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Abstract 

An intensionalanswer to a query is a set of characteriza- 
tions of the set of database values that satisfy the query 
(the extensional answer). Intensional answers provide 
users with additional insight into the nature of standard 
extensional answers. In this paper we describe a method 
that applies database constraints to generate intensional 
answers. These intensional answers characterize the ex- 
tensional answers in two ways: (1) with constraints that 
are applicable to the extensional answer, and (2) with 
database views that are contained entirely in the ex- 
tensional answer. Our method is to represent the def- 
initions of constraints in special “meta-relations”, and 
extend standard algebraic operators to these relations. 
When a query is presented to the database system, it 
is performed both on the actual relations, resulting in 
an extensional answer, and on the meta-relations, re- 
sulting in definitions of constraints that apply to the 
extensional answer, as well as database views that are 
contained entirely in the extensional answer. These def- 
initions are translated into an intensional answer that 
accompanies the extensional answer. 

1 Introduction 

The information stored in databases is of two kinds. 
Extensional information (often called data) is infor- 
mation that applies to individual real world objects. 
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Intensional information (often called knowledge) is in- 
formation that applies to multitudes of real world ob- 
jects. In the relational database model extensional in- 
formation is expressed with relations over domains of 
data values, and intensional information is expressed 
with constraints, which are formulas in predicate logic 
that assert required relationships among the data val- 
ues. 

Relational database systems use constraints to en- 
hance the integrity of the extensional information in the 
database by monitoring changes made to the relations. 
Assuming that initially the relations satisfy the con- 
straints, thereafter update requests are accepted only if 
the resulting relations would not violate any of the con- 
straints. For reasons of efficiency, most database sys- 
tems do not implement constraints that are arbitrary 
predicate logic formulas. Usually, only very specific 
types of formulas are allowed, such as range constraints 
or referential constraints. But even a database system 
that implements only the notion of relation key, forbid- 
ding two tuples from having the same key value, is, in 
effect, enforcing a particular kind of constraint. 

An answer to a query is a set of data values that sat- 
isfy a qualification specified in the query. Therefore, an- 
swers are derived entirely from the extensional informa- 
tion in the database. Indeed, the only intensional infor- 
mation that characterizes this set of values is the qual- 
ification specified in the query that generated it. Still, 
the intensional information in the database may include 
additional characterizations of the extensional answer. 
If this intensional information is retrieved, database an- 
swers may gain additional meaning. 

In this paper we describe a method that provides such 
intensional answers. As an example, assume a personnel 
database that includes a relation EMPLOYEE with at- 
tributes NAME, TITLE, SALARY and DEPARTMENT, and 
two constraints: one states that all employees in the 
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design department are guaranteed a salary of at least 
$30,000, and the other states that all employees in re- 
search positions are in the design department. A query 
to retrieve all the employees in the design department 
may generate the extensional answer: 

l Betty, Harry, Mary, Tom 

and the intensional answer: 

l All employees retrieved earn at least $30,000. 

s All employees in researcher positions retrieved. 

Thus, an intensional answer characterizes the exten- 
sional answer, providing more insight into the nature of 
the set of values retrieved. 

In our approach, providing intensional answers from 
constraints is a specific case of the following more gen- 
eral problem: Given a query and set of database views 
that possess a particular property, what views of the 
answer possess this property? 

In [6] we considered database views whose property is 
that they have guaranteed integrity. The problem then 
became: Given a query, what views of its answer have 
guaranteed integrity? Solving this problem enabled us 
to extend a database system so that every answer is 
accompanied by statements that define its integrity, re- 
sembling a certification of quality. In [5] we considered 
database views whose property is that they are permit- 
ted to a particular user. The problem then became: 
Given a query, what views of its answer should be per- 
mitted to this user? Solving this problem enabled us to 
extend a database system with an authorization mech- 
anism that has several advantages over other known 
mechanisms. 

In this paper we consider database views whose prop- 
erty is that they are always null. The problem then be- 
comes: Given a query, what are the views of its answer 
that are always null? As we shall see, views of this type 
express constraints, and thus provide good intensional 
characterizations of answers. 

In each case, our solution is to represent the defini- 
tions of the given database views in special relations, 
using the concept of meta-tuples. A meta-tuple defines 
a subview (i.e., a selection and a projection) of a single 
relation, and several meta-tuples can be used together to 
define general views. All meta-tuples that define sub- 
views of the same relation are stored together in one 
meta-relation, whose structure mirrors the actual rela- 
tion. Standard algebraic operators (product, selection 
and projection) are extended to these meta-relations. 

When a query is presented to the database system, it 
is performed both on the actual relations, resulting in an 

answer, and on the meta-relations, resulting in defini- 
tions of views of the answer that inherit the particular 
property of the given views. 

