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Abstract 

Usually a statistical database contains many sum- 
mary tables representing the distribution of the same 
statistical variable over the classes of as many parti- 
tions of a certain universe of objects. Existing query 
systems allow only queries on single tables. Indeed, in 
most cases additional queries can be evaluated by com- 
bining the information contained in similar tables in a 
suitable way. 

attribute” [ 14,201) relat.ed to a given universe of 0bject.s 
or individuals, partitioned according to a set of (cate- 
gory) attributes, referred to as the scheme of the table. 

Example 1. Untuerse: Soviet people in the year 1959. 
Variable: Population (1000 individuals). Scheme: {Sex, 
Schooling, Part,y-Membership} (the data is obtained 
by processing data from Bishop et al. [4]). 

In order to improve the responsiveness of the da- 
tabase and allow an integrated use of the stored infor- 
mat.ion, we propose to inform t,he database system of 
the relationship among the partitions adopted in the 
tables. Such a relationship, called zntersection depen- 
dency, states which classes of the partitions have a non- 
empty intersection and can be represented by a uniform 
multipartite hypergraph, called intersection hypergraph. 

On the grounds of the algebraic properties of the in- 
tel Jection hypergraph and under the assumption of data 
additivity, we shall provide a characteriration of evalu- 
able queries, which allows us to define polynomial-time 
procedures both for testing evaluability and for evaluat- 
ing queries. 

Table: Distribution of the soviet populatiion 
by schooling, sex and party 
(1000 individuals) 1959 

Sex 
/ 

Schooling Party-Membership 

Yes No 

Male 

Female 

<4 0 13670 

4-7 1217 20568 

8-10 2140 21135 

> 10 672 2341 

<4 0 34730 

4-7 1071 18115 

8-10 2441 24100 

> 10 696 2424 

1. Introduction n 

With the term stattstrcul d&abase we refer to “a 
numeric database containing statistics about classes of 
objects or individuals” [ZO] (social, economic, technolog- 
ical? environmental or demographic surveys are typical 
examples). 

As usual, we shall assume that the unaggregated 
data from which the statistics have been computed is 
not available. 

For any subset S of the scheme of a t,able, all pos- 
sible combinations of values of attributes in S define a 
partition of the underlying universe into classes. 

A statistical database is a collection of (summary) 
tables, each of which represents a distribution of a cer- 
tain (statistical) uasrable (sometimes called “summary 

Example 2. The classes of the partition defined by {S, 
SC} in Example I are the groups of individuals qualified 
by the following conditions 

Pcrmirsion lo eopg without fee all OT pert of lhir material is 
graded provided that the copier are not made 01 distributed for 
direct commercial advantage, the VLDB copyright notice and 
ihe Me of the publication and iis dale appear, and notice in 
given that copying is by permission of the Vesg Large Data Base 
Endowment. To copy otherwise, or Lo republish, reqplireo a fee 
and/or special permiation from the Endowment. 

S=Male A SC< 4 

S=Male A 4gci7 

S=Male ,2 8 <SC< 10 
S=Male .? SC> 10 
S=Female ,\ SC< 4 

S=Female A 4lScl7 

S=Female h 8 <SC< 10 
S=Female A SC> 10 

q 
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The partition defined h, the whole scheme will be 
t alled a hasp part&m; it? classes correspond (one-to- 
one) to the entries in the table. 

A typical query on a statistical database requires 
the evaluation of a variable for a subset (or aggregate) 
,,f objects in the underlying universe, qualified by a log- 
ical formula built up from specified values for given at- 
tributes by means of operators A, v and 1. An aggregat,e 
is evaluable if the corresponding value to be assigned to 
the variable is uniquely determined by the data stored 
in t,he database (note that even in the case that an ag- 
gregate is not evaluable, a query can be answered in an 
‘approximate)) way [ 111). 

In literature (G,7,9,10,15,16,18,19] only logical for- 
mulas with attributes from a single table scheme have 
been considered. This means that every aggregate is the 
union of classes of a base partition, that. is, an element 
of the set field generated by that, base partition. 

