
ON CORRECTLY CONFIGURING VERSIONED OBJECTS

Rakesh Agrawal and H. V. Jagadish
AT&T Bell Laboratories, Murray Hill NJ

We consider the problem of configuring a system in software and design database domains, where a system comprises a
version for each of its constituent objects. We present a syntactic characterization of a correct configuration, tied to a
transaction model, that makes it possible to generate automatically all correct configurations of a system. One can also
generate configurations that satisfy some selection criteria such as the absence and presence of specified features, or
check whether a user-specified configuration is correct.

1. INTRODUCTION

Software and design databases invariably consist of
versioned objects (c$ [2,4,5,7-9,141). Versions of an
object often represent alternatives or revisions. A
system comprising a set of objects is configured by
selecting a version for each of the objects that constitute
the system. A configuration is also treated as a
versioned object, so that more than one configuration
can coexist.

An important issue in configuring a system is that the
constituent versions must be compatible [12,15]. We
all know that the version of a module compiled for
Motorola 68000 should not be linked with the version of
another module compiled for Intel 386. All the systems
we know of provide very little by way of support for
deciding what can constitute a correct configuration.
leaving this decision to the user. In a system consisting
of m objects, each with v versions, there can be up to vm
possible confgurations. As systems become large,
relying on user intuition to decide what constitutes a
correct configuration is at the very least error-prone, if
not altogether impossible.

This paper is an attempt to correct this deficiency by
introducing a formal notion of the correctness of a
configuration and mechanisms for generating and
verifying correct configurations. We take inspiration
from the rich database literature on transaction
management (c$ [6]) and suitably extend the transaction
model. Updates to the database and dependencies
between versions are encapsulated in transactions that
transform the database from one consistent state to
another. Correct configurations are equated with
consistent database states. However, consistent database
states are not limited to the set of states that the
database actually goes through during the execution of a

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permrssion of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

set of transactions, but also includes states that could
have been generated using different serialization orders
consistent with dependencies in the transaction set. We
do not require versions to be totally ordered and admit a
much weaker notion of serializability than the l-copy
serializability [63 used in classical multiversion
concurrency control theory.

We thus have a “syntactic” characterization of a correct
configuration that is tied with the transactions that create
and update versioned objects. Using this
characterization, it is possible to generate automatically
all correct configurations of a system. One can also
generate those configurations that satisfy some selection
criteria such as configurations that incorporate specified
features, or check whether a user-specified configuration
is correct.

There is often a distinction made between the interface
of an object and its implementation [33. Sometimes
only the implementation is allowed to change and not
the interface. At other times both change. These are
often distinguished and sometimes given different
names, one called a version, and the other a revision or
an alternative. In this paper, we will not make this
distinction, and will use the single term “version” to
refer to all different implementations and interfaces of
an object. We also do not differentiate between types of
versions such as public, private, transit, working, etc.
[7-91. If necessary, the reader can imagine that we deal
only with publicly released committed versions.

The idea of composite objects being obtained as
configurations of primitive objects has been explored in
[2]. In the terminology of [ll] these primitive objects
are shared independent constituents of a configuration.
Whenever a new version of a primitive object is created,
new configurations are also obtained, by means of
version percolation. The number of composite object
versions obtained grows in a combinatorial fashion, as
pointed out in [7]. The solution proposed in 171, based
on time-stamps, saves system storage by passing on to
the user the burden of examining the new configurations
possible and recording them in the database, if desired.
Our approach, in this paper, avoids the need for storing
configurations altogether by providing an efficient
mechanism for putting configuration together on the fly.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

- r)“I - Amsterdam, 1989

Katz and Chang [lo] also propose a system in which
configurations can be composed from versioned objects.
However, they rely upon a logic program (or rule base),
provided by the user, to ensure correctness rather than
using syntactic characteristics of the transaction model
itself.

The organization of the rest of the paper is as follows.
In Section 2, we introduce our transaction model and
define what we mean by a correct configuration of
object versions. In Section 3. we show how one can
obtain all correct configurations from a given initial set
of correct configurations. In Section 4, we discuss how
to determine whether a user-specified configuration is
correct. We also discuss how user requests for
configurations containing (or not containing) certain
specified features can be satisfied. We present our
conclusions in Section 5. We assume that the reader is
familiar with the basic notions of transactions and
serializability; see [6] for a tutorial introduction.

