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Abstract 

Fuzzy set theory represents a uniform framework 
for extending the relational database model to han-, 
dle imprecision of information found in the real world. 
None of the existing proposals for data models han- 
dling imprecision has dealt with queries involvin ag- 
gregate operators. This paper presents a framewor for ek 
handling aggregates in the context of imprecise infor- 
mation. Two kinds of aggregates, namely, scalar ag- 
gregates and aggregate functions, are being supported. 
We consider three cases: aggregates within approxi- 
mate queries on precise data, aggregates within pre- 
cisely specified queries on possibilistic data, and aggre- 
gates within vague queries on imprecise data. These 
extensions are based on fuzzy set-theoretical concepts 
such as the extension principle and the possibilistic ex- 
pected value. 

I Introduction 

It has been widely recognized that the uncertainty in- 
herent in real world data has to be dealt with in database 
systems. Research addressing this problem has to a 
large extend been based on fuzzy set theory [ll]. The 
two major objectives of these efforts are (1) enhance- 
ments to existing data models for representing incom- 
plete and uncertain data, and (2) the development of 
new retrieval techniques for such data. The first issue 
addresses the limitation of conventional data models to 
allow attributes to take but one constant value from a 
domain [l, 8, 71. Th e second problem is the inadequacy 
of current relational query languages (,RQLs) to cope 
with different types of fuzzy representations of data. 
Most attempts to design an enhanced RQL, here called 
a FRQL [7,12], are based on some form of the generally 
accepted relational algebra or relational calculus [2]. 
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Database systems featuring only retrieval and up- 
date operations [2] are inadequate for many important 
applications [4]. Virtually all real-world problems need 
query capabilities involving aggregate and statistical 
functions [3]. This strongly suggests that the evalua- 
tion of aggregates hae to be dealt with in the context of 
the extended relational models. However, most research 
on extending relational query languages has neglected 
this issue; the only notable exception is the work of 
Oezsoyoglu et al [5]. 

This paper investigates the incorporation of aggre- 
gate operators commonly found in traditional query lan- 
guages like SQL or QUEL [3] into FRQLs. There are 
three general cases we consider. First, we handle ap- 
proximate queries on a relational database containing 
precise information. An example of this situation is the 
query “What is the maximum salary of all old professors 
at UCI?” with the age and salary being precisely known 
and old being a fuzzy set defined on the Age attribute. 
The second case occurs when the query is exact but 
the information stored in the database is of possibilistic 
nature. An example of this case is the query “What 
is the maximum salary of professors at UCI?” where 
the salary is specified imprecisely in the database. The 
third case is obtained by combining the two approaches 
to handle queries with approximate restrictions against 
a database containing possibilistic specified data. The 
solutions proposed in this paper satisfy two principles, 
consistency and completeness. 

The paper is structured in the following manner. 
First, we review the aggregate operators in the context 
of the relational data model (section 2). The basics of 
fuzzy set theory are presented in section 3. A possibilis- 
tic extension of the relational database model and the 
relational algebra is introduced in section 4, referred to 
as Possibilistic Relational Data Model (PRDM). Section 
5 is devoted to our proposal for evaluating aggregates 
within the PRDM. Conclusions and future research are 
presented in the last section. 

2 Aggregates in Relational Query Languages 

In this section, we review how aggregates are handled 
within the classical relational data model [2, 41. 

Amsterdam, 1989 
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2.1 The Classical Relational Model 

A relational data model consists of a set of attribute 
names Ai, a set of corresponding domains Ui, and a set 
of relation schemas l& and relations ri. 

Definition 1 A set of attributes {Al, ..,, A,,} is called 
a relation schema R(A1, . . . . A,), or short R. Let Vi 
be the domain of the attribute Ai, with 1 5 i < n. A 
relation I‘ on R is defined as a subset of the Cartesian 
product of the domains Vi, i.e., r C VI x . . . x U,,. Each 
tuple t+ E r has the form < ai1 x . . . x ai, > with aij E 
Uj. &[Aj] denotes the value of tuple Q on attribute Aj, 
i.e., &[Aj] = aij . 

Query languages for the relational database model 
(RQLs) are based on either the relational algebra or 
the relational calculus, both proposed by Codd [2]. In 
this paper, we use the relational algebra. We chose a 
notation similar to the one of QUEL [3] over a more 
formal mathematical one in order to make the queries 
more understandable. For a definition see [3]. 

2.2 Scalar Aggregates 

Retrieval statements exclusively composed from retrieval 
operations are inadequate for most applications of data- 
base management systems [4]. Many real-world queries 
require the application of aggregate and statistical func- 
tions to database relations. Consequently, most com- 
mercially available systems provide a set of such aggre- 
gate operators [3]. In general, two types of aggregate 
operators are supported by RQLs; these are scalar ag- 
gregates and aggregate functions [3]. (For the latter see 
section 2.3). 

Scalar aggregates take a set of tuples (a relation) as 
an argument and produce a single value as a result. The 
following describes their syntax and semantics. 

