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Abstract. The research in temporal databases has, so 
far, concentrated on the history of an object as it exists in 
the real world. Instead, in this paper we view the history 
of an object as it is recorded in a database. Such a history 
is obtained by extr 
(insert, modify, and Yr 

lating the outcome of the u$ttes 
elete) made to the object at drscrete 

instants. Our model su ports two kinds of query-users: the 
s stem-user, and the coszical-user. For the classical-user, 
E 

P 
t e interface to the database is identical to the usual inter- 
face in classical snapshot databases. We extend the classi- 
cal relational model so that a transaction, i.e., an update or 
a (retrieval) query is recorded in such a way that its effect 
can be determine d at any time in the future; thus, our 
model is a zero information-loss model 
logical structure im 

P 
I 
Theorem 1). The 

oeed upon the mode allows us to give 
a powerful algebra or the system-user to query the circum- 
stantial information surrounding updates and queries. In 
addition, a single execution of a query can be identified 
with the relation it retrieves; thus, a user can query 
queries, query queries on queries, ad infinitum. The model 
represents an application of temporal databases to main- 
stream databases. It can be used in auditing, and as a 
foundation for building secure systems. 

1. INTFUJDUCTION. 

An update operation in classical databases is destructive 
- it not only destroys the environment in which it is exe 
cuted, but also destroys the environment for queries. After 
an update is made, only the new database state is available, 
without even a clue to its past states. 

A transaction in a database system is either sin update, 
or a query. The activities in a database system consist of a 
sequence T of such transactions. We present a model, 
called the zero injbmatin-loss model, in which no 
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information is ever lost - not even the circumstantial 
information surrounding the transactions. Transactions in 
our model are recorded by imposing a logical structure on T 

in such a way that the precise effect of any transaction, as 
well as the transaction itself, can be determined at any 
time in the future. In addition, the logical structure 
imposed upon transactions gives rise to a simple, yet 
powerful, algebra 

We use certain temporal relations, called transaction 
history relations, in which we associate a timestamp with 
every data value. Such relations form a foundation for the 
sero information-loss model. We use the time universe 
[O,Now) to model the past and present (Now) hiitory of data 
in a uniform manner. As opposed to the usual approach of 
looking at the time dimension as the real world time, we 
consider it as the transaction time and use it to model the 
changing values of object attributes in the database. 

. . u Consider the data value taken by the attri- 
bute COLOR, as shown in Figure 1.1. The semantics of thii 
data value are: “from transaction time 15 to 20, the value 
of COLOR was known to be ‘red’ in the database, and from 
21 to 25 the value was known to be ‘blue’.” Thus, for 
example, a user querying the color at transaction time 24 
would retrieve ‘blue’ as its value. From this data value we 
can infer that the COLOR object was created at transaction 
time 15, modified at transaction time 21, and deleted at 
transaction time 26. This illustrates how the temporal 
relations in our model can be used to “store” update 
operations. 

Figure 1.1. A timestamped data value of COLOR 
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2 Definition of the zero information-loss mod& Let ‘R be . . 
a database scheme. Then, a zero inf;onnotion-loss model 
over Z is a triple ((0, Shadow), Q-log), where, 

l 0 is the basic model For every R E ‘R there irr a trane- 
action history relation r(R) E 0, and a relation 
shadow(r) E Shadow. 

l Q-log is a single relation. 

The pair (O,Shadow) can be viewed ae a logically 
structured log of all updates. In a database system, the 
role of an update ie to change the state of a databave by 
modifying certain data vdues. Alao, au update operation ia 
associated with certain environmental parametera - the 
person authorizing the update, the reason for the update, 
the time of the update, etc. Along these lines, an update u 
to a relation r in our model can he decomporred into two 
p&r: III, con&sting of the new data value, and us, condat- 
ing of the circumstantial information surrounding the 
update u. The effects of ut and u2 are reflected in r and 
shadow(r), respectively. This decomposition of the data 
and the circumstances of u is not lomy: the key of the 
updated tuple, and the time of the update can be ueed to 

glue them back together. The reason for separating r and 
shadow(r) is that their structures are very different. This 
separation allows ua to maximdly harnew the potential of 
the relational approach for querying them. 