In the case of constraints, these views express con- 
straints that apply to the answer. They provide the ba- 
sis for the intensional answer that will accompany the 
extensional answer. 

In the previous example, the two constraints may be 
restated as the following null database views: “employ- 
ees in the design department who earn under $30,000” 
and “employees in researcher positions who are not in 
the design department”. 

When the employees in the design department are 
retrieved, we may infer from the first null view that 
the answer view “employees who earn under $30,000” 
is also null. The first component of the example inten- 
sional answer given earlier is simply a restatement of 
this conclusion. 

Our method for inferring views of the answer that 
are always null may be extended to infer also views of 
the database that are contained entirely in the answer. 
When the employees in the design department are re- 
trieved, we may infer from the second null view that 
the database view “employees in researcher positions” 
is contained in the answer in its entirety. This conclu- 
sion provided the second component of that intensional 
answer. 

Altogether, the intensional answers characterize the 
extensional answers in two ways: (1) with constraints- 
views of the extensional answer that are null; and 
(2) with containment.+ views that are contained entirely 
in the extensional answer. 

The remainder of this paper is organized as follows. 
In the next section we discuss .related research works. 
Section 3 defines the language with which constraints 
are expressed, and Section 4 shows how constraints are 
stored. Section 5 defines the algebraic manipulations 
of constraints to yield constraints that are applicable 
to the answer. Section 6 shows how this process can be 
extended to infer containments. Section 7 demonstrates 
these method with several examples, and Section 8 con- 
cludes with a brief discussion of further refinements of 
the method. This representation and manipulation of 
views was first introduced in [6], and has been modified 
for the particular problem at hand. 
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2 Research on Intensional An- 
swers 

Recently, several research contributions have been con- 
cerned with related issues. While each adopts a different 
approach, all share a common goal, which is to answer 
queries more abstractly. 

A logic database is composed of extensional predi- 
cates (facts) and intensional predicates (rules). Cholvy 
and Demolombe [l] are interested in providing answers 
to queries that are independent of a particular set of 
facts; i.e., answers that are derived only from the rules. 
The authors define a constructive derivation process 
that computes such answers. One of the problems they 
consider is how to avoid answers that are “irrelevant”. 

Also in the environment of logic databases, Imielin- 
ski [3] argues that rules should be allowed to occur in 
the answer to the query. This is shown to be beneficial 
both from the conceptual and the computational point 
of view. As an example, assume database predicates 
Teach(z,y), denoting that professor z can teach course 
y, and Group(z,s), denoting that professors z and z be- 
long to the same research group. And assume a rule that 
requires that professors from the same group be able to 
teach the same courses. Then a query “who can teach 
the Database course” may be answered intensionally by 
“everybody in Smith’s group”. Exhaustive enumeration 
of this answer will be performed upon request. 

Corella [2] notes that while research on knowledge 
representation produced much work on the derivation 
of taxonomies of concepts, concepts are also essential in 
responses to queries. The author defines a formal model 
of “semantic,, retrieval (similar to intensional answers). 
Roughly, a concept is a unary predicate over a given 
domain, and a taxonomy is a finite tree of concepts, 
where the concept described by each node is subsumed 
by the concept described by its parent, and the union 
of sibling concepts is equal to their parent concept. 

Shum and Muntz also note that answers that are ex- 
haustive enumerations of individual objects are not al- 
ways the most efficient or the most effective means of 
information exchange. In [7] they are concerned with 
implicit representation of answers through concise ex- 
pressions that involve both concepts and individuals. 
For example, an acceptable answer to the query “Who 

earns more than $30,000?” is “all engineers except 
John Smith,‘. In [S] they are concerned with provid- 
ing aggregate responses, where preciseness is sacrificed 
for conciseness. An example would be an answer such 
as “90/120 engineers + 20/30 managers”. In both cases 
they assume, like Corella, the availability of taxonomies 
that encompass all concepts and individuals. 

3 Views, Queries and Con- 
straints 

We assume the following definition of a relational 
database [4]. A relation scheme R is a finite set of al- 
tributes AI,. . .,A,,,. With each attribute Ai a set of 
values Di, called the domain of Ai, is associated (do- 
mains are non-empty, finite or countably infinite sets). 
A relation on the relation scheme R is a subset of the 
product of the domains associated with the attributes 
of R. A database scheme K! is a set of relation schemes 
RI,..., R,,. A database instance D of the database 
scheme Z is a set of relations RI(D), . . . , h(D), where 
each &(D) is a relation on the relation scheme Ri. 

A view V is an expression in the relation schemes 
of ‘R that defines a new relation scheme, and for each 
database instance D defines a unique relation on this 
scheme denoted V(D). In this paper we consider views 
that are defined by conjunctive relational calculus ex- 
pressions [9]. Using domain relational calculus, expres- 
sions from this family have the form: 

{al,..., an I (3b1)...(3b,)lCllA...A~m) 

Where the $‘s may be of two kinds: 

1. membership: (~1 ,...,cp) E R, where R is a 
database relation (of arity p), and the c’s are ei- 
ther a’s or b’s or constants. 

