
U ‘sing Integrity Constraints to Provide Intensional Answers to Relational

Q ueries

Amihai Motro

Computer Science Department
University of Southern California

University Park, Los Angeles, CA 90089-0782

Abstract

An intensionalanswer to a query is a set of characteriza-
tions of the set of database values that satisfy the query
(the extensional answer). Intensional answers provide
users with additional insight into the nature of standard
extensional answers. In this paper we describe a method
that applies database constraints to generate intensional
answers. These intensional answers characterize the ex-
tensional answers in two ways: (1) with constraints that
are applicable to the extensional answer, and (2) with
database views that are contained entirely in the ex-
tensional answer. Our method is to represent the def-
initions of constraints in special “meta-relations”, and
extend standard algebraic operators to these relations.
When a query is presented to the database system, it
is performed both on the actual relations, resulting in
an extensional answer, and on the meta-relations, re-
sulting in definitions of constraints that apply to the
extensional answer, as well as database views that are
contained entirely in the extensional answer. These def-
initions are translated into an intensional answer that
accompanies the extensional answer.

1 Introduction

The information stored in databases is of two kinds.
Extensional information (often called data) is infor-
mation that applies to individual real world objects.

This work was supported in part by NSF Grant No. IRI-
8609912 and by an Amoco Foundation Engineering Faculty Grant.

Permission to copy without fee all or part of this material is
granted provided that the copies ase not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, Teqsires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

Intensional information (often called knowledge) is in-
formation that applies to multitudes of real world ob-
jects. In the relational database model extensional in-
formation is expressed with relations over domains of
data values, and intensional information is expressed
with constraints, which are formulas in predicate logic
that assert required relationships among the data val-
ues.

Relational database systems use constraints to en-
hance the integrity of the extensional information in the
database by monitoring changes made to the relations.
Assuming that initially the relations satisfy the con-
straints, thereafter update requests are accepted only if
the resulting relations would not violate any of the con-
straints. For reasons of efficiency, most database sys-
tems do not implement constraints that are arbitrary
predicate logic formulas. Usually, only very specific
types of formulas are allowed, such as range constraints
or referential constraints. But even a database system
that implements only the notion of relation key, forbid-
ding two tuples from having the same key value, is, in
effect, enforcing a particular kind of constraint.

An answer to a query is a set of data values that sat-
isfy a qualification specified in the query. Therefore, an-
swers are derived entirely from the extensional informa-
tion in the database. Indeed, the only intensional infor-
mation that characterizes this set of values is the qual-
ification specified in the query that generated it. Still,
the intensional information in the database may include
additional characterizations of the extensional answer.
If this intensional information is retrieved, database an-
swers may gain additional meaning.

In this paper we describe a method that provides such
intensional answers. As an example, assume a personnel
database that includes a relation EMPLOYEE with at-
tributes NAME, TITLE, SALARY and DEPARTMENT, and
two constraints: one states that all employees in the

Amsterdam, 1989

- 237 -

design department are guaranteed a salary of at least
$30,000, and the other states that all employees in re-
search positions are in the design department. A query
to retrieve all the employees in the design department
may generate the extensional answer:

l Betty, Harry, Mary, Tom

and the intensional answer:

l All employees retrieved earn at least $30,000.

s All employees in researcher positions retrieved.

Thus, an intensional answer characterizes the exten-
sional answer, providing more insight into the nature of
the set of values retrieved.

In our approach, providing intensional answers from
constraints is a specific case of the following more gen-
eral problem: Given a query and set of database views
that possess a particular property, what views of the
answer possess this property?

In [6] we considered database views whose property is
that they have guaranteed integrity. The problem then
became: Given a query, what views of its answer have
guaranteed integrity? Solving this problem enabled us
to extend a database system so that every answer is
accompanied by statements that define its integrity, re-
sembling a certification of quality. In [5] we considered
database views whose property is that they are permit-
ted to a particular user. The problem then became:
Given a query, what views of its answer should be per-
mitted to this user? Solving this problem enabled us to
extend a database system with an authorization mech-
anism that has several advantages over other known
mechanisms.

In this paper we consider database views whose prop-
erty is that they are always null. The problem then be-
comes: Given a query, what are the views of its answer
that are always null? As we shall see, views of this type
express constraints, and thus provide good intensional
characterizations of answers.

In each case, our solution is to represent the defini-
tions of the given database views in special relations,
using the concept of meta-tuples. A meta-tuple defines
a subview (i.e., a selection and a projection) of a single
relation, and several meta-tuples can be used together to
define general views. All meta-tuples that define sub-
views of the same relation are stored together in one
meta-relation, whose structure mirrors the actual rela-
tion. Standard algebraic operators (product, selection
and projection) are extended to these meta-relations.