2. BASIC CONCEPTS

We first introduce our transaction model, and then
formally define what we mean by a correct configuration
of object versions.

2.1 Transaction Model

A database is a collection of objects, each of which is
independently versioned. For ease of exposition, we
assume that the database starts with a “pre-creation”
version of every object in the database. Subsequent
versions are created by transactions that read and update

5 database objects. Whenever an object is updated by a
successful transaction, it results in the creation of a new
version of the object. A transaction may update more
than one object, but may create only one version of an
object. All versions are created when the transaction
commits. Deletions result in the creation of “post-
deletion” versions.

An object version is created by exactly one transaction.
Each object version is stamped with the signature of the
transaction that created it. Given an object version x,
the function aid(x) returns the identity of the object of
which x is a version, and the function generator(x)

returns the identity of the transaction that created x.

Associated with each transaction Ti is a read set Ri of
object versions read by Ti and a write set Wi of object
versions created by Ti. We differentiate between
“reading” and “browsing ” an object version. When a
transaction Ti reads an object version x, it ensures that x,
unless updated by Ti, will be configurable with whatever
versions Ti creates. Browsing on the other hand is a
“free” operation. When Ti browses an object version, it
is not placed in Ri. A transaction can browse an object
version x and then write object versions that are not
compatible with x. Finally, transactions can read “pre-
creation” versions but may not read “post-deletion”

versions.

We put the following additional requirements on
transaction behavior:

i. A transaction Ti that writes an object version must
read at least one previous version of the same
object, i.e., V object versions x E lVi, Zl y E Ri such
that aid(x) = aid(y).

ii. A transaction Tj reads no more than one version of
an object that it updates, though it may read
multiple versions of objects that it does not update,
i.e., V object versions x, y E Ri, V z E Wi :
aid(x) = aid(z), x#y 3 aid(x) f aid(y).

Thus, for each version of an object, one can identify a
unique version of the same object from which it has
been directly derived. We can, therefore, create a
version graph VG for each object with one node for each
version of the object and an edge from each version to
the versions that are derived directly from it. More than
one version can be derived directly from a version, and
hence the version graph is a tree’, as in most software
and design databases.

We say that a version x of an object is derived from
version y of the same object iff there is a path from y to
x in the version graph of the object.

Simultaneous reads of the same object version by two
different transactions do not conflict. Simultaneous
updates to the same object in parallel by two different
transactions do not conflict either, since they create
different object versions.2 Browsing also does not
conflict with either simultaneous reading or writing of
the same object version. However, a transaction cannot
read any object version before it has been created. This
requirement gives rise to a dependence between
transactions, which can be represented in a transaction
dependence graph.

The transaction dependence graph TG has a node
corresponding to every transaction in the system, and
there is an edge from a node corresponding to
transaction Ti to a node corresponding to transaction Tj
iff RinWj # I$. A transaction Ti is said to depend on

1. Allowing a transaction to read more than one version of an object
that it updates, thereby allowing a version to be directly derived
from mom than one version, is equivalent to allowing the version
graph to be a directed acyclic graph (DAG). We do not consider
version graphs that are DAGs in this paper since tmes are
considered adequate in most practical applications [won Kii.
personal communication, 19881. Note that we allow a transaction
to browse multiple versions of an object that it updates. Thus, if a
transaction has to peruse multiple versions of an object that it
updates, it can “read” one from which branching will occur in the
version graph and “browse” the remaining ones.

2. Note that in our transaction model, the system never aborts a
transaction.

- 368 -

tmnSaCtiOn Tj iff there is a path from Ti to Tj in TG.

Lemma (Acyclicity of the Transaction Dependence
Graph): There is no cycle in the transaction dependence
graph, as defined above.

Proof: Versions are created only after a transaction has
committed. q

We can, therefore, topologically sort the transaction
dependence graph, i.e., the transactions can be totally
ordered in such a way that if Ti depends on Tj then Ti

occurs later in the order than Tj. Each such total order
constitutes a serialization of the transactions.

Read-only transactions are not significant in this model:
while they do have a dependence on the transactions
that write the object versions they read, they themselves
write nothing and no other transactions depend on them.
We, therefore, drop all read-only transactions from the
transaction dependence graph for the rest of the paper.

