
Sorting, Grouping and Duplicate Elimination in the
Advanced Information Management Prototype

G. Saake
Technische Universititt Braunschweig, Abteiiung Datenbanken, D-3300 Braunschweig, West Germany

V. Linnemann, P. Pistor
IBM Scientific Center Heidelberg, Tiergartenstrasse 15, D-6900 Heidelberg, West Germany

L. Wegner
Universitlt Kassel, D-3500 Kassei, West Germany

Abstract

Sorting, duplicate suppression and grouping are
important operations in relational database man-
agement systems. This paper is devoted to the re-
lated language features and their implementation in
the Advanced Information Management Prototype
AIM-P. The query language HDBL is an SQL-like
database language supporting the extended NF*
data model. The proposed language extensions
follow the classical SQL approach for sorting and
duplicate elimination by extending the SFW con-
struct with appropriate clauses. For the grouping
operation we chose a new syntactical construct be-
cause the implicit structure transformation of
grouping differs from the sorting and duplicate
suppression operations. Finally, the integration into
the query evaluation of the AIM prototype is de-
scribed.

1. Introduction

Traditionally, sorting subsystems have played an
important role in data base management systems.
in relational systems like DB2, for example, they are
the basis for producing sorted output, for eliminat-
ing duplicates, and for operations requiring an in-
termediate partitioning of input tables. They provide
additional facilities for optimizing join operations
and can be extremely advantageous for the creation
of indexes.

This paper is devoted to the definition and impie-
mentation of sorting, grouping, and duplicate sup-
pression in AIM-P /DaK86,ALPS86,LKD88/, a data-
base system supporting an extended NF* data mo-
del. Some introductory information about the un-
derlying data model is given in section 2. it
illustrates how basic operations of the NF* algebra

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication ad its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

can be packaged in an SQL-like fashion, how their
semantics are to be generalized to cope with the
structures supported in AIM-P, and how they are
related to sorting, grouping, and duplicate elimi-
nation.

With sorting (sect. 3) and duplicate elimination
(sect. 4) we have chosen the classical SQL ap-
proach of providing these facilities via clauses ad-
ded to the SFW construct. in comparison to initial
austere proposals /PA86,PT86/, this approach ai-
lows for an intuitive and compact notation; in addi-
tion, this syntactical format seems to be better
suited for translation into optimized sequences of
lower level operations. These goals have also
guided the design of the grouping operation (sect.
5). in this case however we had good reasons for
developing syntactical solutions which deviate from
classical SQL. Section 6 describes an evaluation
machine which is able to exploit the facilities of an
appropriately designed sorting subsystem in realiz-
ing these functions.

2. Extended NF2 Data Model

2.1 Supported Structures

The eNF* data model of AIM-P /PT86,PA86,Pi87/ is
based on the idea of non first normal form relations
/AB84,SS84/. In terms of the extensions, the two
models can be contrasted as follows:

0 Top level objects are not necessarily relations.
Scalars or tupies are admissible as well.

0 The notion of relations is generalized to the
notion of tables, i.e. collections of tuples.

l Collections may be ordered (lists) or unordered
(sets or multisets). Collections may be free of
duplicates (“unique”) or not.

The work was done while the first author was at
the lEM Scientific Center in Heidelberg on leave
from Technische UniversitBf Braunschweig

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

- 307 -

Amsterdam, 1989

l Collections need not necessarily be composed
of tuples. Sets of integers or lists of tables are
conceivable as well.

l Like the strict NF* model, tuples need not be
composed of “atomic” items. Besides tables,
however, fields may also contain tuples, or
collections other than tables.

The following figure shows an eNF* structure which
will also be used in the following chapters as an
accompanying basic structure for language exam-
ples.

The eNF* relation Literature is a multiset of tuples
having two non-atomic attributes, namely an or-
dered list Authors and a TTWItiSG!t Keywords. III COITtFaSt

to ‘puritanical’ relational and NF* database theory,
the notions of sorting and duplicate elimination op-
erators are well defined in the extended NF’ data
model because of the explicit handling of lists and
multisets.

l

l

l

The property ‘is sorted’ can only be stated for
collections of type list, because for sets and
multisets the ordering is irrelevant per defi-
nition.
For collections other than lists, the property
‘free of duplicates’ makes only sense in data
models which distinguish semantically between
sets and multisets.
The grouping operator involves nested struc-
tures, and therefore leaves the scope of ‘flat’
relational theory.

In contrast to the pure NF* data model, collections
with duplicates are correct eNF” data structures. For
this reason, duplicate suppression in AIM-P is ex-
clusively done on demand in contrast to /KF68/
where the demand for duplicate suppression results
implicitly from the semantics of the underlying pure
NF* data model.

2.2 HDBl. Language

For the eNF* setting, the AIM prototype provides an
SQL-like language interface (Heidelberg Data Base
Language HDBL). The concepts of this language
/PHH83,PA86,PT86/ need not be outlined here in

detail. Instead, a few comments and illustrative ex-
amples are sufficient to provide the background for
the subsequent discussions.

As in other languages of the SQL family, the SE-
LECT . . . FROM . . . WHERE construct (SFW construct)
plays a central role in HDBL. It is an expression
which maps collections into collections. Its general
format is

1.1 SELECT f(xl,..., xn)

I I
1.2 FROM XI IN Input1 xn IN Input"
1.3 WHERE ~(xI,..., xnj

The semantics of (1) can be understood quite na-
turally by analogous expressions of constructive set
theory, viz.