Definition 2 Let r be a relation on the relation schema 
R(Al, . . . . A,,). The syntax for a scalar aggregate f on Ai 
;i relation r is f((Ai)(r)) . The semantics are defined 

f((A)(r)) = Y with Y = f{t[A] 1 t E r) (1) 

A precise definition of the most common aggregate op 
erators is provided next. 

Definition 3 Let the relation r defined on the relation 
schema R consist of n tuples, with n s 0. Let t be a 
tuple variable in r and A an attribute m R. 

1. count((r.A)(r)) = n 

2. sum((r.A)(r)) = CVtcr t[A] if n > 0 

9. min((r.A)(r)) = minvtEr t[A] if n > 0 

4, maz((r.A)(r)) = maxvtEr t[A] if n > 0 

5. avg((r.A)(r)) = $ xvter t[A] if n > 0 

6. any((r.A)(r)) = sign(n) where sign(n) = +l 
if n > 0 and sign(n) = 0 if n = 0. 

2. to 5 are assumed to result in 0 whenever n = 0. 

A scalar aggregate can be calculated independently from 
the rest of the query and then simply replaced by its 
value. 

2.3 Aggregate Functions 

Aggregate functions compute aggregations over one or 
more subsets of a relation. They first partition the rela- 
tion on the values of some attribute and then compute 
the aggregation separately for each partition. The re 
suit of an aggregate function is a relation whose number 
of tuples equals the number of initial partitions. The 
result tuples consist of the attribute values on which 
the partition has been formed and the corresponding 
aggregate value for each partition. The syntax and un- 
derlying semantics [4] are shown below: 

Defmition 4 Let r be a relation on R(A1, . . . . A,,). The 
application of an aggregate function f on the attribute 
Ai is specified by f ((Ai) BY Aj) with 1 5 i,j 5 n. 
The semantics of this are given by 

f((Ai)(r)BYAj) = (t[Aj] 0 Y 1 (t E r)A 

(Y = f({t’[AiI I (t’ E r) A t’[Aj] = t&l}))}. (2) 

Definition 4 can easily be extended to partition on more 
than one attribute by replacing the attribute Aj by a 
set of attributes X with X C R. An example is given 
next. 

Name 
Tom 
Jack 
Julie 
M=Y 
Frank 

SZbl~Y Position 
3500 Assistant 
4500 r-t Full 
4000 Full 
2500 Associate 
3500 Associate 

Figure 1: The Prof relation 

Department 
ComputerScience 
ComputerScience 
ComputerScience 
ComputerScience 
Engineering 

Example 1 Given the relation Prof in figure 1. The 
query ‘What is the average salary of professors in Com- 
puter Science for each rank?” can be expressed by average- 
Sal = avg((ProjSa1) (SELECT (Prof WHERE Prof. De- 
partment = ‘ComputerScience’)) BY Prof. Position) The 
result of this is depicted in figure 2. 
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Figure 2: The Average-Sal relation 

As shown below, the evaluation of an aggregate func- 
tion can be performed in several stages. This decompo 
sition not only facilitates an understanding of the un- 
derlying semantics, but it will also serve as a vehicle for 
the remainder of the paper. 

Definition 5 Let Ai and Aj be attributes of the rela- 
tion r. An aggregate function, f((Ai)(r) BY Aj), can 
be evaluated in the following manner: 

1; First, the relational expression denoted by T is 
evaluated in the usual manner. 

2. Then, the tuples are partitioned by the distinct val- 
ues of the attribute Aj. 

3. The aggregate operator f is applied to each par- 
tition P generated in step 2, i.e., the aggregate 
function f is replaced by a set of scalar aggregates 
of the form f((Ai)(P)) which are evaluated by def- 
inition 3. 

4. The result of the aggregate evaluation for each 
partition is associated with the attribute value from 
Aj based on which the partition was performed. 

The partition in step 2 of definition 5 is straightforward 
for precise (crisp) values of Aj. The partition of the 
relation r on the attribute Aj corresponds to a function 
from the values a+ of the domain of Aj to a set of tuples 
taken from r defined by 

P$(ai) = {t ] t E r A t[Aj] = ai}. (3) 

This can easily be extended to a partition on a set of 
attributes instead of just one attribute Aj . 

3 Basic Concepts of Fuzzy Set and Possibility 
Theory 

This section introduces the basic concepts of fuzzy set 
and possibility theory as proposed by Zadeh [ll]. 

Definition 6 Let U be a universe of discourse. F is a 
fuzzy subset of U, if there is a membership function 
,UF : U+ [O,l], A’ h w rc associates with each element u 
E U a grade of membership ~~(21) in F. A fuzzy set F is 
denoted by F = {PF(W)/UI, PF(UZ)/uZ, . . . . . PF(%d%d 
where% E Uforl 5 i< n. 

A close connection between fuzzy sets and possibility 
theory has been established [ll]. 

Definition 7 A possibility distribution nA for A 
defined on U is represented by a fuzzy set F on U 
whose membership function pJ7 is identical to the pos- 
sibility distribution function ?TA, i.e., (pF(U) = aA 
) (VUEU). 

Thus, a possibility distribution over a set U can be used 
to define a fuzzy set of U, or vice versa [7]. This ex- 
plains why these two concepts are used interchangeably 
throughout this paper. Furthermore, possibility distri- 
butions subsume the conventional and set-value repre- 
sentation [lo]. 