2.2 Correct Configurations

A conjiguration is a set of object versions with no more
than one version of any object, i.e., it is a set of object
versions c with the pwefly that
V x. y E C : x #y => aid(x) # aid(y).

A complete configuration selects exactly one version of
every object in the database, i.e., it is a configuration C
such that for every object p in the database, 3 x E C
such that oid (x) = p.

We are interested in correct configurations. We equate
correct configurations with consistent states of the
database. However, consistent database states are not
limited to the set of states that the database actually
goes through during the execution of a set of
transactions. but also includes states that could have
been generated using different serialization orders
consistent with the dependencies in the transaction
dependency graph. To this end, we introduce the notion
of qualification of a configuration for a transaction.

A configuration C qua&es for a transaction Ti iff
V x E Ri, 3 y E C such that y E Ri A aid(y) = oid (x).

In other words, a configuration qualifies for a transaction
if the following holds for all objects that the transaction
reads: i) if the transaction reads only one version of an
object, this version is included in the configuration; and
ii) if the transaction reads multiple versions of an object,
any one of the versions is included in the configuration.
In addition, the configuration may contain versions of
objects not in the read set of the transaction. For
example, let pi be a version of the object p, 4i a version
of 4, etc. Then, given a transaction with a read set
= (pl,pz,ps,ql}, the configuration fpIrql,rl} qualifies for
it, while the contiguration {p2.q2.r2) dots not. Note
that the set @i.pz,ql} is not a conliguration Since it
includes two versions of the object p.

If configuration C qualifies for transaction Ti, then Ti is
said to be applicable to C. A new configuration D is
said to be generated by applying pi to C, as follows:

D = Wi u {x E C I (V y E Wi : aid(x) # aid(y))}

i.e., D is obtained by substituting in C the updated
versions of the objects written by the transaction Ti.

We can now inductively define the set of correct
configurations as follows:

The initial complete correct configuration,
consisting of the “pre-creation” versions of all the
objects, is a correct configuration.
Every subset of a correct configuration is also a
correct configuration.
Given a transaction, T, and a qualifying correct
configuration C, the configuration D generated by
applying the T to C, is also correct.

Sometimes, we will find it necessary to work backwards
from a configuration to determine how it could have
been generated. To this end, we introduce the notion of
the reverse transformation of a configuration. A
configuration C is said to reverse qualify for a
transaction Ti, iff the transaction’s access set Ai is such
that VxcAi, 3y~C such that
y E Ai A oid (y) = oid (x). This definition of reverse
qualification is the same as the definition of qualification
with the substitution of the access set of the transaction
for the read set. The access set Ai of transaction Ti is
defined as:

Ai = Wi U {X E Ri I (V y E W’i, aid(x) # aid(y))}

i.e., the access set is the write set plus the versions of
objects in the read set that do not occur in the write set.
It can also be thought of as the read set with the
updated versions replacing the old ones for objects that
were updated by the transaction.

To reverse apply Ti to D, substitute in place of each
element x E Wi in D, .an element y E Ri such that
aid(y) = aid(x). That is, the resulting configuration C is
obtained as

C={xeD Ix~Wi}u

{xeRi I (3 y E Wi such that oid (x) = oid (y))}

This definition parallels the definition of applying a
transaction. If configuration D is obtained by applying a
transaction T to a qualifying configuration C, then D

reverse qualifies for T, and C is obtained on reverse
applying T to D, and vice versa. Note that the result of
reverse application of a transaction to a reverse
qualifying configuration is unique.

3. GENERATION OF ALL CORRECT

CONFIGURATIONS

We now examine how to obtain all correct
configurations from a given initial set Of COrRct

configurations. While this in itself may not be a

- 369 -

problem of interest directly, the results developed in this
section can readily be adapted for several problems of
interest, some of which are discussed in Section 4.

3.1 A Naive Method

A straightforward technique to obtain all correct
configurations is to create all possible serializations of
the transaction dependence graph, and for each
serialization to compute a set of correct configurations

as each transaction “moves the database from one
consistent state to another”. However, a transaction can
“access” not just the immediately preceding consistent
state of the database, but any previous consistent state as
well. When a transaction executes, the following
procedures are executed to augment the set of correct
configurations:

Transaction-Apply: Apply the given transaction to every
qualifying correct conligumtion obtained previously
from this serialization to generate new correct
configurations.

