
Aggregates in Possibilistic Databases

Elke A. Rundensteiner and Lubomir Bit

Department of Information and Computer Science
University of California, Irvine

Abstract

Fuzzy set theory represents a uniform framework
for extending the relational database model to han-,
dle imprecision of information found in the real world.
None of the existing proposals for data models han-
dling imprecision has dealt with queries involvin ag-
gregate operators. This paper presents a framewor for ek
handling aggregates in the context of imprecise infor-
mation. Two kinds of aggregates, namely, scalar ag-
gregates and aggregate functions, are being supported.
We consider three cases: aggregates within approxi-
mate queries on precise data, aggregates within pre-
cisely specified queries on possibilistic data, and aggre-
gates within vague queries on imprecise data. These
extensions are based on fuzzy set-theoretical concepts
such as the extension principle and the possibilistic ex-
pected value.

I Introduction

It has been widely recognized that the uncertainty in-
herent in real world data has to be dealt with in database
systems. Research addressing this problem has to a
large extend been based on fuzzy set theory [ll]. The
two major objectives of these efforts are (1) enhance-
ments to existing data models for representing incom-
plete and uncertain data, and (2) the development of
new retrieval techniques for such data. The first issue
addresses the limitation of conventional data models to
allow attributes to take but one constant value from a
domain [l, 8, 71. Th e second problem is the inadequacy
of current relational query languages (,RQLs) to cope
with different types of fuzzy representations of data.
Most attempts to design an enhanced RQL, here called
a FRQL [7,12], are based on some form of the generally
accepted relational algebra or relational calculus [2].

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made or distributed fos
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appeal; and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

Database systems featuring only retrieval and up-
date operations [2] are inadequate for many important
applications [4]. Virtually all real-world problems need
query capabilities involving aggregate and statistical
functions [3]. This strongly suggests that the evalua-
tion of aggregates hae to be dealt with in the context of
the extended relational models. However, most research
on extending relational query languages has neglected
this issue; the only notable exception is the work of
Oezsoyoglu et al [5].

This paper investigates the incorporation of aggre-
gate operators commonly found in traditional query lan-
guages like SQL or QUEL [3] into FRQLs. There are
three general cases we consider. First, we handle ap-
proximate queries on a relational database containing
precise information. An example of this situation is the
query “What is the maximum salary of all old professors
at UCI?” with the age and salary being precisely known
and old being a fuzzy set defined on the Age attribute.
The second case occurs when the query is exact but
the information stored in the database is of possibilistic
nature. An example of this case is the query “What
is the maximum salary of professors at UCI?” where
the salary is specified imprecisely in the database. The
third case is obtained by combining the two approaches
to handle queries with approximate restrictions against
a database containing possibilistic specified data. The
solutions proposed in this paper satisfy two principles,
consistency and completeness.

The paper is structured in the following manner.
First, we review the aggregate operators in the context
of the relational data model (section 2). The basics of
fuzzy set theory are presented in section 3. A possibilis-
tic extension of the relational database model and the
relational algebra is introduced in section 4, referred to
as Possibilistic Relational Data Model (PRDM). Section
5 is devoted to our proposal for evaluating aggregates
within the PRDM. Conclusions and future research are
presented in the last section.

2 Aggregates in Relational Query Languages

In this section, we review how aggregates are handled
within the classical relational data model [2, 41.

Amsterdam, 1989

- 287 -

2.1 The Classical Relational Model

A relational data model consists of a set of attribute
names Ai, a set of corresponding domains Ui, and a set
of relation schemas l& and relations ri.

Definition 1 A set of attributes {Al, ..,, A,,} is called
a relation schema R(A1, A,), or short R. Let Vi
be the domain of the attribute Ai, with 1 5 i < n. A
relation I‘ on R is defined as a subset of the Cartesian
product of the domains Vi, i.e., r C VI x . . . x U,,. Each
tuple t+ E r has the form < ai1 x . . . x ai, > with aij E
Uj. &[Aj] denotes the value of tuple Q on attribute Aj,
i.e., &[Aj] = aij .

Query languages for the relational database model
(RQLs) are based on either the relational algebra or
the relational calculus, both proposed by Codd [2]. In
this paper, we use the relational algebra. We chose a
notation similar to the one of QUEL [3] over a more
formal mathematical one in order to make the queries
more understandable. For a definition see [3].

2.2 Scalar Aggregates

Retrieval statements exclusively composed from retrieval
operations are inadequate for most applications of data-
base management systems [4]. Many real-world queries
require the application of aggregate and statistical func-
tions to database relations. Consequently, most com-
mercially available systems provide a set of such aggre-
gate operators [3]. In general, two types of aggregate
operators are supported by RQLs; these are scalar ag-
gregates and aggregate functions [3]. (For the latter see
section 2.3).

Scalar aggregates take a set of tuples (a relation) as
an argument and produce a single value as a result. The
following describes their syntax and semantics.