The notion of o-sets [ll] allows us to get from fuzzy 
to crisp sets. This is useful, for example, if we want to 
make a binary decision based on imprecise information. 

Definition 8 Given a fuzzy set F over U. Then the a- 
level set of F, denoted by Fa, is defined by F, = {u E 
u 1 W(u) 2 a)* 

A fuzzy set F may be decomposed into its level sets 
through the resolution identity 

F=xaF, (4 
a 

where CYF~ is the product of (Y with the set F, and C, 
is the union with a ranging from 0 to 1. The product 
OF, is calculated as one might expect, hence, (YF~ = 
{+l, ****, CY/U~} with ui E Fa for all i. In this pa- 
per, we assume that the fuzzy sets are based on non- 
continuous possibility distributions, and hence the sum- 
mation in equation (4) is finite. 

Finally, the extension principle introduced by Zadeh 
[ll] allows arithmetic operations based on numeric val- 
ues to be extended to apply to possibility distributions. 

Definition 9 Given a binary operation o defined on the 
elements of a universe of discourse U. Then, the oper- 
ation o can be extended to apply to any two possibility 
distributions II, and II, over U by the following: 

= {7rz(u1)/u1 ] ul ~~oI&(u2),u2 ] u2 E U} 
= {min(?r,(ul), 7rY(U2))/(U10 u2) I ul, u2 E U}. 

This extension of arithmetic operations is well-defined, 
since, by assumption, the operation (ul o ~2) is well- 
defined for ul, u2 E U and the minimum of two real 
numbers taken from [O,l] is also well-defined, resulting 
in a real number again from the [O,l] interval. 

4 Extending the Relational Data Model 

4.1 The Possibilistic Relational Data Model 

Various attempts to enhance the relational database 
model by fuzzy extensions can be found in the literature 
[l, 7, 12, 10, 8, 51. Th is section describes one of them, 
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called the possibilistic relational data model (PRDM) 
[lo], which serves as the basis for the work presented in 
this paper. A relation in PRDM is defined as follows: 

Definition 10 Let Ai for i from 1 to n be attributes 
defined on the domain sets lJi, respectively. Then a 
possibilistic relation r is defined on R(A1, AZ, . . . . 
An) as a subset of the Cartesian product of a collection 
of possibility distributions: 

f 2 P(U~) x P(U2) x . . . x P(U,) 

where P(Ui) denotes the collection of all possibility dis- 
tributions on Vi. 

Each tuple t of r consists of a Cartesian product of 
possibility distributions on the respective Ui’s, i.e., t[AJ 
= II where II(A i ) is a possibility distribution on Ui. 

PRDM allows for data values that can be modeled 
by possibility distributions. This includes multiple val- 
ues (e.g. {23,24,25} ), d iscrete possibility distributions 
(e.g. {0.7/130,0.8/135} ), linguistic terms as labels for 
fuzzy sets (e.g. young, about - 20, light), and single val- 
ues (e.g. 140). For example, the fuzzy set light could be 
represented as {l.O/lOO, 0.9/110,0.7/120} as depicted 
in the possibilistic relation in figure 3. 

Figure 3: The person relation: a possibilistic relation 

4.2 Relational Algebra for the PRDM 

Several suggestions can be found in the literature on 
how to extend the relational algebra operations to deal 
with possibilistic data [7, 12, lo]. We limit our discus- 
sion here to the SELECT operation. (Other relational 
algebra operations may be found in [8, lo].) The SE- 
LECT operation allows for the specification of an ap- 
proximate match. 

Definition 11 The syntax of the SELECT operation is 

SELECT(r WHERE r.Ai is F) (5) 

where F refers to a fvzzy set defined over the domain Vi 
of the attribute Ai. The query is evaluated by measuring 
the agreement of each tuple in the relation r with F. This 
possibility measure [?” is defined by 

Poss(t[Ai] is F) = zy min(TA,(U), PdU)) (VU E vi) 
, 

(6) 

The result of a selection operation is a set of tuples, 
each with an associated measure of how it satisfies the 
query. It is, in general, useful to specify a threshold 
of acceptance (Y E [OJ] to select all tuples that match 
the selection criteria to at least that degree cr ( see the 
o-level set concept of definition 8). 

Lemma 1 If the data is crisp, e.g., t[AJ = u = {IO/u}, 
then equation 6 simplifies to the following possibility 
measure for a tuple t of r: 

Poss(t[AJisF) = min(l.0, C(F(u)) = pF(U). (7) 

For possibilistic data but a crisp selection equation 6 
defaults to 

Poss(t[AJ = u) = min(r&(u), 1.0) = 7r.&(U). (8) 

A selection condition comparing two imprecisely speci- 
fied attribute values is evaluated similarly. 