When a query is presented to the database system, it
is performed both on the actual relations, resulting in an

answer, and on the meta-relations, resulting in defini-
tions of views of the answer that inherit the particular
property of the given views.

In the case of constraints, these views express con-
straints that apply to the answer. They provide the ba-
sis for the intensional answer that will accompany the
extensional answer.

In the previous example, the two constraints may be
restated as the following null database views: “employ-
ees in the design department who earn under $30,000”
and “employees in researcher positions who are not in
the design department”.

When the employees in the design department are
retrieved, we may infer from the first null view that
the answer view “employees who earn under $30,000”
is also null. The first component of the example inten-
sional answer given earlier is simply a restatement of
this conclusion.

Our method for inferring views of the answer that
are always null may be extended to infer also views of
the database that are contained entirely in the answer.
When the employees in the design department are re-
trieved, we may infer from the second null view that
the database view “employees in researcher positions”
is contained in the answer in its entirety. This conclu-
sion provided the second component of that intensional
answer.

Altogether, the intensional answers characterize the
extensional answers in two ways: (1) with constraints-
views of the extensional answer that are null; and
(2) with containment.+ views that are contained entirely
in the extensional answer.

The remainder of this paper is organized as follows.
In the next section we discuss .related research works.
Section 3 defines the language with which constraints
are expressed, and Section 4 shows how constraints are
stored. Section 5 defines the algebraic manipulations
of constraints to yield constraints that are applicable
to the answer. Section 6 shows how this process can be
extended to infer containments. Section 7 demonstrates
these method with several examples, and Section 8 con-
cludes with a brief discussion of further refinements of
the method. This representation and manipulation of
views was first introduced in [6], and has been modified
for the particular problem at hand.

- 238 -

2 Research on Intensional An-
swers

Recently, several research contributions have been con-
cerned with related issues. While each adopts a different
approach, all share a common goal, which is to answer
queries more abstractly.

A logic database is composed of extensional predi-
cates (facts) and intensional predicates (rules). Cholvy
and Demolombe [l] are interested in providing answers
to queries that are independent of a particular set of
facts; i.e., answers that are derived only from the rules.
The authors define a constructive derivation process
that computes such answers. One of the problems they
consider is how to avoid answers that are “irrelevant”.

Also in the environment of logic databases, Imielin-
ski [3] argues that rules should be allowed to occur in
the answer to the query. This is shown to be beneficial
both from the conceptual and the computational point
of view. As an example, assume database predicates
Teach(z,y), denoting that professor z can teach course
y, and Group(z,s), denoting that professors z and z be-
long to the same research group. And assume a rule that
requires that professors from the same group be able to
teach the same courses. Then a query “who can teach
the Database course” may be answered intensionally by
“everybody in Smith’s group”. Exhaustive enumeration
of this answer will be performed upon request.

Corella [2] notes that while research on knowledge
representation produced much work on the derivation
of taxonomies of concepts, concepts are also essential in
responses to queries. The author defines a formal model
of “semantic,, retrieval (similar to intensional answers).
Roughly, a concept is a unary predicate over a given
domain, and a taxonomy is a finite tree of concepts,
where the concept described by each node is subsumed
by the concept described by its parent, and the union
of sibling concepts is equal to their parent concept.

Shum and Muntz also note that answers that are ex-
haustive enumerations of individual objects are not al-
ways the most efficient or the most effective means of
information exchange. In [7] they are concerned with
implicit representation of answers through concise ex-
pressions that involve both concepts and individuals.
For example, an acceptable answer to the query “Who

earns more than $30,000?” is “all engineers except
John Smith,‘. In [S] they are concerned with provid-
ing aggregate responses, where preciseness is sacrificed
for conciseness. An example would be an answer such
as “90/120 engineers + 20/30 managers”. In both cases
they assume, like Corella, the availability of taxonomies
that encompass all concepts and individuals.

3 Views, Queries and Con-
straints

We assume the following definition of a relational
database [4]. A relation scheme R is a finite set of al-
tributes AI,. . .,A,,,. With each attribute Ai a set of
values Di, called the domain of Ai, is associated (do-
mains are non-empty, finite or countably infinite sets).
A relation on the relation scheme R is a subset of the
product of the domains associated with the attributes
of R. A database scheme K! is a set of relation schemes
RI,..., R,,. A database instance D of the database
scheme Z is a set of relations RI(D), . . . , h(D), where
each &(D) is a relation on the relation scheme Ri.

A view V is an expression in the relation schemes
of ‘R that defines a new relation scheme, and for each
database instance D defines a unique relation on this
scheme denoted V(D). In this paper we consider views
that are defined by conjunctive relational calculus ex-
pressions [9]. Using domain relational calculus, expres-
sions from this family have the form:

{al,..., an I (3b1)...(3b,)lCllA...A~m)

Where the $‘s may be of two kinds:

1. membership: (~1 ,...,cp) E R, where R is a
database relation (of arity p), and the c’s are ei-
ther a’s or b’s or constants.