2. comparative: dl0 d2, where dl is either an a or a 
b, ds is either an a or a b or a constant, and 6 is a 
comparator (e.g., <, 5, >, 1, =, #). 

In particular, each a and each b must appear at least 
once among the c’s. 

We shall refer to such views azz~ conjunctive views. 
While this family is a strict subset of the relational 
calculus, it is a powerful subset. The family of con- 
junctive relational calculus expressions is precisely the 
family of relational algebra expressions with the opera- 
tions product, selection and projection (where the selec- 
tion expressions are conjunctive). The attributes that 
participate in the selection predicate will be called se- 
lection aikibdes, and the attributes that participate in 
the projection will be called projection attributes. 

In this paper, conjunctive views serve to express both 
queries and constraints. When used as a query, a con- 
junctive view defines a relation that should be derived 
and delivered to the user. When used as a constraint, a 
conjunctive view defines a derived relation that should 
always be null. This follows from the fact that every 
constraint of the form (Vq) . . . (Vzn) (a(xl, . . . , 2,) * 
P(Q,..., z,)), where xi are domain variables and Q and 

- 239 - 



/I are safe relational calculus expressions with these free 
variables, may be rewritten as a null view: {xl, . . . , 2, 1 
&(a,. . .,Zn)A+(zl ,..., zn)}=O. 

As an example, consider a database with the following 
relation schemes: 

EMPLOYEE = (NAME,POSITION,SALARY, 

DEPARTMENT) 

DEPARTMENT = (DNAME,SUPERVISOR,DIVISION, 

BUDGET) 

The following constraints state, respectively, that em- 
ployees in the design department are guaranteed a salary 
of at least $30,000, that employees in researcher posi- 
tions are in the design department, that departments 
in the same division have the same budget, and that 
employees cannot earn more than their supervisors (all 
variables are quantified universally): 

(~1,~,23,~4)E EMPLOYEE A (24 = design) _ 
(23 2 $30,000) 

(z~,Q,z~,z~) E EMPLOYEE A (z2 = researcher) _ 
(24 = design) 

(!h,Y2,3/3,y4) E DEPARTMENTA 
(Y5,!/6,97,&3) E DEPARTMENTA 
(Y3 = Y7) - (Y4 = ys) 

(tI,Q,Z3,tq) E EMPLOYEEA 
(15,26,27,26)E EMPLOYEE A 
(!/I, y2 ,g3, V4) E DEPARTMENT A 
(24 = YI) A (~5 = ~2) a (23 < 27) 

These constraints may be restated as the following 
null conjunctive views: 

{Zl,..., 24 1 (z1,22,23,24) E EMPLOYEE A 
(24 = design) A (23 < $30,000)) 

{Zl,..., 24 I(z~,z~, 23,24) E EMPLOYEE A 
(22 = researcher) A (24 # design)} 

{Yl 9***,Y4,Ys,...,Y8 I 
(!h,!hY3,y4) E DEPARTMENT A 
(Ys,Y6,Y7,Y8) E DEPARTMENT A 
(y3 = Y7) A (Y4 # Y8)) 

(21 ,***,24,z5,.-.,z8,Yl,..., Y4 1 
(2I,22,23,24)E EMPLOYEEA 
(%5,26,27,23)E EMPLOYEE A 
(Yl, 312, y3,y4) E DEPARTMENTA 
(24 = ~1) A (~5 = ~2) A (23 > 27)) 

For clarity, these constraints may be specified with an 
equivalent disallow statement: 

disallow (EMPLOYEE) 
where EMPLOYEE.DEPARTMENT = design 

and EMPLOYEE.SALARY < $30,000 

disallow (EMPLOYEE) 
where EMPLOYEE.POSITION = researcher 

and EMPLOYBE.DEPARTMENT # design 

disallow (DEPARTMENT:~,DEPARTMENT:~) 
where DEPARTMENT:~.DIVISION = 

DEPARTMENT:2.DIVISION 
and DEPARTMENT:l.BUDGET # 

DEPARTMENT:2.BUDGET 

disallow (EMPLOYEE:~, EMPLOYEE:~, DEPARTMENT) 

where EMPLOYEE:~.DEPARTMENT = 
DEPARTMENT.DNAME 

and EMPLOYEE:%.NAME = 
DEPARTMENT.SUPERVISOR 

and EMPLOYEE:l.SALARY > EMPLOYEE:2.SALARY 

Thus, each disallow statement specifies a set of rela- 
tions and a condition, disallowing tuples in these re- 
lations that satisfy the condition. The last two state- 
ments show how to handle cases where several member- 
ship subformulas reference the same relation. Note that 
constraints are stated on entire relations, not on partic- 
ular attributes from these relations; disahowing a com- 
bination of tuples that satisfies a condition is equivalent 
to disallowing particular attributes from these relations 
that satisfy this condition. Thus, constraints do not ap- 
ply projections, and are product-selection expressions. 

