
The Case For Safe RAM 
George Copeland, Tom Keller, Ravi Krishnamurthy and Marc Smith 

MCC 
3500 West Balcones Center Drive 

Austin, Texas 78759 
(512) 338-3473 

Abstract 
Battery-backed-up DRAM memories can be 

configured today to be almost as reliable as disk. This 
paper argues that it is cost-effective to employ Safe 
RAM in computer systems which support reliable 
updates. 

Safe RAM allows systems that support reliable 
updates, such as database and transaction processing 
systems, to perform more efficiently. We show how a 
response time improvement can always be realized, and 
how a throughput improvement can be realized to the 
extent that a system has had to limit disk utilization to 
achieve adequate response time. We also show that 
Safe RAM is cost-effective today for most applications 
and will become increasingly cost-effective as more 
caching is used, and as DRAM standby power and disk 
active power decrease. 

1 Introduction 
This paper investigates whether it is cost-effective to 

employ in computer systems a memory that is made 
almost as reliable as disk, which we call Safe RAM. We 
define Safe RAM as a memory having enough backup 
power to keep both the memory and disk alive for long 
enough to copy the memory to disk, as well as adequate 
protection from runaway software. Some Safe RAM 
features are available in some systems t0day.t 
However, a convincing argument has not yet been 
made for the cost-effectiveness of Safe RAM. A major 
area of opportunity for Safe RAM is in support of 
reliable updates which must be made atomic and 
persistent. Although other benefits may exist for Safe 
RAM (e.g., improved availability), we base our 
cost-effectiveness arguments only on reliable updates. 

Many computer systems, such as database and 
transaction processing systems, must support reliable 
updates. Such systems typically employ several 
conventional techniques for amortizing disk I/O across 
multiple transactions. The most common, caching 
(i.e., memory buffering for disk reads), amortizes 

t Tandem, Stratus, HP, DEC’s Mira, *IBM disk caches and 
Amdahl RAM disks have the ca ablht of keeping memory 
alive during power failure. The?BM 1S400 has an option 
that allows both the memory and disk to continue operation 
for several minutes. 

Permission to copy without fee all OT part of this material is 
granted provided that the copies are not made OT distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying ia by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the Fifteenth International 
Conference on Very Large Data Bases 

reads. The addition of logging and checkpointing 
amortizes reliable data writes [Gra78, Hae83]. The 
further addition of group commit amortizes log writes 
[DeW84, Gaw85]. A common thread among these 
techniques is that disk is assumed to be a stable mass 
storage and RAM is not, so that a transaction must 
commit its reliable updates by forcing either the 
updated data pages or logs containing the updates out to 
disk. A performance limitation of this assumption is 
that a transaction must wait on at least one disk write 
for the log. 

We can overcome this limitation by the strategy of 
spooling into Safe RAM all data and/or log pages 
containing reliable updates. A transaction can then 
safely commit after having written its updates to the 
Safe RAM, thus avoiding the need for forcing logs or 
pages containing reliable updates to disk during the 
critical path of a transaction. Pages are written from the 
Safe RAM to disk by a background task whenever the 
disk has no other I/O to perform. This strategy allows 
all disk writes for reliable updates to be removed from 
the critical path of any transaction. This gives Safe 
RAM a performance advantage for disk bottlenecked 
systems, which can be applied at different points along 
the throughput and response time continuum. We 
show that a response time improvement can always be 
realized, and that a throughput improvement can be 
realized to the extent a system has had to limit disk 
utilization to achieve adequate response time. 

The performance advantages of Safe RAM increase 
in time as technology progresses. Safe RAM is of 
marginal advantage in processor-bottlenecked systems; 
however, processor MIPS are becoming cheaper at a 
much faster rate than disk arms. Also, DRAM standby 
power and disk active power, which contribute to the 
cost of Safe RAM, are decreasing at a rapid rate. Thus, 
the reasons why Safe RAM may not have been a good 
idea in the past are rapidly diminishing. 

We first discuss the feasibility and cost of Safe RAM 
using conventional technologies in Section 2. In 
Section 3, we review conventional techniques for 
reliable updates and show how they can be easily 
extended to use Safe RAM. Sections 4 and 5 quantify 
the performance impact of this Safe RAM extension to 
the best of the conventional techniques and show when 
it is cost-effective. Throughout this comparison, we 
make assumptions that are pessimistic for Safe RAM. 
Section 6 discusses some related issues. Section 7 
provides a summary. 