2. comparative: dl0 d2, where dl is either an a or a
b, ds is either an a or a b or a constant, and 6 is a
comparator (e.g., <, 5, >, 1, =, #).

In particular, each a and each b must appear at least
once among the c’s.

We shall refer to such views azz~ conjunctive views.
While this family is a strict subset of the relational
calculus, it is a powerful subset. The family of con-
junctive relational calculus expressions is precisely the
family of relational algebra expressions with the opera-
tions product, selection and projection (where the selec-
tion expressions are conjunctive). The attributes that
participate in the selection predicate will be called se-
lection aikibdes, and the attributes that participate in
the projection will be called projection attributes.

In this paper, conjunctive views serve to express both
queries and constraints. When used as a query, a con-
junctive view defines a relation that should be derived
and delivered to the user. When used as a constraint, a
conjunctive view defines a derived relation that should
always be null. This follows from the fact that every
constraint of the form (Vq) . . . (Vzn) (a(xl, . . . , 2,) *
P(Q,..., z,)), where xi are domain variables and Q and

- 239 -

/I are safe relational calculus expressions with these free
variables, may be rewritten as a null view: {xl, . . . , 2, 1
&(a,. . .,Zn)A+(zl ,..., zn)}=O.

As an example, consider a database with the following
relation schemes:

EMPLOYEE = (NAME,POSITION,SALARY,

DEPARTMENT)

DEPARTMENT = (DNAME,SUPERVISOR,DIVISION,

BUDGET)

The following constraints state, respectively, that em-
ployees in the design department are guaranteed a salary
of at least $30,000, that employees in researcher posi-
tions are in the design department, that departments
in the same division have the same budget, and that
employees cannot earn more than their supervisors (all
variables are quantified universally):

(~1,~,23,~4)E EMPLOYEE A (24 = design) _
(23 2 $30,000)

(z~,Q,z~,z~) E EMPLOYEE A (z2 = researcher) _
(24 = design)

(!h,Y2,3/3,y4) E DEPARTMENTA
(Y5,!/6,97,&3) E DEPARTMENTA
(Y3 = Y7) - (Y4 = ys)

(tI,Q,Z3,tq) E EMPLOYEEA
(15,26,27,26)E EMPLOYEE A
(!/I, y2 ,g3, V4) E DEPARTMENT A
(24 = YI) A (~5 = ~2) a (23 < 27)

These constraints may be restated as the following
null conjunctive views:

{Zl,..., 24 1 (z1,22,23,24) E EMPLOYEE A
(24 = design) A (23 < $30,000))

{Zl,..., 24 I(z~,z~, 23,24) E EMPLOYEE A
(22 = researcher) A (24 # design)}

{Yl 9***,Y4,Ys,...,Y8 I
(!h,!hY3,y4) E DEPARTMENT A
(Ys,Y6,Y7,Y8) E DEPARTMENT A
(y3 = Y7) A (Y4 # Y8))

(21 ,***,24,z5,.-.,z8,Yl,..., Y4 1
(2I,22,23,24)E EMPLOYEEA
(%5,26,27,23)E EMPLOYEE A
(Yl, 312, y3,y4) E DEPARTMENTA
(24 = ~1) A (~5 = ~2) A (23 > 27))

For clarity, these constraints may be specified with an
equivalent disallow statement:

disallow (EMPLOYEE)
where EMPLOYEE.DEPARTMENT = design

and EMPLOYEE.SALARY < $30,000

disallow (EMPLOYEE)
where EMPLOYEE.POSITION = researcher

and EMPLOYBE.DEPARTMENT # design

disallow (DEPARTMENT:~,DEPARTMENT:~)
where DEPARTMENT:~.DIVISION =

DEPARTMENT:2.DIVISION
and DEPARTMENT:l.BUDGET #

DEPARTMENT:2.BUDGET

disallow (EMPLOYEE:~, EMPLOYEE:~, DEPARTMENT)

where EMPLOYEE:~.DEPARTMENT =
DEPARTMENT.DNAME

and EMPLOYEE:%.NAME =
DEPARTMENT.SUPERVISOR

and EMPLOYEE:l.SALARY > EMPLOYEE:2.SALARY

Thus, each disallow statement specifies a set of rela-
tions and a condition, disallowing tuples in these re-
lations that satisfy the condition. The last two state-
ments show how to handle cases where several member-
ship subformulas reference the same relation. Note that
constraints are stated on entire relations, not on partic-
ular attributes from these relations; disahowing a com-
bination of tuples that satisfies a condition is equivalent
to disallowing particular attributes from these relations
that satisfy this condition. Thus, constraints do not ap-
ply projections, and are product-selection expressions.