Subset-Expand: For every new correct configuration,
include every subset in the set of known correct
configurations.

Thus, a transaction examines all possible preceding
consistent states of the database, selects the ones that
qualify for it, and from these generates new consistent
states (subsets of which are also marked consistent).

For each serialization, the starting set of correct
configurations consists of the initial complete correct
configuration comprising of “pre-creation” version and
all subsets thereof. These are all the correct
configurations known before any transaction executes.
The processing of a serialization is the execution of the
procedure Transaction-Apply for each transaction in the
serialization, in order, starting with a set of initial
correct configurations. The total processing of a
serialization is its processing with the procedure Subset-
Expand executed between successive executions of the
procedure Transaction-Apply. Thus, from the definition
of correct configuration, the total processing of every
serialization of the transaction graph, starting from the
given initial set of correct configurations, yields the
desired set of all correct configurations.

The problem with considering all possible serializations
is that there are exponentially many of them. Moreover,
each serialization generates an exponential number of
correct configurations. This approach, therefore, is
impractical. The rest of this section is devoted to finding
techniques that will do better.

3.2 Incomplete Correct Configurations

Every subset of a correct configuration is a correct
configuration, and new correct configurations are
generated by applying transaction to qualifying correct
configurations. To ensure that all correct configurations

- 370

were found we had to execute procedure Subset-Expand
between successive executions of procedure
Transaction-Apply, thereby generating a large number of
duplicates.

For example, consider a system in which there is a
single transaction with a read set of (pi} and a write set
of (pz}, and an initial complete configuration of plqIrI.
First applying Subset-Expand, we get the set of correct
configurations (Plqrrl. ml. plrl. pl, 4. ql. rl. qlr,}.
The lirst five of these qualify for the transactior?.
Applying the transaction to each of these, we obtain as
new comet configurations b2q1r1. p2q1. p2r1. pz b}.

On applying Subset-Expand individually to each of these
new configurations, we obtain 8, 4, 4, 2, and 1 correct
configurations respectively, for a total of 19, whereas
only 8 of them are distinct, and only 4 not included in
the set we had before applying the transaction.

The lemma below helps us to eliminate this duplication.

Lemma (Subset Completion): Every correct configuration
is a subset of a complete correct configuration4.

Proof: If a correct configuration qualifies for a
transaction, so does a complete correct configuration that s
is its superset, by definition of qualification. Since the
only mechanism for generating correct configurations, ’
beginning with subsets of a complete correct
configuration, is to apply transactions for which it
qualifies, we have a proof by induction. q

The consequence of this lemma is that it is sufficient to
have a procedure to generate all complete correct
configurations. All other correct configurations can be
found directly as subsets of these.

Lemma (Complete Generation): A conliguration, D,
generated by applying a transaction T to a qualifying
configuration C, is complete iff C is complete.

Proof: By definition of the application of a transaction
and generation of a new configuration, B has all the

3.

4.

The empty set, tJl. represents a conflguraticn comprising no objects.
It is included here for formal correctness.

This l-a is not as trivial as it may at first appear. It has an . .
mtphcatton m the reverse due&m from the ate in the delInition
of a correct conliguration. which said “Every subset of a correct
configuration is a correct configuration”. If we consider a slightly
different definition of qualification, the lemma does not hold. For
example, let a catfiguration C qualify for a transaction Tt
provided V XE Ri V YE C oid (x)=oid(y) => x=y. Consider
a single transaction system with a read set of @ t , qa} and a write
set of @a. q3). and an initial complete correct configuration of
P141. Clearly, this contiguration does not qualiiy for the
transaction so that the only complete correct configuration is the
initial one. However, applying the procedure Subset-Ecpnd, we
get @ 1 q 1, q 1, p 1) all as correct configurations. the last of which
now qualifies for the transaction according to cur new rule.
generating new correct configuration(s) that are not subsets of the
initial complete correct configuration.

dmcnls of A except that some objects have their
versions updated. 0

By virtue of the Complete Generation Lemma, we are
guaranteed that we need only consider complete
conligurations if we wish to generate complete correct
conligurations. In conjunction with the Subset
Completion Lemma, it implies that we need not totally
process a serialization to obtain all correct
configurations: it is enough to process a serialization
beginning with the initial complete correct configuration,
and then to apply the procedure Subset-Expand once at
the end. Returning to the example just before the
Subset Completion Lemma, we could first create p2q1r1
by applying the transaction to the initial configuration
Plqlrl, and then run Subset-Expand at the end to
generate all the correct configurations, with significantly
fewer duplicates.

