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We consider the problem of configuring a system in software and design database domains, where a system comprises a 
version for each of its constituent objects. We present a syntactic characterization of a correct configuration, tied to a 
transaction model, that makes it possible to generate automatically all correct configurations of a system. One can also 
generate configurations that satisfy some selection criteria such as the absence and presence of specified features, or 
check whether a user-specified configuration is correct. 

1. INTRODUCTION 

Software and design databases invariably consist of 
versioned objects (c$ [2,4,5,7-9,141). Versions of an 
object often represent alternatives or revisions. A 
system comprising a set of objects is configured by 
selecting a version for each of the objects that constitute 
the system. A configuration is also treated as a 
versioned object, so that more than one configuration 
can coexist. 

An important issue in configuring a system is that the 
constituent versions must be compatible [12,15]. We 
all know that the version of a module compiled for 
Motorola 68000 should not be linked with the version of 
another module compiled for Intel 386. All the systems 
we know of provide very little by way of support for 
deciding what can constitute a correct configuration. 
leaving this decision to the user. In a system consisting 
of m objects, each with v versions, there can be up to vm 
possible confgurations. As systems become large, 
relying on user intuition to decide what constitutes a 
correct configuration is at the very least error-prone, if 
not altogether impossible. 

This paper is an attempt to correct this deficiency by 
introducing a formal notion of the correctness of a 
configuration and mechanisms for generating and 
verifying correct configurations. We take inspiration 
from the rich database literature on transaction 
management (c$ [6]) and suitably extend the transaction 
model. Updates to the database and dependencies 
between versions are encapsulated in transactions that 
transform the database from one consistent state to 
another. Correct configurations are equated with 
consistent database states. However, consistent database 
states are not limited to the set of states that the 
database actually goes through during the execution of a 
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set of transactions, but also includes states that could 
have been generated using different serialization orders 
consistent with dependencies in the transaction set. We 
do not require versions to be totally ordered and admit a 
much weaker notion of serializability than the l-copy 
serializability [63 used in classical multiversion 
concurrency control theory. 

We thus have a “syntactic” characterization of a correct 
configuration that is tied with the transactions that create 
and update versioned objects. Using this 
characterization, it is possible to generate automatically 
all correct configurations of a system. One can also 
generate those configurations that satisfy some selection 
criteria such as configurations that incorporate specified 
features, or check whether a user-specified configuration 
is correct. 

There is often a distinction made between the interface 
of an object and its implementation [33. Sometimes 
only the implementation is allowed to change and not 
the interface. At other times both change. These are 
often distinguished and sometimes given different 
names, one called a version, and the other a revision or 
an alternative. In this paper, we will not make this 
distinction, and will use the single term “version” to 
refer to all different implementations and interfaces of 
an object. We also do not differentiate between types of 
versions such as public, private, transit, working, etc. 
[7-91. If necessary, the reader can imagine that we deal 
only with publicly released committed versions. 

The idea of composite objects being obtained as 
configurations of primitive objects has been explored in 
[2]. In the terminology of [ll] these primitive objects 
are shared independent constituents of a configuration. 
Whenever a new version of a primitive object is created, 
new configurations are also obtained, by means of 
version percolation. The number of composite object 
versions obtained grows in a combinatorial fashion, as 
pointed out in [7]. The solution proposed in 171, based 
on time-stamps, saves system storage by passing on to 
the user the burden of examining the new configurations 
possible and recording them in the database, if desired. 
Our approach, in this paper, avoids the need for storing 
configurations altogether by providing an efficient 
mechanism for putting configuration together on the fly. 
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Katz and Chang [lo] also propose a system in which 
configurations can be composed from versioned objects. 
However, they rely upon a logic program (or rule base), 
provided by the user, to ensure correctness rather than 
using syntactic characteristics of the transaction model 
itself. 

The organization of the rest of the paper is as follows. 
In Section 2, we introduce our transaction model and 
define what we mean by a correct configuration of 
object versions. In Section 3. we show how one can 
obtain all correct configurations from a given initial set 
of correct configurations. In Section 4, we discuss how 
to determine whether a user-specified configuration is 
correct. We also discuss how user requests for 
configurations containing (or not containing) certain 
specified features can be satisfied. We present our 
conclusions in Section 5. We assume that the reader is 
familiar with the basic notions of transactions and 
serializability; see [6] for a tutorial introduction. 