As queries are also expressed with conjunctive views,
they may be specified with a similar retrievestatement,
a8 in the following query for the names and departments
of all employees of the Pacific division:

retrieve (EMPL~YEE.NAME, EMPL~YEE.DEPARTMENT)
where EMPLOYEE.DEPARTMENT =

DEPARTMENT.DNAME
and DEPARTMENT.DIVISION = pacific

Finally, given a view, we define every view derived
from it by a selection and a projection as its subvieur.
In particular, every view is its own subview.

- 240 -

4 Storing Constraints

Constraints are stored in new relations that are added
to the database. For each database relation R a meta-
relation R’ is added. The scheme of h? is identical to
the scheme of R. Also, an auxiliary relation is defined:
COMPARISON = (X,COMPARE,Y). In the previous ex-
ample, the database is extended with the following re-
lations:

EMPLOYEE' = (NAME,POSITION,SALARY,

DEPARTMENT)

DEPARTMENT' = (DNA~~E,SUPERVISOR,DIVISION,

BUDGET)

COMPARISON = (X,COMPARE,Y)

Relations EMPLOYEE' and DEPARTMENT' willbe used
to store membership subformulas of constraints, Com-
parative subformulas will be stored in relation COMPAR-
ISON.

Consider a constraint C,

c = {al,... ,a, 1(3b1)...(3b,)~lA...h~b}

A subformula 11, of the kind (cl, . . . , cP) E R is first
modified so that the c’s that are variables (i.e., a’s or
b’s) that appear only once in the whole expression are
replaced with LI (blank). Hence, each component of the
modified subformula is either a constant (a value), or
a variable, or a blank. This meta-tuple is stored in the
me&relation R’. A subformula $J of the kind dl0 ds,
where 0 is not =, is transformed into the tuple (dl, 0, dz)
and is stored in the auxiliary relation COMPARISON. If 0
is =, then all occurrences of dl in the other subformulas
are substituted with dz.

This representation of views in relations recalls the
representation of queries in &BE [lo]. As an example,
Figure 1 shows an instance of the example database ex-
tended with the previous four constraints. For conve-
nience of presentation, each pair of relations R, R’ is
shown as a single contiguous table.

Note that each individual meta-tuple may be re-
garded as defining a subview of the corresponding re-
lation. The constants and variables specify the selec-
tion condition (and the entire relation is projected).
For example, the meta-tuple (U, U, 21, design) stored in
EMPLOYEE’ specifies a selection of all tuples of rela-
tion EMPLOYEE for which DEPARTMENT = design and
SALARY = 21. (A variable shared by another meta-
tuple, such as 21, specifies a selection condition which
is satisfied by any value from a set of values defined
elsewhere.)

EMPLOYEE
NAME
Brown
Green
Jones
King
Scott
Smith
Wilson
Wood

POSITION
engineer
technician
manager
manager
manager
researcher
manager
salesnerson

SALARY
35,000
28,000
51,000
45,000
48,000
40,000
50,000
26,000

Xl

I
design

researcher

I XR I I

DEPARTMENT
manufacture
service
design
sales
service
design
manufacture
sales

DEPARTMENT
D-NAME SUPERVISOR DIVISION
design Jones pacific
manufacture Wilson pacific
sales King atlantic
service Scott atlantic

BUDGET
275
275
160
160

23 24
23 x5

27 xs
COMPARISON

Figure 1: Database Extended with Constraints

5 Manipulating Constraints

Assume a database RI,. . . , R,, and a meta-database
R’,,..., Rk, COMPARISON. Let Cl,. . . , C,,, be con-
straints (null views) defined on this database.

Let Q be a conjunctive query against this database.
We are interested in constraints that are defined on its
answer. That is, we are interested in subviews of Q that
are null.

We describe a method that discovers such sub-
views. Basically, this method generates views of
Cl,..., C,,, that are subviews of Q, by manipulating the
definitions of Cr, . . . , C,,, algebraically. These manipu-
lations mirror those that are necessary to implement Q.
In effect, we generalize the standard product, selection
and projection operations to manipulate also relations
of view definitions. Clearly, every view of null views is
also null, so the subviews of Q that are generated in this
way are indeed null.

- 241 -

This method is illustrated by the commutative dia-
gram shown in Figure 2. The solid lines describe the
current situation: the null views R’ define constraints
on the database relations R, and the virtual relation A
is derived from R to answer query Q. The dashed lines
describe our method: query processing is extended to
manipulate also R’ to yield the null views A’ that de-
fine constraints on the answer A.