(1') (f(xl,..., xn) I XL E Input1 and . . . and
xn E Inputn and ~(xI,..., xn)]

The term f(xl,..., xn) stands for an arbitrary ex-
pression, usually an expression returning a tuple;
it provides the elements of the query result. The
expression P(XI, . . . , xn) denotes a Boolean ex-
pression which controls whether a specific combi-
nation of elements (XI,. . . , xn) from the input col-
lections Input] through Inputn is rejected or not. The
resulting collection is a list if at least one input col-
lection is a list. In general, the result is finally as-
sumed to be non-unique (i.e. the elements are not
necessarily distinct from each other).

Expression f in (1.1) may be composed of any legal
expressions of HDBL, especially SFW expressions.
This is illustrated in the subsequent example:

2.1 SELECT [FirstAuthor: x.Authors[l],

I I
::3

ShortKeys : (SELECT y FROM y IN x.Keywords
WHERE LENGTH(y) < lo)]

2.4 FROM x IN Literature

As this example demonstrates, the facilities of the
SELECT clause in HDBL are far beyond plain pro-
jection in SQL for a flat setting (for similar facilities
in NF* algebra see /SS84/). Rather than picking up
the attributes Authors and Keywords, query (2) retrieVeS
only the first author and short keywords.

Restriction, projection, and join are typical oper-
ations of relational algebra. HDBL supports them
by SFW just like other SQL languages. In addition,
SFW covers the typical NF* operations “nesting” and
“unnesting”. E.g.

SELECT [x-Title, y.Surname, y.Ffrstname]
FROM x IN Literature, y IN Authors

provides Title and Authors information in an unnested
(“flat”) fashion. Nesting is demonstrated in the ex-
ample (4) below. This example also gives further
evidence that HDBL is not restricted to the table
paradigm. The query

WERE x = y MOO 3)]

performs a modulo 3 partitioning of an integer list
such that the partitions are displayed along with the
grouping criterion.

- 308 -

The reader will have observed the key to this sol-
ution: the sequence (0, 1, 2) governing the parti-
tioning is known in advance. A more general sol-
ution requires that a unique list (or set) of grouping
values is extracted from the collections to be parti-
tioned. In our case, (4) needs to be replaced by
something like

(;.; SELECT [Rest

I i

: x,

514
Partition: (SELECT y FROM y IN L

WHERE x = y MOD 3)]
5.5 FROM x IN MAKE-UNIQUE(SELECT z MOD 3 FROM z IN L)

Sofar we have addressed a wide range of oper-
ations that can be attributed to SFW expressions in
a natural and intuitive fashion. With ordering we
have an operation which is not covered by an in-
terpretation of SFW as indicated in the analogy be-
tween (1) and (1’). Appropriate operations
/PA86,RKB87/ like

(6) ORDER /* every */ x IN L BY x MOD 3

are quite in the spirit of /Da84/: If a query result is
to be ordered, this can be achieved by functional
composition as in

(7) ORDER x IN (SELECT .a. FROM ..a WHERE . ..) BY . . .

There might be situations where it is desirable to
split operations into parts in order to control the
sequence in which the parts are executed. On the
other hand, there are good reasons for having
compound operations for frequently used compos-
itions. For example, users are quite happy to write

I
8.1)
8.2)

SELECT [x.Authors] FROM x IN Literature
WHERE x.Title CONTAINS 'Darwin'

combining selection and projection in a dense no-
tation rather than to write (quite correctly, by the
way)

9.1 SELECT [x.Authors]

I.1
i.: FROM x IN (SELECT y FROM y IN Literature

WHERE y.Title CONTAINS 'Oarwfn')

For that reason, the designers of SQL /CAE76,
ISOf@/ have overloaded the SFW construct by op-
tional clauses for ordering, grouping, and duplicate
suppression. We adopt this approach with ordering
(sect. 3) and duplicate elimination (sect. 4). With
grouping (sect. 5) however, we believe that a dedi-
cated operation is justified.

3. Sorting

3.1 Ordering Relation

Sorting is an operation which takes collections and
re-arranges them into a list which is ordered ac-
cording to given sort criteria. In conventional
DBMS simple sorting criteria (I.e. expressions
yielding basic type results) are sufficient, since the
objects to be sorted have a simple structure (usu-
ally flat records). In contrast, HDBL is orthogonal
in that it provides ordering relations for any admis-
sible eNF* value, be it atomic, a tuple, a set or a list.
We have an intuitive, well defined ordering relation

on tuples (proceeding the tuple fields from left to
right) as well as on lists (using the lexicographic
order known from text strings). An ordering relation
between set or multi-set values is less obvious.
E.g., is the set {1,5} less than {2,3,4} or not ?

A discussion on different choices for generalized
ordering relations is presented in /KSW89/. The
most preferable one defines an ordering relation on
sets and multisets according to ‘cardinality first,
then iteratively comparing the minimum’.

3.2 Justification of SQL-like Sorting

As already indicated in section 2.2, a less austere
facility for sorting is desirable. Of course, one could
enrich the ORDER operation (see (6) or (7)) by fa-
cilities for rejecting input elements and for restruc-
turing output elements. However, this would essen-
tially be a duplication of SFW facilities. The SQL
design - an optional order clause - is probably much
more clever. Before giving evidence for this alle-
gation, let’s have a first impression of SQL-like
sorting mechanisms within HDBL. The subsequent
query gives an example of a seemingly simple or-
dering criterion. It lists all the Literature entries or-
dered by their titles. Rearrangement of Literature is
based on the lexicographic ordering relation of
strings.