2. BASIC CONCEPTS 

We first introduce our transaction model, and then 
formally define what we mean by a correct configuration 
of object versions. 

2.1 Transaction Model 

A database is a collection of objects, each of which is 
independently versioned. For ease of exposition, we 
assume that the database starts with a “pre-creation” 
version of every object in the database. Subsequent 
versions are created by transactions that read and update 

5 database objects. Whenever an object is updated by a 
successful transaction, it results in the creation of a new 
version of the object. A transaction may update more 
than one object, but may create only one version of an 
object. All versions are created when the transaction 
commits. Deletions result in the creation of “post- 
deletion” versions. 

An object version is created by exactly one transaction. 
Each object version is stamped with the signature of the 
transaction that created it. Given an object version x, 
the function aid(x) returns the identity of the object of 
which x is a version, and the function generator(x) 

returns the identity of the transaction that created x. 

Associated with each transaction Ti is a read set Ri of 
object versions read by Ti and a write set Wi of object 
versions created by Ti. We differentiate between 
“reading” and “browsing ” an object version. When a 
transaction Ti reads an object version x, it ensures that x, 
unless updated by Ti, will be configurable with whatever 
versions Ti creates. Browsing on the other hand is a 
“free” operation. When Ti browses an object version, it 
is not placed in Ri. A transaction can browse an object 
version x and then write object versions that are not 
compatible with x. Finally, transactions can read “pre- 
creation” versions but may not read “post-deletion” 

versions. 

We put the following additional requirements on 
transaction behavior: 

i. A transaction Ti that writes an object version must 
read at least one previous version of the same 
object, i.e., V object versions x E lVi, Zl y E Ri such 
that aid(x) = aid(y). 

ii. A transaction Tj reads no more than one version of 
an object that it updates, though it may read 
multiple versions of objects that it does not update, 
i.e., V object versions x, y E Ri, V z E Wi : 
aid(x) = aid(z), x#y 3 aid(x) f aid(y). 

Thus, for each version of an object, one can identify a 
unique version of the same object from which it has 
been directly derived. We can, therefore, create a 
version graph VG for each object with one node for each 
version of the object and an edge from each version to 
the versions that are derived directly from it. More than 
one version can be derived directly from a version, and 
hence the version graph is a tree’, as in most software 
and design databases. 

We say that a version x of an object is derived from 
version y of the same object iff there is a path from y to 
x in the version graph of the object. 

Simultaneous reads of the same object version by two 
different transactions do not conflict. Simultaneous 
updates to the same object in parallel by two different 
transactions do not conflict either, since they create 
different object versions.2 Browsing also does not 
conflict with either simultaneous reading or writing of 
the same object version. However, a transaction cannot 
read any object version before it has been created. This 
requirement gives rise to a dependence between 
transactions, which can be represented in a transaction 
dependence graph. 

The transaction dependence graph TG has a node 
corresponding to every transaction in the system, and 
there is an edge from a node corresponding to 
transaction Ti to a node corresponding to transaction Tj 
iff RinWj # I$. A transaction Ti is said to depend on 

1. Allowing a transaction to read more than one version of an object 
that it updates, thereby allowing a version to be directly derived 
from mom than one version, is equivalent to allowing the version 
graph to be a directed acyclic graph (DAG). We do not consider 
version graphs that are DAGs in this paper since tmes are 
considered adequate in most practical applications [won Kii. 
personal communication, 19881. Note that we allow a transaction 
to browse multiple versions of an object that it updates. Thus, if a 
transaction has to peruse multiple versions of an object that it 
updates, it can “read” one from which branching will occur in the 
version graph and “browse” the remaining ones. 

2. Note that in our transaction model, the system never aborts a 
transaction. 
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tmnSaCtiOn Tj iff there is a path from Ti to Tj in TG. 

Lemma (Acyclicity of the Transaction Dependence 
Graph): There is no cycle in the transaction dependence 
graph, as defined above. 