R’ R

I

-1
19 & I t---

A’ A

Figure 2: Extending Query Processing to Constraints

5.1 Meta-Relation Operations

Definition 1: Assume that R’ and S’ are meta-
relations that define, respectively, views of R and S.
The product of R’ and S’, denoted R’ x 9, is defined
as follows. For every pair r and s of meta-tuples from
R’ and S’, respectively,

r = (al,...,am)

S = (h ,...,bn)

R’ x S includes the meta-tuple:

!l = (al,... ,am, I,.. b -,bn)

Proposition 1: Let D be an instance of this
database, and let r(D), s(D) and q(D) denote, re-
spectively, the relations defined by r, s and q. Then
q(D) = r(D) x s(D).
Proof: Let X and p denote, respectively, the selection
predicates of r and s. Then r(D), s(D) and q(D) can
be expressed as the following product-selection expres-
sions:

r(D) = NW))

s(D) = dw))

q(D) = Q,@(D) x S(D))

r(;(g;‘” that uxhr(R(D) x S(D)) = ax(R(D)) x

P

Definition 2: Assume that R’ is a meta-relation that
defines views of R. Let A denote a primitive selection
predicate (i.e., either Ai 0 c, or Ai 0 A;). The selection
from R’ by predicate A, denoted ux(R’), is defined as
follows. Consider first the case A = Ai Bc, and let r be
a meta-tuple from R’,

r = (01 ,..., f3i ,..., am)

Denote by /J the selection predicate expressed by oi ‘.
ux(R’) includes the meta-tuple:

!l = (a1 ,..., ai ,..., a,)

where oi represents A A p. Consider now the case A =
Ai B Aj, and let r be a meta-tuple from R’,

r = (al,. . . , ai, Oj ,..., am)

Denote by p the selection predicate expressed by oi and
oj. Q(R’) includes the meta-tuple:

4 = (al ,,.., ai ,..., ai ,..., am)

where a{ and a: represent A A cc.

Proposition 2: Let D be an instance of this
database, and let r(D) and q(D) denote, respectively,
the relations defined by r and q. Then q(D) = uxr(D).
Proof: r(D) and q(D) can be expressed as the following
selection expressions:

r(D) = QP(RW)

q(D) = qu~x(R(D))

We observe that u,Ax(R(D)) = axur(R(D)).

Definition 3: Assume that R’ is a meta-relation that
defines views of R. The projection of RI that removes its
i’th attribute, denoted Q-A~(R’), is defined as follows.
For every metaituple r from R’,

r = (al,...,am)

If oi is LI, then TR-A;(R’) includes the meta-tuple:

P = (al,..., ai-i,ai+l,...,%)

Proposition 3: Let D be an instance of this
database, and let r(D) and q(D) denote, respectively,
the relations defined by the metactuples r and q. Then
q(D) = W-A;(@)) ‘0
Proof: Let A denote the selection predicate of r. r(D)

‘If ai is blank, then /.A is true.
2In general, we d&e x0(R) as 8 projection on those attributes

in a that 8re in R. Thus, if attribute Ai had already been re-
moved, a projection on R - Ai has no effect.

- 242 -

and q(D) can be expressed as the following selection-
projection expressions:

r(D) = m@(D)>

q(D) = QXrR-Ai(R(D))

We observe that if the i’th attribute of R does not
participate in the predicate X, then BXKR-A((R(D)) =

RR-AircJX(R(D)).

Note that projection retains only meta-tuples whose
projected attributes are disjoint from their selection at-
tributes.

Propositions 1, 2 and 3 are summarized in the follow-
ing theorem:

Theorem: Assume a database RI,. . . , R,, and a
meta-database Ri, . . . , Rk, COMPARISON, with con-
straints (null views) Cl,. . . , C,,,. Let & be a conjunctive
query against this database. Let S be the relational
algebra expression that implements Q. Let S’ be the
relational algebra expression obtained from S by sub-
stituting every reference to R with a reference to RI.
S operates on the relations to yield the answer A. St
operates on the meta-relations to yield the meta-answer
A’. Then, the meta-tuples in A’ define subviews of A
that are also views of Cr , . . . , C,,, .

The theorem guarantees that meta-tuples in A’ de-
fine subviews of A that are views of Cl,. . . , C,,, (and
are therefore null). However, some meta-tuples may
still contain references to meta-tuples outside A’, and
are therefore not expressible entirely within A’. Such
subviews are avoided if S’ is modified so that all prod-
ucts are performed first, and their result is pruned to
retain only those meta-tuples that do not contain refer-
ences to other meta-tuples. Also, as we explain below,
it is advantageous to perform selections before projec-
tions. Altogether, S’ is transformed to a sequence of
products, followed by selections, and ending with pro-
jections. This simple strategy for implementing con-
junctive queries is not necessarily optimal. However, we
note that the optimality is not so essential for meta-
relations, because they are relatively small. For the ac-
tual relations, where optimality is essential, a different
strategy may be implemented.