2 Feasibility And Cost Of Safe RAM 
In this section, we first describe how Safe RAM can 

be realized using conventional RAM, UPS 
(uninterruptible power supply) and memory-protection 
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technologies using either of two physical organizations. 
Then, we describe how the additional cost involves only 
a few per cent of the system cost. We use this cost later 
as a basis for determining cost-effectiveness. 
2.1 Realization With Conventional Technology 

We view the storage hierarchy of the system as shown 
in Figure 2.1. It consists of 1) a main conventional 
RAM, 2) a Safe RAM which we call the Safe, and 3) a 
conventional disk. The main RAM contains code, 
system files, temporary results, transaction workspaces 
and a cache for the most frequently used pages of the 
database. The Safe is used as a stable intermediate 
storage for reliable updates to disk, such that the pages 
in the Safe are almost as resilient to system and power 
failures as pages in disk.t We use a foreground (i.e., 
high priority) disk queue for database reads and I/O for 
temporary data, and a background (i.e., low priority) 
oueue to spool reliable data and loa writes. 

Figure 2.1: A Storage Hierarchy With Safe RAM 
Although the Safe is built using off-the-shelf RAM 

technology, it must be made almost as safe as disk. A 
disk is nonvolatile and is protected by requiring access 
through a controller. Making RAM almost as safe as 
disk requires roughly comparable nonvolatility and 
protection. 

Non-volatility is accomplished by using a UPS for the 
Safe, the disk and the disk controller. Upon UPS 
detection of power failure, these components are 
switched to UPS battery power and the Safe’s contents 
are written to disk. When normal power is reinstated, 
recovery requires no special procedure. The UPS 
power requirement is the total active power of these 
components plus the standby power of the Safe’s 
DRAM. The UPS energy (energy=power*time) 
requirement is dependent upon the time to write the 
Safe to disk. 

Safe RAM is a storage medium. The physical failure 
rate of equally-priced disk and parity-based RAM 
subsystems are roughly equivalent [Bel88]. Any of the 
conventional recovery techniques used for disk media 
failure in conventional systems can be used to protect 
against Safe RAM media failure as well. Most database 
systems use a checkpoint and log technique for 
recovery from disk media failure, which writes a log of 
updates for each transaction before the transaction is 
allowed to commit and periodically writes a checkpoint 
of the database, both to a separate media than those 
containing the database [Gra78]. Some database 
svstems offer an ootional mirrored-disk techniaue for 
t[Gra78] (in Section 5.8.3.2) makes the historical note that 

database systems using core memories, which were non- 
volatile, assumed that the contents of m-core logs survived 
system crashes. 

recovery from disk media failure, which maintains two 
copies of the database on separate disks by applying 
writes to both disk copies [Kat78]. The mirrored-disk 
technique improves availability because recovery is 
much faster than the checkpoint and log technique, but 
increases cost. The choice of whether to use this 
technique is based on the application’s availability and 
cost requirements and the expected frequency of disk 
media failure. In systems that use the mirrored-disk 
technique, the checkpoint and log technique is usually 
also used as a backup for media recovery and for 
recovery from user and system errors which commit 
incorrect updates to the database. A similar choice of 
whether to use a mirrored Safe for recovery from Safe 
media failure is possible. 
2.2 Physical Realizations 

Figure 2.2 illustrates two physical realizations of the 
Safe. The Separate Safe realization employs a Safe 
which is separate from the main RAM and requires a 
separate mode of access (e.g., through a controller in a 
“silicon disk” implementation). The Integrated Safe 
realization makes the entire main RAM safe, so that the 
Safe pages can be distributed throughout the main 
RAM, intermixed with other pages (e.g., workspace 
and cache pages). 

~1~~ 

Figure 2.2: Physical Realizations 
The advantages of the Separate Safe are: 

l No additional protection requirements are needed, 
because the separate mode of access to the Separate 
Safe by the main processor protects the Safe from 
“runaway” system errors which result in undesired 
writes to memory. For the Integrated Safe, 
additional memory protection may be required to 
reduce the frequency of recovery. Conventional 
memory protection techniques (e.g., generous use of 
process virtual address spaces, write-protection 
mechanisms available in conventional MMUs, 
shadow memory pages or mirrored processor and 
memory pairs) can be used to ensure that only very 
limited types of system or user-program errors can 
damage Safe contents. 

l Only the disk controller, the Safe and the disk 
require battery power and energy during the time 
required to write the Safe to disk. The Integrated 
Safe requires all of memory to be refreshed during 
this time. 