Proof: Versions are created only after a transaction has 
committed. q 

We can, therefore, topologically sort the transaction 
dependence graph, i.e., the transactions can be totally 
ordered in such a way that if Ti depends on Tj then Ti 

occurs later in the order than Tj. Each such total order 
constitutes a serialization of the transactions. 

Read-only transactions are not significant in this model: 
while they do have a dependence on the transactions 
that write the object versions they read, they themselves 
write nothing and no other transactions depend on them. 
We, therefore, drop all read-only transactions from the 
transaction dependence graph for the rest of the paper. 

2.2 Correct Configurations 

A conjiguration is a set of object versions with no more 
than one version of any object, i.e., it is a set of object 
versions c with the pwefly that 
V x. y E C : x #y => aid(x) # aid(y). 

A complete configuration selects exactly one version of 
every object in the database, i.e., it is a configuration C 
such that for every object p in the database, 3 x E C 
such that oid (x) = p. 

We are interested in correct configurations. We equate 
correct configurations with consistent states of the 
database. However, consistent database states are not 
limited to the set of states that the database actually 
goes through during the execution of a set of 
transactions. but also includes states that could have 
been generated using different serialization orders 
consistent with the dependencies in the transaction 
dependency graph. To this end, we introduce the notion 
of qualification of a configuration for a transaction. 

A configuration C qua&es for a transaction Ti iff 
V x E Ri, 3 y E C such that y E Ri A aid(y) = oid (x). 

In other words, a configuration qualifies for a transaction 
if the following holds for all objects that the transaction 
reads: i) if the transaction reads only one version of an 
object, this version is included in the configuration; and 
ii) if the transaction reads multiple versions of an object, 
any one of the versions is included in the configuration. 
In addition, the configuration may contain versions of 
objects not in the read set of the transaction. For 
example, let pi be a version of the object p, 4i a version 
of 4, etc. Then, given a transaction with a read set 
= (pl,pz,ps,ql}, the configuration fpIrql,rl} qualifies for 
it, while the contiguration {p2.q2.r2) dots not. Note 
that the set @i.pz,ql} is not a conliguration Since it 
includes two versions of the object p. 

If configuration C qualifies for transaction Ti, then Ti is 
said to be applicable to C. A new configuration D is 
said to be generated by applying pi to C, as follows: 

D = Wi u {x E C I (V y E Wi : aid(x) # aid(y))} 

i.e., D is obtained by substituting in C the updated 
versions of the objects written by the transaction Ti. 

We can now inductively define the set of correct 
configurations as follows: 

The initial complete correct configuration, 
consisting of the “pre-creation” versions of all the 
objects, is a correct configuration. 
Every subset of a correct configuration is also a 
correct configuration. 
Given a transaction, T, and a qualifying correct 
configuration C, the configuration D generated by 
applying the T to C, is also correct. 

Sometimes, we will find it necessary to work backwards 
from a configuration to determine how it could have 
been generated. To this end, we introduce the notion of 
the reverse transformation of a configuration. A 
configuration C is said to reverse qualify for a 
transaction Ti, iff the transaction’s access set Ai is such 
that VxcAi, 3y~C such that 
y E Ai A oid (y) = oid (x). This definition of reverse 
qualification is the same as the definition of qualification 
with the substitution of the access set of the transaction 
for the read set. The access set Ai of transaction Ti is 
defined as: 

Ai = Wi U {X E Ri I (V y E W’i, aid(x) # aid(y))} 

i.e., the access set is the write set plus the versions of 
objects in the read set that do not occur in the write set. 
It can also be thought of as the read set with the 
updated versions replacing the old ones for objects that 
were updated by the transaction. 

To reverse apply Ti to D, substitute in place of each 
element x E Wi in D, .an element y E Ri such that 
aid(y) = aid(x). That is, the resulting configuration C is 
obtained as 

C={xeD Ix~Wi}u 

{xeRi I ( 3 y E Wi such that oid (x) = oid (y))} 

This definition parallels the definition of applying a 
transaction. If configuration D is obtained by applying a 
transaction T to a qualifying configuration C, then D 

reverse qualifies for T, and C is obtained on reverse 
applying T to D, and vice versa. Note that the result of 
reverse application of a transaction to a reverse 
qualifying configuration is unique. 