Definition 2 Let r be a relation on the relation schema
R(Al, A,,). The syntax for a scalar aggregate f on Ai
;i relation r is f((Ai)(r)) . The semantics are defined

f((A)(r)) = Y with Y = f{t[A] 1 t E r) (1)

A precise definition of the most common aggregate op
erators is provided next.

Definition 3 Let the relation r defined on the relation
schema R consist of n tuples, with n s 0. Let t be a
tuple variable in r and A an attribute m R.

1. count((r.A)(r)) = n

2. sum((r.A)(r)) = CVtcr t[A] if n > 0

9. min((r.A)(r)) = minvtEr t[A] if n > 0

4, maz((r.A)(r)) = maxvtEr t[A] if n > 0

5. avg((r.A)(r)) = $ xvter t[A] if n > 0

6. any((r.A)(r)) = sign(n) where sign(n) = +l
if n > 0 and sign(n) = 0 if n = 0.

2. to 5 are assumed to result in 0 whenever n = 0.

A scalar aggregate can be calculated independently from
the rest of the query and then simply replaced by its
value.

2.3 Aggregate Functions

Aggregate functions compute aggregations over one or
more subsets of a relation. They first partition the rela-
tion on the values of some attribute and then compute
the aggregation separately for each partition. The re
suit of an aggregate function is a relation whose number
of tuples equals the number of initial partitions. The
result tuples consist of the attribute values on which
the partition has been formed and the corresponding
aggregate value for each partition. The syntax and un-
derlying semantics [4] are shown below:

Defmition 4 Let r be a relation on R(A1, A,,). The
application of an aggregate function f on the attribute
Ai is specified by f ((Ai) BY Aj) with 1 5 i,j 5 n.
The semantics of this are given by

f((Ai)(r)BYAj) = (t[Aj] 0 Y 1 (t E r)A

(Y = f({t’[AiI I (t’ E r) A t’[Aj] = t&l}))}. (2)

Definition 4 can easily be extended to partition on more
than one attribute by replacing the attribute Aj by a
set of attributes X with X C R. An example is given
next.

Name
Tom
Jack
Julie
M=Y
Frank

SZbl~Y Position
3500 Assistant
4500 r-t Full
4000 Full
2500 Associate
3500 Associate

Figure 1: The Prof relation

Department
ComputerScience
ComputerScience
ComputerScience
ComputerScience
Engineering

Example 1 Given the relation Prof in figure 1. The
query ‘What is the average salary of professors in Com-
puter Science for each rank?” can be expressed by average-
Sal = avg((ProjSa1) (SELECT (Prof WHERE Prof. De-
partment = ‘ComputerScience’)) BY Prof. Position) The
result of this is depicted in figure 2.

- 288 -

Figure 2: The Average-Sal relation

As shown below, the evaluation of an aggregate func-
tion can be performed in several stages. This decompo
sition not only facilitates an understanding of the un-
derlying semantics, but it will also serve as a vehicle for
the remainder of the paper.

Definition 5 Let Ai and Aj be attributes of the rela-
tion r. An aggregate function, f((Ai)(r) BY Aj), can
be evaluated in the following manner:

1; First, the relational expression denoted by T is
evaluated in the usual manner.

2. Then, the tuples are partitioned by the distinct val-
ues of the attribute Aj.

3. The aggregate operator f is applied to each par-
tition P generated in step 2, i.e., the aggregate
function f is replaced by a set of scalar aggregates
of the form f((Ai)(P)) which are evaluated by def-
inition 3.

4. The result of the aggregate evaluation for each
partition is associated with the attribute value from
Aj based on which the partition was performed.

The partition in step 2 of definition 5 is straightforward
for precise (crisp) values of Aj. The partition of the
relation r on the attribute Aj corresponds to a function
from the values a+ of the domain of Aj to a set of tuples
taken from r defined by

P$(ai) = {t] t E r A t[Aj] = ai}. (3)

This can easily be extended to a partition on a set of
attributes instead of just one attribute Aj .

3 Basic Concepts of Fuzzy Set and Possibility
Theory

This section introduces the basic concepts of fuzzy set
and possibility theory as proposed by Zadeh [ll].

Definition 6 Let U be a universe of discourse. F is a
fuzzy subset of U, if there is a membership function
,UF : U+ [O,l], A’ h w rc associates with each element u
E U a grade of membership ~~(21) in F. A fuzzy set F is
denoted by F = {PF(W)/UI, PF(UZ)/uZ, PF(%d%d
where% E Uforl 5 i< n.

A close connection between fuzzy sets and possibility
theory has been established [ll].

Definition 7 A possibility distribution nA for A
defined on U is represented by a fuzzy set F on U
whose membership function pJ7 is identical to the pos-
sibility distribution function ?TA, i.e., (pF(U) = aA
) (VUEU).