5.2 Refinements

The theorem guarantees that the method for generating
subviews is sound, but it does not guarantee that it is
complete. That is, this method generates subviews of
the result that are indeed null, but does not necessar-
ily generate all such subviews. A method that would

guarantee completeness would undoubtedly be of a dif-
ferent complexity altogether. Yet, with several simple
refinements, it can be improved to generate additional
desirable subviews. Two such refinements are sketched
below. Both address the “loss of views” that occurs dur-
ing projection, when meta-tuples are discarded if they
restrict (with variables or constants) the attributes that
are removed.

The first refinement modifies the product operation.
Assume that Q is a product of R and S, followed by a
projection that removes all the attributes of S. Obvi-
ously, & is equivalent to R, and A’ should retain all the
meta-tuples of R’. However, these meta-tuples may be
discarded by the projection, if they contain restrictions
in the attributes contributed by S’. To handle this sit-
uation we may extend the product of meta-relations to
include also these two tuples:

Ql = (al,...,%,U,...,q

~2 = (U,...,Uh,...,bn)

These tuples define all previous subviews of R and S as
subviews of the product of R and S.

The second refinement modifies the selection opera-
tion. As defined, this operation requires conjuncting ~1,
the predicate expressed in the meta-tuple, with X, the
predicate expressed in the query. However, as all the
tuples in the resulting relation satisfy A, the expression
I(A X is simply ~1. Therefore, it appears that a simpler
definition of the selection operation may be provided,
which simply retains all meta-tuples without any mod-
ification. On the other hand, this simpler definition
often would not generate the best definitions of views,
nor would it detect views that are indeed irrelevant. As
an example, assume a meta-tuple that selects the em-
ployees whose salaries are between $30,000 and $60,000,
and consider the following four. queries that select the
employees whose salaries are (1) between $20,000 and
$40,000, (2) between $20,000 and $70,000, (3) between
$40,000 and $50,000, and (4) under $30,000. In each
case, the given view (employees whose salaries are be-
tween $30,000 and $60,000) could be retained as a view
of the employees selected. However, it would be more
desirable to handle this selection on a case by case basis,
as follows. In the first query, modify the given view to
define the employees whose salaries are between $30,000
and $40,000; in the second query, retain the given view
without any modification; in the third query, modify the
given view so it does not restrict the salary at all; and,
in the fourth query, discard the given view altogether.
In general, we observe four different cases: If A implies
cc, the meta-tuple is selected and the corresponding field
is cleared (i.e., the variable or the constant is replaced

by u); if p implies A, the meta-tuple is selected without
any modification; if J and p are contradictory, the meta-
tuple is discarded; otherwise, the meta-tuple is selected,
and is modified to represent p A A. Clearing selection
predicates ensures that more meta-tuples will “survive”
future projections. Determining the appropriate case
for given ,U and x may require consulting relation COM-
PARISON, and, possibly, modifying it. While for most
views and queries this task is quite simple, if an imple-
mentation chooses not to determine the case for pred-
icates of certain form, then in those cases the relevant
meta-tuple must not be selected. Note that the only
other time where relation COMPARISON is used,is when
the views in A’ are described to the user.

6 Detecting Containments

Consider again the selection operation, and let
(al,..., a,) be a meta-tuple in the result of the product.
This meta-tuple represents a denial of a conjunction of
n primitive predicates. Denote by pi the predicate rep-
resented by ai 3. Then this meta-tuple represents the
constraint:

which may be formulated as an implication:

Let Ai A . . . A A,,, be the selection predicate expressed
in the query. As discussed earlier, selection is performed
with a sequence of steps, each comparing a pi with a Xi.
pi and Aj are related in one of four different ways:

1. Aj */Ji

2. /Aj * Ai

3. -(Ai A /.~i)

4. Otherwise

In all but case 3, 5 and /.Li are not contradictory, and
the meta-tuple is retained (possibly modified). A meta-
tuple that “survives” the entire selection sequence de-
scribes a constraint on the result.

Consider now case 3. It may be formulated as Aj =$
‘pi. Obviously, when this selection step terminates, the
tuples in the result satisfy Xi. Hence, they also satisfy
Y,u~. Recall that the meta-tuple may be represented as
the implication:

Thus, the tuples that satisfy plA*. *A/Ii-lA~i+lA+. .Ap,
must satisfy ‘pi. Since the tuples of the result indeed
satisfy l/Ji, all the tuples that satisfy ~1 A .*. A pi-1 A
Pi+1 A . . . A c(,, are included in the result. Therefore,
in case 3, the conjunction of all the constraint predi-
cates except pi represents a view that is contained in
the result.