3. GENERATION OF ALL CORRECT 

CONFIGURATIONS 

We now examine how to obtain all correct 
configurations from a given initial set Of COrRct 

configurations. While this in itself may not be a 
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problem of interest directly, the results developed in this 
section can readily be adapted for several problems of 
interest, some of which are discussed in Section 4. 

3.1 A Naive Method 

A straightforward technique to obtain all correct 
configurations is to create all possible serializations of 
the transaction dependence graph, and for each 
serialization to compute a set of correct configurations 

as each transaction “moves the database from one 
consistent state to another”. However, a transaction can 
“access” not just the immediately preceding consistent 
state of the database, but any previous consistent state as 
well. When a transaction executes, the following 
procedures are executed to augment the set of correct 
configurations: 

Transaction-Apply: Apply the given transaction to every 
qualifying correct conligumtion obtained previously 
from this serialization to generate new correct 
configurations. 

Subset-Expand: For every new correct configuration, 
include every subset in the set of known correct 
configurations. 

Thus, a transaction examines all possible preceding 
consistent states of the database, selects the ones that 
qualify for it, and from these generates new consistent 
states (subsets of which are also marked consistent). 

For each serialization, the starting set of correct 
configurations consists of the initial complete correct 
configuration comprising of “pre-creation” version and 
all subsets thereof. These are all the correct 
configurations known before any transaction executes. 
The processing of a serialization is the execution of the 
procedure Transaction-Apply for each transaction in the 
serialization, in order, starting with a set of initial 
correct configurations. The total processing of a 
serialization is its processing with the procedure Subset- 
Expand executed between successive executions of the 
procedure Transaction-Apply. Thus, from the definition 
of correct configuration, the total processing of every 
serialization of the transaction graph, starting from the 
given initial set of correct configurations, yields the 
desired set of all correct configurations. 

The problem with considering all possible serializations 
is that there are exponentially many of them. Moreover, 
each serialization generates an exponential number of 
correct configurations. This approach, therefore, is 
impractical. The rest of this section is devoted to finding 
techniques that will do better. 

3.2 Incomplete Correct Configurations 

Every subset of a correct configuration is a correct 
configuration, and new correct configurations are 
generated by applying transaction to qualifying correct 
configurations. To ensure that all correct configurations 
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were found we had to execute procedure Subset-Expand 
between successive executions of procedure 
Transaction-Apply, thereby generating a large number of 
duplicates. 

For example, consider a system in which there is a 
single transaction with a read set of (pi} and a write set 
of (pz}, and an initial complete configuration of plqIrI. 
First applying Subset-Expand, we get the set of correct 
configurations (Plqrrl. ml. plrl. pl, 4. ql. rl. qlr,}. 
The lirst five of these qualify for the transactior?. 
Applying the transaction to each of these, we obtain as 
new comet configurations b2q1r1. p2q1. p2r1. pz b}. 

On applying Subset-Expand individually to each of these 
new configurations, we obtain 8, 4, 4, 2, and 1 correct 
configurations respectively, for a total of 19, whereas 
only 8 of them are distinct, and only 4 not included in 
the set we had before applying the transaction. 

The lemma below helps us to eliminate this duplication. 

Lemma (Subset Completion): Every correct configuration 
is a subset of a complete correct configuration4. 

Proof: If a correct configuration qualifies for a 
transaction, so does a complete correct configuration that s 
is its superset, by definition of qualification. Since the 
only mechanism for generating correct configurations, ’ 
beginning with subsets of a complete correct 
configuration, is to apply transactions for which it 
qualifies, we have a proof by induction. q 

The consequence of this lemma is that it is sufficient to 
have a procedure to generate all complete correct 
configurations. All other correct configurations can be 
found directly as subsets of these. 

Lemma (Complete Generation): A conliguration, D, 
generated by applying a transaction T to a qualifying 
configuration C, is complete iff C is complete. 

Proof: By definition of the application of a transaction 
and generation of a new configuration, B has all the 

3. 

4. 

The empty set, tJl. represents a conflguraticn comprising no objects. 
It is included here for formal correctness. 