As queries are also expressed with conjunctive views, 
they may be specified with a similar retrievestatement, 
a8 in the following query for the names and departments 
of all employees of the Pacific division: 

retrieve (EMPL~YEE.NAME, EMPL~YEE.DEPARTMENT) 
where EMPLOYEE.DEPARTMENT = 

DEPARTMENT.DNAME 
and DEPARTMENT.DIVISION = pacific 

Finally, given a view, we define every view derived 
from it by a selection and a projection as its subvieur. 
In particular, every view is its own subview. 
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4 Storing Constraints 

Constraints are stored in new relations that are added 
to the database. For each database relation R a meta- 
relation R’ is added. The scheme of h? is identical to 
the scheme of R. Also, an auxiliary relation is defined: 
COMPARISON = (X,COMPARE,Y). In the previous ex- 
ample, the database is extended with the following re- 
lations: 

EMPLOYEE' = (NAME,POSITION,SALARY, 

DEPARTMENT) 

DEPARTMENT' = (DNA~~E,SUPERVISOR,DIVISION, 

BUDGET) 

COMPARISON = (X,COMPARE,Y) 

Relations EMPLOYEE' and DEPARTMENT' willbe used 
to store membership subformulas of constraints, Com- 
parative subformulas will be stored in relation COMPAR- 
ISON. 

Consider a constraint C, 

c = {al,... ,a, 1(3b1)...(3b,)~lA...h~b} 

A subformula 11, of the kind (cl, . . . , cP) E R is first 
modified so that the c’s that are variables (i.e., a’s or 
b’s) that appear only once in the whole expression are 
replaced with LI (blank). Hence, each component of the 
modified subformula is either a constant (a value), or 
a variable, or a blank. This meta-tuple is stored in the 
me&relation R’. A subformula $J of the kind dl0 ds, 
where 0 is not =, is transformed into the tuple (dl, 0, dz) 
and is stored in the auxiliary relation COMPARISON. If 0 
is =, then all occurrences of dl in the other subformulas 
are substituted with dz. 

This representation of views in relations recalls the 
representation of queries in &BE [lo]. As an example, 
Figure 1 shows an instance of the example database ex- 
tended with the previous four constraints. For conve- 
nience of presentation, each pair of relations R, R’ is 
shown as a single contiguous table. 

Note that each individual meta-tuple may be re- 
garded as defining a subview of the corresponding re- 
lation. The constants and variables specify the selec- 
tion condition (and the entire relation is projected). 
For example, the meta-tuple (U, U, 21, design) stored in 
EMPLOYEE’ specifies a selection of all tuples of rela- 
tion EMPLOYEE for which DEPARTMENT = design and 
SALARY = 21. (A variable shared by another meta- 
tuple, such as 21, specifies a selection condition which 
is satisfied by any value from a set of values defined 
elsewhere.) 

EMPLOYEE 
NAME 
Brown 
Green 
Jones 
King 
Scott 
Smith 
Wilson 
Wood 

POSITION 
engineer 
technician 
manager 
manager 
manager 
researcher 
manager 
salesnerson 

SALARY 
35,000 
28,000 
51,000 
45,000 
48,000 
40,000 
50,000 
26,000 

Xl 

I 
design 

researcher 

I XR I I 

DEPARTMENT 
manufacture 
service 
design 
sales 
service 
design 
manufacture 
sales 

DEPARTMENT 
D-NAME SUPERVISOR DIVISION 
design Jones pacific 
manufacture Wilson pacific 
sales King atlantic 
service Scott atlantic 

BUDGET 
275 
275 
160 
160 

23 24 
23 x5 

27 xs 
COMPARISON 

Figure 1: Database Extended with Constraints 

5 Manipulating Constraints 

Assume a database RI,. . . , R,, and a meta-database 
R’,,..., Rk, COMPARISON. Let Cl,. . . , C,,, be con- 
straints (null views) defined on this database. 

Let Q be a conjunctive query against this database. 
We are interested in constraints that are defined on its 
answer. That is, we are interested in subviews of Q that 
are null. 