12.1 SELECT 1 FROM 1 IN Literature
I I 12.2 ORDER BY l.Title

The next query delivers all author entries in alpha-
betic order. Please note that both unnesting and
ordering operations are expressed by a single SFW
expression, and a complete tuple (see a in (13.2)) is
used as sort criterion.

13.1 I I SELECT a FROM 1 IN Literature, a IN l.Authors
13.2 ORDER BY a DESC

It should be noted that - different from SQL -the in-
formation on sort criteria need not be contained in
the final output. This is illustrated in (14) which sorts
the titles of the Literature table according to the
number of authors:

I
14.1) SELECT l.Tltle FROM 1 IN Literature
14.2) ORDER BY COUNT(I.Authors)

The SQL-like approach is advantageous for several
reasons: First, it puts HDBL closer to established
SQL standards /ISO86/. Second, a large class of
queries can be formulated in a more concise fash-
ion. For example, having nothing but austere sort-
ing facilities, example (14) were to be rewritten as

1' IN Literature
BY COUNT(l'.Authors))

or even worse:
SELECT 1 Title

i:t::l FROM l-IN
~(ORDER-~* IN

(SELECT [l".Title,

FROM
SoWany: COUNT(l".Auttors)]
1" IN Literature

BY l'.SoMany 1

- 309 -

It is not verbosity which is criticized here. It is the
users’ temptation to adopt the role of an optimizer,
i.e. taking care of issues like

l compressing data before ordering (see
(16.4-6))

0 arranging the sequence of SFW and ORDER
operations according to whether order criteria
are contained in the fmal output or not.

The preceeding arguments should not be under-
stood as a case against subjecting the result of or-
dering operations to other operations which are
applicable to lists, as in (17) below:

3.3 Syntax and Semantics

The syntactical notation of the ordering clause is
similar to the standard SQL proposal /ISO86/. A list
of order criteria Is added to the known SFW con-
struct. The following rules in BNF syntax define the
syntactical notation.

4Flb :: SELECT dcxpr, FROM <from-list> [WHERE cexpry]
[ORDER BY corder-cxpr> {"," corder-cxpr>]*]

<order-erprz :: dexpr> [ASC 1 DESC] -

An order expression is - in contrast to standard SQL
- an arbitrary expression together with the ordering
orientation (ascending or descending order). Scope
and binding of variables in this expression are
identical to scope and binding of the variables in the
SELECT and WHERE clause of the SFW construct
and are determined by the FROM list.

The following examples show ordering expressions
with more complex expressions. Example (18) or-
ders a list of points in the plane according to their
distance to the origin.

18.1
I I

SELECT p FROM p IN Points
18.2 ORDER BY p.x * p.x + p.y * p.y

Example (19) orders the authors by the number of
their papers in descending order.

SELECT a FROM 1 IN Literature, a IN l.Authors

COUNT(SELECT 1' FROM 1' in Literature
WHERE a ELEMENT-OF l'.Authors) DESC

As mentioned in chapter 3.1, we allow expressions
yielding arbitrary eNF2 type results as order criteria.
As an example, query (20) orders the literature ac-
cording to the set of authors derived from the au-
thor list.

20.1 SELECT l.Title FRON 1 IN Literature
I I 20.2 ORDER BY MAKE-SET(l.Authors)

The semantics of an ordering expression does not
seem to be complicated: The result of the SFW
query is transformed into a list ordered by the spe-
cified sort criteria; this effect can be achieved by a

mental evaluation model containing the following
steps:

1. In a first step the cross product of all sets / lists
occurring in the FROM-list is constructed (un-
der consideration of the hierarchical variable
binding). If lists are involved, the relative order
of list elements is retained by following the
rules given In /PT86,Da88/. If the FROM-list de-
fines a join between two (or more) lists, nested
loops may serve as a mental model for the
construction of the relative order of the cross
product lines.

For the following steps, the variables are bound
to the corresponding parts of the cross product
lines.
All lines of the cross product are removed
where the WHERE clause is evaluated to
FALSE.
The sort expressions are evaluated for each
remaining line.
The lines are sorted according to the sort crl-
teria values computed in step 3.
The result is constructed out of the cross prod-
uct lines as defined in the SELECT clause. This
may imply a loss of the information needed for
the preceding sort step.

The separation of the sort criteria computation
phase (step 3) and the value comparisons (step 4)
is necessary in this semantics deftnition, because
HDBL expressions may have a nondeterministic
semantics. An example is the conversion of a mul-
tiset into a list, where the order of the list elements
can be arbitrarily chosen.

Before we finish the chapter and turn to the prob-
lem of duplicate elimination, we want to state a few
requirements for sort algorithms to be used. Of
course, the algorithms should be fast - but there are
additional interesting requirements not appearing
in the ‘flat’ case. The ordering relation on arbitrary
extended NF2 structures is recursively defined, so
sorting on substructures may become a significant
part of the total computation costs. Good sorting
algorithms have to reduce these costs to a mini-
mum by only partially sorting of substructures as
proposed in /KSW89/.

4. Duplicate Elimination

4.1 identification of Duplicates

The need for identification and deletion of dupli-
cates arises in all data models offering sets and
multisets as structuring facilities. On the one hand,
set type structures should be free of duplicates per
definition, and type conversion operations have to
obey this property. On the other hand, the (rela-
tional algebra) operation ‘projection’ delivers usu-
ally results containing duplicates (not in relational

- 310 -

theory, but in implemented database systems).
Here we concentrate on explicit query features
suppressing duplicates, and do not discuss implicit
duplicate elimination due to set or uni-list type da-
tabase structures.