This l-a is not as trivial as it may at first appear. It has an . . 
mtphcatton m the reverse due&m from the ate in the delInition 
of a correct conliguration. which said “Every subset of a correct 
configuration is a correct configuration”. If we consider a slightly 
different definition of qualification, the lemma does not hold. For 
example, let a catfiguration C qualify for a transaction Tt 
provided V XE Ri V YE C oid (x)=oid(y) => x=y. Consider 
a single transaction system with a read set of @ t , qa} and a write 
set of @a. q3). and an initial complete correct configuration of 
P141. Clearly, this contiguration does not qualiiy for the 
transaction so that the only complete correct configuration is the 
initial one. However, applying the procedure Subset-Ecpnd, we 
get @ 1 q 1, q 1, p 1) all as correct configurations. the last of which 
now qualifies for the transaction according to cur new rule. 
generating new correct configuration(s) that are not subsets of the 
initial complete correct configuration. 



dmcnls of A except that some objects have their 
versions updated. 0 

By virtue of the Complete Generation Lemma, we are 
guaranteed that we need only consider complete 
conligurations if we wish to generate complete correct 
conligurations. In conjunction with the Subset 
Completion Lemma, it implies that we need not totally 
process a serialization to obtain all correct 
configurations: it is enough to process a serialization 
beginning with the initial complete correct configuration, 
and then to apply the procedure Subset-Expand once at 
the end. Returning to the example just before the 
Subset Completion Lemma, we could first create p2q1r1 
by applying the transaction to the initial configuration 
Plqlrl, and then run Subset-Expand at the end to 
generate all the correct configurations, with significantly 
fewer duplicates. 

3.3 Regular Systems 

We first introduce the notion of weak dependence. 
Transaction Ti weakly depends on transaction Ti iff 

1. 

ii. 

. . . 
111. 

iv. 

for every object in the read sets of Ti and Tj, at 
least one common version of the object exists in 
the two sets: and 
there is at least one common version that is read 
both by Ti and Tj, but is only updated by Ti and not 
Tj ; and 
there is no common version that is read both by Ti 
and Tj, which is updated by Tj; and 
Tj does not depend on Ti. 

Formally, Ti weakly depends on Tj iff 

V x E Ri. y E. Rj such that oid (x) = oid (y) 
32~ RinRjsuchthatoid(z)=oid(x)=oidCy) A ’ 

3x E Ri A Rj, YEWS such that aid(x) = aid(y) A 

Z~U E Ri n Rj, v E Wj such that oid (u) = aid(v) A 
Tj does not depend on Ti. 

The intuition behind weak dependence is that Tj can 
create a database state in which Ti can execute, while Ti 
cannot create a state in which Tj can execute. 
Therefore, even though there is no dependence between 
the transactions, in that Ti does not read something that 
Tj writes, we should execute Tj before Ti. 

The weak dependence relation can be represented in a 
transaction weak dependence graph in which there is an 
edge from the node corresponding to the transaction Ti 
to the node corresponding to the transaction Tj iff Ti 
weakly depends on Tj. A set of transactions is said to 
constitute a regular system iff the transaction weak 
dcpcndcnce graph is cycle-free. 

The dchnitions of a regular system and weak 
dcpcndcnce may appear to be rather arcane. We wanted 
to have the widest possible scope for our definition of a 
regular system. In a practical implementation, a simpler 
dclinition of weak dependence may be used, with some 

of the conjuncts removed, resulting in a narrower scope 
for what is a “regular system”. 

We argue that most systems in practice are likely to be 
regular systems. Consider why a transaction that 
updates one object (by creating a new version) would 
want to read versions of other objects, The most 
probable reason is because the updated object relies 
upon some properties of the objects read but not 
updated, of which only the versions read are guaranteed 
to possess the properties relied upon. One can then 
draw a “relies upon” graph over the objects. (In a 
UNIX@ system, this graph could be obtained through a 
tool such as Cscope [131 where the objects are files and 
the “relies upon” relation is based upon functions 
called). If this “relies upon” graph is acyclic, which is 
often the case, then we have a regular system. Even if 
this graph has cycles in which pairs of objects mutually 
depend upon each other, we still have a regular system. 
In fact, it can be shown that if this graph has no simple 
cycles of length greater than 2, then we have a regular 
system. If we do have a situation in which object p 
relies upon object q which in turn relies upon r, and 
then r relies upon p without r relying on q or q on p, we 
may still have a regular system, but that is no longer 
guaranteed. 