Thus, a possibility distribution over a set U can be used
to define a fuzzy set of U, or vice versa [7]. This ex-
plains why these two concepts are used interchangeably
throughout this paper. Furthermore, possibility distri-
butions subsume the conventional and set-value repre-
sentation [lo].

The notion of o-sets [ll] allows us to get from fuzzy
to crisp sets. This is useful, for example, if we want to
make a binary decision based on imprecise information.

Definition 8 Given a fuzzy set F over U. Then the a-
level set of F, denoted by Fa, is defined by F, = {u E
u 1 W(u) 2 a)*

A fuzzy set F may be decomposed into its level sets
through the resolution identity

F=xaF, (4
a

where CYF~ is the product of (Y with the set F, and C,
is the union with a ranging from 0 to 1. The product
OF, is calculated as one might expect, hence, (YF~ =
{+l, ****, CY/U~} with ui E Fa for all i. In this pa-
per, we assume that the fuzzy sets are based on non-
continuous possibility distributions, and hence the sum-
mation in equation (4) is finite.

Finally, the extension principle introduced by Zadeh
[ll] allows arithmetic operations based on numeric val-
ues to be extended to apply to possibility distributions.

Definition 9 Given a binary operation o defined on the
elements of a universe of discourse U. Then, the oper-
ation o can be extended to apply to any two possibility
distributions II, and II, over U by the following:

= {7rz(u1)/u1] ul ~~oI&(u2),u2] u2 E U}
= {min(?r,(ul), 7rY(U2))/(U10 u2) I ul, u2 E U}.

This extension of arithmetic operations is well-defined,
since, by assumption, the operation (ul o ~2) is well-
defined for ul, u2 E U and the minimum of two real
numbers taken from [O,l] is also well-defined, resulting
in a real number again from the [O,l] interval.

4 Extending the Relational Data Model

4.1 The Possibilistic Relational Data Model

Various attempts to enhance the relational database
model by fuzzy extensions can be found in the literature
[l, 7, 12, 10, 8, 51. Th is section describes one of them,

- 289 -

called the possibilistic relational data model (PRDM)
[lo], which serves as the basis for the work presented in
this paper. A relation in PRDM is defined as follows:

Definition 10 Let Ai for i from 1 to n be attributes
defined on the domain sets lJi, respectively. Then a
possibilistic relation r is defined on R(A1, AZ,
An) as a subset of the Cartesian product of a collection
of possibility distributions:

f 2 P(U~) x P(U2) x . . . x P(U,)

where P(Ui) denotes the collection of all possibility dis-
tributions on Vi.

Each tuple t of r consists of a Cartesian product of
possibility distributions on the respective Ui’s, i.e., t[AJ
= II where II(A i) is a possibility distribution on Ui.

PRDM allows for data values that can be modeled
by possibility distributions. This includes multiple val-
ues (e.g. {23,24,25}), d iscrete possibility distributions
(e.g. {0.7/130,0.8/135}), linguistic terms as labels for
fuzzy sets (e.g. young, about - 20, light), and single val-
ues (e.g. 140). For example, the fuzzy set light could be
represented as {l.O/lOO, 0.9/110,0.7/120} as depicted
in the possibilistic relation in figure 3.

Figure 3: The person relation: a possibilistic relation

4.2 Relational Algebra for the PRDM

Several suggestions can be found in the literature on
how to extend the relational algebra operations to deal
with possibilistic data [7, 12, lo]. We limit our discus-
sion here to the SELECT operation. (Other relational
algebra operations may be found in [8, lo].) The SE-
LECT operation allows for the specification of an ap-
proximate match.

Definition 11 The syntax of the SELECT operation is

SELECT(r WHERE r.Ai is F) (5)

where F refers to a fvzzy set defined over the domain Vi
of the attribute Ai. The query is evaluated by measuring
the agreement of each tuple in the relation r with F. This
possibility measure [?” is defined by

Poss(t[Ai] is F) = zy min(TA,(U), PdU)) (VU E vi)
,

(6)

The result of a selection operation is a set of tuples,
each with an associated measure of how it satisfies the
query. It is, in general, useful to specify a threshold
of acceptance (Y E [OJ] to select all tuples that match
the selection criteria to at least that degree cr (see the
o-level set concept of definition 8).

Lemma 1 If the data is crisp, e.g., t[AJ = u = {IO/u},
then equation 6 simplifies to the following possibility
measure for a tuple t of r:

Poss(t[AJisF) = min(l.0, C(F(u)) = pF(U). (7)

For possibilistic data but a crisp selection equation 6
defaults to

Poss(t[AJ = u) = min(r&(u), 1.0) = 7r.&(U). (8)

A selection condition comparing two imprecisely speci-
fied attribute values is evaluated similarly.

