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Abstract 

In this paper, we show detailed analysis and performance 
evaluation of the Dynamic Hybrid GRACE Hash Join 
Method (DHGH Method) when the tuple distribution 
in buckets is unbalanced. 

The conventional Hash Join Methods specify the tuple 
distribution in buckets statically. However it may differ 
from estimation since join operations are applied with se- 
lection operations. When the tuple distribution in buck- 
ets is unbalanced, the processing cost of join operation 
becomes more costly than the ideal case when you use 
Hybrid Hash Join Method (HH Method). On the other 
hand, when you use the DHGH Method, the destaging 
buckets are selected dynamically, gives the same perfor- 
mance as the ideal case even if the tuple distribution in 
buckets is unbalanced such as Zipf-like distributions. 

We analyze the total I/O cost of a join operation at 
various number of buckets. The result shows that we 
have to determine the number of buckets baaed on the 
tuple distribution in buckets rather than the size of the 
source relation. It is shown that we had better partition 
the source relation using a large number of small buckets 
instead of the smaller number of buckets almost filling 
the whole main memory adopted in the HH Method. 

1 Introduction 

The join is one of the most expensive relational al- 
gebra operations and many join methods have been 
proposed [Sto76,Kit83,Bra84,DeW84,Yam85]. Among 
them, ‘split based hash-partitioned join methods’, such as 
GRACE Hash Join Method, present good performance 
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for large scale database [Kit83,DeW84,Sha86]. In those 
join methods, the source relations are partitioned into 
number of “buckets” by a “split function” when the size 
of the smaller relation exceeds that of the available stag- 
ing memory. The number of buckets is determined by 
the size of the source relation. In the Hybrid Hash Join 
Method (HH Method), which combines the good fea, 
tures of GRACE Hash Join Method and Simple Hash 
Join Method, the number of buckets is determined by 
the relative sizes of available staging memory and rela- 
tion; it is computed so as to make the aggregated size 
of buckets are almost same to the size of staging mem- 
ory, excepting for the first processing bucket called “RI 
bucket”. So, if the split function does not suit for the 
tuple distributions in the source relations, some buckets 
exceed the memory size. Such buckets, named “over- 
flown buckets” in this paper, diminish the performance 
of the HH Method and you cannot expect to achieve 
optimal performance [Nak88]. In order to minimize the 
overflown buckets, we divide the source relations into 
a large number of buckets. We name this approach as 
“Dynamic Hybrid GRACE Hash Join Method” (DHGH 
Method), because we dynamically select the first pro- 
cessed buckets and establish a scheduled processing se- 
quence of buckets. In this join method, the unbalanced 
tuple distribution in buckets does not diminish the per- 
formance as shown in [Nak88]. 

The purpose of this paper is twofold. First, we evalu- 
ate the processing cost of the DHGH Method at various 
number of buckets to examine the minimal occurrence 
of overflown buckets and to identify the guideline for 
determining the number of buckets when the tuple dis- 
tribution in buckets is unbalanced. 

If we divide the source relations into a large number of 
buckets, the size of each bucket may become too small 
to fill up one page. We call such short-filled pages as 
‘fragment pages”. The I/O operations for them dimin- 
ish the performance. Therefore, in our join algorithm, 
many of these short-filled buckets a.re put together to 
a larger bucket in accordance with the available main 
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memory. This technique is called “bucket size tuning’ 
as in [Kit83]. Second purpose of this paper is to eval- 
uate this strategy. We show the detailed evaluation of 
this strategy and exhibit its effectiveness. 

In section 2, we define the notations used in this paper 
and explain the environment of our performance evalu- 
ation. 

In Section 3, we analyze the DHGH Method and show 
certain requirements for its algorithm. Roughly speak- 
ing, there are two conditions: the first condition is for 
eliminating overflown buckets, and the second one is for 
keeping the first processing bucket in the available stag- 
ing memory. 

Section 4 gives the performance results of three kinds 
of tuple distributions. Performance was evaluated by 
using various number of buckets. When we treat large 
sized relations, all results indicate that the elimination 
of overflown buckets is the key condition to attain good 
performance. They also show that large enough number 
of buckets is effective to minimize overflown bucket. 