Definition 12 Given the attributes Ai and Aj of rela- 
tion r. To find all tuples with matching attribute values 
for Ai and Aj we write 

SELECT(r WHERE r.Ar =, r.Aj) (9) 

This is evaluated by measuring the agreement of the two 
attribute values for each tuple in the relation: 

Poss(t[Ai] = t[Aj]) = (10) 

m~Edmn(Ai)Udom(Aj) hn(rAi(“), ~Aj(‘)))* 

This evaluation could be extended to incorporate the 
similarity between domain values [lo], or, by applying 
additional fuzzy modifiers, such as, the modifier very to 
the fuzzy set old [12]. 

5 Extending FRQLs with Aggregates 

In this section, it is investigated how the aggregate op- 
erators presented in section 2 can be redefined to cope 
with the possibilistic representation of data. The fol- 
lowing three cases are to be considered: 

the data over which the aggregate is to be evalu- 
ated could be crisp or possibilistic; 

the selection of tuples considered for the aggregac 
tion could be precise or vague; 

the data on which the partition is to be based 
could be crisp or possibilistic. 

The third case applied only to aggregate functions, while 
the others must be considered for both, scalar aggre- 
gates and aggregate functions. An important goal of 
this research in all of the above cases is to satisfy two 
principles: consistency: the generalized operations should 
default to the crisp operations for conventional data; 
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and completeness: the operations should be well-defined 
for the fuzzy case [l]. These principles require the gen- 
eralized versions of aggregates to be natural extensions 
of their crisp counterparts. 

5.1 Aggregate Evaluation of Vague Queries on 
Crisp Data 

In the following, the aggregate operators are extended 
to cope with approximate queries (fuzzy predicates) on 
crisp data. An example is the query “What is the aver- 
age of the high salaries of all professors?“. More gener- 
ally, the queries have the form 

~((A~)(SELECT(T WHERE r.Aj is F))) (11) 

where F refers to a fuzzy set defined over the domain 
of the attribute A,. It is not necessary that i # j as 
the above example query indicates. F could be a com- 
plicated expression involving fuzzy modifiers or a con- 
junction/disjunction of several fuzzy sets. 

According to lemma 1, the evaluation of “t[Aj] is F” 
results in ,UF(U) if t[Aj] = u. This value indicates the 
degree to what the tuple matches the selection criteria. 
It implies that the different tuples should participate 
to different degrees in the evaluation of the aggregate. 
The number of tuples to be considered to be in agree- 
ment with the selection depends on the chosen level of 
acceptance, denoted by CY. Recall that (Y is inversely 
proportional to the number of elements able to satisfy 
a. We introduce the notion of an a-level relation, based 
on which we then define how a scalar aggregate is to be 
evaluated in a fuzzy query. 

Definition 13 Let r be a relation defined over the rela- 
tion schema R(Ai,Aj,...) and F be a fuzzy set over the 
domain of Aj. Let a E [0, l]. Then the a-level relation 
A;(a) is defined by: 

A;(a) = {t 1 t E r A pF(t[Aj]) 2 a} (12) 

This is based on the concept of an a-level set F, ( defi- 
nition 8 ). For a given (Y E [O,l] all tuples which satisfy 
the proposition “r.Aj is F” to at least the degree Q are 
collected in Aj’ (a). 

Definition 14 Given r, Aj, and F from definition 13. 
A query of the form shown in equation 11 is evaluated 
by calculating the aggregate f on AJ(cr) for all a and 
associating a with the result. The semantics are: 

f((Ai)(SELECT(r WHERE r.Aj is F))) = 

{P/(Y)/Y I /q(y) = supcr{f((Ai)(A;(4N = ~11. (13) 

The fuzziness of F induces a fuzzy set of possible an- 
swers instead of one value. The following example is 
given to illustrate the above definition. 

Figure 4: The fuzzy set Prestigious 

Example 2 Let Prof be the relation defined in figure 
1. Let Prestigious be a fuzzy set defined on the set of 
different positions shown in figure 4. 

The query &What is the average salary of employees 
holding prestigious positions?” is formally expressed by 
avg((Sala y)(SELECT(Prof WHERE 
Prof.Position IS Prestigious))). This query is evaluated 
by constructing a-level relations (see definition 19 and 
14). Let tl be the first tuple in the Prof relation, 1.2 the 
second, etc. 

For (Y = 1.0, PositionProf . (4 = j t2, t3) by equation 
12. Then, avg((Salay) (Pos~taonpro (1.0))) = avg(4500, 
$oo)t ,= #250. Similarly, for cr = 0.8, avg((Salay) 

osi ton ‘4 (0.8))) = 3625, and for a = 0.5, avg((Salay) 
(Position Prof (0.5))) = 9600. Thus the Tesult of the 
query is the fuzzy set {1.0/4250,0.8/3625,0.5/3600}. 

The threshold level o determines which values are taken 
into consideration for the evaluation. The smaller Q is 
the more elements are included in the evaluation. 

Lemma 2 Let r be a relation defined on a relation schema 
containing the attributes Ai and Aj. If ~rl 5 a2 then 
A;(4 c A;((Y~). Th’ ts implies that max(((Ai)A;(al)) 
2 max(@i) C orrespondingly, min(((Ai)AI(crl)) 
5 min(((Ai)Aj’(aa)) d 1 an a so sum(((Ai)Aj’(crl)) 2 
sum(((A)A~ (a2)). 