Definition 12 Given the attributes Ai and Aj of rela-
tion r. To find all tuples with matching attribute values
for Ai and Aj we write

SELECT(r WHERE r.Ar =, r.Aj) (9)

This is evaluated by measuring the agreement of the two
attribute values for each tuple in the relation:

Poss(t[Ai] = t[Aj]) = (10)

m~Edmn(Ai)Udom(Aj) hn(rAi(“), ~Aj(‘)))*

This evaluation could be extended to incorporate the
similarity between domain values [lo], or, by applying
additional fuzzy modifiers, such as, the modifier very to
the fuzzy set old [12].

5 Extending FRQLs with Aggregates

In this section, it is investigated how the aggregate op-
erators presented in section 2 can be redefined to cope
with the possibilistic representation of data. The fol-
lowing three cases are to be considered:

the data over which the aggregate is to be evalu-
ated could be crisp or possibilistic;

the selection of tuples considered for the aggregac
tion could be precise or vague;

the data on which the partition is to be based
could be crisp or possibilistic.

The third case applied only to aggregate functions, while
the others must be considered for both, scalar aggre-
gates and aggregate functions. An important goal of
this research in all of the above cases is to satisfy two
principles: consistency: the generalized operations should
default to the crisp operations for conventional data;

- 290 -

and completeness: the operations should be well-defined
for the fuzzy case [l]. These principles require the gen-
eralized versions of aggregates to be natural extensions
of their crisp counterparts.

5.1 Aggregate Evaluation of Vague Queries on
Crisp Data

In the following, the aggregate operators are extended
to cope with approximate queries (fuzzy predicates) on
crisp data. An example is the query “What is the aver-
age of the high salaries of all professors?“. More gener-
ally, the queries have the form

~((A~)(SELECT(T WHERE r.Aj is F))) (11)

where F refers to a fuzzy set defined over the domain
of the attribute A,. It is not necessary that i # j as
the above example query indicates. F could be a com-
plicated expression involving fuzzy modifiers or a con-
junction/disjunction of several fuzzy sets.

According to lemma 1, the evaluation of “t[Aj] is F”
results in ,UF(U) if t[Aj] = u. This value indicates the
degree to what the tuple matches the selection criteria.
It implies that the different tuples should participate
to different degrees in the evaluation of the aggregate.
The number of tuples to be considered to be in agree-
ment with the selection depends on the chosen level of
acceptance, denoted by CY. Recall that (Y is inversely
proportional to the number of elements able to satisfy
a. We introduce the notion of an a-level relation, based
on which we then define how a scalar aggregate is to be
evaluated in a fuzzy query.

Definition 13 Let r be a relation defined over the rela-
tion schema R(Ai,Aj,...) and F be a fuzzy set over the
domain of Aj. Let a E [0, l]. Then the a-level relation
A;(a) is defined by:

A;(a) = {t 1 t E r A pF(t[Aj]) 2 a} (12)

This is based on the concept of an a-level set F, (defi-
nition 8). For a given (Y E [O,l] all tuples which satisfy
the proposition “r.Aj is F” to at least the degree Q are
collected in Aj’ (a).

Definition 14 Given r, Aj, and F from definition 13.
A query of the form shown in equation 11 is evaluated
by calculating the aggregate f on AJ(cr) for all a and
associating a with the result. The semantics are:

f((Ai)(SELECT(r WHERE r.Aj is F))) =

{P/(Y)/Y I /q(y) = supcr{f((Ai)(A;(4N = ~11. (13)

The fuzziness of F induces a fuzzy set of possible an-
swers instead of one value. The following example is
given to illustrate the above definition.

Figure 4: The fuzzy set Prestigious

Example 2 Let Prof be the relation defined in figure
1. Let Prestigious be a fuzzy set defined on the set of
different positions shown in figure 4.

The query &What is the average salary of employees
holding prestigious positions?” is formally expressed by
avg((Sala y)(SELECT(Prof WHERE
Prof.Position IS Prestigious))). This query is evaluated
by constructing a-level relations (see definition 19 and
14). Let tl be the first tuple in the Prof relation, 1.2 the
second, etc.

For (Y = 1.0, PositionProf . (4 = j t2, t3) by equation
12. Then, avg((Salay) (Pos~taonpro (1.0))) = avg(4500,
$oo)t ,= #250. Similarly, for cr = 0.8, avg((Salay)

osi ton ‘4 (0.8))) = 3625, and for a = 0.5, avg((Salay)
(Position Prof (0.5))) = 9600. Thus the Tesult of the
query is the fuzzy set {1.0/4250,0.8/3625,0.5/3600}.

The threshold level o determines which values are taken
into consideration for the evaluation. The smaller Q is
the more elements are included in the evaluation.

Lemma 2 Let r be a relation defined on a relation schema
containing the attributes Ai and Aj. If ~rl 5 a2 then
A;(4 c A;((Y~). Th’ ts implies that max(((Ai)A;(al))
2 max(@i) C orrespondingly, min(((Ai)AI(crl))
5 min(((Ai)Aj’(aa)) d 1 an a so sum(((Ai)Aj’(crl)) 2
sum(((A)A~ (a2)).