3.3 Regular Systems

We first introduce the notion of weak dependence.
Transaction Ti weakly depends on transaction Ti iff

1.

ii.

. . .
111.

iv.

for every object in the read sets of Ti and Tj, at
least one common version of the object exists in
the two sets: and
there is at least one common version that is read
both by Ti and Tj, but is only updated by Ti and not
Tj ; and
there is no common version that is read both by Ti
and Tj, which is updated by Tj; and
Tj does not depend on Ti.

Formally, Ti weakly depends on Tj iff

V x E Ri. y E. Rj such that oid (x) = oid (y)
32~ RinRjsuchthatoid(z)=oid(x)=oidCy) A ’

3x E Ri A Rj, YEWS such that aid(x) = aid(y) A

Z~U E Ri n Rj, v E Wj such that oid (u) = aid(v) A
Tj does not depend on Ti.

The intuition behind weak dependence is that Tj can
create a database state in which Ti can execute, while Ti
cannot create a state in which Tj can execute.
Therefore, even though there is no dependence between
the transactions, in that Ti does not read something that
Tj writes, we should execute Tj before Ti.

The weak dependence relation can be represented in a
transaction weak dependence graph in which there is an
edge from the node corresponding to the transaction Ti
to the node corresponding to the transaction Tj iff Ti
weakly depends on Tj. A set of transactions is said to
constitute a regular system iff the transaction weak
dcpcndcnce graph is cycle-free.

The dchnitions of a regular system and weak
dcpcndcnce may appear to be rather arcane. We wanted
to have the widest possible scope for our definition of a
regular system. In a practical implementation, a simpler
dclinition of weak dependence may be used, with some

of the conjuncts removed, resulting in a narrower scope
for what is a “regular system”.

We argue that most systems in practice are likely to be
regular systems. Consider why a transaction that
updates one object (by creating a new version) would
want to read versions of other objects, The most
probable reason is because the updated object relies
upon some properties of the objects read but not
updated, of which only the versions read are guaranteed
to possess the properties relied upon. One can then
draw a “relies upon” graph over the objects. (In a
UNIX@ system, this graph could be obtained through a
tool such as Cscope [131 where the objects are files and
the “relies upon” relation is based upon functions
called). If this “relies upon” graph is acyclic, which is
often the case, then we have a regular system. Even if
this graph has cycles in which pairs of objects mutually
depend upon each other, we still have a regular system.
In fact, it can be shown that if this graph has no simple
cycles of length greater than 2, then we have a regular
system. If we do have a situation in which object p
relies upon object q which in turn relies upon r, and
then r relies upon p without r relying on q or q on p, we
may still have a regular system, but that is no longer
guaranteed.

Define a transaction graph to be the union of the
transaction dependence and weak dependence graphs so
that the transaction graph has an edge from node Ti to
node Tj iff there is an edge from Ti to Tj either in the
transaction dependence graph (dependence edge) or the
transaction weak dependence graph (weak dependence
@H.

Lemma (Acyclicity of the Transaction Graph): The
transaction graph in a regular system is cycle-free.

Proof: Suppose there is a dependence edge from Ti to
Tj. There cannot be a dependence edge from Tj to Ti,
since the transaction dependence graph is acyclic. There
cannot be a weak dependence edge from Tj to Tj, since
such weak dependence requires that Ti not depend on Tie
Now suppose that there is a weak dependence edge from
Ti to Tj. There cannot be a weak dependence edge from
Tj to Ti, since the transaction weak dependence graph in
a regular system is acyclic. There cannot be a
dependence edge from Tj to Ti by the definition of weak
dependence once more. 0

Thus, in a regular system, one can obtain one or more
regular serializations, which are total orderings of all
executable transactions such that if Ti depends or weakly
depends on Tj then Ti occurs later in the order than Tj-

3.4 An Efficient Method for Generating All Correct
Configurations

Lemma (Order Independence): The set of complete
correct configurations generated by the processing of a
serialization is not altered by switching the order in the

371 -

serialization of two transactions that have no dependence
and no weak dependence between them.