There is no monotonicity for the other aggregates [S]. 
It may be of interest to summarize the result of such 
a query in a more concise way. A simple approach is 
to give an a value which one considers to be a suffi- 
cient matching degree; then the result of applying the 
aggregate to A’(a) would be returned. While the dis- 
cussion in this section has concentrated only on scalar 
aggregates, the’approach proposed here can be directly 
extended to aggregate functions. This is done by first 
partitioning the relation, which produces precise par- 
titions, since the underlying data is crisp. Then, each 
partition can be treated as outlined above. 

5.2 Evaluation of Scalar Aggregates on Possi- 
b&tic Data 

The queries considered in this section correspond to the 
ones described in definition 3, however, possibility dis- 
tributions are now allowed as attribute values instead 
of just simple constants. The proofs of consistency are 
omitted, but can be found in [9]. 
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5.2.1 Generalized Count Aggregate 

The count aggregate, defined in definition 3, returns 
the number of tuples of a relation. One can directly 
adopt this definition for the possibilistic case. This is 
referred to as fcountl. An alternative is the use of the 
sigma-count operation [ll], which is defined as follows. 

Definition 15 Given a fuzzy subset F over U, i.e., F = 
{P(W)lUl, /J(uz)lu2, ***t p(un)/un}. Then, the cardi- 
nality of F, called sigma-count, is the sum of the grades 
of memberships in F. Thus, sigma-count(F) = & ,u(ui). 

We propose to use the sigmacount as an extended count 
aggregate, here called fcount2. 

Definition 16 Given a relation r defined on the rela- 
tion schema R(..,A,...). Let A be defined on the domain 
u = {Ul, . . . . u,). The relation I‘ consists of tuples ti with 
1 < i 5 m. Let &[A] = {pi(u1)/u1, . . . . . pi(uu)/un} 
(Vg. Then the fcount2 aggregate on the attribute A of 
r is defined by fcount2((A)(r)) = CK”=, ~~zI ,ui(uj). 

The result of a fcount2 operation is a real number, 
but it is understood that the result may be rounded, 
if necessary. The fcount2 operation does not exhibit 
all features of the conventional count operation, i.e., it 
does not always return the same value for the different 
attributes of a relation. If this characteristic is required, 
then the designer will choose the fcountl operator over 
the f count2 aggregate. The f count2 operator has been 
proven useful for defining the generalized average oper- 
ator (see section 5.2.5). 

Example 3 The fcountl for the Weight attribute of 
the person relation in figure 3 is 4, since there aPe four 
tuples. Whereas, fcount,$((Weight)(person)) = 6.2. 

5.2.2 Generalized Sum Aggregate 

The sum aggregate is is only defined for numeric do- 
mains. Necessary characteristics of the extended sum 
aggregate are commutativity and sssociativity, since the 
relational data model does not impose any order on the 
tuples of a relation [2]. The sum aggregate, here termed 
fsum, is based on the extension principle (definition 9). 

Definition 17 Given r, R, A, U and the tuples ti from 
definition 16. The tuples ti are assumed to take on pos- 
sibilistic values for the attribute A, i.e., for i from 1 to 
m we have &[A] = {pi(tlki)/uki 1 1 5 ki < n}. The 
fsum ‘aggregate of the attribute A of a relation r is de- 
fined by fsum((A)(r)) = {U/Y 1 ((Y = %& uki) 
h(u = mir$, pj(uki))) (Vkl, . . . . km : 1 5 kl, . . . . km < 
41. 

It is fairly straigthforward to see that the fsum oper- 
ation is commutative as well as associative, since both 
the summation and the minimum operation are. The 

result of the fsum aggregate is in general a possibility 
distribution. An example of the fsum aggregate opera- 
tor is given next. 

Example 4 The fsum aggregation of the Weight of 
the relation person offigure 3 is fsum((Weight)(person)) 
= {0.6/460,1.0/470,0.9/480,0.7/490}. 
This result states that the sum of all values is 470 with 
the possibility of 1.0, and that values close to 470 am 
also possible results. 

5.2.3 Generalized Max Aggregate 

The max aggregate is defined for any domain that has 
an order defined on it. The extension of the max aggre- 
gate to deal with possibility distributions, here called 
fmax, is again based on definition 9. Consequently, 
commutativity and associativity of the operation are 
guaranteed. 

Definition 18 Given r, A, U and ii’s from the previ- 
ous dejinition. The fmax scalar aggmfate is defined by 
fmax((4(r)) = {U/Y I ((Y = maxkZkluki) A(u = 
mir& c(i(uki))) (Vkl, . . . . km : 1 5 kI, . . . . km < n)} 

This generalization of the maximum aggregate is well- 
defined for the same reasons that the extension principle 
is. The result of the f maz aggregate is in general a ~0% 
sibility distribution. An example of the f rnaz operation 
is given below. 

Example 5 The fmax of the Weight attribute of re- 
lation person of figure 3 is fmaz((Weight)(person)) = 
{0.6/130,0.6/130,0.6/130,1.0/130,0.9/130,0.7/130} = 
130 This is a realistic resuh, since 180 is indeed the 
maximum value. 