We describe a method that discovers such sub- 
views. Basically, this method generates views of 
Cl,..., C,,, that are subviews of Q, by manipulating the 
definitions of Cr, . . . , C,,, algebraically. These manipu- 
lations mirror those that are necessary to implement Q. 
In effect, we generalize the standard product, selection 
and projection operations to manipulate also relations 
of view definitions. Clearly, every view of null views is 
also null, so the subviews of Q that are generated in this 
way are indeed null. 
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This method is illustrated by the commutative dia- 
gram shown in Figure 2. The solid lines describe the 
current situation: the null views R’ define constraints 
on the database relations R, and the virtual relation A 
is derived from R to answer query Q. The dashed lines 
describe our method: query processing is extended to 
manipulate also R’ to yield the null views A’ that de- 
fine constraints on the answer A. 

R’ R 

I 

-1 
19 & I t--- 

A’ A 

Figure 2: Extending Query Processing to Constraints 

5.1 Meta-Relation Operations 

Definition 1: Assume that R’ and S’ are meta- 
relations that define, respectively, views of R and S. 
The product of R’ and S’, denoted R’ x 9, is defined 
as follows. For every pair r and s of meta-tuples from 
R’ and S’, respectively, 

r = (al,...,am) 

S = (h ,...,bn) 

R’ x S includes the meta-tuple: 

!l = (al,... ,am, I,.. b -,bn) 

Proposition 1: Let D be an instance of this 
database, and let r(D), s(D) and q(D) denote, re- 
spectively, the relations defined by r, s and q. Then 
q(D) = r(D) x s(D). 
Proof: Let X and p denote, respectively, the selection 
predicates of r and s. Then r(D), s(D) and q(D) can 
be expressed as the following product-selection expres- 
sions: 

r(D) = NW)) 

s(D) = dw)) 

q(D) = Q,@(D) x S(D)) 

r(;(g;‘” that uxhr(R(D) x S(D)) = ax(R(D)) x 

P 

Definition 2: Assume that R’ is a meta-relation that 
defines views of R. Let A denote a primitive selection 
predicate (i.e., either Ai 0 c, or Ai 0 A;). The selection 
from R’ by predicate A, denoted ux(R’), is defined as 
follows. Consider first the case A = Ai Bc, and let r be 
a meta-tuple from R’, 

r = (01 ,..., f3i ,..., am) 

Denote by /J the selection predicate expressed by oi ‘. 
ux(R’) includes the meta-tuple: 

!l = (a1 ,..., ai ,..., a,) 

where oi represents A A p. Consider now the case A = 
Ai B Aj, and let r be a meta-tuple from R’, 

r = (al,. . . , ai, . . . . Oj ,..., am) 

Denote by p the selection predicate expressed by oi and 
oj. Q(R’) includes the meta-tuple: 

4 = (al ,,.., ai ,..., ai ,..., am) 

where a{ and a: represent A A cc. 

Proposition 2: Let D be an instance of this 
database, and let r(D) and q(D) denote, respectively, 
the relations defined by r and q. Then q(D) = uxr(D). 
Proof: r(D) and q(D) can be expressed as the following 
selection expressions: 

r(D) = QP(RW) 

q(D) = qu~x(R(D)) 

We observe that u,Ax(R(D)) = axur(R(D)). 

Definition 3: Assume that R’ is a meta-relation that 
defines views of R. The projection of RI that removes its 
i’th attribute, denoted Q-A~(R’), is defined as follows. 
For every metaituple r from R’, 

r = (al,...,am) 

If oi is LI, then TR-A;(R’) includes the meta-tuple: 

P = (al,..., ai-i,ai+l,...,%) 

Proposition 3: Let D be an instance of this 
database, and let r(D) and q(D) denote, respectively, 
the relations defined by the metactuples r and q. Then 
q(D) = W-A;(@)) ‘0 
Proof: Let A denote the selection predicate of r. r(D) 

‘If ai is blank, then /.A is true. 
2In general, we d&e x0(R) as 8 projection on those attributes 

in a that 8re in R. Thus, if attribute Ai had already been re- 
moved, a projection on R - Ai has no effect. 
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and q(D) can be expressed as the following selection- 
projection expressions: 

r(D) = m@(D)> 

q(D) = QXrR-Ai(R(D)) 

We observe that if the i’th attribute of R does not 
participate in the predicate X, then BXKR-A((R(D)) = 

RR-AircJX(R(D)). 

Note that projection retains only meta-tuples whose 
projected attributes are disjoint from their selection at- 
tributes. 

Propositions 1, 2 and 3 are summarized in the follow- 
ing theorem: 

Theorem: Assume a database RI,. . . , R,, and a 
meta-database Ri, . . . , Rk, COMPARISON, with con- 
straints (null views) Cl,. . . , C,,,. Let & be a conjunctive 
query against this database. Let S be the relational 
algebra expression that implements Q. Let S’ be the 
relational algebra expression obtained from S by sub- 
stituting every reference to R with a reference to RI. 
S operates on the relations to yield the answer A. St 
operates on the meta-relations to yield the meta-answer 
A’. Then, the meta-tuples in A’ define subviews of A 
that are also views of Cr , . . . , C,,, . 