Define a transaction graph to be the union of the 
transaction dependence and weak dependence graphs so 
that the transaction graph has an edge from node Ti to 
node Tj iff there is an edge from Ti to Tj either in the 
transaction dependence graph (dependence edge) or the 
transaction weak dependence graph (weak dependence 
@H. 

Lemma (Acyclicity of the Transaction Graph): The 
transaction graph in a regular system is cycle-free. 

Proof: Suppose there is a dependence edge from Ti to 
Tj. There cannot be a dependence edge from Tj to Ti, 
since the transaction dependence graph is acyclic. There 
cannot be a weak dependence edge from Tj to Tj, since 
such weak dependence requires that Ti not depend on Tie 
Now suppose that there is a weak dependence edge from 
Ti to Tj. There cannot be a weak dependence edge from 
Tj to Ti, since the transaction weak dependence graph in 
a regular system is acyclic. There cannot be a 
dependence edge from Tj to Ti by the definition of weak 
dependence once more. 0 

Thus, in a regular system, one can obtain one or more 
regular serializations, which are total orderings of all 
executable transactions such that if Ti depends or weakly 
depends on Tj then Ti occurs later in the order than Tj- 

3.4 An Efficient Method for Generating All Correct 
Configurations 

Lemma (Order Independence): The set of complete 
correct configurations generated by the processing of a 
serialization is not altered by switching the order in the 
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serialization of two transactions that have no dependence 
and no weak dependence between them. 

Proof: Consider two transactions, Ti and Tj, neither of 
which depends on the other. Let r, = {d(x) I x E R,), 

and wk = {oid(x) I x E Wk} be the sets of objects (not 
object versions) read and written by transaction Tk. 
Since Ti and T, are not dependent, we know that 
Ri n Wj = Rj A Wi = o. (We use the absence of weak 
dependence later). 

Consider a complete configuration c known to be 
correct before either transaction has been executed. We 
have four cases to consider: 
1. C qualifies for neither Ti nor Tj. 

No new configurations are generated irrespective of 
the order of executing the transactions. Therefore 
the lemma holds for all such configurations, 
trivially. 

2. C qualifies for Ti but not for Tj. 
Let Ci be generated by applying Ti to C. Ti does 
not write anything that Tj reads (WinRj = $). 
Therefore, Ci cannot qualify for Tj, since C did not. 
Thus Ci is the only new complete configuration 
generated, irrespective of the order of transactions. 

3. C qualifies for Tj but not for Ti. , 
Using arguments similar to the previous case, we 
show that C, is the only new composition generated 
irrespective of the order of execution of the 
transactions. 

4. C qUalilieS for Ti and Tj, both. 
Now we have to consider several subcases. 

23. ri n wj = ri n wi = @ 

That is, neither transaction reads any objects 
written by the other. (However, both transactions 
may read some objects in common that they do 
not update). It follows that wi n wj = $. Let Ci be 
the configuration generated by applying Ti to C. Ci 
differs from C only in the objects included in Wir 
none of which are in rj. Therefore, since C 
qualifies for Tj, SO does Ci. Let C, be generated 
by applying Tj to Ci. Similarly, we can obtain Cj, 
show that it qualifies for Ti, and obtain C’j<* Note, 
however, that since wi n wj = e, the changes made 
from C by the two transactions are in different 
sets of objects. Therefore, C, = Cji. TINIS, either 
order of application of the transactions to C and 
its derivatives, yields the same new 
configurations: Ci, Cj, and Cij* 

b. ri n wj # o rr n wi f $. 
In this case, clearly, Ci cannot qualify for Tj and 
Cj cannot qualify for K. Therefore the only new 
complete correct configurations produced are Ci 
and Cj. 

C. ri n Wj # (I rj n wi =$L 
If ri n wj + o, then we must have ri n rj* $. 
Consider an object p read by both transactions and 
updated by Tj. Both transactions must read the 
same version of p, otherwise we would not have 

d. 

found a C that qualifies for both transactions. 
Furthermore, p is not updated by Ti; otherwise, we 
would have found p to be a member of rj n wi. 
Therefore, Tj weakly depends on Ti, a 
contradiction given the premise of the lemma. 
ri n w, = t$ rj n wi fi $. 