5.2.4 Generalized Min Aggregate 

The min aggregate is extended for the possibilistic data 
models in the same manner as the max aggregate, ex- 
cept for replacing the symbol max in definition 18 by 
min. 

Example 6 The fmin of the Weight attribute of re- 
lation person of figure 3 is fmin((Weight)(person)) = 
{ l.O/lOO, 0.9/110}. Th is is intuitive, since 100 and 110 
are among the lowest values of the Weight attribute. 

5.2.5 Generalized Avg Aggregate 

One could define the generalized average aggregate in 
terms of the quotient of the generalized sum and count 
aggregates. We take an alternative route based’on the 
possibilistic expected value, PEV, a concept introduced 
by Zemankova and Kandel [12]. 
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Definition 19 Let A be an attribute of a numeric do- 
main U. Let rr(ui) be the possibility distribution for value 
u+, and n the number of x(ui)/ui pairs for the attribute 
A. The PEV for attribute A is defined by 

We propose to define the average aggregate favg in 
terms of the PEV operation by replacing the denomi- 
nator n by fcount2. 

Defipition 20 Given r, A, U and the tuples t+ from 
definition 16. Now, the favg operator is defined to be 

favd(A)(r)l = CL, Cj”=, Pi(“i)*uj 
fcount2((A)(r)) * 

The favg operator results in a real number, and may 
be rounded, if necessary. The favg operator is demon- 
strated by an example below. 

Example 7 Given the relation in figure 3. Since 
fcount2((Weight)(person)) = 6.2, we have 
favg((Weight)(p erson)) = (l* 100+0.9* 110+0.7* 120 
+l * 130 + 0.6 * 120 + 1 * 130+ 1 * 110)/6.2 = 725/6.2 = 
116.9 

Finally, the conventional any operator can be directly 
adopted from definition 3 since it tests whether there is 
a tuple in the relation or not, and thus does not consider 
the actual content of the relation. 

5.3 Aggregate Evaluation of Aggregate Func- 
tions on Possibilistic Data 

As was outlined in section 2.3, aggregate functions are 
based on the evaluation of scalar aggregates. This also 
holds for aggregate functions in the PRDM. If the at- 
tribute values on which the partition is baaed are precise 
values then the extensions to be made for the possibilis- 
tic relational database are straightforward as shown in 
the next section. The case where attribute values on 
which the partition is baaed are possibilistic is presented 
in section 5.3.2. 

5.3.1 Partitioning on Precise Data 

If the attribute values.on which the partition is based 
consist exclusively of crisp values, then it is in fact pos- 
sible to directly translate the procedure described in 
definition 5 by translating the individual operations of 
step 1, such as selection by WHERE clause, to their 
corresponding fuzzy counterparts. Thus, it may affect 
step 1 of the evaluation process described in definition 5. 
This is because the partition of tuples by the BY clause 
produces an exact partition. The only other change 
concerns the scalar aggregates applied in step 3 of the 
procedure which now are replaced by the generalized 
scalar aggregates as defined in section 5.2. The follow- 
ing example demonstrates the procedure of evaluating 

an aggregate function over possibilistic data by parti- 
tioning it on precise data. 

Example 8 Let person be the relation given in figure 
3. The values for the Weight attribute are possibilis- 
tic, but the values for the Sex attribute are all pre- 
cisely known. The query “What is the average Weight 
of the persons for each sex?” is formally expressed by 
favd(WeW)(p erson) BY Sex). This can be evaluated 
as follows: 

1. Step one is not needed. 

2. First, find the attribute values to partition on by 

PROJECT[s,,](person) = {male, female}. 

Thus, by equation (3’) there are the following two 
partitions: 

l e&n(male) = {(Uwe, . . . . 130, male), 

W ans, . . . . {0.6/120,1.0/130}, male)); 

l $&,,,(female) = {(Anita, . . . . {l.O/lOO, 
0.9/110,0.7/120) ,femole), (Mary, . . . . 110, 
female)}. 

3. Next, apply the scalar aggregate operator average 
to each partition: 

l favg((Weight)(e&,,, (male))) = favg( 130, 
{0.6/120,1.0/130}) = 127.7 

l favg((Weight)(~&, (female))) = favg( 110, 
{l.O/lOO, 0.9/110,0.7/120}) = 109.1 

4. Associate the result obtained for each partition 
with the value on which that partition was based. 
The result relation is depicted in figure 5. 

female 1 109.1 

Figure 5: The avg-weight-by-sex relation 

5.3.2 Partitioning on Possibilistic Data 

Below, we base the partitioning process on an attribute 
containing possibilistic data. Under these circumstances, 
one cannot find a real partition any more. The best 
one can hope for is to determine to what degree a tu- 
ple participates in a given partition. Furthermore, it is 
possible that tuples participate in and thus contribute 
to more than one partition. Note the similarity be- 
tween this situation and the case discussed in section 
5.1. For simplicity, we assume that the attribute over 
which the aggregate is to be evaluated is of crisp na- 
ture. The problem of partitioning on possibilistic data 
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leads to the introduction of a new concept, the a-level 
partition, which is defined in definition 21. Definition 
22, a variation of definition 14, describes how the aggre- 
gate function f((Ai)(r)BYAi) is to be evaluated when 
allowing possibilistic values for Aj while Ai consists of 
crisp values. 