There is no monotonicity for the other aggregates [S].
It may be of interest to summarize the result of such
a query in a more concise way. A simple approach is
to give an a value which one considers to be a suffi-
cient matching degree; then the result of applying the
aggregate to A’(a) would be returned. While the dis-
cussion in this section has concentrated only on scalar
aggregates, the’approach proposed here can be directly
extended to aggregate functions. This is done by first
partitioning the relation, which produces precise par-
titions, since the underlying data is crisp. Then, each
partition can be treated as outlined above.

5.2 Evaluation of Scalar Aggregates on Possi-
b&tic Data

The queries considered in this section correspond to the
ones described in definition 3, however, possibility dis-
tributions are now allowed as attribute values instead
of just simple constants. The proofs of consistency are
omitted, but can be found in [9].

- 291 -

5.2.1 Generalized Count Aggregate

The count aggregate, defined in definition 3, returns
the number of tuples of a relation. One can directly
adopt this definition for the possibilistic case. This is
referred to as fcountl. An alternative is the use of the
sigma-count operation [ll], which is defined as follows.

Definition 15 Given a fuzzy subset F over U, i.e., F =
{P(W)lUl, /J(uz)lu2, ***t p(un)/un}. Then, the cardi-
nality of F, called sigma-count, is the sum of the grades
of memberships in F. Thus, sigma-count(F) = & ,u(ui).

We propose to use the sigmacount as an extended count
aggregate, here called fcount2.

Definition 16 Given a relation r defined on the rela-
tion schema R(..,A,...). Let A be defined on the domain
u = {Ul, u,). The relation I‘ consists of tuples ti with
1 < i 5 m. Let &[A] = {pi(u1)/u1, pi(uu)/un}
(Vg. Then the fcount2 aggregate on the attribute A of
r is defined by fcount2((A)(r)) = CK”=, ~~zI ,ui(uj).

The result of a fcount2 operation is a real number,
but it is understood that the result may be rounded,
if necessary. The fcount2 operation does not exhibit
all features of the conventional count operation, i.e., it
does not always return the same value for the different
attributes of a relation. If this characteristic is required,
then the designer will choose the fcountl operator over
the f count2 aggregate. The f count2 operator has been
proven useful for defining the generalized average oper-
ator (see section 5.2.5).

Example 3 The fcountl for the Weight attribute of
the person relation in figure 3 is 4, since there aPe four
tuples. Whereas, fcount,$((Weight)(person)) = 6.2.

5.2.2 Generalized Sum Aggregate

The sum aggregate is is only defined for numeric do-
mains. Necessary characteristics of the extended sum
aggregate are commutativity and sssociativity, since the
relational data model does not impose any order on the
tuples of a relation [2]. The sum aggregate, here termed
fsum, is based on the extension principle (definition 9).

Definition 17 Given r, R, A, U and the tuples ti from
definition 16. The tuples ti are assumed to take on pos-
sibilistic values for the attribute A, i.e., for i from 1 to
m we have &[A] = {pi(tlki)/uki 1 1 5 ki < n}. The
fsum ‘aggregate of the attribute A of a relation r is de-
fined by fsum((A)(r)) = {U/Y 1 ((Y = %& uki)
h(u = mir$, pj(uki))) (Vkl, km : 1 5 kl, km <
41.

It is fairly straigthforward to see that the fsum oper-
ation is commutative as well as associative, since both
the summation and the minimum operation are. The

result of the fsum aggregate is in general a possibility
distribution. An example of the fsum aggregate opera-
tor is given next.

Example 4 The fsum aggregation of the Weight of
the relation person offigure 3 is fsum((Weight)(person))
= {0.6/460,1.0/470,0.9/480,0.7/490}.
This result states that the sum of all values is 470 with
the possibility of 1.0, and that values close to 470 am
also possible results.

5.2.3 Generalized Max Aggregate

The max aggregate is defined for any domain that has
an order defined on it. The extension of the max aggre-
gate to deal with possibility distributions, here called
fmax, is again based on definition 9. Consequently,
commutativity and associativity of the operation are
guaranteed.

Definition 18 Given r, A, U and ii’s from the previ-
ous dejinition. The fmax scalar aggmfate is defined by
fmax((4(r)) = {U/Y I ((Y = maxkZkluki) A(u =
mir& c(i(uki))) (Vkl, km : 1 5 kI, km < n)}

This generalization of the maximum aggregate is well-
defined for the same reasons that the extension principle
is. The result of the f maz aggregate is in general a ~0%
sibility distribution. An example of the f rnaz operation
is given below.

Example 5 The fmax of the Weight attribute of re-
lation person of figure 3 is fmaz((Weight)(person)) =
{0.6/130,0.6/130,0.6/130,1.0/130,0.9/130,0.7/130} =
130 This is a realistic resuh, since 180 is indeed the
maximum value.