What does ‘free of duplicates’ for extended NF*
structures mean ? This property can only be stated
for sets and lists, and there the intuitive meaning is
‘containing no identical elements’. If we fix the term
‘identical’ as representation independent equality
of NF’ objects, we see that this requires a recur-
sively defined equality on complex NF* structures,
which has to take special care of set type struc-
tures. The formal background and efficient compu-
tation strategies for this property are again exam-
ined in the accompanying paper /KSW89/.

In many applications, the term ‘identical’ is used in
a more restrictive fashion for duplicate identifica-
tion. There, the identity of two structures is decided
by inspecting only part of the structure. This occurs
especially due to the use of semantic knowledge on
the application area or due to optimizing duplicate
elimination. In the case of relations, the use of key
attributes is an example of such a restrictive iden-
tity definition - two tuples are assumed to be equal
if their key attribute values are equal. In conven-
tional relational databases, this notion is only used
for database tables and not for result tables. We use
these notions also for result structures and extend
the concepts to key expressions where identity is
defined by the equality of arbitrary expressions
computed out of the set or list elements.

As an example for the need of key attributes (for
duplicate elimination), we assume a personnel da-
tabase consisting of personnel data like Name, Age
etc., and an attribute Picture containing a ‘bitmap’
picture of the person. In a personnel relation, du-
plicate elimination should not compare the binary
representation of the pictures to test identity of
person records. On the other hand, in a set of frac-
tional numbers we may fix equality by comparing
the reduced fractions using a complex HDBL ex-
pression. If we use such an expression for deter-
mining the identity for duplicate suppression, we
talk about key expressions. The usual key attributes
are included as a special case.

As with the sort methods, the type ‘list’ needs spe-
cial attention if key expressions are used for dupli-
cate identifications. Structures with equal key val-
ues need not be equal on other parts of the struc-
ture. So the question arises, which of the occurring
duplicates have to be eliminated. This problem can
either be solved by the intuitively acceptable com-
mitment of deleting the duplicate at the higher list
position (‘the first survives’) or controlled by an ad-
ditional parameter. In the following, we use the first
variant.

In the evaluation of database queries, duplicate
suppression makes sense in two evaluation phases.
The most commonly used duplicate suppression is
on the result of the query. Duplicate suppression
on the result delivers always a result of type unique
set (or unique list, if the Input was of type list). For
this reason, duplicate suppression on the query re-
sult can only have expressions over the result
structure as key expressions. An example for du-
plicate suppression on the query result is a unique
set of authors derived from the literature table.

The second, more subtle duplicate suppression is
on the input structures of an SFW expression. This
enables key expressions on non-selected data, for
example if we want to project the titles out of the
literature table only once unless associated with
different author lists. This can be expressed by du-
plicate suppression with the keys Title and Authors
on the input of the corresponding SFW construct
(example (22)). It must be noted that the result of
a query with duplicate suppression on the input
may still contain duplicates.

4.2 Duplicate Suppression on Input

For duplicate suppression we have essentially the
same design options for language features as for
sorting. The duplicate suppression on input struc-
tures is closely related to sort expressions, since
the mental model implies the removing of ‘input
lines’ in the same evaluation phase where sorting
is done (before result construction). Moreover, in
this case legal key expressions are the same as
legal sort expressions (without ASC or DESC key-
words). We chose a descriptive notation analogous
to the ORDER BY expressions :

21.1
I I

SELECT l.Title FROM 1 IN Literature
21.2 IGNORE DUPLICATES ON l.Title

Example (21) shows that variables are bound to the
input structures occurring in the FROM-list. This
enables the formulation of the (above mentioned)
query (22), where duplicate suppression is done
with respect to non-selected information :

22.1 I I SELECT l.Title FROM 1 IN Literature
22.2 IGNORE DUPLICATES ON l-Title, l.Authors

Example (23) shows the use of arithmetic key ex-
pressions. The result contains only points with dif-
ferent distances from the origin (0,O).

23.1
I I

SELECT p FRON p IN Points
23.2 IGNORE DUPLICATES ON p.x*p.x + p.y*p.y

The syntactical structure of an IGNORE clause is
analogous to the order expression (without ASC
and DESC). If an ignore and an order expression
are combined in one SFW construct, their relative
order is relevant due to the ‘the first survives’ rule
for duplicate deletion. The following two SFW que-
ries may deliver different results; in the second
variant (25) the author with the ‘lexicographic
smallest’ first name survives, whereas in the first

- 311-

variant (24) this depends on the order of the input
lists.

24.1
24.2
24.3
24.4
24.5
24.6

SELECT a
FROM 1 fn Literature,

a In l.Authors
IGNORE DUPLICATES

ON a.Surname
ORDER BY a

25.1
25.2
25.3
25.4
25.5
25.6

SELECT a
FRON 1 in Lfterature,

a in l.Authors
ORDER BY a
IGNORE DUPLICATES

ON a.Surname

4.3 Duplicate Suppression on Result

Now let us return to duplicate suppression in the
query result. In the mental evaluation model this
suppression has to be performed after the result
construction phase. To guarantee the uniqueness
property on the result structure, only expressions
over result table elements are legal key ex-
pressions. Following the mental evaluation model,
a duplicate suppression on the result structure is
always performed after the processing of an ORDER
or IGNORE clause.