The Q-log ia a single relation uned for storing a log of 
all the queries, together with the information about their 

execution environments. With Q-logs not only can we look 
at the details of (or, even n-execute) past queries, but alao 
query queries, query queries on queries, ad infinitum. This 
extended capability hae enormourr potential in applications 
where it itr important to monitor the accemes made to the 
database. 

1.3, A cglplprehensive d Suppoee we have an emp 
transaction history relation with NAME, SALARY, and DEP!l’ 
attributes, with NAME iu) the key, and that the shadow 
information corresponding to any update in the emp rela- 
tion include-a the transaction time (TT), the AU!l’HORI!&ER, 

the USER, and the REASON for the update. Now, consider 
the following sequence of transactions in the database: 

Tl: TT=~;USER=&U~. 
iwcrt (NAME: John; SALARX~~K; DEpT:Toys) ia emp 
rilh (AUTHORIZER=Don; RRMON=New Employee); 

T2z TT = 40; USER = Ryne. 

modify (NAbfEz John) to (DEPT: Shoes; SALARY: 26K) 
in emp 

witi (AUTHORIRRR = Don; REASON = Reassignment); 

T3: TT=42,uSrm=Vance. 
Q!. Y’2at is John’s salary? 

T4: TT = 48; USER = Rick. 

insert (NAME: Doug; SALARY: 20K; DEPT: Auto) 
in emp 

witA (MJTHORlZER = Joe; REASON = New Employee); 

T5: TT = 53; USER I Damon. 
delete (NAlrLE: John) in emp 

with (AUTFDRIZER = Don; REASON = Fired); 

T6: TT = 54; U~RR = Andre. 
Ql: What irr John’s aedary? 

T7: TT = 55; USER = Mitch. 
QZ: What is John’s department? 

T8: TT = 56; USER = Don. 

03: Who made inquiries about John’s r&try? 

Corresponding to these traunactione, the instance of our 
model ((0, Shadow), Q-log) is shown in Fire 1.2. Note 
that the symbol -II reprwento WIIW. 

Note that the valuee of NAME in emp and ehadow(emp) 
set up a logical correspondence between tupka of emp and 
ahadow(emp). By including the transaction time, thi cor- 
respondence can be refined to a one-to-we correspondence 
between all updatea to emp and the toplea in rhadow(emp). 
As a result, the tran&ions {Tl, T2, T4, T5) can be 
completely restored from the current atate of emp and 
shadow(emp), and (T3, T6, T7, T8) can be completely 
restored from emp and the Q-log. Now, using TT, the 
transaction time, we can order (Tl, T2, T4, T5) U (T3, 
T6, T7, T8) to obtain the original sequence of tramactione. 
Theorem 1 (the’ Zero-loee Theorem) says that this is true in 
general, i.e., a transaction log can be restored from the 
current state of the zero information-law, model; thus, 
indeed, there ia no lotw of information in our model. 

The remainder of this paper is organ&d as follows. 
The basic model, 0, and a summary of a relational algebra 
for it, are briefIy presented in Section 2. In Section 3 we 
formally define update operations, transactions, transaction 
loge, and state the Zero-loos Theorem. In Section 4 we 
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NAME SALARY DEFT 

[8,523 John [8,391 15K 18,393 Toys 
[40,521 20K 140,521 Shoes ( 

[48&l Doug [48,itl 20K [48 ,+I] Auto 4 

The emp transaction history relation 

- 

1 I 
1 NAME ] TT ] AUTEORIZER 1 USER 1 REASON 1 I 
I I I I I I I 
I John I 8 1 Don I Mark I New Employee k-1 

I John I 40 I Don 1 Ryne 1 Reassignment 1-I 

I Doug I 48 I Joe I Rick I New Employee 

I John 1 53 1 Don 1 Damon I Fired E I 

The shadow(emp) relation 

I QUERY 1 Tl’ 1 USER 1 

1 91: John’s SALARY I 42 I Vance I 

I Ql: John’s SALARY I 54 I Andre. I 

I 02: John’s DEPT 1 55-I Hitch 1 

1 03: USER ID of IJl 1 56 1 Don 1 

The Q-log relation 

extend the basic algebra to query the whole zero informa- 
tion-loss model. We end this section with a list of assump- 

tions made in this paper, a discussion of related papers, and 
some remarks about our notational conventions. 