The advantages of the Integrated Safe are: 
l The size of the Safe in Integrated Safe can be 

dynamically varied up to the size of main memory. 
The size of the Separate Safe is fixed at a smaller 
moderate size and therefore requires the additional 
complexity of handling the case where the size of the 
Safe is exceeded (e.g., by forcing writes to the disk 
instead of the Safe until room becomes available in 
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the Safe). Also, the cost of additional memory for 
the Integrated Safe to accommodate the Safe 
contents is limited to the average Safe size instead of 
a maximum Safe size as in the case of the Separate 
Safe. 

l Copying pages between workspaces, the cache and 
the Safe is not necessary. Instead, pointers and 
protection status can be updated to reflect the move 
without physically copying the pages. The Separate 
Safe requires transfers between the main RAM and 
the Safe using a different, and probably slower, 
mode of access. This advantage is important for 
throughput if the processor is the bottleneck (since 
less work is required) and for response time (because 
this copyin 

7 
takes place during the critical path of a 

transaction . On the other hand, the copying 
required by the Separate Safe can reduce data 
contention because copying is considerably shorter 
than disk I/O and the page must be read locked 
during this time to ensure that a consistent copy of 
the page is written to disk. 
For brevity, we will assume a Separate Safe for this 

paper. An analysis which includes the Integrated Safe 
may be found in [Cop88]. 

2.3 Assumptions About Technology 
The technology estimates relevant to this report 

concern DRAM (dynamic RAM) cost, standby power 
and active power, processor active power, disk cost, 
speed and active power, and UPS cost, power and 
energy. In Figure 2.3, we provide estimates for both 
1987 and 1993 for the sake of comparison. In 
particular, notice the rapid rate of decline of DRAM 
standby power IFuj86, Ohs87, Saw88], a trend which 
favors a Safe RAM approach. We arrived at these 
estimates by simple extrapolation from historical trends 
and from various popular periodicals. We have 
pessimistically assumed that UPS costs will remain 
constant. The purpose of these numbers is not to make 
accurate predictions about technology. Instead, we use 
them to roughly calibrate various curves and provide 
ballpark estimates for several parameters. The 
conclusions that we draw in this paper are not highly 
sensitive to the accuracy of these estimates and our 
calculations can easily be redone by the reader with 
different technology characterizations and cost 
estimates as they become available. 

2.4 Cost Of Safe RAM 
In this section, we estimate the cost of the Separate 

Safe physical realization in both 1987 and 1993. We 
define the Safe as cost-effective if it can improve 
throughput by at least some CostRatio (ratio of system 
cost with Safe to without Safe) without increasing 
response time. For example, we determine later that 
the CostRatio is 1.043 for the Separate Safe realization 
using 1987 technology. This means that to be 
cost-effective, a Safe would have to increase 
throughput by more than 4.3%, without sacrificing 
response time. 

The CostRatios that we calculate in this section are 
pessimistically high because of the following 
assumptions: 

cost/Mbyte 
DRAM standby power 

active power 
micro 

IXOCBSSOT 
active power 

$SOO/Mbyte $25lMbyte 
2wattlMbyte lOwatt/Gbyte 

lOwatts lOwatts 

Swath Swatts 

UPS time of power 20min (1200sec) 20min (1200sec) 

extra batteries 1 $0. S/Kwatt-set 1 $0. S/Kwatt-set 

Figure 2.3: Technology Assumptions 
l We assume a single disk system. The required Safe 

size for n disks is significantly smaller than n times 
the size required for one disk. 

l We only include disk in the base cost. Including 
processor and memory in the base cost would reduce 
the CostRatio required to make Safe RAM 
cost-effective. 

9 We include a large memory size in the standby power 
requirements of the Integrated Safe. The UPS power 
requirements for RAM standby power is proportional 
to the RAM size. 

l Only a very small percentage of the UPS energy is 
actually required to support Safe RAM, but we 
include the full cost of this unused energy in the 
CostRatio. 
For the Separate Safe in 1987, the power required is 

about 116 watts, including a 100 watt disk, a 5 watt 
microprocessor, a DRAM with active power of 10 watts, 
and 100 2-Kbyte pages of Safe DRAM at 2 watt/Mbyte 
for standby power (0.4 watts). The time to write 100 
sector-sized pages of Safe at 0.026 set/access is 2.6 set 
(assuming random writes to sectors). This is only about 
0.2% of the energy capacity of the UPS, so that no 
additional battery energy is needed. This results in 
$116 worth of UPS. The additional RAM cost for the 
Safe would be $100. Thus, the total additional cost for 
the Safe is about $216. Because disk cost is $5,000, the 
CostRatio is 1.043. 