Example 3. Referring to t.he table in Example 1, a user 
can ask for the population of the aggregate specified by 
the following formula 

S = Female q PM = Yes A 
(4 5 SC <_ 7 v 8 5 SC < 10) 

0 

If the data is addiltve under aggregation [8], the 

evaluation of a variable for an aggregate can be carried 
out by summing the entries corresponding to the classes 
contained in that. aggregate. 

Example 3 (continued). The answer to the query in 
Example 3 is 

Population(z)-t Population(y) = 
= 1071+ 2441 = 3512 (1000 individuals) 

where 
2: S = Female A PM.=Yee A 4ISc17 
y: S = Female *\ PM - Yes A 81ScilO q 

Indeed, a statistical database oft,en cont,ains “sim- 
ilar,, tables, that is, distributions of the same variable 
over different partitions of the same universe of objects. 

Similar tables may occur in the following typical 
c ases: 

- an organirat,ion (“data source”) collects data on the 
objects of a given universe and (#hen crea.tes a da- 
tabase (called “abstract” in [ 171 and “partitioned 
database,, in [5]) that is a collection of simple statis- 
tics; 

- an organizat.ion creates a statistical database by 
putting together t.ablas produced by different statis- 
tical agencies that refer to a common data source, 
but use different, classification criteria. 

Knowledge of relationships between attributes hr- 
longing to schemes of similar tables allows for adclit ional 
aggregates to be evaluated [12,13]. The following ex- 
ample illustrates this statement in the case in which the 

intersection dependency between classes of the b,ase par- 
titions of similar tables is known, that is, we know which 
classes of the base partitions have a nonempt,y intersec- 
tion. 

Example 4. A statistical database contains the two 
following similar tables reporting the distributions of the 
employees of a research institute by department and by 
educational qualification. El 

Table: Distribution of the employees 
by department 

I Department j Number 

Information-Systems 30 

Research 50 

Administration 20 

Table. Distribution of the employees 
by educational qualification 

Figure 1. Two similar tables. 

Example 4 (continued). Suppose that we know the 
intersection dependency between the classes of the base 

partitions in Figure 1. We can represent this informa- 
tion with the bipartite graph in Figure 2, in which an 
edge represents a pair of nondisjoint classes of the t,wo 
base part itions. 

In this case, it is possible to evaluate aggregates 
which cannot be evaluat,ed in traditional systems. An 
example of such an aggregate is 

D = Information-Systems A ( E = High-School V 

E = Degree ) v ( D = Research A E = Degree) 

In fact, on examining the graph in Figure 2 we note 
that the aggregate qualified by the formula above refers 
to the employees who work in the Information-Systems 
or Research departments and are not. Ph.Doctorb Con- 
sequently, the number of qualified employees is 
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Information 
Systems 

Research Administration 

Ph. D. High School Degree 

Figure 2. An int,ersection (hyper)graph 

Number(al) + Number(az) - Number(a4) = 30 + 50 - 
15 = 65 
where 
~1: D = Information-Systems 
a~: D = Research 
a4: E = Ph.D. q 

The edges of the bipartite graph define the classes 
of a partition of the underlying universe that is finer 
than either of the two base partitions. Such‘s partition 
will be called meet partition. 

Using formulas such as the one in the example (built 
up wit,h attributes from the schemes of similar tables) we 
‘ an express all the aggregates in the set field generated 
by the meet partition So, t,he following problem arises: 

Problem. Is each aggregate ,in the set field generated 
by t.hr meet partition evaluable ? 

In this paper we approach this problem under the 
assumption that the data stored in similar tables is ad- 
ditive and that the underlying intersection dependency 
is known perfectly. In the general case in which the 
st,atistical database contains /c similar tables, the inter- 
section dependency can be represented by a uniform k- 
partite hypergraph [l] to be called intersection hyper- 
graph, whose vertex set is in a one-to-one correspon- 
dence with the set obtained by union of the k base par- 
tit,ions, and whose edge set. is in a one-to-one correspon- 
dence with the meet partit.ion. 