The theorem guarantees that meta-tuples in A’ de- 
fine subviews of A that are views of Cl,. . . , C,,, (and 
are therefore null). However, some meta-tuples may 
still contain references to meta-tuples outside A’, and 
are therefore not expressible entirely within A’. Such 
subviews are avoided if S’ is modified so that all prod- 
ucts are performed first, and their result is pruned to 
retain only those meta-tuples that do not contain refer- 
ences to other meta-tuples. Also, as we explain below, 
it is advantageous to perform selections before projec- 
tions. Altogether, S’ is transformed to a sequence of 
products, followed by selections, and ending with pro- 
jections. This simple strategy for implementing con- 
junctive queries is not necessarily optimal. However, we 
note that the optimality is not so essential for meta- 
relations, because they are relatively small. For the ac- 
tual relations, where optimality is essential, a different 
strategy may be implemented. 

5.2 Refinements 

The theorem guarantees that the method for generating 
subviews is sound, but it does not guarantee that it is 
complete. That is, this method generates subviews of 
the result that are indeed null, but does not necessar- 
ily generate all such subviews. A method that would 

guarantee completeness would undoubtedly be of a dif- 
ferent complexity altogether. Yet, with several simple 
refinements, it can be improved to generate additional 
desirable subviews. Two such refinements are sketched 
below. Both address the “loss of views” that occurs dur- 
ing projection, when meta-tuples are discarded if they 
restrict (with variables or constants) the attributes that 
are removed. 

The first refinement modifies the product operation. 
Assume that Q is a product of R and S, followed by a 
projection that removes all the attributes of S. Obvi- 
ously, & is equivalent to R, and A’ should retain all the 
meta-tuples of R’. However, these meta-tuples may be 
discarded by the projection, if they contain restrictions 
in the attributes contributed by S’. To handle this sit- 
uation we may extend the product of meta-relations to 
include also these two tuples: 

Ql = (al,...,%,U,...,q 

~2 = (U,...,Uh,...,bn) 

These tuples define all previous subviews of R and S as 
subviews of the product of R and S. 

The second refinement modifies the selection opera- 
tion. As defined, this operation requires conjuncting ~1, 
the predicate expressed in the meta-tuple, with X, the 
predicate expressed in the query. However, as all the 
tuples in the resulting relation satisfy A, the expression 
I( A X is simply ~1. Therefore, it appears that a simpler 
definition of the selection operation may be provided, 
which simply retains all meta-tuples without any mod- 
ification. On the other hand, this simpler definition 
often would not generate the best definitions of views, 
nor would it detect views that are indeed irrelevant. As 
an example, assume a meta-tuple that selects the em- 
ployees whose salaries are between $30,000 and $60,000, 
and consider the following four. queries that select the 
employees whose salaries are (1) between $20,000 and 
$40,000, (2) between $20,000 and $70,000, (3) between 
$40,000 and $50,000, and (4) under $30,000. In each 
case, the given view (employees whose salaries are be- 
tween $30,000 and $60,000) could be retained as a view 
of the employees selected. However, it would be more 
desirable to handle this selection on a case by case basis, 
as follows. In the first query, modify the given view to 
define the employees whose salaries are between $30,000 
and $40,000; in the second query, retain the given view 
without any modification; in the third query, modify the 
given view so it does not restrict the salary at all; and, 
in the fourth query, discard the given view altogether. 
In general, we observe four different cases: If A implies 
cc, the meta-tuple is selected and the corresponding field 
is cleared (i.e., the variable or the constant is replaced 



by u); if p implies A, the meta-tuple is selected without 
any modification; if J and p are contradictory, the meta- 
tuple is discarded; otherwise, the meta-tuple is selected, 
and is modified to represent p A A. Clearing selection 
predicates ensures that more meta-tuples will “survive” 
future projections. Determining the appropriate case 
for given ,U and x may require consulting relation COM- 
PARISON, and, possibly, modifying it. While for most 
views and queries this task is quite simple, if an imple- 
mentation chooses not to determine the case for pred- 
icates of certain form, then in those cases the relevant 
meta-tuple must not be selected. Note that the only 
other time where relation COMPARISON is used,is when 
the views in A’ are described to the user. 

6 Detecting Containments 

Consider again the selection operation, and let 
(al,..., a,) be a meta-tuple in the result of the product. 
This meta-tuple represents a denial of a conjunction of 
n primitive predicates. Denote by pi the predicate rep- 
resented by ai 3. Then this meta-tuple represents the 
constraint: 

which may be formulated as an implication: 

Let Ai A . . . A A,,, be the selection predicate expressed 
in the query. As discussed earlier, selection is performed 
with a sequence of steps, each comparing a pi with a Xi. 
pi and Aj are related in one of four different ways: 

1. Aj */Ji 

2. /Aj * Ai 

3. -(Ai A /.~i) 

4. Otherwise 

In all but case 3, 5 and /.Li are not contradictory, and 
the meta-tuple is retained (possibly modified). A meta- 
tuple that “survives” the entire selection sequence de- 
scribes a constraint on the result. 