1.4. AssumDtions. To simplify our presentation and avoid 
unnecessary distraction from the main theme of this paper, 
we make the following assumptions. These assumptions 

can be eliminated along the lines of [GB]. 

. The key of an object (tuple) in a transaction history 
relation r E 0 does not change, and it is known correct- 
ly at all times. In the absence of this assumption, a new 
update operation, which allows keys of several objects 
to be changed simultaneously, becomes necessary [GB]. 

. At a given transaction time instant, there is only one 
transaction, i.e., the transactions are not batched to- 
gether. This assumption is relaxed in [GB]. 

. No redundant updates are made, i.e., we do not change 
any attribute value of an object to itself. This assump 
tion is also relaxed in [GB]. 

Figure 1.2. The model (({emp}, {ehadow(emp)}), Q-log) 

. . ated works. Algebras for temporal databases have 

appeared in [Gal,Ta,LJl. (Sn] introduces a temporal model 
with two time dimensions and&es a QUEL like query lan- 
guage for it. [GB], frequently referenced here, relaxes the 
assumptions made in this paper; a very preliminary version 
of [GB] appeared in [GY2]. 

6 Notations. We write a singleton {x} of any sort with- . . 
out braces. If R and S are schemes, BS denotes FUJS. If r 
and 7’ are tuples, then 707’ denotes their concatenation; 
thus, if the schemes of r and 7’ are R and S, respectively, 
then the scheme of 7071 is BS. 

2 THE BASIC MODEL AND ITS ALGEBRA. 

In this section we present a brief overview of the basic 
model 0. For a more detailed and generalized treatment of 
this basic model, the reader may refer to [GB]. 

2 .1,~ We assume that we are given a e 
universe of time instants [O,tUlW] = (0, 1, 2, . .a, Hm}, 
along with a linear order < on it. NOW denotes the current 
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time according to the system clock. A subset I of [O,NowJ is 

an intervalif VtIt2t3(t,EI A $61 A tl _< t$ t2 * t$I). 

2.2. Temooral elements. A tempod element is a finite 
union of intervals. An interval is obviously a temporal 
element. An instant t may be identified with the temporal 
element [t,t]; th UB it may be regarded as a temporal 
element. The set of all temporal elements is closed under + 

(union), * (intersection) and - (complementation), and 
thus forms a Boolean algebra. Temporal elements make a 
striking simplification in query languages for temporal 
databases [GYl,G&]. 

. . e or urnments. To capture the time-vanaut 
properties of objects, we introduce the notion of a temporal 
aaaignment. A temporal assignment t to an attribute A, 
with a temporal element p as its temporal domain, ia a 

function from t such that for each instant t E H t(t) is an 
element of dam(A). Figure 1.1 shows a temporal assign- 
ment to COLOR with [15,25] aa its temporal domain. 

If t is a temporal aeaignment, then [Cl denotea its 
temporal domain and I(1 denotes its range {t(t) : t E [(I}. 
We may denote a temporal assignment t as ( v, * a,, . . ., 
u m -a,), where v1 ..a , vrn are temporal elements, t(t) = 
‘4 if t E vi, 1 5 i i m. If t is a temporal alignment, and c a 

temporal element, then t tr denotes the restriction of t to 
the temporal domain I[[P*:a 

2 4 8 na ination. . . - v Suppose t1 and ts are temporal assign- 
ments to &comparable attributea. We define [t,e&$ = 

~tB~,B*UCJl: t,(t)KJt)l. The const~~ IC,ef,l is of 
fundamental importance in temporal databases. It evalu- 
ates to a time domain between fl and I[$]t[&J. If the 
value ia 8, it implies that the two temporal Msignmente 
were never related. We define the Boolean c,Qz to be an 

dheviation for (It, 0 C2P = UC,B*Ut,l A ItlB*It,l # @I. 