The paper is organized a:: follows. Section 2 con- 
tains the formal definition of an evaluable aggregate and 
the formulation of the problem of evaluability in the 
framework of linear equation systems. Section 3 con- 
tains an algebraic characterization of evaluable aggre- 
gabes which leads t.o a quadratic procedure for testing 
evaluability, stated in Se&on 4. In Section 5 we shall 
show that evaluating an (evaluable) aggregate requires 

solving an equation system. Section 6 is dedicated to 
an illustrative example. Section 7 contains some basic 

properties of evaluable aggregates. In Section 8 we con- 
clude by pointing out t,he advantages of an “informed” 
query system. 

2. A formal framework 

Let A be a partition of a universe Cl in classes of 
objects and A+ be the set field generated by A, i.e., 
the family of subsets of R which are obtained as the 
union of a subset of classes of A. We call aggregate any 
element of A+. A+ turns out to be closed under set 
union, intersection and complementation. 

Let F be a real-valued set function defined on a set 
field A+ ; F is additive if for any two disjoint aggregates 
z and y in A+, we have 

F(z u y) = F(z) + F(y). 

Observe that any additive function F on a set field 
A+ is completely specified by the set of values {F(Q) 1 
a E A}; in fact, by virtue of the additivity, for every 
z E A+ we have 

F(z) = c F(a). (1) 
aE A 
src .r 

Consider now k partitions Al.. . . , Al, of 0. The 
meet partition E = {e,,e?, . . .,e,,,} of Al ,..., Ak is 
the partition defined as the greatest lower bound of 

{A ,, . . ., Ak} [2], i.e., the partition of fl whose classes 
are given by the nonempty intersections al n ? ak 
with ai E A, (i = 1,. . ., k). 

The set field E+ generated by the meet partit.ion 
E is the least set field containing AT,. . . , A: [13]. 

Given the partitions Al,. . . , Ac of R, let Fl, . . . , Fk 
be additive functions on the set fields A:, : . . , A:, re- 
spectively. By 7 we denote the family of additive func- 
tions F on the set field E+ which satisfy 

F(a,) = F;(a;) for all a, E A, (z = l,..., k). (2) 

By (1) the condition (2) can be written as 

C F(eh) = Fi(ai) for all U, l Ai (2 = 1,. . .,k). 

IhEE 
‘.h cut 

(3) 
This is a system of n = IAl i t + 1 Ak 1 equations 

with m unknowns F(P,), F(ez), . . . , F(e,,,): we call par. 
titioned homogeneous system the homogeneous syst.em 
associated with (3). 

If 7 # 0, we say that the set of additive functions 
FI,..., Fk is consistent. 
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411 a.ggregat.e 1 in E. I? , VI,/&& with respect to 
:I consistent set of function:: F,. . Fk if either 171 = 1 
or, for every pair of fUllCti~Jlls k‘ and F’ in 7 we have 
F(x) = F’(x). 

In what follows, we as~unie t,hat a collect,ion 
A,, . . , A,, of distinct partitions of a universe Q their 
meet partition E = {e,, . . . , e,,,} and a consigtent, set 

{ FI, . . . , Fk} of additive functions be given. 

We conclude this section with some remarks relat- 
ing the formal notions introduced in this section to the 
concepts discussed in the Introduct~ion. 

- Al,..., Ak can be interpreted as the base partitions 
of k similar tables contained in the database; 

- the values F;(a,) for each a; E A, are the entries of 
the i-th table; 

- t,he additivity of the functions F,, . . . , Fk formal- 
izes the intuitive concept of “additive data under 
aggregation” mentioned in the Introduction, which 
applies to a large number of statistical variables 
(count data, probability data, measurement. data, 
etc.); 

- as discussed in t.he Introduction, similar tables are 
assumed to come from a unique data source; this en- 
sures the consistency of the set of functions {FL,. . . , 
Fk} and, hence, guarantees tha.t it. is meaningful to 
use the k tables in an “integrated” way: 
t,he classes of the meet partition are in a one-to-one 
correspondence with the edges of the intersection 
hypergraph; 
the coefficient mat,rix of system (3) (as well as the 
coefficient mat.rix of the partitioned homogeneous 

. . 
system) 1s the mcldence matrix of the intersection 
hypergraph. 