Proof: Consider two transactions, Ti and Tj, neither of
which depends on the other. Let r, = {d(x) I x E R,),

and wk = {oid(x) I x E Wk} be the sets of objects (not
object versions) read and written by transaction Tk.
Since Ti and T, are not dependent, we know that
Ri n Wj = Rj A Wi = o. (We use the absence of weak
dependence later).

Consider a complete configuration c known to be
correct before either transaction has been executed. We
have four cases to consider:
1. C qualifies for neither Ti nor Tj.

No new configurations are generated irrespective of
the order of executing the transactions. Therefore
the lemma holds for all such configurations,
trivially.

2. C qualifies for Ti but not for Tj.
Let Ci be generated by applying Ti to C. Ti does
not write anything that Tj reads (WinRj = $).
Therefore, Ci cannot qualify for Tj, since C did not.
Thus Ci is the only new complete configuration
generated, irrespective of the order of transactions.

3. C qualifies for Tj but not for Ti. ,
Using arguments similar to the previous case, we
show that C, is the only new composition generated
irrespective of the order of execution of the
transactions.

4. C qUalilieS for Ti and Tj, both.
Now we have to consider several subcases.

23. ri n wj = ri n wi = @

That is, neither transaction reads any objects
written by the other. (However, both transactions
may read some objects in common that they do
not update). It follows that wi n wj = $. Let Ci be
the configuration generated by applying Ti to C. Ci
differs from C only in the objects included in Wir
none of which are in rj. Therefore, since C
qualifies for Tj, SO does Ci. Let C, be generated
by applying Tj to Ci. Similarly, we can obtain Cj,
show that it qualifies for Ti, and obtain C’j<* Note,
however, that since wi n wj = e, the changes made
from C by the two transactions are in different
sets of objects. Therefore, C, = Cji. TINIS, either
order of application of the transactions to C and
its derivatives, yields the same new
configurations: Ci, Cj, and Cij*

b. ri n wj # o rr n wi f $.
In this case, clearly, Ci cannot qualify for Tj and
Cj cannot qualify for K. Therefore the only new
complete correct configurations produced are Ci
and Cj.

C. ri n Wj # (I rj n wi =$L
If ri n wj + o, then we must have ri n rj* $.
Consider an object p read by both transactions and
updated by Tj. Both transactions must read the
same version of p, otherwise we would not have

d.

found a C that qualifies for both transactions.
Furthermore, p is not updated by Ti; otherwise, we
would have found p to be a member of rj n wi.
Therefore, Tj weakly depends on Ti, a
contradiction given the premise of the lemma.
ri n w, = t$ rj n wi fi $.

As in the previous case, we can show that Ti
weakly depends on Tj, a contradiction. q

Lemma (Serialization Indifference): The processing of
every regular serialization results in the same set of
complete correct configurations.

Proof: Follows directly from the Order Independence
Lemma and the definition of a regular serialization.
(Recall that a regular serialization can be obtained only
in a regular system). 0

Lemma (Weak Dependence Ordering): In a regular
system, given Ti weakly depends on Tj, the processing
of a serialization with Ti occurring before Tj results in a
subset of the complete correct configurations generated
by a serialization that is identical except that Tj occurs
before Ti.

Proof: Following arguments similar to those used in the
proof of the Order Independence Lemma, we can
dismiss the cases in which a configuration qualifies for
no more than one of the two transactions. Since Ti
weakly depends on Tj, we know that there are
configurations that could qualify for both. Consider any
such configuration C. Let Cj be generated by applying
Tj to C. Cj differs from C in the objects that are updated
by Tj. But we know that wj includes no objects that are
in rj n ri. Since Wj E; rj, it follows that wj n ri = $.

Therefore, Cj qualifies for Ti as well. ‘On the other
hand, consider Ci generated by applying Ti to C. By
definition of weak dependence, w, n rj # $. But since Tj
does not depend on Ti, we must have Wi n Rj = @. In
other words, Ci contains a version of at least one object
that is different from the version(s) read by Tj.
Therefore, Ci cannot qualify for Tj. Thus, executing Ti
before Tj yields Ci and Cj from C, while executing Tj
before Ti yields Ci, Cj, and Cij. 0

Theorem (Exhaustion): The processing of any regular
serialization generates all possible complete correct
configurations from a given initial complete correct
configuration.