Proposafs /CAE76,PA86,PT86/ for relational as well
as for extended NF2 database languages describe
several syntactic alternatives. In the language
HDBL, the following three alternatives are candi-
dates for an orthogonal language extension:

1. The functional approach /PA86,PT86,RKB87/ is
similar to the notation of the sort function in
example (16). Without keys it may be notated
like ‘make-unique(Literature)‘, with key pa-
rameters it resembles the functional order op-
erator:

i!.:

I .I

UNIQUE x IN (SELECT [l.Tftle, a]

g::
FROM 1 IN Lfterature,

a IN l.Authors)
ON x.Tftle

The scope of the variables used in key ex-
pressions is bound to the result structure.

2. The descriptive approach is similar to the ig-
nore clause described above. Legal key ex-
pressions are exclusively built on the basis of
a system generated variable RESULT bound to the
result structure.

27.1 SELECT [l.lftle, a]

I I
27.2 FROM 1 IN Lfterature, a IN l.Authors
27.3 UNIQUE ON RESULT.Tftle

The case of a desired unique result table with-
out key restrictions is formulated by

(27.3') UNIQUE ON RESULT

3. The SELECT clause modification approach is
derived from the SQL proposal and the use of
key constraints in data definition languages.
The SELECT clause defines the structure of the
result, and duplicate suppression on the result
may be formulated therein. The uniqueness of
the result without key restrictions is expressed
by the key word UNIQUE which directly follows
SELECT, whereas key attributes are marked by
KEY. The examples (28) and (29) show the use
of both constructs.

28.1 SELECT UNIQUE l.Tftle I I 28.2 FROM 1 IN Literature

29.1
I I

SELECT [KEY l.Tftle, l.Authors J
29.2 FROM 1 IN Lfterature

It must be noted that in this approach only first
level attributes are usable as key expressions.
On the other hand, it may be orthogonal to a
DDL extension introducing keys as integrity
constraints into the schema definition.

The third alternative has a relevant lack on expres-
sive power compared with the two other variants,
so the final decision was between the functional and
the descriptive approach. We opted for the second
variant for the same reasons as with sorting. This
decision also reduces the amount of additional
concepts and language features.

4.4 Syntax and Semantics

The duplicate suppression on input structures is
analogous to the order-by clause:

<SFW, :: SELECT cexpr> FROM <from-lfst> [WHERE *bool-expr,]
[IGNORE DUPLICATES ON <expr> I"," cexpr>)*]

The mental evaluation model for duplicate sup-
pression on input structures is very similar to the
one

:.
3:

4.

for sort expression evaluation: -

5.

see order-by evaluation.
see order by evaluatlon.
Computation of key expression values for the
input lines.
If two lines have equal key expression values,
one of them is removed. If the input structure
is of type list, this removing has to obey the
relative position stability.
Construction of result (see order-by evalu-
ation).

In contrast to the IGNORE clause evaluation, dupli-
cate suppression on the result structure allows only
expressions over the variable RESULT (<result-expr,) to
appear as key expressions.

<SFW, :: SELECT <expr> FROM qfrcm-lfstp [WHERE cbool-expra]
[UNIQUE ON <result-expr* ('," <result-expr>)*]

One aim of the distinction of both duplicate sup-
pression alternatives is that for duplicate sup-
pression on the result structure we can syntactically
derive the uniqueness of the result. To guarantee
this property, we have to slightly modify our evalu-
ation model.

1. see order-by evaluation.
2. see order-by evaluation.
3. see order-by evaluation.
4. Perform duplicate elimination for the result

structure. _
5. Computation of key expression values for the

result elements.
6. If two lines have equal key expression values,

one of them is removed.

- 312 -

The fourth step guarantees that the result itself is
free of duplicates, and this property is not affected
by the following steps. The duplicate suppression
done wti the key expressions alone is not sufficient
because of the existence of nondeterministic ex-
pressions in the HDBL language.

If step 4 were omitted, a key expression with a
nondeterministic function (for example conversion
of a set into a list) may yield in step 5 different key
expression values for identical result elements, and
therefore uniqueness cannot be guaranteed.

5. The Grouping Operator

5.1 Grouping in the eNF2 Data Model

In contrast to pure sorting or duplicate elimination,
the ‘grouping’ or ‘nesting’ known from NF*-oriented
languages changes the structure of the result. The
fundamental idea is to assemble part of the result
into a new created set (or list) such that all ele-
ments meet the same grouplng condition. Because
of this fundamental effect of changing the result
structure, we decided to choose a functionally orl-
ented language feature instead of a descriptive one
(like the SQL proposal).

There are two alternatives for the structure of the
result of a grouping operation. The first one is that
the result structure contains only the constructed
groups /PABG,PTBG/. The new result structure is
determined by the Input structure, for example a
‘set of input type’ becomes a ‘set of set of input
type’ after grouping. The disadvantage of this ap-
proach is the loss of the explicit grouping criterion
information.

In the second alternative, the result is a binary re-
lation between the groups and the group criterion.
In terms of extended NF* structures, this structure
is a set or listaf tuples containing the groups and
the grouping criterion values as field values. This
structure implies the choice of attribute names as
additional parameters of the group operator if we
want to avoid system generated attribute names.

The result structure of the first variant can be com-
puted from the result of the second variant by a
simple projection on the group field of the result
tuples. So we decided to choose the second variant
because of its greater expressiveness. This choice
Implies that our grouping operator needs the fol-
lowing parameters :

1. The input structure, a set or list.
2. The grouping criterion (an expression with

variables bound to the elements of the input
structure).