3. Characterization of evaluable aggregates 

To every aggregate z in Et we shall associate an 
m-t.uple x= [z(l), . . . , z(m)], where z(h) is equal to 1 
if class e,, is included in z and equal to 0 otherwise. 
We call x the representative vector of the aggregate 5. 
Observe that t,he rows of t.he coeflicient. matrix A of the 
partit,ioned homogeneous system are the representative 
vectors of the classes in the partitions Al ?. . . , Ak. we 
call row space the vector space R spanned by the rows 
of the matrix A. 

Analogously, we represent a function F on E’ by 
the m-tuple f= [j(l), . . , j(m)] where j~h) = F(e,,) for 
all e,, in E. We call f the reprtsentatzae uertor of the 
fun&on F. We call solutron space the vector space S of 
the solut,ions of t,he partitioned homogeneous system. 

Finally, by (x, y) we denote the scalar product of 
two m-tuples x and y. 

Thus, by additivity for every F in 7 and for every 
x in E’ WC have 

J’(x) = c F(er,) = c x(h)f(h) = (x, f). 

Consequently, when 171 > 1, an aggregate 5 is 
evaluable if and only if for every F and F’ in 7 

(x, f) = (x, f’). 

Lemma 1. The solution space S and the row space 
R are complementary subspaces oj 92” 

Proof. By definition, S is the set of all the m- 
tuples that are orthogonal to the rows of the coefficient 
matrix of the partitioned homogeneous system; hence, 
S and R are complementary [3]. q 

Recalling that the dimension of a vector space is 
the maximum number of linearly independent vectors, 
we have that the dimension of the vector space R is 
equal to the rank r of the matrix A and, by Lemma 1, 
that the dimension of t,he vect,or space S is m - r. 

Lemma 2. An aggregate is evaluable if and only 
ij its representative vector is orthogonal to the solulron 
space S. 

Proof. If 171 = 1 then system (3) has a unique so- 
lution; consequently, the partitioned homogeneous sys- 
tem also has a unique solution, namely the zero vector, 
which is orthogonal to every vector. 

If 171 > I, let f be a solution of (3). The set of the 
solutions of (3) coincides with the set of vectors f’ such 
that 

f’=f+s 

wherese S. 
Therefore, by exploiting the bilinearity of the scalar 

product, for every z in E+ we have: 

(x,s) = (x,f’-f) = (x,f’)- (x,f) 

and by (4) the lemma is proved. q 

Recalling that the coefficient matrix of the parti- 
tioned homogeneous system coincides with the incidence 
matrix of the intersection hypergraph, from Lemma 1 
and Lemma 2 we can derive t,he following: 

Theorem 1. An aggregate is evaluable ij and only 
ij its representatrve vector is linearly dependent on the 
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ti4 E = Ph.D. 
‘I;: E = High-School 
IL,,: E = Degree 

The meet, partition E of Al alld A? is formed by 7 

classes corresponding to the edges of the bipartite int.er- 
section hypergraph given in Figure 2: 

Cl = al n a4 

e2 = al fl ug 

e3 = al n arj 

e4 = a2 n a4 

eb = a2 fl aG 

eG = a3 rl as 

e7 = a3na~ 

The incidence matrix A of the intersection hypergraph 
1s: 

/l 1 1 0 0 0 0 
0001100 
0000011 
1001000 
0100010 

(0 0 1 0 10 1 

The reduced matrix A ’ is 

~1000-10 0 
0001 10 0 
0000 0 11 
0100 0 0 --1 
0010 10 1 

,000o 0 0 0 

The partitioned homogeneous system in reduced echelon 
form looks like the following 