As in the previous case, we can show that Ti 
weakly depends on Tj, a contradiction. q 

Lemma (Serialization Indifference): The processing of 
every regular serialization results in the same set of 
complete correct configurations. 

Proof: Follows directly from the Order Independence 
Lemma and the definition of a regular serialization. 
(Recall that a regular serialization can be obtained only 
in a regular system). 0 

Lemma (Weak Dependence Ordering): In a regular 
system, given Ti weakly depends on Tj, the processing 
of a serialization with Ti occurring before Tj results in a 
subset of the complete correct configurations generated 
by a serialization that is identical except that Tj occurs 
before Ti. 

Proof: Following arguments similar to those used in the 
proof of the Order Independence Lemma, we can 
dismiss the cases in which a configuration qualifies for 
no more than one of the two transactions. Since Ti 
weakly depends on Tj, we know that there are 
configurations that could qualify for both. Consider any 
such configuration C. Let Cj be generated by applying 
Tj to C. Cj differs from C in the objects that are updated 
by Tj. But we know that wj includes no objects that are 
in rj n ri. Since Wj E; rj, it follows that wj n ri = $. 

Therefore, Cj qualifies for Ti as well. ‘On the other 
hand, consider Ci generated by applying Ti to C. By 
definition of weak dependence, w, n rj # $. But since Tj 
does not depend on Ti, we must have Wi n Rj = @. In 
other words, Ci contains a version of at least one object 
that is different from the version(s) read by Tj. 
Therefore, Ci cannot qualify for Tj. Thus, executing Ti 
before Tj yields Ci and Cj from C, while executing Tj 
before Ti yields Ci, Cj, and Cij. 0 

Theorem (Exhaustion): The processing of any regular 
serialization generates all possible complete correct 
configurations from a given initial complete correct 
configuration. 

Proof: Follows from the Serialization Indifference 
Lemma, the Complete Generation Lemma, and the 
following facts: 

i. If transaction Tj depends on Ti. then Tj must 
execute after Ti. Therefore only serializations 
need be considered. AND 

ii. If transaction Tj weakly depends on Ti, then, from 
the Weak Dependence Ordering Lemma, we need 
only consider serializations in which Ti is 
executed before Tj* Therefore, only regular 
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serializations need be considered. q 

Theorem (Uniqueness): In the processing of any 
serialization, each correct configuration is generated at 
most once. 

Proof: Consider the generators of the object versions in 
the given configuration. There must be one that occurs 
last in the serialization. Call it 7. The given 
configuration, C, is generated by applying T to some 
other configuration, D, which can be obtained by 
reverse-applying T to the given configuration. C cannot 
be generated by any previous transaction in the 
serialization, since T is the latest of the generators of the 
elements of C. For the same reason, C cannot be 
generated by any later transaction. If D can be obtained 
uniquely from C, then C is generated only once by 
transaction T. But D is unique by definition of reverse- 
application. 0 

In view of the Exhaustion Theorem and the Uniqueness 
Theorem, it follows that one can generate all complete 
correct configurations in a regular system by processing 
any one regular serialization starting from the given 
initial complete correct configuration. Moreover, during 
this procedure each complete correct configuration is 
generated exactly once, and one complete correct 
configuration is generated by every transaction 
application to an existing qualifying complete correct 
configuration. Therefore we have obtained a very 
efficient method of generating all complete correct 
configurations in a regular system. 

4. GENERATION OF SELECTED CONFIGURATIONS 

In the previous section, we discussed how to generate 
all possible correct configurations of a system. While 
the ability to do so is important, usually only a subset of 
all possible configurations need be generated, or a 
membership question answered. In this section, we look 
at these two types of queries. We first consider the 
problem of determining whether a user-specified 
conliguration is correct. We then discuss how to satisfy 
user requests for configurations containing (or not 
containing) certain specified features. 