3. The attribute identifiers for the resulting groups
and the grouping values.

4. The structure description for the group ele-
ments (also an expression with variables
bound to the elements of the input structure).

5. An (optional) predicate on the input structure
(WHERE clause of the SFW construct).

Moreover, we decided to integrate the projection
and selection operations into the group function to
allow compact notations and to simplify query opti-
mization. The following complex example shows
the syntactical constructs chosen for the group
function and the parameters:

FROM 1 IN Literature, a IN l.Authors
30.5) WHERE COUNT(l.Authors) c 4

The HDBL statement (30) delivers for each author
all his (her) relevant publications (where publica-
tions are assumed to be irrelevant for an author if
authored by four or more authors).

The result structure of group expression (30) is
LIST(TUPLE(Publicstions: LIST(TUPLE(

Title : a..,
Keywords :

Author: TUPLE(Surname : . ..) .,. 'j*'li

The list types (instead of set types) follow from the
list type structure Authors in the FROM list.

5.2 Syntax and Semantics

In more detail, the syntax of a group expression is
fixed as follows:

egexpr, ::* GROUP <expr> INTO <id> BY <id> ":" <expr>
FROM <from-list> [WHERE <bool-exprb]

The ‘from-list’ is built analogously to the SFW con-
struct. To make the reader more familiar with this
notation, we present a few further examples. As a
first one, we group the complete literature by the
number of authors :

I I

ii.: GROUP 1 INTO LiteratureSet

32:3
BY NrAuthors : COUNT(l.Authors)
FROM 1 IN Literature

The second example (33) groups the literature titles
by the set of their keywords.

33.1 GROUP l.Title INTO lftles

I I
33.2 BY Keywords : l.Keywords
33.3 FROM 1 IN Literature

Please note that the type of the result of (33) Is
(34) SET(TUPLE(Tftles:SET(TEXT), Keywords:SET(TEXT)))

As a last example, we group our points table by the
distance to the origin (0,O) (assuming a function
SQRT for computing the square root).

35.1 GROUP p INTO PointsOfEqualDistance

I I
35.2 BY Distance : SBRT(p.x*p.x + p.y*p.y)
35.3 FROM p IN Points

The precise semantics of a grouping operation can
readily be defined by an equivalent HDBL ex-

- 313 -

pression, using already defined language features.
A group expression

36.1 GROUP elementexpr INTO groupname I I 36.2
36.3

BY criterionname : criterionexpr
FROM fromlist WHERE predicate

is equivalent to the following HDBL expression, us-
ing functional composition and duplicate sup-
pression.

(37.1) SELECT f arouoname :
- "(SELECT elementexpr FROM fromlist

WHERE predicate AN0 x - criterionexpr)
criterionname : x

FROM x IN (SELECT criterionexpr FROM fromlist
1

WHERE predicate UNIQUE ON RESULT)

In this expression, the variable ‘x’ has as values all
occurring group criterion values (in consideration
of the WHERE clause). This equivalent HDBL ex-
pression fixes at the same time the result type of a
grouping expression with respect to the from list.
it is clear that an efficient implementation does not
follow this semantics commitment.

6. Integration into Query Evaluation

6.7 The Sort Manager

The language features introduced in this paper are
being implemented using a system component
called sort manager. The sort manager offers at its
call interface a sort function for arbitrary eNF’ col-
lections and allows for parameters controlling du-
plicate suppression and grouping during the sort
process. For a discussion of appropriate sort algo-
rithms for these functions see /KSW89/.

In detail, the parameters of a sort manager call
contain the following data :

l The collection, an ordered or unordered re-
lation, to be manipulated. The type of this col-
lection is always set or list of tuples. The col-
lection is an intermediate internal result struc-
ture, not a persistent database object.

l The order criteria. Allowed order criteria are
top level attributes of the collection elements
together with an ascending / descending flag.

0 The duplicate elimination flag. If this flag is set,
equality of the sort criteria values leads to
elimination of one of the compared tuples.

0 The grouping information. This parameter con-
trols the grouping while performing duplicate
elimination. It contains the (top level) group
attrihute, which must be of type set or list and
must not be contained in the order criteria list.
If a grouping attribute is defined, each time a
duplicate elimination is performed the sutviv-
ing tuple gets the union of both old grouping
attribute values as new grouping attribute va-
lue.

The parameter restrictions give a less powerful
functionality of the sort manager than introduced for
the HDBL language extensions described in chap-

ters 3, 4 and 5, but enable a straightforward imple-
mentation of the sort manager. The only critical
point of the implementation are set-valued order
criteria. In this case, the sort algorithm is recur-
sively called to compute the order according to the
‘cardinality first, then minimum’ rule. The strategy
to Implement the full proposals of chapter 3 is de-
scribed in the following subchapters.

6.2 Megration Strategy

We assume that duplicate elimination is done via
sorting (for a discussion of other methods and a
justification of this choice see /KSW89/). Later on,
we will reduce grouping also to a slightly modified
duplicate elimination (see 6.4). Due to these rea-
sons, we concentrate mainly on the evaluation of
sort expressions by stating that the used concepts
carry over to duplicate suppression and grouping.

Of course, the mental model for sorting with ‘com-
puting of the cross product’ is not an acceptable
implementation idea. Instead of the complete cross
product, only the result objects have to be com-
puted along with additional attributes containing the
information needed for key expressions or sort /
grouping criteria. For example, consider the follow-
ing expression :

38.1 SELECT l.Title FROM 1 IN Lfterature
I I 38.2 ORDER BY COUNT(l.Authors)

For evaluation, we can compute the result of the
extended query below (39), sort the intermediate
result and as a last step remove the artificially ad-
ded data needed for the sorting. Note that the
sorted objects are considerably smaller than full
lines of the input structure would be.