5.2.4 Generalized Min Aggregate

The min aggregate is extended for the possibilistic data
models in the same manner as the max aggregate, ex-
cept for replacing the symbol max in definition 18 by
min.

Example 6 The fmin of the Weight attribute of re-
lation person of figure 3 is fmin((Weight)(person)) =
{ l.O/lOO, 0.9/110}. Th is is intuitive, since 100 and 110
are among the lowest values of the Weight attribute.

5.2.5 Generalized Avg Aggregate

One could define the generalized average aggregate in
terms of the quotient of the generalized sum and count
aggregates. We take an alternative route based’on the
possibilistic expected value, PEV, a concept introduced
by Zemankova and Kandel [12].

- 292 -

Definition 19 Let A be an attribute of a numeric do-
main U. Let rr(ui) be the possibility distribution for value
u+, and n the number of x(ui)/ui pairs for the attribute
A. The PEV for attribute A is defined by

We propose to define the average aggregate favg in
terms of the PEV operation by replacing the denomi-
nator n by fcount2.

Defipition 20 Given r, A, U and the tuples t+ from
definition 16. Now, the favg operator is defined to be

favd(A)(r)l = CL, Cj”=, Pi(“i)*uj
fcount2((A)(r)) *

The favg operator results in a real number, and may
be rounded, if necessary. The favg operator is demon-
strated by an example below.

Example 7 Given the relation in figure 3. Since
fcount2((Weight)(person)) = 6.2, we have
favg((Weight)(p erson)) = (l* 100+0.9* 110+0.7* 120
+l * 130 + 0.6 * 120 + 1 * 130+ 1 * 110)/6.2 = 725/6.2 =
116.9

Finally, the conventional any operator can be directly
adopted from definition 3 since it tests whether there is
a tuple in the relation or not, and thus does not consider
the actual content of the relation.

5.3 Aggregate Evaluation of Aggregate Func-
tions on Possibilistic Data

As was outlined in section 2.3, aggregate functions are
based on the evaluation of scalar aggregates. This also
holds for aggregate functions in the PRDM. If the at-
tribute values on which the partition is baaed are precise
values then the extensions to be made for the possibilis-
tic relational database are straightforward as shown in
the next section. The case where attribute values on
which the partition is baaed are possibilistic is presented
in section 5.3.2.

5.3.1 Partitioning on Precise Data

If the attribute values.on which the partition is based
consist exclusively of crisp values, then it is in fact pos-
sible to directly translate the procedure described in
definition 5 by translating the individual operations of
step 1, such as selection by WHERE clause, to their
corresponding fuzzy counterparts. Thus, it may affect
step 1 of the evaluation process described in definition 5.
This is because the partition of tuples by the BY clause
produces an exact partition. The only other change
concerns the scalar aggregates applied in step 3 of the
procedure which now are replaced by the generalized
scalar aggregates as defined in section 5.2. The follow-
ing example demonstrates the procedure of evaluating

an aggregate function over possibilistic data by parti-
tioning it on precise data.

Example 8 Let person be the relation given in figure
3. The values for the Weight attribute are possibilis-
tic, but the values for the Sex attribute are all pre-
cisely known. The query “What is the average Weight
of the persons for each sex?” is formally expressed by
favd(WeW)(p erson) BY Sex). This can be evaluated
as follows:

1. Step one is not needed.

2. First, find the attribute values to partition on by

PROJECT[s,,](person) = {male, female}.

Thus, by equation (3’) there are the following two
partitions:

l e&n(male) = {(Uwe, 130, male),

W ans, {0.6/120,1.0/130}, male));

l $&,,,(female) = {(Anita, {l.O/lOO,
0.9/110,0.7/120) ,femole), (Mary, 110,
female)}.

3. Next, apply the scalar aggregate operator average
to each partition:

l favg((Weight)(e&,,, (male))) = favg(130,
{0.6/120,1.0/130}) = 127.7

l favg((Weight)(~&, (female))) = favg(110,
{l.O/lOO, 0.9/110,0.7/120}) = 109.1

4. Associate the result obtained for each partition
with the value on which that partition was based.
The result relation is depicted in figure 5.

female 1 109.1

Figure 5: The avg-weight-by-sex relation

5.3.2 Partitioning on Possibilistic Data

Below, we base the partitioning process on an attribute
containing possibilistic data. Under these circumstances,
one cannot find a real partition any more. The best
one can hope for is to determine to what degree a tu-
ple participates in a given partition. Furthermore, it is
possible that tuples participate in and thus contribute
to more than one partition. Note the similarity be-
tween this situation and the case discussed in section
5.1. For simplicity, we assume that the attribute over
which the aggregate is to be evaluated is of crisp na-
ture. The problem of partitioning on possibilistic data

- 293 -

leads to the introduction of a new concept, the a-level
partition, which is defined in definition 21. Definition
22, a variation of definition 14, describes how the aggre-
gate function f((Ai)(r)BYAi) is to be evaluated when
allowing possibilistic values for Aj while Ai consists of
crisp values.