4.1 Correctness Determination 

Given a regular system, the following algorithm 
determines whether the given complete configuration is 
correct: 
Choose any regular serialization of the transactions. 
Repeatedly execute the following steps until the initial 
complete correct configuration is obtained, establishing 
the correctness of the complete configuration given, or 
until a configuration is obtained that does not reverse 
qualify for its last generator, establishing the 
incorrectness of the proposed complete configuration: 
i. Find the generator of every object version in the 

configuration. 

ii. Pick from this set of generators, the generator 
(transaction) that occurs last in the serialization. 

iii. Reverse apply the transaction to the configuration, 
provided that the configuration reverse qualifies for 
the transaction, to yield the new configuration for 
the next iteration. 

This algorithm is linear in the number of objects and in 
the number of transactions in the system. Its correctness 
follows directly from the exhaustion theorem, the fact 
that exactly one transaction writes an object version, and 
the uniqueness of the configuration generated by reverse 
applying a transaction to a configuration that reverse 
qualifies. 

If the system is not regular, the above algorithm can be 
used with the modification that Step 2 must now be 
repeated for all possible serializations of the transaction 
dependence graph before declaring a configuration 
incorrect. The algorithm is terminated if the correctness 
of the given configuration is demonstrated in any 
serialization. 

4.2 Configurations Containing Specified Features 

Transactions encapsulate meaningful changes to the 
systems, and each transaction identilier can be mapped 
into a string that identifies corresponding changes. 
Thus, there could be a transaction called <add-feature- 
A> that possibly updates several objects. A system 
configuration “has” <add-feature-A>, if for each object 
updated by the transaction <add-feature-A>, the 
configuration uses a version that is reachable in the 
version-graph from the version generated by <add- 
feature-A>. The user can then ask for configurations 
that have <add-feature-A>, <add-bell-B>, cadd-whistle- 
C>, etc. The following algorithm determines such 
configurations in a regular system: 
Start with the initial complete correct configuration. 
Choose any regular serialization of the transactions. 
Repeatedly execute the following steps until all the 
transactions have been processed: 
i. Take the next transaction in the serialization and 

apply it to all the qualifying configurations for this 
transaction to generate new complete correct 
configurations. 

ii. If the transaction just applied corresponds to one of 
the features selected, delete all previously known 
complete correct configurations, and retain only 
those generated as a result of applying this 
transaction. 

The set (possibly empty) of complete configurations 
finally left reflect the features added by all the specified 
transactions. 
The correctness of this algorithm also follows directly 
from the exhaustion theorem and the fact that exactly 
one transaction writes an object version. 
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4.3 Configurations Not Containing Specified 
Features 

If correct configurations are required that “do not 
include” certain features, the removal of the 
corresponding transactions from the serialization will 
ensure that no configuration is generated that includes 
these features. It may be more efficient not just to 
remove the undesirable transactions, but also all 
transactions that can be reached from them in the 
transaction dependence graph. The desired 
configurations can then be generated by starting with the 
initial correct configuration and applying all transactions, 
in order as per the truncated serialization, to the 
qualifying configurations. 

5. CONCLUSIONS 

We considered the problem of configuring a system 
comprising one version for each of its constituent 
objects. We presented a transaction model and a 
syntactic characterization of a correct configuration tied 
to this model, which equates correct configurations with 
consistent database states. We allowed version graphs 
that are trees. We also presented algorithms for 
generating all correct configurations and those 
configurations that satisfy some selection criteria such as 
absence and presence of specified features, and for 
checking whether a user-specified complete 
configuration is correct. 

We feel that the theory and algorithms presented in this 
paper can provide the basis for developing automated 
system configuration tools, and help advance the current 
state of art in which very little is available to users by 

* way of support in deciding and verifying what 
constitutes a correct configuration. Indeed, we plan to 
incorporate these algorithms in Ode [l] - an object- 
oriented database and environment being developed in 
our laboratory. 

We intend to address in the future two limitations of the 
current work. One is the requirement that version 
graphs be trees. In some cases, especially in software 
engineering environments, DAGs are more appropriate. 
The second limitation is that the algorithm presented in 
Section 4.1 can be applied efficiently only to check 
whether a complete configuration is correct. Extension 
of the algorithm to incomplete configurations is non- 
trivial. 
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