41) -s(5) = 0 

42) -s(7)= 0 

s(3) -tsq(5)+s(7)= 0 

s(4) +s(5) 0 

46) +c(7)1 0 

The corresponding basis of the solution space S is 
given by the vectors s1 and 82, the former of which is 
obtained by setting s(5) = 1 and s(7) = 0 and the latter 
by set.ting s(5) = 0 and s(7) = 1: 

s,=[lO-l-110@] and 82 = [O 1 - 10 0 - 1 1] 

Consider now the two aggregates 5 = ez u es U e:, and 
IJ = eI J e:, with represent,ative vectors 

x=[0110100] and y = [ 1 0 0 0 1 0 0] 

Note that! aggregate x is the aggregate considered in 
Example 4. 

It is immediabely seen that (x,s,) = (x,sp) = 0. 
So, 3: is an evaluable aggregate. But, (y,s,) # 0 and, 
therefore, TV is not evaluable. 

In order to express x as a linear combination of 
the rows of A, take as a basis of row space R the set 
{al,a?,a3,a4,al} of rows of A corresponding to the 
nonnull rows of the reduced matrix A’. The coefficients 
A,, of the required combination can be determined by 
solving t,he system 

x = Alal + &a2 + Asa3 + Ada4 + Ata:, 

by successive elimination of the unknowns; an admissi- 
ble solution is given by: 

A, = 1 

A? = 1 

x3 = 0 

x4 = -1 

XL = 0 

and, therefore, we have 

x = al + a? - a4. 

and 

(x,f) = F,(a,) + K(m) - F2(a4). 

7. Properties of evaluable aggregates 

In this section we provide some basic propert,ies of 
evaluable aggregates. 

Proposition. Let x and y be evaluable aggregates 
in E+. We have: 

(4 

(ii) 

(iii) 

(disjoint-union property): if x IT y = 0, then z u y 
is evaluable 
(proper-difference property): if x > y, then z - y is 
evaluable 
(complement property): z’ = fl - z is evaluable. 

Proof. The statements can be easily proved by 
additivity. In particular for every F in 7 we have: 

- in case (i), F(z U y) = F(z) + F(y) 
- in case (ii), F(z - y) = F(z) - F(y) 

- in case (iii), F(2) = F(R) - F(z) = c F;(a,) 
&EA, 

F(z) for any Ai. :J 
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rr;w: (I] thr znczdence mntras uf the zntersectzon hyper- 
graph. 

Proof. In fact, by Lemma 1 every vector orthogo- 
nal 1~0 the solution space 5’ belongs to the row space R. 
So, the theorem follows front Lemma 2. q 

Corollary 1. Each aggregate in E+ is evaluable zj 
and only ~j the dimension oj the row space R equals the 
cardznality of the meet partition E. 

Corollary 2. Each aggregate in E+ is evaluable if 
and only if the solution space $ contains only the zero 
vector 0. 

4. Testing evaluability 

Lemma 2 allows us to polynomially test the evalua- 
bility of an aggregate x in E+ once a basis for S is given 
(recall that a basis of S is a set of m - r independent 
vectors). 

It is well-known [3] that a basis for S can be de- 
termined by transforming t,he partitioned homogeneous 
syst,em in the so-called reduced echelon jorm [3], whose 
solution space coincides with S. If the matrix A has 
rank r, we have 

41) + cl r+ls(r + 1) t + ch,,s(m) = 0 

s(2) + C? r- I s(r + 1) t. + c2.,,,s(m) = 0 

s(r) + c,,,+js(r + 1) t + c, ,,,, s(m) = 0 

This can be done [3] by first reducing the matrix A 
to a row-equivalent matrix A ’ by repeatedly applying 
the following row operations: 

(i) replace row ai by ca, for any scalar c # 0 
(ii) replace row a, by a, + da, for any j # i and 
any scalar d # 0 

and, then, rearranging the rows of A’. 
Therefore, tht task of transforming the partitioned 

homogeneous system into its reduced echelon form can 
be accomplished with 0( m2) elementary operations. 