Consider now case 3. It may be formulated as Aj =$ 
‘pi. Obviously, when this selection step terminates, the 
tuples in the result satisfy Xi. Hence, they also satisfy 
Y,u~. Recall that the meta-tuple may be represented as 
the implication: 

Thus, the tuples that satisfy plA*. *A/Ii-lA~i+lA+. .Ap, 
must satisfy ‘pi. Since the tuples of the result indeed 
satisfy l/Ji, all the tuples that satisfy ~1 A .*. A pi-1 A 
Pi+1 A . . . A c(,, are included in the result. Therefore, 
in case 3, the conjunction of all the constraint predi- 
cates except pi represents a view that is contained in 
the result. 

We now extend the previous selection process. Con- 
sider a selection step that compares pi with 5. Case 1, 
2 and 4 are treated as before. In case 3, the meta-tuple 
is not discarded; instead, ai (which represents the predi- 
cate pi) is replaced by the symbol 7, to indicate that it is 
never satisfied in the result. Future comparisons should 
leave this value unchanged. When an attribute that is 
removed by the projection contains 1, the meta-tuple is 
retained, but this 7 is “attached” to the meta-tuple. 

7 Examples 

When the entire processing ends, each meta-tuple in 
the result is examined. If it does not include any 7, 
it is a constraint. If it includes exactly one 7, it is a 
containment. 

Constraints are translated into disallow statements; 
containments are translated into contain statements. 
The syntax of these statements is similar: the words 
disallow or contain are followed by an expression in 
the attributes of the result, similar to the where clause 
of a retrieve statement. This set of statements con- 
stitutes the intensional answer, and it accompanies the 
usual eztensional answer. 

Example 1: Consider the query of the introduction, 
to retrieve the names, positions and salaries of employ- 
ees in the design department: 

retrieve (EMPLOYEE.NAME, Eh4PLoYEE.PosITIoN, 
EMPLOYEESALARY) 

where EMPLOYEE.DEPARTMENT = design 

This query may be implemented with the following se- 
quence of algebraic operations: 

'* A + u~DEPARTMENT=design)(EMPLoYEE) 

2. A + ~NAME,POSITION,SALARY(A) 

The same operations that are applied to the data- 
base relations are applied to their meta-relations coun- 
terparts: 

l* A'+ a(DEPARTMENT=design)(EMPLoYEE') 

2. A' + ~NAME,POSITION,SALARY(A') 

This sequence does not require products. Before se- 31f ai = IJ, then pi = true. 
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lection, the meta-relation EMPLOYEE’ is pruned to in- 
clude only those meta-tuples that do not reference other 
meta-tuples: 

EMPLOYEE’ 
1 NAME 1 POSITION 1 SALARY t DEPARTMENT 1 

Xl design 
researcher x2 

The selection involves a single query predicate DE- 
PARTMENT=design. In the first meta-tuple the con- 
straint predicate is also DEPARTMENT=design. This cor- 
responds to case 1, and the DEPARTMENT field is cleared. 
In the second meta-tuple the constraint predicate is 
DEPARTMENTfdesign. This corresponds to case 3, and 
the DEPARTMENT field is replaced by ‘7. We have: 

A’ 
NAME POSITION SALARY DEPARTMENT 

Xl 

researcher 7 

Finally, the projection retains both meta-tuples: 

A’ 
1 NAME 1 POSITION 1 SALARY 1 

Xl 
7 researcher 

In response to a request to retrieve the names, po- 
sitions and salaries of employees in the design depart- 
ment, the system issues this extensional answer: 

-1 

And this intensional answer: 

disallow SALARY c $30,000 
contain POSITION = researcher 

These statements inform the user that all employees re- 
trieved earn at least $30,000, and that all employees in 
researcher positions were retrieved. 