Section 5 shows the performance results for medium 
sized relations. In this section, we show the effect of 
bucket size tuning strategy. Bucket size tuning for the 
first processing buckets gives advantages when the num- 
ber of buckets is small. On the other hand, bucket size 
tuning for other buckets is effective when the number of 
buckets is large because this tuning is also effective for 
I/O reduction of fragment pages. 

Section 6 concludes this paper. The results of all 
evaluations show that we should divide relations into 
larger number of buckets than conventional suggestions. 
The conventional join method determines the number 
of buckets based on the relative size of the source rela- 
tion and the available main memory, but we determine 
it based on the tuple distribution in buckets. 

2 Overview of the Dynamic Hybrid 
GRACE Hash Join Method 

Previous researches in hash-partitioned join methods did 
not concern themselves with the unbalanced tuple distri- 
bution in buckets and assumed optimal tuple distribu- 
tions. Our proposed join method can dynamically han- 
dle most of distributions i. Our previous paper [Nak88] 
shows an evaluation for a triangular tuple distribution 
in buckets ( Figure 1 ) as an example with good results. 
In this paper, we show a more detailed evaluation of the 
DHGH Method including the tuple distribution used in 
[Nak88]. In add t i ion, Zipf-like distribution is selected for 

‘If there is a bucket which exceeds the available main mem- 
ory size with same valued join attributes, we have to use nested 
loop manner for achieving join operation. This is an exceptional 
example for our algorithm. 
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Figure 1: Comparison of processing time between our 
join method and conventional join method 

another example of unbalanced tuple distribution as is 
used in AS3AP benchmark set [Tur87,Tur88]. 

2.1 The notations and definitions used 
in this paper 

The two source relations of join operation are named R 
and S ( R < S ). The result relation is named RES. 
When the size of relation R is smaller than that of 
the available main memory, Simple Hash Join Method 
[DeW84,DeW85] may be applied. While staging the 
whole relation R into the available main memory, we 
apply a hash function to each tuple and make a hash 
table. Then each tuple in relation S is staged and applied 
to the same hash function to achieve the join process- 
ing. In short, one scanning of each relation is enough to 
achieve join operation in this case. 

On the other hand, when the size of relation R is larger 
than that of the available main memory, we have to di- 
vide it into sets of subrelations. We call these subrela- 
tions ‘buckets’ and describe them as & (1 2 i 5 H,) 
in this paper. Here, H, means the number of splitting 
buckets. The function to divide the source relations into 
buckets is called ‘split function’. When the bucket size 
is smaller than that of the available main memory, join 
operation for this bucket can be achieved by one scan- 
ning as described above. It means that join operation 
can be achieved by using two phase algorithms. The 
first phase is to divide the source relations into many 
buckets, and the second phase is to process the join op- 
eration for each bucket. The former phase is called ‘split 
phase’ and the latter ‘probe phase’. Figure 2 shows 
the outline of join processing. 
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In the split phase, the CPU cost (the tuple splitting 
cost and the tuple movement cost) is negligible in com- 
parison with I/O cost. So we treat buckets in main 
memory by page unit and tuples in the same bucket are 
placed closely together to save the I/O cost. As shown 
in Figure 3, main memory contains N pages for staging 
relations and 2 pages for input and output buffers. 

When we partition relations into H, buckets, N - H, 
pages are not used in the split phase if each phase is 
fully isolated (GRACE Hash Join Method). Instead of 
this method, the “Hybrid Hash Join Method” uses 
these free pages for staging RI bucket. This technique 
saves the I/O cost for RI bucket in join processing. In 
[DeW85,Sha86], it is shown that this method always 
gives the best performance among all of join methods 
when the following formula is satisfied. 

H, = (1) 

lR11 = IMI-H&+1 (2) 

In the formula above, ]M] means the number of pages 
of available staging memory and IRI means the number 
of pages of relation R. The notation ]M] is equivalent to 
N in our environment. In addition to this notation, we 
use {R} to describe the number of tuples of relation R. 

When the above formula is not satisfied for any reason, 
additional processing cost is required. If the size of RI 
bucket is small, the saving of the I/O cost is not signifi- 
cant. In such a case, other buckets get more tuples than 
the estimation and some buckets may exceed N pages 
(overflown buckets). These buckets must be recursively 
split into many sub-buckets and only then join oper- 
ations can be performed. If the i-th bucket exceeds N 
pages and is partitioned into Hi sub-buckets, we describe 
them as Rij (1 5 j < Hi). On the other hand, if the 
size of RI bucket exceeds the available staging memory, 
we have to re-split the RI bucket dynamically. 