A basis (81, . . , s,-,} of S can be obtained by tak- 
ing the m - r s-solutions resulting from setting one of 
t,he paramet,ers s(h) (h = r t 1,. . . , m) equal to 1 and 
t,he remaining paramet.ers equal to 0 . That is, 

81 =I CIr+l,..~1-Cr.r+l, l,O, . . . , o] 

82 = [ “l.r+2 ,..., .c,,+2,0,1,..., o] 

4,,-r’ [ - Cl.tr, 7 . *, - cr.wt 9 (40,. . . > 11 

At this point in order to decide whet.her z is evalu- 
able or not., it, is sufficient. to verify that the scalar prod- 
uct, of its representative vector x with each basis vector 
s, (j= l,..., m - r) of the solution space S vanishes. 

It should be noticed that since a basis for S can be 
determined a priori on the grounds of the intersection 
dependency, the test for evaluability can be carried out 
without. accessing the database. 

From the foregoing discussion the following theo- 
rem follows. 

Theorem 2. Testing evaluability requires O(m2) 
elementary operations. 

5. Computing answers to evaluable queries 

To answer a query related to an evaluable aggregate 
2, the database system needs to determine the coeffi- 
cients of the linear combination of the rows of A which 
provides x. 

Let al,.. . ,a, be the rows of A which give rise to 
the nonnull rows of the reduced matrix A ’ mentioned 
in the previous section. The set {a,, . . , a,} is a basis 
of the vector space R and, therefore, for each evaluable 
aggregate z we have 

x= 2 &a, (‘1 
q= 1 

which is a system of m equations with r unknowns, 
namely, X1,. . .,A,, and can be solved using standard 
methods. 

Once the coefficients X, have been determined. the 
answer to the query is given by 

F(X) = (x,f) = LX,,(a,,,f) = k$F’.(.,,) 
q= 1 <]=I 

where a,, is the class in the partition A;, with represen- 
tative vector a,, and Fi,, is the additive function on the 
set field generated by Ai,. 

6. An example 

Consider the two base partitions Al = {al, a2, as} 
and AZ = {ad,ab, aG} induced by the attributes De- 
partment and Educational-Qualification in Example 4, 
where 
al: D = Information-Systems 
a2: D = Research 
a3: D = Administration 
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let us consider, now the minimal evaluable a.ggrr- 
gates. that is, those evnluablr aggregates which contain 
no proper subsets which are evaluablr 

Theorem 3. Every evaluable aggregate is a diqoant 
unton of manimal evaluable aggregates. 

Proof. Let z be an evaluable aggregate which con- 
tains a minimal evaluable aggregate y. Then, by the 
proper-difference property the aggregate 

2=x-y 

is evaluable, t,oo. So z is t,he disjoint. union of y and z. If 
t is also minimal, then the theorem is proved; otherwise, 
repeat t,he same line of reasoning made for x to z. By 
finite induction, we prove that x is a disjoint union of 
minimal evaluable aggrega.tes. 0 

8. Concluding remarks 

In t,his paper we approached the problem of the 
evaluability of aggregates in a statistical database con- 
taining similar tables related by an intersection depen- 
dency. 

We provided a characterization of evaluable aggre- 
gates. Our charact,erization allows us to define proce- 
dures both for testing evaluability and for evaluating 
queries. 

These results are useful in designing an “informed” 
query system for stabist.ical databases which promotes 
an integrated use of stored information. Such an ‘in- 
formed” query system allows the user to formulate a 
query involving attributes from several similar tables 
as if they were all contained in a single table (“uni- 
versal” table), that is without knowing that these at- 
tributes have been extracted from different tables; for 
example, a user queries the database in Example 4 us- 
ing the “universal” scheme {Department, Educational- 
Qualification}. 
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