For the Separate Safe in 1993, the power required is 
about 65 watts, including a 50 watt disk, a 5 watt 
microprocessor, a DRAM with active power of 10 watts, 
and 100 2-Kbyte pages of Safe DRAM at 10 watt/Gbyte 
for standby power (0.002 watts). The time to write 100 
sector-sized pages of Safe at 0.0 16 set/access is 1.6 set 
(assuming random writes to sectors). This is only about 
0.1% of the energy capacity of the UPS, so that no 
additional battery energy is needed. This results in $65 
worth of UPS. The additional RAM cost for the Safe 
would be $5. Thus, the total additional cost for the 
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Safe is about $70. Because disk cost is $2,000, the 
CostRatio is 1.035. 

Obviously, even for today’s technology, only a 
negligible improvement in throughput is required to 
recover the dollar cost of Safe RAM because the dollar 
cost is so small. 

3 History Of Reliable Updates Techniques 
In this section, we summarize the historical evolution 

of conventional techniques for reliable updates and 
show how they can be easily extended to use Safe 
RAM. 

In the simplest technique for reliable updates, a 
transaction reads pages from the public database and 
updates copies of the pages in the cache or a local 
workspace. When the transaction is ready to commit, a 
log of the updates is forced to disk, denoting the 
commit point. Then, the updated database pages are 
forced to disk to reflect the transaction-consistent 
state. The disk I/OS in the critical path of each 
transaction in this simple technique can be 
characterized by three variables: 
9 Dr: the number of read I/OS for pages that were not 

in the cache (and I/O for temporary data) ; 
9 Dw: the number of write I/OS for pages containing 

reliable updates; 
l Dl: the number of log I/OS of reliable updates at 

commit time. 
Some pages are read only once and discovered in 

cache by subsequent transactions, which amortizes 
reads. In the simple technique, a page may be 
overwritten on disk many times if that page is updated 
by many transactions. Many techniques have been 
proposed to amortize the writes over many transactions. 
Two such techniques are checkpointing (CP) which 
amortizes data writes, and group commit (GC) which 
amortizes log writes. 

In CP techniques [Gra78, Hae83, Moh89], only the 
log is forced to disk at commit time of the transaction. 
A database page is written to disk only when that page is 
swapped out by the cache-replacement algorithm. As a 
result, a database page may be written to disk only once 
after many updates. To recover from failure, the 
system must reconstruct a consistent state of the 
database using the log. To avoid a recovery having to 
go arbitrarily far back in the log, checkpointing is 
periodically done, wherein all the updated pages still in 
the cache are forced to disk at the end of a 
checkpointing interval. This strategy incurs the 
following I/OS in the critical path of each transaction: 
1) Dr, 2) Dw’ (I/O for swapping out dirty pages for 
allocating memory for later transactions), 3) Dl, and 4) 
checkpointing overhead. Due to cache locality, Dw’ is 
usually smaller than Dw (for the simple technique) and 
checkpointing overhead is amortized over many 
transactions. While checkpointing reduces the I/O for 
reliable updates, the data writes still lie in the critical 
path of some later transaction, because the 
cache-replacement algorithm will write pages out to 
allocate memory for later transactions. Thus, every 

write of an updated page is done in the critical path of 
some transaction. 

After reducing the number of read and write I/OS per 
transaction via caching and checkpointing (perhaps 
close to zero for systems supporting memory-resident 
data), the log I/O cost becomes significant. In GC 
techniques [DeW84, Gaw85, Moh89], transactions are 
held up until a full log page can be written or a timeout 
occurs. Thus, the log write is amortized over a group of 
transactions. This strategy incurs the following I/OS in 
the critical path of each transaction: 1) Dr, 2) Dw’, 3) 
Dl’, and 4) checkpointing overhead. Dl’ is usually less 
than Dl (in the simple and CP techniques), because the 
logs are amortized over several transactions. Further, a 
log I/O still lies in the critical path of each transaction, 
data I/OS still lie in the critical path of some later 
transaction, and each transaction is also held up for a 
period of time (waiting to commit) in its critical path. 
Consequently, the response time of each transaction 
reflects these I/O and waiting overheads. 

Recall that in both the CP and GC techniques, dirty 
data pages are written out to disk by the 
cache-replacement algorithm to reallocate memory 
during the critical path of some later transaction. 
Alternatively, spooling can be used to migrate these 
dirty pages to disk. The advantage of spooling is that 
the dirty pages are written to disk as a background 
operation when no read I/O request is pending, instead 
of during the critical path of some transaction. The GC 
technique can be extended to use such a spooling 
mechanism to further improve performance. When 
this extension is made, checkpointing is usually also 
further optimized by making a log entry containing 
system status information (e.g., which pages are “dirty” 
and the status of transactions) instead of actually 
flushing the updated (dirty) pages, because spooling will 
keep the updated pages young enough so that a 
recovery does not have to go very far back in the log. 