Definition 21 Let r be a relation defined over the rela- 
tion schema R(Ai, Aj,...). Let the attribute Ai be crisp, 

and the attn’bute Aj be possibilistic. Let D be the active 
domain of Aj, i.e. D = {a 1 (t E r) A p+~](a) > 0) 
denotes the set of values on which the partikon is to be 
based. The partition function P as defined in equation 
9 has to be modified to accommodate for membership 
values, thus, for all a E D we have: 

Pp’(a) = (1 1 (t E r) A (a E D) A (/h[Aj)(a) > 0)) (14) 

Let a E [0, l]. For each partition e(a) define the (Y- 
level partition L$ (CX, a), a function of two variables a 
and a, by: 

L:‘j(a, a) = I t I (t E J+(a)) A (b[Aj](a) L a)) (15) 

Definition 22 Given r, Ai, Aj and D from the pre- 
vious definition. Then the qney f((Ai)(r)BYAj) is 

evaluated by computing for each partition e(a) the 
supremum of the aggregate evaluation of all associated 
a-level partitions L?(cY, a) for all (Y. Mow precisely, 

f((Ai)(r)BYAj) = {a o F 1 (a E D)A 

F = {PI(Y)/Y I CC~(Y) = supa{f((Ai)(L;4j(a,a))) =(;i{. 

An example is given next to illustrate the previous def- 
inition. 

Salary 
3500 
4500 

t 

4000 
2500 
3500 

Position 
{l.O/Assistant, 0.8/Associate} 
{ l.O/Full} 
{l.O/Full, 0.5/Associate} 
{l.O/Associate, 0.7/Assistant} 
{ 1 .O/Associate) 

Figu ;re 6: The Prof relation 

Example 9 Given the relation Proffromfigure 6. The 
query “What is the maximum salary of professors per 
position” formally expressed by fmax((Salay)(Prof) BY 
Position) has to be evaluated according to definition 22. 

1. Again, step 1 is not needed for this example. 

2. First, find the attribute values to partition on; 
they correspond to the active domain D which is 
D = (Full, Associate, Assistant). This results in 
three partitions according to equation (14). Each 
tuple in a partition has associated with it a mem- 

bership value indicating to what degree it par&$ 
pates in that partition: 

l e$““(Full) = {(Jack, . ..) with 1.0; 
(Julie , . ..) with 1.0.) 

l ~~~““(Associate) = {(Tom, . ..) with 0.8; 
(Julie , . ..) with 0.5; (Mary, . ..) with 1.0; 
(Frank, . ..) with 1.0) 

l P$zF”O”(Assistant) = ((Tom, . ..) with 1.0; 
(Mary, . ..) with 0.7) 

3. NOW, by equatio? 15, we can determine for all 
partitions 3$‘m (a) the diflerent a-level parti- 
tions L@*‘On(a, a) for each distinct a. Then, we 
apply the scalar aggregate operator, max, to those 
a-level partitions L$$y”“(cu, a): 

l fmax((salay)(~~$~ (Full)) : 

- for a = 1.0: j?nax((Salay)(L~~~~ (1.0, 
Full)) = max(4500, 4000) = 4500. 

l fmax((salay)(P$$jm(Associate)) : 

- for a = 1.0: fmax((Salay)(L~$~(l.O, 
Associate)) = 3500. 

- for a = 0.8: fmax((Salay)(Li$“” (0.8, 
Associate)) = 9500. 

- for a = 0.5: fmaz((Salay)(L~~~~(O.5, 
Associate)) = 4000. 

l fmax((salay)(e,“$m (Apsistant)) : 

- for a = 1.0: fmax((Salay)(L~~~~ (1.0, 
Assistant)) = 3500. 

- for (I = 0.7: fmax((Salay)(L$~~~ (O-7, 
Assistant)) = 3500. 

4. The result of the scalar aggregate evakation for 
each a-level partition is associated with the respec- 
tive levela. Finally, combine all these CY/L$$‘~(~, 
a) pairs for all a-level partitions of a given parti- 

a possibility distribution. 
is depicted in figure 7. 

-; 
-y, 

Assistant 1 (1.0/3500) 

Figure 7: The max-Sal-per-position relation 

Finally, if both attributes, i.e. the attribute to par- 
tition on and the attribute on which to evaluate the 
aggregate function are possibilistic, then. according to 
definition 22 the result of the third step of the aggre- 
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gate evaluation process would be of the following form: 
0.7/{ 1.0/2500,0.8/3500,0.5/4000}. This can be evalu- 
ated by taking the minimum of the membership values, 
which results in {0.7/2500,0.7/3500,0.5/4000}. 

5.4 Vague Queries on PossibiIistic Data 

We conclude with a discussion of how to combine the ag- 
gregate evaluation approach dealing with vague queries 
(section 5.1) with that for handling possibilistic data 
(section 5.2 and section 5.3). At this point, we favor 
the simplification of the evaluation strategy as indicated 
at the end of section 5.1. More specifically, the user 
chooses an (Y value s/he considers to be an acceptable 
threshold value for an approximate selection. When the 
user specifies a query involving a vague selection clause, 
such as “Find all old people”, the result will be the list 
of tuples which satisfy that selection criteria with at 
least the degree (Y. Hence, the result of a vague selec- 
tion would be an a-level relation described in equation 
12. 