I I 39.1 SELECT [id1 : l.Title, id2 : COUNT(l.Authors)]
39.2 FROW 1 IN Literature

This method is independent of the evaluation strat-
egy implemented in a DBMS. It reduces the sort
criteria internally to upper level attributes of a table
and avoids multiple computations of sort ex-
pressions. For duplicate elimination, the result
structure expansion enables the handling of both
the ignore and the unique clause in an equal fash-
ion.

Conceptually, we divide the query evaluation into
the following phases:

1. Query analysis. Creation of internal query
evaluation plan and catalog structure.

2. Optimization of the internal query represen-
tation.

3. Data retrieval out of the database (evaluation
of retrieval pat-l of the internal query represen-
tation).

4. Result modification phase (sorting etc).
5. Result processing (browsing, transfer to appli-

cation software, inserting into database table
etc.)

- 314-

The implementation usually mixes phases 3 and 4
for efficiency reasons; for example, substructures
are sorted directly after having been retrieved.

Here we concentrate on the added language fea-
tures only. We subsume sorting, duplicate sup-
pression and grouping under the notion of result
modification operations. For generality, we talk
about result modification expressions, which mean
expressions modifying the result of a previous
evaluation step (but not its internal result structure).
Due to the definition in section 5.2, these operations
are also sufficient to implement grouping. An arbi-
trary modification expression is composed using
the following primitives :

1.

2.

3.

SORT: This basic modification function has as
parameters (among others) a reference to the
input structure for the operation (which may be
a substructure of a complex NF* object). In case
of the SORT operator, a list of sort criteria is
another parameter consisting of field identifiers
with additional declarations like descending or
ascending order. SORT also provides a facility
for eliminating duplicates on the fly.
Composition: Modification expressions can be
concatenated to sequences (for example, for
the combination of sorting and duplicate elimi-
nation).
Control: As a final feature, we need loops over
substructures (for their justification see also
detailed discussion for optimization).

6.3 Details of the Evaluation Steps

Now we can take a closer look at the special activ-
ities needed for sorting and duplicate suppression
in the single phases. The group operator is handled
afterwards (see 6.4).

In the query analysis phase, the result catalog and
the query evaluation plan have to be extended for
the needed computed values of the sort / key ex-
pressions. The first step is the addition of the sort
criteria to the result structure as additional attri-
butes (see above example). The query evaluation
plan is extended to retrieve the data into these at-
tributes.

In the optimization phase, the original query evalu-
ation plan constructed in the analysis phase is re-
structured for an efficient evaluation. Here we con-
centrate on optimizations related to the result mo-
dification. The following points can lead to opti-
mized query evaluation plans.

l The use of indexes may influence the need for
sorting, for example an index may deliver the
elements already in the desired order making
a sort operation superfluous.

l The arrangement of query modification ex-
pressions can be optimized. An important opti-
mization technique is to avoid sorting of sub-

components which are removed afterwards
due to duplicate elimination. An example is a
query which delivers for each author his coau-
thors in alphabetic order.

(40.1) SELECT [Author : a,
-Coauthors 1

SELECT ca
FROM 1' IN Literature,

ca in l'.Authors
40.61 WHERE a ELEMENT OF
40.7 l'.Authors
40.8

I
AND NOT (a = ca

40.9 ORDER BY ca 3
4fJ.10 FRON 1 IN Literature,
40.11

I
a IN l.Authors

40.12 UNIQUE ON RESULT.Author

In this example it is better tq first eliminate the
duplicates and then do the sorting on the
coauthors of the tuples which survive the du-
plicate elimination process.

l With key expressions for duplicate elimination,
the relative order is irrelevant for the result.
Thus, they can be re-arranged according to the
costs of the equality tests, and according to
their selectivity on the input structure.

in the data retrieval phase, we do not need addi-
tional activities because of the query evaluation
plan modifications in the first phases.

The result mollification phase contains the data
manipulation algorithms needed for the new lan-
guage features. The needed sort algorithms and
order computations for extended NF* structures are
discussed in /KSW8g/ and are skipped in this paper.
As a last step, the artificially added information is
projected out of the result.

The result processing is not affected by the new
language features.

6.4 Implementation of Grouping

As mentioned above, the grouping operator is de-
fined by the use of duplicate elimination. The fol-
lowing algorithm sketch shows an elegant lmple-
mentation of a grouping operator using the intro-
duced formalism :

1. As a first step, the group expression is inter-
nally replaced by a SFW construct having the
same result structure as the group expression
itself. The example group expression

1i.i GROUP 1 INTO LiteratureSet

I I
41:3

BY NrAuthors : COUNT(l.Authors)
FROM 1 IN Literature

41.4 WHERE NOT COUNT(l.Keywords) = 0

is internally replaced by
$.: SELECT [LiteratureSet : 1),

I I

NrAuthors:
4213 FROH 1 IN Literature

t COUNT l.Authors)]

42.4 WHERE NOT COUNT(l.Keywords) = 0

After evaluation of this query, the attribute pi-
teratureset of type multiset contains exactly one
element (for each result object).

- 315 -

2. Now a modified duplicate elimination is exe-
cuted for the result of the modified query (42) :
Whenever duplicates on 'NrAuthors' are detected,
the contents of the 'Lfteratureset' attribute are
assembled and the surviving duplicate gets the
assembled elements as new 'Literatureset' attri-
bute (see chapter 4.1). For list type structures,
the position stability of the grouped elements
can be guaranteed using internally an arti-
ficially added position attribute.