We consider Safe RAM a natural next step in this 
migration toward improved performance. Although 
Safe RAM may eventually influence the design of 
recovery algorithms, the use of Safe RAM does not 
necessarily require changing existing recovery 
algorithms provided that the Safe is treated the same as 
disk. Safe RAM can productively be used in 
conjunction with the most efficient conventional 
reliable update techniques (e.g., GC with spooling). In 
Sections 4 and 5, we compare the performance impact 
of Safe RAM on GC with spooling. In this context, the 
advantage of Safe RAM is that amortizing log writes via 
grouping does not cause a delay in commit times. This 
removes the log writes from the critical path of 
transactions. We quantify when this justifies the cost of 
Safe RAM. 

4 Modeling 
This section provides guidelines for the size of the 

Safe and provides equations for throughput and 
response time, which we use in Section 5 to show 
cost-effectiveness. We compare the best of the 
conventional reliable update techniques (e.g., GC with 
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spooling) with and without the Safe. Throughout this 
section, we assume that the disk is the system 
bottleneck. We also make a number of assumptions, 
which we refer to as “pessimistic assumptions”, that 
have a negative effect on the performance model for 
Safe RAM (e.g., overestimating the required size of the 
Safe and underestimating its improvements in response 
time and throughput). As a result, we get a lower 
bound for the improvement using Safe RAM, so that 
our cost-effectiveness argument is conservative. 

4.1 Size of Safe 
We are interested in determining the required size of 

the Safe given disk loading and how the load is made up 
of reads and writes. We will do this by defining two 
metrics, the mean time to overflow the Safe (MTTO) 
and the mean time to recover from the overflow 
(MTTR), and then, for given loads and Safe sizes, 
determining these means and seeing if they are 
acceptable. We show that even under extremely 
pessimistic assumptions, a moderate-sized Safe results 
in acceptable MTTO and M’ITR. 

We model the system by a single M/M/l queue, 
making the following pessimistic assumptions in order 
to guarantee that the calculated MTTO will be far 
smaller than would be observed in an actual 
implementation: 

l All disk I/OS are writes. The higher the proportion of 
reads to writes, the smaller the Safe needs to be. (If 
all disk I/OS were reads, then no Safe would be 
required.) 

l Disk service times are exponentially distributed. 
This distribution has a variance higher than usually 
encountered in disk systems, resulting in longer 
queue length distributions (and thus a shorter 
M-I-TO). 
For simplicity, we assume Poisson arrival rates. We 

assume a Safe of k pages (capable of holding k writes) 
and arrival and service rates characterized by means X 
and 1. The probability of having exactly k writes in the 
queue is (1-p)pk where p=X/c~, the average utilization 
[Kle76]. The steady-state probability of having more 
than k writes in the queue (an overflowed Safe) is 
simply pk+l . The probability of having k or fewer writes 
in the queue is l-pk+l . The average rate at which the 
Safe overflows is 

[ 
a full Safe given that we 

x Prob started with a non-full Safe 3 

= X Prob k writes in the queue given that we 
started with< k writes in the queue I 

The mean time between overflows is the inverse, or 

MTTO = l/p lmpk+l 

(l-p)pk+l * 

Similarly, the mean rate at which the system exits the 
overflow state is 

l.t Prob having k+l writes in the queue given that 
we started with k writes in the aueue I 

= (bpjF . 
The inverse yields MTTR, or 

MTTR=$& 
Notice that MTTR is independent of k. 

Figure 4.1 illustrates how MTTO (plotted on a log 
scale) depends exponentially on p for a given Safe size 
of k. We use a mean disk service time of 1/1.t = 26 msec 
for the plot. Note that for even (unrealistically) high 
disk utilizations (e.g., 0.90), the pessimistic bound of 
MTTO yields 10,800 set = 3.0 hours for k=lOO. The 
bound of MTTR for this case is 0.26 sec. To 
summarize this extreme example, if one implemented 
this system and ran an exclusively write workload on an 
overutilized disk with mean utilization of 90%, then one 
could expect a 100 page Safe to require writes to be 
forced to disk instead of the Safe for 0.26 see once 
every 3 hours. 

elC& 
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Fig 4.1: P M an Time to 
Overflow the Safe 

4.2 Performance Model 
This section develops the throughput and response 

time equations with and without Safe RAM. We 
assume the following: 

l Only disk I/O is included in our throughput and 
response time equations. Processor delays are 
assumed to be negligible. 