These additional overheads are necessary because of 
the statical decision of the RI bucket. In the DHGH 
Method, however, we dynamically determine the RI 
bucket and split the source relations into a large number 
of buckets to prevent overflown buckets. We discuss the 
method to determine the number of buckets in section 
4. 

When we divide the source relations into a large num- 
ber of buckets, each bucket may have fewer tuples than 
{M} (fragment pages). Such fragment pages can be put 
together into a bucket for further processing: i.e. a set 
of buckets, in effect, can be processed at a time. This 
strategy is called ‘bucket size tuning’ and there are 
two kinds of size tuning. The size tuning for the buckets 
whose join processing are overlapped with split phase 
is called ‘RI bucket size tuning’. The other bucket 
size tunings is called ‘R; bucket size tunings’. The 
advantages of size tuning are discussed in section 5. 

2.2 Enviromnent for performance eval- 
uation 

In this paper, we evaluate the performance for the Zipf- 
like distribution as is used in the AS3AP benchmarks 
[Tur87’,Tur88], This distribution is the generalization of 
the Zipf distribution [Knu73]. A power of the rank of an 
item is inversely proportional to its frequency: 

iz X fi = 
1 

conslad’) 
(1 5 i 5 n) 

In this formula, z is the decay factor and constant(‘) 
is the n-th harmonic number of order z. If z = 0, the 
distribution becomes uniform. When z = 1, it shows 
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the Zipf distribution. And also, G. K. Zipf found the 
distribution of personal income when .z = 0.5. 

We assume that tuple distribution of each bucket fol- 
lows this distribution. For instance, i-th bucket of rela- 
tion R has such number of tuples as shown in the fol- 
lowing formula: 

In this paper, we analyze the I/O cost for join oper- 
ation changing the number of buckets. If we can stage 
t buckets in the main memory at the end of split phase, 
we can denote the I/O cost of join operation, C(R, S), 
‘as follows. 

{Ri) = If! (1 I i I H.) (4) 

i’.C$ 
j=l 

C(R,S) = PI + ISI + lR=l VI I WI) (8) 

C(R,S) = IRI + ISI + 2 IRJW 

Though each bucket has an unbalanced distribution, 
we assume that each join attribute has a unique value in 
the relation in order to get the same total I/O cost for 
join operation for all distribution of buckets. 

kc1 

H. 

+ c (I&l + IskI + C(Rk, Sk)) 

k-t+1 

WI < IW (9) 

3 Performance analysis of the Dynamic 
HybrSd GRACE Hash Join Method 

When the size of relation R is larger than that of avail- 
able memory, total I/O cost of join operation is recur- 
sively defined. If we can divide the source relation into a 
number of buckets to satisfy the condition (5), C(R,S) 
can be denoted as follows. 

The algorithm of new join method was shown in [Nak88]. 
In this section, we show two conditions to ensure the 
good performance of the DHGH Method. As illustrated 
in the last section, the HH Method determines the num- 
ber of buckets as small as possible. When the tuple 
distribution in buckets is unbalanced, performance be- 
comes worse because of the overflown buckets. In the 
DHGH Method, we determine the number of bucket as 
large as we can for preventing overflown buckets; we di- 
vide the relation into number of buckets to satisfy the 
following formula: 

C(.R S) 

= IRI+ISI+&-kI 
H. 

krl 

+ c {IRkI + IskI -t (IRkI + IskI + IRESkI)) 

k=t+l 

= M-t-lSl+lRESl +‘2 2 (IRkj+Iskl) (10) 

k=t+l 

m=lRilI IMI (5) 

As for the size of RI bucket, it is determined by the 
formula (2) in the HH Method. In our method, however, 
the minimum sized bucket is dynamically selected for the 
RI bucket. So the condition is denoted as the following 
formula: 

When all those buckets between u + 1 and HI are 
overflown buckets and thus further divided into Hi’) 
sub-buckets satisfying the condition (5), total I/O cost 
becomes as follows. 

r 

C(& S) 

= lRI+IS~+~IRE&I + 2 (IRkl+Iskl) 

min lRil< IMI - H, + 1 (6) k-1 k=t+l 

u 

Also, when we apply a join operation to small sized 
relations, we may collect a number of buckets to the first 
processing bucket. This schedule is called RI bucket size 
tuning. If you give the bucket identifier L in accordance 
with the size sequence, the previous condition (6) can 
by rewritten as follows. In this case, we assume that t 
buckets are selected as the first staging buckets. 