Definition 21 Let r be a relation defined over the rela-
tion schema R(Ai, Aj,...). Let the attribute Ai be crisp,

and the attn’bute Aj be possibilistic. Let D be the active
domain of Aj, i.e. D = {a 1 (t E r) A p+~](a) > 0)
denotes the set of values on which the partikon is to be
based. The partition function P as defined in equation
9 has to be modified to accommodate for membership
values, thus, for all a E D we have:

Pp’(a) = (1 1 (t E r) A (a E D) A (/h[Aj)(a) > 0)) (14)

Let a E [0, l]. For each partition e(a) define the (Y-
level partition L$ (CX, a), a function of two variables a
and a, by:

L:‘j(a, a) = I t I (t E J+(a)) A (b[Aj](a) L a)) (15)

Definition 22 Given r, Ai, Aj and D from the pre-
vious definition. Then the qney f((Ai)(r)BYAj) is

evaluated by computing for each partition e(a) the
supremum of the aggregate evaluation of all associated
a-level partitions L?(cY, a) for all (Y. Mow precisely,

f((Ai)(r)BYAj) = {a o F 1 (a E D)A

F = {PI(Y)/Y I CC~(Y) = supa{f((Ai)(L;4j(a,a))) =(;i{.

An example is given next to illustrate the previous def-
inition.

Salary
3500
4500

t

4000
2500
3500

Position
{l.O/Assistant, 0.8/Associate}
{ l.O/Full}
{l.O/Full, 0.5/Associate}
{l.O/Associate, 0.7/Assistant}
{ 1 .O/Associate)

Figu ;re 6: The Prof relation

Example 9 Given the relation Proffromfigure 6. The
query “What is the maximum salary of professors per
position” formally expressed by fmax((Salay)(Prof) BY
Position) has to be evaluated according to definition 22.

1. Again, step 1 is not needed for this example.

2. First, find the attribute values to partition on;
they correspond to the active domain D which is
D = (Full, Associate, Assistant). This results in
three partitions according to equation (14). Each
tuple in a partition has associated with it a mem-

bership value indicating to what degree it par&$
pates in that partition:

l e$““(Full) = {(Jack, . ..) with 1.0;
(Julie , . ..) with 1.0.)

l ~~~““(Associate) = {(Tom, . ..) with 0.8;
(Julie , . ..) with 0.5; (Mary, . ..) with 1.0;
(Frank, . ..) with 1.0)

l P$zF”O”(Assistant) = ((Tom, . ..) with 1.0;
(Mary, . ..) with 0.7)

3. NOW, by equatio? 15, we can determine for all
partitions 3$‘m (a) the diflerent a-level parti-
tions L@*‘On(a, a) for each distinct a. Then, we
apply the scalar aggregate operator, max, to those
a-level partitions L$$y”“(cu, a):

l fmax((salay)(~~$~ (Full)) :

- for a = 1.0: j?nax((Salay)(L~~~~ (1.0,
Full)) = max(4500, 4000) = 4500.

l fmax((salay)(P$$jm(Associate)) :

- for a = 1.0: fmax((Salay)(L~$~(l.O,
Associate)) = 3500.

- for a = 0.8: fmax((Salay)(Li$“” (0.8,
Associate)) = 9500.

- for a = 0.5: fmaz((Salay)(L~~~~(O.5,
Associate)) = 4000.

l fmax((salay)(e,“$m (Apsistant)) :

- for a = 1.0: fmax((Salay)(L~~~~ (1.0,
Assistant)) = 3500.

- for (I = 0.7: fmax((Salay)(L$~~~ (O-7,
Assistant)) = 3500.

4. The result of the scalar aggregate evakation for
each a-level partition is associated with the respec-
tive levela. Finally, combine all these CY/L$$‘~(~,
a) pairs for all a-level partitions of a given parti-

a possibility distribution.
is depicted in figure 7.

-;
-y,

Assistant 1 (1.0/3500)

Figure 7: The max-Sal-per-position relation

Finally, if both attributes, i.e. the attribute to par-
tition on and the attribute on which to evaluate the
aggregate function are possibilistic, then. according to
definition 22 the result of the third step of the aggre-

- 294 -

gate evaluation process would be of the following form:
0.7/{ 1.0/2500,0.8/3500,0.5/4000}. This can be evalu-
ated by taking the minimum of the membership values,
which results in {0.7/2500,0.7/3500,0.5/4000}.