. The logs of G (G>l) transactions are grouped into 
one page. 

l Reliable writes are spooled for both the Safe and 
non-Safe case. We assume these spooled writes are 
removed from the critical path of any transaction. 
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This assumption is justified by the short length of the 
spooling queue described in Section 4.1 and by the 
fact that these pages will have recently-used cache 
status at the time they are put into the queue. These 
writes are nonpreemptive, so that the foreground 
queue must wait on any spooling I/OS which have 
already begun. 

l There is a single database disk characterized by 
service rate l.~ and utilization p. 

l There is a single log disk characterized only by 
service rate l.t. Safe RAM never requires waiting for 
the log write, so that this response time delay is 
eliminated and a high log-disk utilization can be 
tolerated. Without Safe RAM, we optimistically 
assume that the log disk is never the system 
bottleneck and has low enough utilization so that its 
response time equals its service time of 11l.t. We also 
optimistically assume that a log write can be 
accomplished in a single I/O, regardless of how large 
Dw and G are. These optimistic assumptions are 
correspondingly pessimistic for Safe RAM. 

9 For simplicity, we ignore any checkpointing 
overhead, which is typically quite small. 
When Safe RAM is not used for either disk, the 

commit time of multiple (G) transactions are delayed 
for a group commit, so that their logs can be written to 
the log disk with a single log write. We assume each 
transaction causes a total of D disk I/OS to the database 
disk, so that the maximum number of transactions per 
second without Safe RAM is 

TpSo = h - h.k n- l-l’ 
where po is the database-disk utilization without the 
Safe. The Dr reads are placed in the database disk’s 
foreground queue, the Dw writes are placed in the 
database disk’s spooling queue, and the log writes are 
placed in the log disk’s foreground queue. Thus, the 
transaction response time has three terms. 

First, each transaction must wait on Dr I/OS in the 
database disk’s foreground queue. The average 
response time (queue wait plus service) for each of 
these I/OS is given in [Kle76] (Vol. 2, p. 121) as 

+$ft l/CL' 

where pr=EQ-, is the disk utilization due to the 
foreground queue. 

Secondly, each transaction must wait on the other 
transactions in its group. This average group delay lies 
within the range: 

+&oW) = -$ (G-1) > -$ (G-1). 
The first expression assumes that each transaction is 
delayed for an average of half of the average 
inter-arrival time of G-l transactions (we assume the 
last transaction does not have to wait). The second 
expression assumes that each transaction is delayed for 
an average of half of the burst-service time of G-l 
transactions. We use the second expression for group 
delay because it is lower and thus is pessimistic for Safe 
RAM (i.e., it underestimates the savings due to Safe 
RAM). 

Thirdly, each transaction must then wait on the hlp, 

write in the log disk’s foreground queue, whicli WC: 
assume is l/k.. As a result, the average ~ranSlc~ifJrl 

response time yithout Safe RAM is 

When Safe RAM is used for both data and log disks, 
the logs of multiple (G) transactions are grouped within 
the Safe containing the log disk’s spooling queue, so 
that they can later be written to the log disk with a single 
log write, but without requiring the commit time of any 
transaction to be delayed. Each transaction causes a 
total of D I/OS to the database disk, so that maximum 
TPS with Safe RAM is 

-I-PC& = .+L - iti!i 
- D ’ 

where ps is the database disk utilization with the Safe. 
The Dr reads are placed in the database disk’s 
foreground queue, the Dw writes are placed in the 
database disk’s spooling queue, and the log writes are 
placed in the log disk’s spooling queue. Thus, each 
transaction must wait on Dr I/OS in the database disk’s 
foreground queue. This is described by the first term in 
RTo, except that ps is used instead of po. Safe RAIM 
avoids the delays for group commit and log writes 
(second and third terms in RTo). As a result, RT with 
Safe RAM is . . 

RTs = Dr . 

5 When Is Safe RAM Cost-Effective? 
In this section, we quantify the performance 

improvements of Safe RAM and show when it is 
cost-effective. 
5.1 Comparison Methodology 

The performance improvement due to Safe RAM 
can be applied at different points along the throughput 
and response-time continuum. We examine 
throughput ratios (with Safe RAM over without Safe 
RAM) while constraining the response time with Safe 
RAM to be at least as good as without it. We also 
examine response time ratios (without Safe RAM over 
with Safe RAM) while constraining throughput to be 
equal. The numerators and denominators of these 
throughput and response time ratios are chosen to 
conveniently indicate that Safe RAM is better when 
either of the ratios is greater than 1. We define 

TPSs’o = TPSo RTsSRTo -I 
and RTo/s sBTp 

I RTs TPSo=TPSs. 