+ c (IRkI + Is&l+ (-S&I) 

k=t+l 

H. 

+ c {l&l + IskI + IREskI 

k=u+l 

Hp 

+2 c (h/ + iskll)) 

kc(k)+1 

Jr. 

-&&I <lMl-Hs+t (7) = IRI + IsI + IRESI + 2 c (l&l + Is&l) 
. ._ . - 

It=* fist+1 
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Sip) 
+2 5 c (IRkIl+ PHI) (11) 

The extra I/O cost for processing the overflown bucket 
can be calculated as follows. 

k=utl t=t@)+1 

In this formula, we assume that t(k) sub-buckets can ,, 
be collected into the first staging sub-bucket in split 
phase of k-th bucket. Both tck) and H,(k) are depen- 
dent on the tuple distribution in the k-th bucket and 
tck) is also dependent on the size of k-th bucket. Here, 
we assume that the tuple distribution in sub-buckets is 
same distribution as in buckets and assume that Hik’ 
(u < k 5 H,) is equal to the H, value. 

In this remaining section, we analyze the I/O cost of 
join operations for the same two relations. As described 
before, each tuple has a unique value at join fields in the 
relation R and the amount of result relation becomes 
twice the source relation ((RESJ = 21RI): Formula (10) 
and (11) are rewritten as follows. 

C(R,R)=41RI+4 5 IRkl (formula 10) (12) 
k=t+l 

C(R,R)=4lRI+4 2 IRkI +4 5 5 IRHI 
k=t+l k=ut1 l=t@)+l 

(formula 11) (13) 

Now, we can get information about extra I/O cost for 
overflown buckets. For detailed analysis, we have to fix 
the tuple distribution in buckets. We choose the triangu- 
lar distributions for this analysis. The tuple distribution 
in buckets can be described as follows. 

2{W 
lRk) = H,(H,+ 1)” (1 I k I HS) 

Here T denote the minimum number of buckets to 
satisfy the condition (5). When t buckets can be staged 
into the staging memory at the same time, CT can be 
described as follows. 

C97=4lRI +4 2 a." 
k=t+l 

When we use T - 1 buckets in the split phase, the 
largest bucket ( R ~-1 bucket ) becomes overflown bucket 
and the I/O cost of join operation is described as follows. 
( Appendix A shows the reason why we get such a for- 
mula. ) 

T-l 

CT-1 = 41R1+4 c IRkI +41&-~~-11 

k=t+l 

T-l 

= WA 4lRI +4 c 7. 
k=t+l (T - ‘) 

k +441RI 

T1 

C e.TtPa = CT-1 -CT 

= 8lRI. L- 
( 

t(t + 1) 
T1 T(T-1)(57+1) > 

This formula shows that an overflown bucket leads 
about 2/T' of I/O cost disadvantages at most 2. When 
we treat large relations, the occurrence of the overflown 
bucket is not so serious a problem because T is large. 
When we treat the small relations, however, we have to 
carefully determine the number of buckets to avoid the 
overflown bucket. The following two sections show these 
phenomena separately. 

4 Performance results of three kinds of 
the bucket distributions 

As shown in Figure 1, the HH Method does not suit 
for unbalanced tuple distribution in buckets. The pro- 
cessing cost for unbalanced buckets is about 1.4 times 
worse than that for balanced buckets. The reason for 
this phenomenon is not clearly discussed in [Nak88]. In 
this section, we evaluate the join performance of three 
kinds of tuple distribution in buckets as we change the 
number of buckets and the size of source relations. 

We choose the triangular distribution, the Zipf-like 
distribution and the uniform distribution as the three 
kinds of tuple distribution in buckets. The former two 
distributions are used to evaluate the join performance 
for unbalanced buckets. The uniform distribution is used 
to get the base join performance. 