Introducing possibilistic data concerns us in as much 
as the data underlying the selection clause is possibilis- 
tic. Then the evaluation of a vague selection clause, 
such as “Age is old”, has to be altered. Definition 14 
is modified by evaluating the vague selection in accor- 
dance with equation 6 instead of lemma 1. This again 
produces a possibility measure for each tuple describ- 
ing the degree of matching between the tuple and the 
selection clause. All tuples with a possibility measure 
above the threshold (Y are collected in the respective 
o-level relation, i.e., they will be considered further in 
the query evaluation process. In terms of the aggregate 
evaluation process outlined in definition 5, this means 
that the vague query part is dealt with in step 1 of 
the process. A non-base relation ( o-level relation ) is 
generated in step 1, based on which the aggregate eval- 
uation process can continue with the remaining steps as 
discussed in section 5.2 and 5.3. 

6 Conclusions 

The PRDM [lo] is a generalized version of the relational 
database model capable of capturing precise, as well as 
imprecise, data. By extending the query languages for 
the conventional relational database model, the model 
is able to handle vague queries on both types of data. 
However, to make use of the PRDM in real world appli- 
cations, it became imperative to develop and incorpo- 
rate suitable aggregate evaluation mechanisms, found 
in most existing relational database systems, such as, 
System R or Ingres [3]. 

The major contribution of this paper is the develop- 
ment of a framework of evaluation procedures for scalar 
aggregates as well as aggregate functions for the PRDM. 
In particular, our approach handles the application of 
aggregate operators within vague queries as well as the 
application of aggregates to possibilistic data found in 

the PRDM. We show that the handling of aggregate 
functions in the PRDM can be handled in a natural 
and intuitive manner. The usefulness of all new opera- 
tors is demonstrated in a pragmatic manner by intuitive 
examples. 

Possible extensions to this research are manifold. 
For instance, aggregate operations for fuzzy data mod- 
els which are not based on the notion of discrete pos- 
sibility distributions are needed, e.g., interval represen- 
tations, continuous functional descriptions, or continu- 
ous possibility distributions. Also, the question of up- 
date operations in possibilistic databases is mostly un- 
explored. For example, it is not obvious how to perform 
an operation such as “Update the salaries of all old peo- 
ple”. 

References 

PI 

PI 

[31 

141 

151 

PI 

PI 

PI 

PI 

PO1 

WI 

WI 

Buckles, B. P. and Petry, F. E. A Fuzzy Representa- 
tion of Data for Relational Databases. Fuzzy Sets and 
Systems. 7, (1982), 213 - 226. 

Codd, E. F. A relational model of data for large shared 
data banks. Communicationa of the ACM 13, 6 (June 
1970), 337 - 387. 

Date, C. J. A Guide to Ingres. Addison-Wesley Pub. 
Co., Reading, Msss, 1987. 
Klug, A. Equivalence of Relational Algebra and Re- 
lational Calculus Query languages Having Aggregate 
Functions. Journal of ACM 29, 3 (July 1982), 699 - 
717. 
OezsoyogIu, G., OezsoyogIu, Z. M. and Matos, V. Ex- 
tendin Relational Algebra and Relational Calculus 
with et-valued Attributes and Aggregate Functions. 8 
gi6zy5Tws. on Database Systems 12, 4 (Dec. 1987), 

Prade, H. Global Evaluations of Fuzzy Sets of Items 
in Fuzzy Data Bases. Int. Workshop on Fuzzy System 
Applications. Fukuoka, Japan, (Aug 1988). 

Prsde, H. and TestemaIe, C. Generalizing database 
relational algebra for the treatment of incom- 
plete/uncertain information and vague queries. Infor- 
mation Science 34, (1984), 115 - 143. 

Raju, K. V. S. V. N. and Majumdar, A. K. Fuzzy Func- 
tional De 
of Fuzzy R1 

endencies and Lossless Join Decom osition 
elational Database Systems. ACM &-I ns. on 

Database Systems 13, 2 (June 1988) 129 - 166. 

Rundensteiner, E. A. and Bit, L. Evaluating Aggregate 
Functions on Possibiistic Data. University of CaIifor- 
nia, Irvine Information and Computer Science Depart- 
ment, Tech. Rep. 89-12, May 89. 

Rundensteiner, E. A. The Development of a Fuzzy 
Temporal Relational Database (FTRDB): An Artificial 
InteIIi ence Ap Iication. Master’s thesis. De 

5 F 
t. of Com- 

puter aence. lorida State University. 198 . 7 

Zadeh, L. Fuzzy Sets. Information and Control 8, 
(1965), 338 - 353. 

Zemankova, M. and Kandel, A. Fuzzy Relational 
Database - A Key to Expert Systems. Koeln: Verlag 
TNV RheinIand, 1984. 

- 295 - 



- 296 - 