7. Conclusions

In this paper we presented a language extension for
the SQL-like NF database query language HDBL,
which offers powerful language features for sorting,
duplicate suppression and grouping of extended
NF* structures. Due to space limitations, some de-
tails had to be left out. They can be found in
lSLPW89f.

Future work contains the implementation of this
language extension as well as its improvement in
practical applications. interesting aspects for future
work are the integration of sorting and duplicate
elimination into query plan optimization and the re-
quirements for an appropriate sorting algorithm to
be included in the DBMS (for the latter see also
/KSW89/).

The presented extensions affect only the DML part
of the HDBL database language. Possible DDL part
extensions and the enforcement of these con-
straints have to be investigated in the future.

Besides the proposed HDBL language extensions,
the developed methods for duplicate elimination
are also planned to be used for efficient evaluation
of recursive queries as proposed in /Li88/. Here,
special requirements like partially presorted input
have also to be taken into consideration.

Acknowledgements

The authors would like to thank the colleagues in the
AIM-P project, namely P. Dadam, R. Erbe, U. Herrmann,
U. KeBler, K. Kiispert, E. Roman and N. Sildkamp for
fruitful discussions and suggestions

References

A084

ALPS86

SAbiteboul, N.Bidoit: Non First Normal Form
Relations: An Algebra Allowing Data Restruc-
turing. Rapports de Recherche No 347, institut
de Recherche en lnformatique et en Automa-
tique, Rocquencourt, France, Nov. 1984.
Andersen, F., Linnemann, V., Pistor, P.,
Sildkamp, N.: Advanced information Manage-
ment Prototype - User Manual of the On-Lrne
Interface of the Heidelberg Data Base Lan-

t!
uage (HDBL). Techn. Note IBM Scientific
enter Heidelberg TN8801

CAE76

Da84

Da88

DaK86

IS086

KF88

KSW89

Ll88

LKD88

PA86

PHH83

PI87

PT86

RKB87

SLPW89

SS84

D.D.Chamberiin et al.: SEQUEL2: A Unified Ap
preach to Data Definition, Manipulation and
;o&rrA. IBM Journ. Res. Devel. 20 (1976). pp.

N’,‘,:,~$;masnm$yirjb ;pec;;; Issue on

P.Dadam, K.Kilspert et AI: A DBMS ‘Prototype
Extended NF’ Relations: An Inte-

of Flat Tables and Hierarchies.
rot. ACM SIGMOD 86, Washington D.C., May

1986. pp. 358367.
IS0 International Organization for Standardi-
zation: Draft International Standard IS0 / DIS
9075 : Information Processing Systems - Data-
base Language SQL. 1986.
S. Khoshafian, D. Frank: Implementation Tech-
niques for Object Oriented Databases. Proc.
Advances in Object-Oriented Database Sys-
tems (K.R. Dittrich, ed.), LNCS 334, Springer-
Veriag Berlin, 1988. pp. 60-79.
K. Kiispert, G. Saake, L. Wegner: Duplicate De-
tection and Deletion in the Extended NF’ Data
Model. Proceedings 3rd Intern. Conference on
Foundations of Data Organization
rithms FODO 1989)r Paris, June
Techn. I? ep. IBM Sctentific Center
TR 88.11.012)
V. Linnemann: Functional Recursion and Com-

L
iex Objects. Techn. Rep. IBM Scientific Center
eidelberg TR 88.12.017, Dec. 1988.

V. Linnemann, K. Kaspert, P. Dadam et al: De-
si

%
n and Implementation of an Extensible Da-

ta ase Management System Supporting User
Defined Data Types and Functions. Proc. 14th
Int. Conf. on Very Large Data Bases, Los An-
geles 1988. (also Techn. Rep. IBM Scientific
Center Heidelberg TR 87.12.011
P.Pistor, F.Andersen: Designing a Generalized
NF’ Model with an SQL-Type Interface. Proc.
VLDB 88, Kyoto, Aug. 1986, pp. 278-288.
P.Pistor, B.Hansen, M.Hansen: Eine sequelar-
tige Schnlttstelie fur das NF’ Modeli. In
J.W.Schmidt (ed.): Sprachen filr Datenbanken.
informatik Fachberichte 72, Springer Verl

7 Berlin-Heidelberg-New York, 1983. pp. 134-14 .
P. Pistor: The Advanced Information Manage-
ment Prototype: Architecture and Language
Interface Overview. IBM Scientific Center Hei-
delberg Techn. Rep. TR 87.08.004, June 1987.
P.Pistor, R.Traunmilller: A Database Language
for Sets, Lists, and Tables. Information Sys-
tems, Vol. 11(4), 1986, pp. 323-336.
M.A. Roth, H.F. Korth, D.S. Batory: SQUNF: A
Query Language for -NF Relational Data-
bases. Information Systems Vol. 12. No. 1,
1987,

R
p. 99-l 14.

G.Saa e, V.Linnemann. P.Pistor, L.Wegner:
Sortin

2
Grouping and Duplicate Elimination in

the A vanced information Management Proto-
tvpe. IBM Scientific Center Heidelberg Techn.
dep. TR 89.03008, March 1989.
H.-J.Schek, MScholl: An Algebra for the Reia-
tionai Model with Relation-Valued Attributes.
TR DSVI-1984-Tl. Techn. Univ. Darmstadt,
1984.

- 316 -