In each distribution, we calculate the I/O cost during 
a join operation as we change the size of source relations 
and the number of buckets. We assume that the avail- 
able staging memory has 100 pages and each page can 
contain 32 tuples in it. In this case, H, can be changed 
between 2 and 99 (= ]A41 - 1 ). When the size of re- 
lation R is greater than that of the available staging 
memory, we need at least 2 buckets for achieving join 
operation. And the Dynamic Destaging Strategy, used 
in the DHGH Method, determines the upper bound of 
H, . When we have no free pages in the staging memory 
at the split phase, destaging bucket is selected from the 
set of buckets which has more than one page. So the 
number of buckets must be less than [MI. 

2For splitting the source relation into buckets, twice I/O opera- 
tions ( read the source relation and write to the temporal relation 
) are needed for each source relation. To probe join operation, 
another read and write operations are needed. Totally, 8 I/O op- 
erations are needed for basic join operation. 
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Number of BwkeIs(Hs) 

Figure 4: The performance results for triangular distri- 
bution 

For all performance evaluations in this section, the 
number of tuples in source relations is changed every 
10,000 tuples from 10,000 tuples to 100,000 tuples. As 
described above, at most 3,200 tuples can be staged in 
the available staging memory at a time. Most of the re- 
lations used for performance evaluation have more than 
five times larger tuples than the available staging mem- 
ory contains. They are called “large sized relations” in 
[Nak88]. The performance results of “medium sized re- 
lations” are shown in the next section. 

4.1 Performance results of the triangu- 
lar distributions 

First, we show the results of triangular distribution. 
This distribution is chosen in [Nak88] and we evaluate 
more detailed phenomena in this paper. Figure 4 shows 
the number of I/O operation for each number of bucket 
and for each size of the source relation. 

In this figure, two different dotted lines show the 
boundary conditions of equation (5) and (7). The white 
points show the results of the HH Method and the black 
points show the results of the DHGH Method for each 
size of relation. 

If the size of each bucket does not exceed the size of 
the available staging memory, H, does not affect the 
performance that much. These phenomena are shown in 
the area whose H, value is greater than the condition (5) 
line. 

When some buckets exceed the available memory size, 

extra I/O cost is required to perform join operation for 
such overflown buckets. However, it is not so large on 
amount. These phenomena are shown in the area whose 
H, value is between two condition lines. 

When all the buckets exceed the size of available mem- 
ory, the performance becomes extremely worse. These 
phenomena are shown in the area whose H, value is 
smaller than the condition (7) line. In this situation, the 
maximum size of sub-bucket of IRH, ] bucket exceeds the 
size of IRll bucket as follows. 

max l(max l&l)rl - min l&l 

= Ih,%I - Pll 
2 214 

= H,+l’H,- 
WI 

H*(H* + 1) 
If, - 1 

= WI* Jf(H# + 1)s ’ O 

It means that sub-buckets whose size exceed the avail- 
able staging memory need much more re-splitting oper- 
ation to process the join operation. This is the reason 
why the performance of join operation becomes so much 
worse. 

4.2 Performance results of the uniform 
distributions 

In this subsection, we show the results of uniform dis- 
tributions. Similar to the triangular distributions, we 
evaluate the I/O cost of join operation at various size of 
the source relation and the number of buckets. Figure 5 
shows the results. Two different dotted lines, the white 
points and the black points have the same meaning as 
Figure 4. 

Unlike the triangular distribution, the condition (5) is 
more severe than the condition (7). When all buckets 
satisfy both conditions, the I/O cost can be described 
by using formula (10) as follows: 

C(R, R) = 4lRl+4 5 l&l 
k:=t+l 

= 4~R~+4$+~-1) 

= slRl-4!+ .t 
, 

(14) 

When T denotes the minimum number of the buckets 
which satisfies the condition (7), the I/O cost can be 
described as follows. 

CT = 8lRI - 4!$ 
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Figure 5: The performance results for uniform distribu- 
tion 

When the condition (7) is not satisfied, the total I/O 
cost can be calculated as t = 0 in the formula (14). 

CT-1 = 8,R, 

The extracost for the RI bucket overflown is described 
as follows. And the disadvantage becomes about l/27’. 

C eztra = CT-1 -CT = SIRI& 

When the tuple distribution in buckets is balanced, 
each bucket has the same number of tuples. If the con- . 
dition (5) is not satisfied, all destaging buckets become 
overflown buckets. The total I/O cost is described as 
follows. 