We now extend the previous selection process. Con-
sider a selection step that compares pi with 5. Case 1,
2 and 4 are treated as before. In case 3, the meta-tuple
is not discarded; instead, ai (which represents the predi-
cate pi) is replaced by the symbol 7, to indicate that it is
never satisfied in the result. Future comparisons should
leave this value unchanged. When an attribute that is
removed by the projection contains 1, the meta-tuple is
retained, but this 7 is “attached” to the meta-tuple.

7 Examples

When the entire processing ends, each meta-tuple in
the result is examined. If it does not include any 7,
it is a constraint. If it includes exactly one 7, it is a
containment.

Constraints are translated into disallow statements;
containments are translated into contain statements.
The syntax of these statements is similar: the words
disallow or contain are followed by an expression in
the attributes of the result, similar to the where clause
of a retrieve statement. This set of statements con-
stitutes the intensional answer, and it accompanies the
usual eztensional answer.

Example 1: Consider the query of the introduction,
to retrieve the names, positions and salaries of employ-
ees in the design department:

retrieve (EMPLOYEE.NAME, Eh4PLoYEE.PosITIoN,
EMPLOYEESALARY)

where EMPLOYEE.DEPARTMENT = design

This query may be implemented with the following se-
quence of algebraic operations:

'* A + u~DEPARTMENT=design)(EMPLoYEE)

2. A + ~NAME,POSITION,SALARY(A)

The same operations that are applied to the data-
base relations are applied to their meta-relations coun-
terparts:

l* A'+ a(DEPARTMENT=design)(EMPLoYEE')

2. A' + ~NAME,POSITION,SALARY(A')

This sequence does not require products. Before se- 31f ai = IJ, then pi = true.

- 244 -

lection, the meta-relation EMPLOYEE’ is pruned to in-
clude only those meta-tuples that do not reference other
meta-tuples:

EMPLOYEE’
1 NAME 1 POSITION 1 SALARY t DEPARTMENT 1

Xl design
researcher x2

The selection involves a single query predicate DE-
PARTMENT=design. In the first meta-tuple the con-
straint predicate is also DEPARTMENT=design. This cor-
responds to case 1, and the DEPARTMENT field is cleared.
In the second meta-tuple the constraint predicate is
DEPARTMENTfdesign. This corresponds to case 3, and
the DEPARTMENT field is replaced by ‘7. We have:

A’
NAME POSITION SALARY DEPARTMENT

Xl

researcher 7

Finally, the projection retains both meta-tuples:

A’
1 NAME 1 POSITION 1 SALARY 1

Xl
7 researcher

In response to a request to retrieve the names, po-
sitions and salaries of employees in the design depart-
ment, the system issues this extensional answer:

-1

And this intensional answer:

disallow SALARY c $30,000
contain POSITION = researcher

These statements inform the user that all employees re-
trieved earn at least $30,000, and that all employees in
researcher positions were retrieved.

Example 2: Consider a query to retrieve pairs of
different departments that are in the same division, and
their budgets:

retrieve (DEPARTMENT:~ .DNAME,
DEPARTMENT:l.BUDGET,
DEPARTMENT:2.DNAME,
DEPARTMENT:2BUDGET)

where DEPARTMENT:~ .DIVISION =
DEPARTMENT:2.DIVISION

and DEPARTMENT:~ .DNAME <
DEPARTMENT:2.DNAME

This query may be implemented with the following se-

quence of algebraic operations 4:

1. A + DEPARTMENT X DEPARTMENT

2. A + b(DIV:1=DIV:2)A(D_NAME:l<DNAME:2)(A)

3. A + “DNAME:1,BUD:l,D-NAME:2,BUD:2(A)

The same operations that are applied to the database
relations are applied to their meta-relations counter-
parts:

1. A’ + DEPARTMENT’ X DEPARTMENT’

2. A’ + u(DIV:l=DIV:2)~(DNAME:1>D-NAME:2)(A’)

3* A’ + rD_NAME:l,BUD:l,D-NAME:2,BUD:2(A’)

The result of the product after outside references are
removed is:

A’
D-N:1 S:l D:l B:l D-N:2 S:2 D:2 B:2

23 24 23 x5

23 25 23 24

The selection involves two query predicates. The
first predicate is DIVISION:1=DIVISION:2. In both
meta-tuples the constraint predicate is also DIVI-
SION:~=DIVISION:~. This corresponds to case 1, and in
each meta-tuple the DIVISION fields are cleared. The sec-
ond predicate is DNAME:l<D-NAME:2. In both meta-
tuples the constraint predicate is true. Again, this cor-
responds to case 1, and in each meta-tuple the DNAME
fields remain clear. We have:

At
D-N:1 S:l D:l B:l D-N:2 S:2 D:2 B:2

24 25

x5 x4

Finally, the projection retains both meta-tuples:

A’
D-NAME:1 BUDGET:1 DNAME:2 BUDGET:2

24 x5

x4 x4

In response to a request to retrieve pairs of different
departments that are in the same division, the system
issues this extensional answer:

D-NAME:1 BUDGET:1 DNAME:2 BUDGET:2

design 275 manufacture 275
sales 160 service 160

And this intensional answer:

disallow BUDGET:1 # BUDGET:2

This statement (generated twice) informs the user that
the budgets must be equal.