Proof: Follows from the Serialization Indifference
Lemma, the Complete Generation Lemma, and the
following facts:

i. If transaction Tj depends on Ti. then Tj must
execute after Ti. Therefore only serializations
need be considered. AND

ii. If transaction Tj weakly depends on Ti, then, from
the Weak Dependence Ordering Lemma, we need
only consider serializations in which Ti is
executed before Tj* Therefore, only regular

- 372 -

serializations need be considered. q

Theorem (Uniqueness): In the processing of any
serialization, each correct configuration is generated at
most once.

Proof: Consider the generators of the object versions in
the given configuration. There must be one that occurs
last in the serialization. Call it 7. The given
configuration, C, is generated by applying T to some
other configuration, D, which can be obtained by
reverse-applying T to the given configuration. C cannot
be generated by any previous transaction in the
serialization, since T is the latest of the generators of the
elements of C. For the same reason, C cannot be
generated by any later transaction. If D can be obtained
uniquely from C, then C is generated only once by
transaction T. But D is unique by definition of reverse-
application. 0

In view of the Exhaustion Theorem and the Uniqueness
Theorem, it follows that one can generate all complete
correct configurations in a regular system by processing
any one regular serialization starting from the given
initial complete correct configuration. Moreover, during
this procedure each complete correct configuration is
generated exactly once, and one complete correct
configuration is generated by every transaction
application to an existing qualifying complete correct
configuration. Therefore we have obtained a very
efficient method of generating all complete correct
configurations in a regular system.

4. GENERATION OF SELECTED CONFIGURATIONS

In the previous section, we discussed how to generate
all possible correct configurations of a system. While
the ability to do so is important, usually only a subset of
all possible configurations need be generated, or a
membership question answered. In this section, we look
at these two types of queries. We first consider the
problem of determining whether a user-specified
conliguration is correct. We then discuss how to satisfy
user requests for configurations containing (or not
containing) certain specified features.

4.1 Correctness Determination

Given a regular system, the following algorithm
determines whether the given complete configuration is
correct:
Choose any regular serialization of the transactions.
Repeatedly execute the following steps until the initial
complete correct configuration is obtained, establishing
the correctness of the complete configuration given, or
until a configuration is obtained that does not reverse
qualify for its last generator, establishing the
incorrectness of the proposed complete configuration:
i. Find the generator of every object version in the

configuration.

ii. Pick from this set of generators, the generator
(transaction) that occurs last in the serialization.

iii. Reverse apply the transaction to the configuration,
provided that the configuration reverse qualifies for
the transaction, to yield the new configuration for
the next iteration.

This algorithm is linear in the number of objects and in
the number of transactions in the system. Its correctness
follows directly from the exhaustion theorem, the fact
that exactly one transaction writes an object version, and
the uniqueness of the configuration generated by reverse
applying a transaction to a configuration that reverse
qualifies.

If the system is not regular, the above algorithm can be
used with the modification that Step 2 must now be
repeated for all possible serializations of the transaction
dependence graph before declaring a configuration
incorrect. The algorithm is terminated if the correctness
of the given configuration is demonstrated in any
serialization.

4.2 Configurations Containing Specified Features

Transactions encapsulate meaningful changes to the
systems, and each transaction identilier can be mapped
into a string that identifies corresponding changes.
Thus, there could be a transaction called <add-feature-
A> that possibly updates several objects. A system
configuration “has” <add-feature-A>, if for each object
updated by the transaction <add-feature-A>, the
configuration uses a version that is reachable in the
version-graph from the version generated by <add-
feature-A>. The user can then ask for configurations
that have <add-feature-A>, <add-bell-B>, cadd-whistle-
C>, etc. The following algorithm determines such
configurations in a regular system:
Start with the initial complete correct configuration.
Choose any regular serialization of the transactions.
Repeatedly execute the following steps until all the
transactions have been processed:
i. Take the next transaction in the serialization and

apply it to all the qualifying configurations for this
transaction to generate new complete correct
configurations.

ii. If the transaction just applied corresponds to one of
the features selected, delete all previously known
complete correct configurations, and retain only
those generated as a result of applying this
transaction.

The set (possibly empty) of complete configurations
finally left reflect the features added by all the specified
transactions.
The correctness of this algorithm also follows directly
from the exhaustion theorem and the fact that exactly
one transaction writes an object version.