C(R,R) = 41Rl+&&, +4g 2 ,&cl, 
kc1 k=l I=t+l 

In this formula, t is a constant value for all buckets. 
When T denotes the minimum number of the buckets to 
satisfy the condition (5), the I/O cost of join operation 
can be described as follows. 

Figure 6: The performance results for Zipf-like distribu- 
tion (z = 0.5) 

And the extra I/O cost can be calculated as follows. 

C e+t,.a = CT-1 -CT = 41RI. T;l;'a 

In this formula, both value of T and t are dependent 
on IRI. When IRI is small, (T - 1 - t)/(T - 1) also 
becomes small and the extra I/O cost does not affect 
the performance. On the other hand, when IRI is large, 
(T-l-t)/(T-1) b ecomes large and the extra I/O cost 
will affect the performance. 

4.3 Performance results of the Zipf-like 
distributions 

To evaluate the performance for actual databases, we 
use the Zipf-like distributions in this subsection. The 
Zipf-like distribution has a parameter, the decay factor 
z. We evaluate the performance when z is 0.5 and 1.0. 
Figure 6 and Figure 7 show the results respectively. The 
white points show the results of the HH Method and the 
black points show the results of the DHGH Method. 

We get similar results to those of the triangular dis- 
tributions. However the results of Zipf-like distributions 
are not as good as that of the triangular distributions. 
Because Zipf-like distribution is more severe than the tri- 
angular distributions for the condition (5). In the trian- 
gular distributions, the largest bucket contains 2{R)/H, 
tuples at most. However, in the Zipf-like distributions, it 

H. 
contains {R}/(x l/y) tuples. If we treat the Zipf dis- 

j=l 
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Figure 7: The performance results for Zipf-like distribu- 
tion (z = 1.0) 

tribution ( z=l.O ), sum of the inverse numbers becomes 
in H, and the largest bucket contains {R}/ In H, tuples. 
It means that the source relation which contains more 
than 15k tuples produces overflown buckets even though 
we use dynamic destaging strategies. In this case, ad- 
ditional I/O cost for processing join operation is needed 
and the performance is degraded. This phenomenon is 
observed in tke income distribution ( 2=0.5 ). If the re- 
lation contains more than 60k tuples, overflown bucket 
is occurred though the amount is little in such cases. 

The following figure shows the total I/O cost ratio in 
each join method to the basic I/O cost for join operation 
WW 

This figure clearly shows that we need additional I/O 
to apply join operation for Zipf-like distributions. It 
also shows that, medium sized relation for all distribution 
does not have overflown buckets. 

5 Discussion of bucket size tuning 

We show the results for medium sized relations which has 
triangular distribution and discuss the effect of bucket 
size tuning in this section. 

As described in [DeW84,DeW85,Sha86,Ger86], the 
advantage of RI bucket overlap processing is remarkable 
when the source relation is a small size as the available 
staging memory. In our environment, 3,200 tuples can 
be staged at a time. And we evaluate the performance of 
5,000 tuples and 10,000 tuples relations. As illustrated 

10 20 20 a 50 00 70 00 00 100 

Numbrr oltu@er (k luf~l.8) 

Figure 8: The total I/O ratio to the basic I/O operation 

before, we have two kinds of schedules about bucket size 
tuning, RI bucket size tuning and R+ bucket size tun- 
ing. To evaluate the detailed performance of bucket size 
tuning, we use following four kinds of algorithms. 

l The algorithm 1 is applied neither to RI bucket 
size tuning and to & bucket size tuning. 

l The algorithm 2 is applied only to RI bucket size 
tuning. 

l The algorithm 3 is applied only to & bucket size 
tuning. 

l The algorithm 4 is applied both to RI bucket size 
tuning and to R+ bucket size tuning. 

Algorithm 1 includes the result of the HH Method. It 
determines the join processing sequence of buckets stat- 
ically. The algorithm 2 only schedules a set of buckets 
in the RI bucket using the Dynamic Destaging Strat- 
egy. And the algorithm 3 schedules the join processing 
sequence of buckets by their sizes. A number of buckets 
are collected to fill up the available memory. This sched- 
ule can reduce the I/O operations for fragment pages. 
Lastly, the algorithm 4 denotes the DHGH Method it- 
self. Figure 9 and Figdre 10 show the result for 5,000 
tuples relation and 10,000 tuples relation respectively. 