*When a relation has several attributes named A, then A : i
denotes the i’th appearance of A.

- 245 -

8 Conclusion
We presented a method that addresses the important
issue of providing more meaningful answers to queries.
The relational model, which stores data in relations,
is extended to store constraints in meta-relations, and
the algebra of relations is extended to an algebra of
meta-relations. Each query is processed against both
the database and the meta-database, yielding an an-
swer and a meta-answer. The meta-answer describes
constraints and containments that apply to the answer.

Currently, the methods handle only conjunctive views
(constraints, containments, and queries). Work is un-
derway on extensions that will handle more general
views; for example, views with disjunctions and views
with aggregate functions. Since the methods do not nec-
essarily detect all the constraints and containments that
apply to the result, the intensional answers that are
provided should be considered sound characterizations,
that are not necessarily complete.

One of the dilllcult problems in providing intensional
answers is how to identify the statements that are rel-
evant to a query. For example, consider a query to list
all employees and their salaries. While it is true that
the set of employees listed satisfies the constraint that
all those in researcher positions are in the design de-
partment, this information is probably irrelevant. It is
possible to extend the model to include in the database
additional knowledge that will assist in determining the
relevant statements. A satisfactory implementation of
this approach requires additional investigation.

An alternative solution is to define an intensional
statement as relevant, if it can be expressed entirely
with the attributes retrieved by the query. Thus, the
constraint that all employees in researcher positions are
in the design department is relevant only to queries
that retrieve both POSITION and DEPARTMENT. While
this solution may not be entirely satisfactory, it pro-
vides an extremely simple pruning mechanism, which is
usually effective. Indeed, the projection operation im-
plements this very pruning strategy, as it discards the
meta-tuples whose projection attributes and selection
attributes intersect, retaining only constraints and con-
taiuments that are expressed entirely with the nttribut#es
retrieved by the query.

Another problem that, remains to be solved is how
to prune intensional answers, so they do not include
statements that are implied by other statements. For
example, assume a constraint that all female employees
earn over $30,000, and a constraint that all employees
over 35 years old earn over $40,000, and consider a query
to list the female employees over 35 years old. The meta-

answer will include two constraints: all employees listed
earn over $30,000, and all employees listed earn over
$40,000. Obviously, the former statement is redundant.

Work is also underway on a database “front-end” in-
terface that will implement our methods and enable ex-
perimentation. The user will define constraints with
disallow statements, and the system will insert auto-
matically the appropriate meta-tuples into the meta-
relations. In response to a retrieve statement, the user
will receive the usual extensional answer, accompanied
by inferred disallow and contain statements. Thus,
the meta-relations and meta-tuple notation would be
completely transparent, with all user-system communi-
cation done with customary query language statements.

Acknowledgement. The author is grateful to Alex
Borgida for pointing out several relevant works.

References

PI

PI

131

M

151

161

VI

PI

PI

PO1

L. Cholvy and R. Demolombe. Querying a rule
base. In Proc. First Int. Conf. on Expert Database
Systems, April 1986, pages 365-371.

F. Corella. Semantic retrieval and levels of ab-
sraction. In Proc. First Int. Workshop on Expert
Database Systems, October 1984, pages 91-114.

T. Imielinski. Intelligent query answering in rule
baaed systems. Journal of Logic Programming,
4(3):229-257, September 1987.

D. Maier. The Theory of Relational Databases.
Computer Science Press, 1983.

A. Motro. An access authorization model for rela-
tional databases based on algebraic manipulation
of view definitions. In Proc. Fifth In.2. Conf. on
Data Engineering, February 1989, pages 339-347.

A. Motro. Integrity = validity + completeness.
(To appear in ACM Trans. on Database Systems.)

C. D. Shum and R. Muntz. Implicit represen-
tation for extensional answers. In Proc. Second
Int. Conf. on Expert Database Systems, April 1988,
pages 257-273.

C. D. Shum and R. Muntz. An information-
theoretic study on aggregate responses. In Proc.
Fourteenth Int. Conf. on Very Large Data Bases,
August 1988, pages 479-490.

J. D. Pullman. Principles of Database Systems.
Computer Science Press, 1982.

M. Zloof. Query-by-Example: a database lan-
guage. IBM Systems Journal, 16(4):324-343, De-
cember 1977.

- 246 -