5.4 Vague Queries on PossibiIistic Data

We conclude with a discussion of how to combine the ag-
gregate evaluation approach dealing with vague queries
(section 5.1) with that for handling possibilistic data
(section 5.2 and section 5.3). At this point, we favor
the simplification of the evaluation strategy as indicated
at the end of section 5.1. More specifically, the user
chooses an (Y value s/he considers to be an acceptable
threshold value for an approximate selection. When the
user specifies a query involving a vague selection clause,
such as “Find all old people”, the result will be the list
of tuples which satisfy that selection criteria with at
least the degree (Y. Hence, the result of a vague selec-
tion would be an a-level relation described in equation
12.

Introducing possibilistic data concerns us in as much
as the data underlying the selection clause is possibilis-
tic. Then the evaluation of a vague selection clause,
such as “Age is old”, has to be altered. Definition 14
is modified by evaluating the vague selection in accor-
dance with equation 6 instead of lemma 1. This again
produces a possibility measure for each tuple describ-
ing the degree of matching between the tuple and the
selection clause. All tuples with a possibility measure
above the threshold (Y are collected in the respective
o-level relation, i.e., they will be considered further in
the query evaluation process. In terms of the aggregate
evaluation process outlined in definition 5, this means
that the vague query part is dealt with in step 1 of
the process. A non-base relation (o-level relation) is
generated in step 1, based on which the aggregate eval-
uation process can continue with the remaining steps as
discussed in section 5.2 and 5.3.

6 Conclusions

The PRDM [lo] is a generalized version of the relational
database model capable of capturing precise, as well as
imprecise, data. By extending the query languages for
the conventional relational database model, the model
is able to handle vague queries on both types of data.
However, to make use of the PRDM in real world appli-
cations, it became imperative to develop and incorpo-
rate suitable aggregate evaluation mechanisms, found
in most existing relational database systems, such as,
System R or Ingres [3].

The major contribution of this paper is the develop-
ment of a framework of evaluation procedures for scalar
aggregates as well as aggregate functions for the PRDM.
In particular, our approach handles the application of
aggregate operators within vague queries as well as the
application of aggregates to possibilistic data found in

the PRDM. We show that the handling of aggregate
functions in the PRDM can be handled in a natural
and intuitive manner. The usefulness of all new opera-
tors is demonstrated in a pragmatic manner by intuitive
examples.

Possible extensions to this research are manifold.
For instance, aggregate operations for fuzzy data mod-
els which are not based on the notion of discrete pos-
sibility distributions are needed, e.g., interval represen-
tations, continuous functional descriptions, or continu-
ous possibility distributions. Also, the question of up-
date operations in possibilistic databases is mostly un-
explored. For example, it is not obvious how to perform
an operation such as “Update the salaries of all old peo-
ple”.

References

PI

PI

[31

141

151

PI

PI

PI

PI

PO1

WI

WI

Buckles, B. P. and Petry, F. E. A Fuzzy Representa-
tion of Data for Relational Databases. Fuzzy Sets and
Systems. 7, (1982), 213 - 226.

Codd, E. F. A relational model of data for large shared
data banks. Communicationa of the ACM 13, 6 (June
1970), 337 - 387.

Date, C. J. A Guide to Ingres. Addison-Wesley Pub.
Co., Reading, Msss, 1987.
Klug, A. Equivalence of Relational Algebra and Re-
lational Calculus Query languages Having Aggregate
Functions. Journal of ACM 29, 3 (July 1982), 699 -
717.
OezsoyogIu, G., OezsoyogIu, Z. M. and Matos, V. Ex-
tendin Relational Algebra and Relational Calculus
with et-valued Attributes and Aggregate Functions. 8
gi6zy5Tws. on Database Systems 12, 4 (Dec. 1987),

Prade, H. Global Evaluations of Fuzzy Sets of Items
in Fuzzy Data Bases. Int. Workshop on Fuzzy System
Applications. Fukuoka, Japan, (Aug 1988).

Prsde, H. and TestemaIe, C. Generalizing database
relational algebra for the treatment of incom-
plete/uncertain information and vague queries. Infor-
mation Science 34, (1984), 115 - 143.

Raju, K. V. S. V. N. and Majumdar, A. K. Fuzzy Func-
tional De
of Fuzzy R1

endencies and Lossless Join Decom osition
elational Database Systems. ACM &-I ns. on

Database Systems 13, 2 (June 1988) 129 - 166.

Rundensteiner, E. A. and Bit, L. Evaluating Aggregate
Functions on Possibiistic Data. University of CaIifor-
nia, Irvine Information and Computer Science Depart-
ment, Tech. Rep. 89-12, May 89.

Rundensteiner, E. A. The Development of a Fuzzy
Temporal Relational Database (FTRDB): An Artificial
InteIIi ence Ap Iication. Master’s thesis. De

5 F
t. of Com-

puter aence. lorida State University. 198 . 7

Zadeh, L. Fuzzy Sets. Information and Control 8,
(1965), 338 - 353.

Zemankova, M. and Kandel, A. Fuzzy Relational
Database - A Key to Expert Systems. Koeln: Verlag
TNV RheinIand, 1984.

- 295 -

- 296 -