Example 2: Consider a query to retrieve pairs of 
different departments that are in the same division, and 
their budgets: 

retrieve (DEPARTMENT:~ .DNAME, 
DEPARTMENT:l.BUDGET, 
DEPARTMENT:2.DNAME, 
DEPARTMENT:2BUDGET) 

where DEPARTMENT:~ .DIVISION = 
DEPARTMENT:2.DIVISION 

and DEPARTMENT:~ .DNAME < 
DEPARTMENT:2.DNAME 

This query may be implemented with the following se- 

quence of algebraic operations 4: 

1. A + DEPARTMENT X DEPARTMENT 

2. A + b(DIV:1=DIV:2)A(D_NAME:l<DNAME:2)(A) 

3. A + “DNAME:1,BUD:l,D-NAME:2,BUD:2(A) 

The same operations that are applied to the database 
relations are applied to their meta-relations counter- 
parts: 

1. A’ + DEPARTMENT’ X DEPARTMENT’ 

2. A’ + u(DIV:l=DIV:2)~(DNAME:1>D-NAME:2)(A’) 

3* A’ + rD_NAME:l,BUD:l,D-NAME:2,BUD:2(A’) 

The result of the product after outside references are 
removed is: 

A’ 
D-N:1 S:l D:l B:l D-N:2 S:2 D:2 B:2 

23 24 23 x5 

23 25 23 24 

The selection involves two query predicates. The 
first predicate is DIVISION:1=DIVISION:2. In both 
meta-tuples the constraint predicate is also DIVI- 
SION:~=DIVISION:~. This corresponds to case 1, and in 
each meta-tuple the DIVISION fields are cleared. The sec- 
ond predicate is DNAME:l<D-NAME:2. In both meta- 
tuples the constraint predicate is true. Again, this cor- 
responds to case 1, and in each meta-tuple the DNAME 
fields remain clear. We have: 

At 
D-N:1 S:l D:l B:l D-N:2 S:2 D:2 B:2 

24 25 

x5 x4 

Finally, the projection retains both meta-tuples: 

A’ 
D-NAME:1 BUDGET:1 DNAME:2 BUDGET:2 

24 x5 

x4 x4 

In response to a request to retrieve pairs of different 
departments that are in the same division, the system 
issues this extensional answer: 

D-NAME:1 BUDGET:1 DNAME:2 BUDGET:2 

design 275 manufacture 275 
sales 160 service 160 

And this intensional answer: 

disallow BUDGET:1 # BUDGET:2 

This statement (generated twice) informs the user that 
the budgets must be equal. 

*When a relation has several attributes named A, then A : i 
denotes the i’th appearance of A. 
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8 Conclusion 
We presented a method that addresses the important 
issue of providing more meaningful answers to queries. 
The relational model, which stores data in relations, 
is extended to store constraints in meta-relations, and 
the algebra of relations is extended to an algebra of 
meta-relations. Each query is processed against both 
the database and the meta-database, yielding an an- 
swer and a meta-answer. The meta-answer describes 
constraints and containments that apply to the answer. 

Currently, the methods handle only conjunctive views 
(constraints, containments, and queries). Work is un- 
derway on extensions that will handle more general 
views; for example, views with disjunctions and views 
with aggregate functions. Since the methods do not nec- 
essarily detect all the constraints and containments that 
apply to the result, the intensional answers that are 
provided should be considered sound characterizations, 
that are not necessarily complete. 

One of the dilllcult problems in providing intensional 
answers is how to identify the statements that are rel- 
evant to a query. For example, consider a query to list 
all employees and their salaries. While it is true that 
the set of employees listed satisfies the constraint that 
all those in researcher positions are in the design de- 
partment, this information is probably irrelevant. It is 
possible to extend the model to include in the database 
additional knowledge that will assist in determining the 
relevant statements. A satisfactory implementation of 
this approach requires additional investigation. 

An alternative solution is to define an intensional 
statement as relevant, if it can be expressed entirely 
with the attributes retrieved by the query. Thus, the 
constraint that all employees in researcher positions are 
in the design department is relevant only to queries 
that retrieve both POSITION and DEPARTMENT. While 
this solution may not be entirely satisfactory, it pro- 
vides an extremely simple pruning mechanism, which is 
usually effective. Indeed, the projection operation im- 
plements this very pruning strategy, as it discards the 
meta-tuples whose projection attributes and selection 
attributes intersect, retaining only constraints and con- 
taiuments that are expressed entirely with the nttribut#es 
retrieved by the query. 

Another problem that, remains to be solved is how 
to prune intensional answers, so they do not include 
statements that are implied by other statements. For 
example, assume a constraint that all female employees 
earn over $30,000, and a constraint that all employees 
over 35 years old earn over $40,000, and consider a query 
to list the female employees over 35 years old. The meta- 

answer will include two constraints: all employees listed 
earn over $30,000, and all employees listed earn over 
$40,000. Obviously, the former statement is redundant. 

Work is also underway on a database “front-end” in- 
terface that will implement our methods and enable ex- 
perimentation. The user will define constraints with 
disallow statements, and the system will insert auto- 
matically the appropriate meta-tuples into the meta- 
relations. In response to a retrieve statement, the user 
will receive the usual extensional answer, accompanied 
by inferred disallow and contain statements. Thus, 
the meta-relations and meta-tuple notation would be 
completely transparent, with all user-system communi- 
cation done with customary query language statements. 
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