We define cost-effective to mean that TPSs/o is greater 
than the CostRatio described in Section 2.4. 

It is easy to prove that RTo/s>l and TPSs/ozl for all 
values of Dr, Dw, G and po, and that TPSs/o>l when 
po<pm, where pm is the maximum allowable disk 
utilization even when the Safe is employed. The 
remaining questions are by how much these ratios 
exceed 1 and when Safe RAM is cost-effective (i.e., 
when TPSs/o > CostRatio). We derived TPSs/o and 
RTo/s analytically and plotted them using the following 
values: 
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The first case is the DebitCredit benchmark without 
caching [Ano85]. The second case constrains Dr/D to 
be the same as the first case while decreasing D via 
caching. The third case constrains D to be the same as 
the first case while increasing Dr/D. The fourth case 
constrains Dr/D to be the same as the third case while 
decreasing D via caching. We use G values of 1 (no 
grouping) and 4. We varied p. from 0.2 to 0.9 and 
allowed ps to go as high as 0.9 and 0.7. We included 
pmz0.9 to represent the upper bound on disk 
utilization for any system. We also included pmz0.7 to 
represent systems that require spare disk utilization for 
other purposes (e.g., disk mirroringt) . 
5.2 The Comparison 

For the case when grouping is not used (G=l) , Figure 
5.1 illustrates the effect of Safe RAM on throughput 
when response time with Safe RAM is constrained to be 
at least as good as without it. The TPSs/o curves are 
shown in solid lines for pmz0.9. TPSSIO = pmlpo 
except when ps is forced to be below pm by the 
response time constraint. The dashed line shows the 
0.7/pocurve. For pmz0.7, the curves are the minimum 
of the 0.7/p. curve and the solid curves. The higher of 
the two CostRatios (1.043) is also shown by the dotted 
line. Figure 5.3 illustrates TPSs/o when grouping is 
used (G=4). Figures 5.1 and 5.3 illustrate the 
following: 

l As Dr is reduced (either by reducing Dr directly or by 
reducing D with Dr/D held constant), the curves 
come closer to the pmlpo curve, because the 
response time constraint becomes easier to meet. 
For G=l and pmz0.9, the (0.3, 0.4) curve is the 
same as the 0.9/po curve. For G=l and pmzO.7, the 
(0.3, 0.4) and (0.6, 0.1) curves are the same as the 
0.7/po curve. For G=4 and pmzO.9, all but the (6, 
1) curve are the same as the 0.9/p. curve. For G=4 
and pmz0.7, all of the curves are the same as the 
0.71~~ curve. 

l As G is increased, the throughput improvement due 
to Safe RAM becomes much larger. This is due to 
the fact that Safe RAM eliminates the delay involved 
in group commit. 

. As p. approaches pm, there is less room left for TPS 
improvement but the RT improvement increases. 
For the case when grouping is not used (G=l) , Figure 

5.2 illustrates the effect of Safe RAM on response time 

tFor example if disk mirrorin were used with DebitCredit 
without caching (first case), &en Dr, Dw and D become: 

I mode of operation Dr Dw D 
during normal operation 3 8 11 

while one of the disks is out 6 8 14 
To support the same arrival rate while one of the disks is 
out, maximum utilization during normal operation must be 
reduced lo below 11/14=0.79 in order IO keep utilization 
while one of the disks is out below 1.0. 

with throughput held constant. The RTo/s curves are 
shown in solid lines for pmz0.9. For pmz0.7, the 
portion of the curves to the right of the dashed line do 
not apply. Figure 5.4 illustrates RTo/s when grouping is 
used (G=4). 

The advantage of Safe RAM comes from the 
following: 
9 Log writes can be put in a spooling queue in addition 

to the data writes, so that the single log write is taken 
out of the response time’s critical path. This 
advantage diminishes when Dr and p. increase (the 
foreground queue wait time dominates) or when D 
and G increase (the group delay dominates). 

. Response time is not delayed in order to exploit the 
grouped log writes. This advantage improves as G 
and D increase (the group delay dominates), and 
diminishes as Dr and p. increase (the foreground 
queue wait time dominates). It has been argued that 
a group commit timeout value is typically much 
shorter (e.g., 50 to 100 msec) than the required 
response time (e.g., 1 set), so that Safe RAM 
provides little advantage. However, in such systems, 
Safe RAM would allow a much larger G without 
impacting response time, so that more of the 
advantages of grouped log writes would be possible. 
Also, parallel systems often tend to centralize logging 
to exploit the maximum throughput advantage from 
group commit without increasing its response time 
penalty. Safe RAM allows more parallelism for logs, 
so that the maximum throughput advantage from 
group commit can be obtained without adding to 
transaction response time. 
Our most significant point is: Even with pessimistic 

assumptions, Safe RAM is cost-effective for systems 
that support reliable updates and have had to limit disk 
utilization to achieve adequate response times, 
provided that Dr is reasonably small. 