- 373 -

4.3 Configurations Not Containing Specified
Features

If correct configurations are required that “do not
include” certain features, the removal of the
corresponding transactions from the serialization will
ensure that no configuration is generated that includes
these features. It may be more efficient not just to
remove the undesirable transactions, but also all
transactions that can be reached from them in the
transaction dependence graph. The desired
configurations can then be generated by starting with the
initial correct configuration and applying all transactions,
in order as per the truncated serialization, to the
qualifying configurations.

5. CONCLUSIONS

We considered the problem of configuring a system
comprising one version for each of its constituent
objects. We presented a transaction model and a
syntactic characterization of a correct configuration tied
to this model, which equates correct configurations with
consistent database states. We allowed version graphs
that are trees. We also presented algorithms for
generating all correct configurations and those
configurations that satisfy some selection criteria such as
absence and presence of specified features, and for
checking whether a user-specified complete
configuration is correct.

We feel that the theory and algorithms presented in this
paper can provide the basis for developing automated
system configuration tools, and help advance the current
state of art in which very little is available to users by

* way of support in deciding and verifying what
constitutes a correct configuration. Indeed, we plan to
incorporate these algorithms in Ode [l] - an object-
oriented database and environment being developed in
our laboratory.

We intend to address in the future two limitations of the
current work. One is the requirement that version
graphs be trees. In some cases, especially in software
engineering environments, DAGs are more appropriate.
The second limitation is that the algorithm presented in
Section 4.1 can be applied efficiently only to check
whether a complete configuration is correct. Extension
of the algorithm to incomplete configurations is non-
trivial.

REFERENCES

[l] R. Agrawal and N. H. Gehani, “ODE (Object
Database and Environment): The Language and the
Data Model”, Proc. ACM-SIGMOD 1989 Int’l
Conf. Management of Data, Portland, Oregon,
May-June 1989.

VI

[31

r41

PI

[61

[71

@I

[91

WI

1111

T. M. Atwood, “An Object-Oriented DBMS for
Design Support Applications”, Proc. IEEE 1st Int’l
Conf. Computer-Aided Technologies, Montreal,
Canada, Sept. 1985, 299-307.

D. Batory and W. Kim, “Supporting Version of
VLSI CAD Objects”, IEEE Trans. Software Eng.,
1986.

D. Beech and B. Mahbod, “Generalized Version
Control in an Object-Oriented Database”, Proc.
IEEE 4th Int’l Conf. Data Engineering, Los
Angeles, California, Feb. 1988, 14-22.

P. A. Bernstein, “Database Support for Software
Engineering”, Proc. 9th IEEE Int’l Conf. Software
Eng., March 1987, 166-178.

P. A. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

H. T. Chou and W. Kim, “A Unifying Framework
for Version Control in a CAD Environment”, Proc.
12th Int’l Conf. on Very Large Databases, Kyoto,
Japan, Aug. 1986.336-344.

K. Dittrich and R. Lorie, “Version Support for
Engineering Database Systems”, R&p. RJ4769,
IBM Research Lab., San Jose, California, July
1985.

R. Katz, E. Chang and E. Bhateja, “Version
Modeling Concepts for Computer-Aided Design
Databases”. Proc. ACM-SIGMOD 1986 Int’l Co&
on Management of Data, Washington D.C., May
1986.

R. Katz and E. Chang, “Managing Change in a
Computer-Aided Design Database”, Proc. of the
13th Int’l Conf. on Very Large Databases,
Brighton, England, Sep. 1987.455-462.

W. Kim, E. Bertino and J. Garza, “Composite
Objects Revisited”, Proc. ACM-SIGMOD 1989
Int’l Conf. Management of Data, Portland, Oregon,
May-June 1989.

[12] D. E. Perry, “Version Control in the INSCAPE
Environment”, Proc. 9th IEEE Int’l Co#. Software
Eng., March 1987, 142-149.

[I31 J. L. Steffin, “Interactive Examination of a C
Program with Cscope”, Proc. USENIX Winter
Conf., Dallas, TX, 1985, 170-175.

[14] W. Tichy, “Tools for Software Configuration
Management”, Int’l Workshop Software Version
and Configuration Control, Grassau, FRG, Jan.
1988.

[15] J. F. H. Winkler, “Version Control in Families of
Large Programs”, Proc. 9th IEEE Int’l Conf.
Software Eng., March 1987, 150-161.

- 374 -