These figures show that RI bucket size tuning is effec- 
tive when the number of buckets is small. That is to say, 
this strategy is effective when the available staging areas 
for first processing bucket has a large number of pages. 
And the advantages of RI bucket size tuning decrease as 
the number of buckets increase. However, this overhead 
is much less than that of overflown buckets. 

When the number of buckets is large enough to avoid 
the overflown buckets in this situation, each bucket has 
very small number of tuples in it. In this environment, 
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Figure 9: The I/O performance for 5000 tuples relation 

the performance becomes worse because of the I/O oper- 
ations for fragment pages. The result of algorithm 1 and 
algorithm 3 show these phenomena. So the R+ bucket 
size tuning is effective to reduce such overheads. 

Difference between the result of 5,000 tuples relation 
and that of 10,000 tuples relation shows the fact that 
the effect of bucket size tuning is large when the source 
relation size is small. 

6 Conclusions 

Conventional split based hash-partitioned join methods 
determine the processing sequence of each bucket stat- 
ically. They assume that the size of each bucket is 
almost same size. However, such cases are actually 
rare because join operations generally follow some se- 
lection/restriction operations and there is no guarantee 
that the split function is suitable for any kinds of tuple 
distribution in the source relation. Unbalanced tuple 
distribution in the buckets diminishs the performance in 
comparison with the estimation in the conventional join 
method. We extends the GRACE hash algorithms to 
obtain high performance than Hybrid Hash algorithms. 
We name it the Dynamic Hybrid GRACE Hash algo- 
rithms. 

In this paper, we evaluate the join performance of 
three kinds of tuple distribution in buckets at various 
number of buckets and the size of source relations to in- 
vestigate the phenomenon. The three distributions are; 
the uniform, the triangular and the Zipf-like distribu- 
tion. Performance results show that we have to deter- 

” 

Number of B~dmlr(Hs) 

Figure 10: The I/O performance for 10000 tuples rela- 
tion 

mine the number of buckets to minimize the overflown 
buckets. There are two conditions which describe the 
boundary conditions of overflown bucket: 

min l&l 5 1441 - H, + 1 

And the minimum number of buckets which satisfys 
such conditions depends on the distribution not the size 
of source relation. In our join method, if we cannot get 
information about tuple distribution in buckets before 
processing join operation, the number of buckets is cho- 
sen as the maximum number to minimize the overflown 
buckets. 

Also, in this paper, we check the effect of bucket size 
tuning strategy using the medium sized relation. The 
RI bucket size tuning is efficient when the number of 
buckets is small and the amount of staging area for RI 
bucket can be taken largely. On the other hand, & 
bucket size tuning works together some fragment pages 
to reduce the I/O cost of them. So this tuning is efficient 
when the size of source relation is small and the number 
of buckets is large. 

Appendix A How to lead the I/O cost 
formula with overflown bucket 

When we partition the source relation R into H, buckets 
and each bucket follows the triangular distributions, the 
tuple distribution in buckets becomes as follows. 
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2(R) 
IRk1 = H.(II, + 1) * k (1 I k 5 IL) 

Here, we denote the minimum number of buckets 
which satisfys the condition (5) as T. 

maxI& = 21RI -.T < IMI 
T(T + 1) 

WIT > WI - WI (15) 

And if we use T - 1 buckets to partition the source 
relation R, the largest bucket ( RT-~ bucket ) becomes 
overflown bucket in this case. 

21RI IRT--II = T(T- q ‘(T- l) > I”I 

214 > IWT 06) 

Using these conditions, we can lead the fact that the 
h-2 bucket does not exceed the size of available staging 
memory. 

PI - IRT--21 
214 

= I”I T(T - 1) 
--*(T-2) 

= & WITP - 1) - 2lRIV - ‘41 
. 

> 6 KW - IW)(T - 1) - 2lRKT - 2)l 

(Condition (15)) 

= & PIRI - IWT- 111 

> & WIT - IWT- 111 

(Condition (16)) 

WI 
= T(T - 1) ’ ’ 

For all situations when T is larger than 2, only (T-l)- 
th bucket exceeds the size of available staging memory. 
It means that both 21 and tcT-l) in the formula (13) 
become T - 2. And the I/O cost with the overflown 
bucket can be described as follows. 

C(R,R)=4lRI+4 2 IRkI +4 2 5 IRki 
k=t+l k=zutl r+(k)+1 
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