Safe RAM is expected to become increasingly 
cost-effective in the future because of the following: 

l The CostRatio is expected to decrease in the future 
because of reduced DRAM standby power and cost 
per bit and reduced active disk power, even though 
we assumed that disk unit cost will decrease and UPS 
cost will be unchanged. 

. The continuous improvements in DRAM cost per bit 
will cause caching to substantially increase in the 
future, so that Dr will decrease. 
When viewing Figures 5.1 through 5.4, it is useful to 

recall the assumptions which we have made that are 
pessimistic for Safe RAM: 
. The CostRatios were inflated because 

l we included the higher of the two CostRatios in the 
TPSs/o figures, 

9 we assumed a single disk system, 
l we only included disk in the base cost, 
l we include a large memory size in the standby 

power requirements of the Integrated Safe, 
9 we included the full UPS energy cost even though 

only a tiny percentage of the UPS energy is 
required to support Safe RAM, and 
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9 we overestimated the size of the Safe. 
l We assumed that the log disk’s delay without the Safe 

was a minimal ~/J.L due to low utilization (even though 
a log disk employing Safe RAM could tolerate a very 
high utilization) and regardless of how large G and D 
were (even though large G and/or D would cause 
multiple log writes). 

l The group commit delay was based on burst service 
time instead of average inter-arrival time. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

P 0 
Fig 5.3: Throughput Improvement (G=4) 

(Dr,Dw) 

The accumulative effect of these assumptions can be 
quite significant. 

6 Some Related Issues 
This section describes several open issues concerning 

Safe RAM. 
We showed that a typical existing UPS has 

considerably more energy capacity than is required to 
realize Safe RAM. (The energy requirements of Safe 
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RAM could be even further reduced by writing the 
pages in the Safe to contiguous disk locations during 
power failure and making the appropriate updates to 
disk page-mapping tables.) This suggests that a UPS 
with less energy and lower cost would suffice to realize 
Safe RAM. In fact, a large-capacitance power supply 
might suffice. Otherwise, the excess energy could be 
used to keep memory alive during power outage, so that 
subsequent disk reads of the data that was in memory at 
the time of power failure are unnecessary. The most 
cost-effective amount of energy for such higher 
availability could be calculated using an analysis similar 
to the S-minute rule [Gra87] to trade off UPS energy 
cost for disk arm cost. Further, the excess energy could 
be used to keep the entire system alive during power 
outage to increase availability. 

An interesting variation of the Separate Safe physical 
realization is the Controller Safe, which includes the 
Safe within the disk controller. This realization would 
allow today’s systems which do not use group commit 
and which support reliable updates to plug in such a 
disk controller transparently to the rest of the system to 
achieve performance improvements. 

For the Integrated Safe realization with a large 
cache, a separate spooling queue for cache-resident 
data (i.e., fixed in memory) with lower priority than the 
disk-resident data (i.e., subject to LRU swapping) has 
two advantages. One advantage is a significant 
reduction in the size of the spooling queue, because the 
separate spooling queue for cache-resident data can 
consist of pointers to cache-resident pages instead of 
the pages themselves. A second advantage is more 
efficient buffer management. Cache-resident data 
requires cache space anyway, whereas disk-resident 
data needs to be written out as early as possible to avoid 
being allocated by the LRU mechanism, which would 
cause a disk I/O during the critical path of some later 
transaction. 

7 Summary 
We argued the feasibility of Safe RAM using 

conventional technologies and estimated the additional 
cost required in both 1987 and 1993 using a physical 
realization called Separate Safe. We then described 
how Safe RAM can be used in conjunction with the 
most efficient conventional recovery techniques for 
improved performance. Finally, we quantified the 
performance effect of Safe RAM and described how, 
even with very pessimistic assumptions, Safe RAM is 
cost-effective today for systems that support reliable 
updates and have had to limit disk utilization to achieve 
adequate response times, provided that there are a 
reasonably small number of disk reads per transaction. 
Even though we assumed that disk unit cost will 
decrease and UPS cost will be unchanged, we showed 
how Safe RAM will be increasingly cost-effective in the 
future because caching will increase (due to DRAM 
cost per bit improvements) and because DRAM 
standby power and disk active power will decrease. 
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