L&e Functional Rubs
for Representing Query Optimization Alternatives,” Proc.
ACM SIGMOD (May 1988).

- 382 -

[Lo& 771 R. Lorie, “Physical Integrity in a Large Segmented
Database,” ACM TODS, Vol. 2, No. 1 March 1977).

ILloyd 851 E. L. Lloyd and M. C. Loui. Y&I the Worst Case
~Perfc&ance of Biddy Systems,” A& Informatica, Vol. 22,

[Mit%4?%~4? !‘%??~ll and J. Dion “A Comparison of Two
Network-based File Servers,” CA&M, Vol. 25, No. 4 (April
1982).

[McKusick 841 M. K. McKusick, W. N. Joy, S. J. Leffler and
R. S. Fabry, “A Fast File System for UNIX,” ACM TOGS,
Vol. 2, No. 3

lousterhout 851 . K. Ousterhout et al.. “A Trace-Driven .
Analysis of’the UNIX 4.2 BSD File System,” Proc. 10th
SOSP (December 1985).

[Page 861 I. P. Page, “Improving the Performance of Buddy Sys-
tems,” IEEE Tram. on Computers, Vol. C-35, No. 5 (May .
1986).

[Paxton 19791 W. Paxton, “A Client-Based Transaction Sys-
tem to Maintain Data Integrity,” Proc. 7th SOSP (Decem-
ber 1979

[Peterson 77 1 J. L. Peterson, “Buddy Systems,” CACM, Vol.
20, No. 6 (June 1977

1 [Powell 771 M. L. Powel, “The DEMOS File System,” Pmt.
6th SOSP (November 1977).

[Ries 791 D. Ries and M Stonebraker, “Locking Granularity Re-
visited”, ACM TODS, Vol. 4, No. 2 (June 1979

[Ritchie 741 D. M. Ritchie and K. Thompson, &he UNIX
Time-Sharing System,” CACM, Vol. 17, No. 7 (July 1974).

[Bothermel 891 K. Rothermel, C. Mohan, “ARIES/NT: A Re-
covery Method Based on Write-Ahead Logging for Nested
Transactions,,” Proc. 15th VLDB (August 1989).

[SQL 851 R. Lorle and J. Daudenarde, “Design System Exten-
sions User’s Guide,” (April 1985).

[Smith 811 A. J. Smith, “Algorithms and Architectures for En-
hanced File System Use,” Ezpcrimcntal Computer Perfor-
manec Evaluation, pp. 165-193

[Stonebraker 811 M. Stonebraker, “bperating System Support
1981).

for Database Management,” CACM, Vol. 24, No. 7 (July
1981).

[Stonebraker 831 M. Stonebraker el al., “Document Processing
in a Relational Database System,” ACM TOFS, Vol. , No.
2 (April 1983

[Svobodova 841 . Svobodova, “File Servers for Network Based
Distributed Svstems.” ACM Corns. Suroeus. Vol. 16, No.
4 (Deeember~i984).

-

[Traiger 821 1. L. Traiger, “Virtual Memory Management for
Database Systems,” IBM Research Report RJ3489 (41346)
(May 26, 1982

L Wilms 881 P. WI s et al.. “Incorporating Data Types in an .
ExteAble Database Ar&itectu&” Pro& of Brd&t. Conf.
on Data and Knowledge Bases, Jerusalem, (June 1988).

[Verhofstad 781 J. S. M. Verhosfstad, “RecoveryTechniquesfor
Database Systems,” ACM Camp. Surveys, Vol. 10, No. 2
(June 1978).

A The SQL Interface and Long Field Opera-
tions

In order to meet its extensibility goal, Starburst must
accept the incorporation of new data types, new storage
methods, and new access methods in a straightforward man-
ner. The long field, as we have defined it, is a new storage
method, and the “large unstructured byte stream” is a new
data type. The creator of a new data type defines the inter-
face to instances of the data type, defines the operations on
instances of the data type, and specifies the storage method.

In the Starburst project, the large byte stream is the first
data type to be implemented that does not fit into the stan-
dard mold for data types. Unlike scalar values such as inte-
gers, floating point numbers, or even the original System R
long field, a byte stream value is not manipulated directly.
The user of a byte stream type first selects a “handle” on it
through an SQL SELECT statement or a CURSOR opera-
tion.

In general, an application may define a “handle” for any
type instance. A handle for a type instance is similar to an
open file descriptor; it is used to reference that type instance
when performing operations on it. Functions can manipulate
type instances via a handle, or in some cases, they can ma-
nipulate the type instance itself. Instances of scalar types,
for example, can be manipulated directly, but byte streams
may be manipulated only though a handle.

Defining the external interface to byte streams requires
two steps. First, we must extend the standard SQL lan-
guage with a special “apply” operator to provide a mecha-
nism for calling the new operations. Second, we define a set
of operations that manipulate byte streams.

A.1 The SQL Interface

In order to extend the System R interface to long fields,
Ha&in and Lorie proposed an extended definition of cursors
to manipulate long fields [Haskin 821. The proposed exten-
sion to SQL applied specifically to long fields, and was not
usable by other data types. The APPLY function, as sug-
gested here, is a general interface that allows an application
to call operations defined on instances of any extended data
types.

We extend SQL with an APPLY operation, in addition to
its SELECT, UPDATE, INSERT, and DELETE operations.
Although we have not yet determined the exact syntax of
the APPLY operation, the general idea is that an applica-
tion will use the APPLY operation when it asks the database
system to manipulate instances of extended data types. His-
torically, database systems simply store data, and leave the
manipulation up to the application. With long fields, how-
ever, it is more efficient to have the database perform some
of the operations.

An example of the APPLY operation is:

EXEC SQL APPLY Read(dfhandle, :position,
:count, :b&er);

A.2 Operations

When an application opens a byte stream through an
SQL SELECT or CURSOR operation, it is given a han-
dle that refers to the open long field. The application then
supplies that handle when calling the operations defined for
long fields. The supported byte stream operations are:

Clear(If-handle) Clear the long field and set its value
to NULL. (We make the distinction between a NULL
value and zero length.)

Truncate(Ifhandle, position) Delete the bytes from
<position> to the end of the long field.

Read(lfhandle, position, count, BUFFER) Read
<count> bytes from the long field at <position> and
put them into <BUFFER>.

Append(lfhandle, count, BUFFER, hint) Append
<count> bytes, taken from <BUFFER>, to the end of
the long field. If the long field is zero length or NULL,
then use <hint> as a value for estimated size. <hint>
is used when the long field is being written over several
append operations and the actual size of the long field
is not known.

R.eplace(lfhandle, position, count, BUFFER)
Overwrite <count> bytes at <position>, taken from
<BUFFER>.

Length(If-handle, length) Return the length of the
long field in <length>.

- 383 -

- 384 -