. . * u If C, denotes the assignment to COLOR, as 

in Figure 1.1, and tz denotes ([O,Now] - blue), then 

ut,=E,D = Pv51* 

. . aneaction historv tuoles. A transaction history tuple 

7, over a scheme FL, is a function from R such that for each 
attribute A in R, r(A) is a temporal assignment to A. 
Suppose 7 is a transaction history tuple over R If p is a 
temporal element, then 7tc( is the function from R such 
that (7 tp)(A) = 7(A) tb for every A E R. We say that 7 ie 
Aomogeueow if [z(A)1 is the same for all attributes A E R 

In this paper we will only be interested in homogeneous 
tuples. Weeaythatrisnullif(7(A))mBforsomeAER. 

%.S. Transaction hiatorv relations. A transtaction hi&ny 
relation r over R, with KCR a8 its tey, is a finite set of non- 
-null homogeneous transaction history tuples over R such 
that (i) Iv(A)1 is a singleton for every A E K, and (ii) if 7 

and 7’ are tuples in r such that VA E K()v(A)I = If(A) 
then r = f. Figure 1.2 shows the emp transaction history 
relation over NAME SALARY DEPT with NAME as its key. 

Note that our assumption that the value of a key attri- 
bute does not change with time has been used in the defini- 
tion of a key of a transaction history relation. The behav- 
ior of a key in temporal dath is more complex than its 
classical counterpart; its detailed account would force the 
surfacing of eeveral subtleties and auxiliary definitions 
[GY2,GB], and cauw a substantial distraction from the 
main theme of the paper. 

The algebra presented in this Section is limited in the 
following two respecte: (i) We do not introduce certain 
restructuring operators which are necessary to change the 
key attributer, of a transaction history relations. (ii) We 
give a limited definition of the projection and natural join 
operators. Both of there limitations are overcome in the 

detailed prewntation provided in [GB]. An informal dip 
cumion of the problema involved is given in [GY2]. 

If r ia a transaction history relation over R, then ir]l = 
U,, 1~). For example, for the state of the emp relation 
shown in Figure 1.2, [emp] = [8,nOnr]. If t ia a temporal 
element then r )p = { 71c( : 7 E r}. If t ia an instant, then 
r h i6 called a tenspod map&t of r at 1. 

. * 
for mtlon h&orv relation& . We 

assume that a database 0, conaiating of finitely many 
transaction history relations is given. The set of all 
algebraic exprecsiona can be divided into three mutually 

exclusive group: temporal expreesione, Boolean expres 
nions, and relational expressions. In the following defini- 

tions, a constant temporal amdgnment ([O,wow] - a) is 
abbreviated a~ a. 

. 
17.1. %md ex~reeaons. Temporal expressions, the 
syntactic counterpart of temporal elements are formed from 

Id, IC,f$l, +, *, and -. If I( ie a temporal expreadon and 
7 is a tuple, then l((z), the result of substituting T in /L, is 
defined in a natural manner. 
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2.7.1.1. Examole. Let us consider the emp relation of 
Figure 1.2. Suppose 7 denotes John’s tuple. Then 
[SALARY # 2OKjj is a temporal expression, and for 7 its 
value is [8,39]. Similarly, [DEPT = ShoesD( T) = [40,52]. 
The result of substitufing 7 in the temporal expression 
[SALARY # 20K] + [DEPT = Shoes1 is [8,521. 

2.7.2. Boolean exDreasions. Atomic Boolean expressions are 
of the form, TRUE, FALSE, tI&$, and &. More complex 
expressions are formed by using the Boolean operatora A, V, 

and 1. 

3 Relational expressions are 2.7. . 

syntactic counterparts of transaction history relations. 
Every relation r E 0 is a relational expression. In the 
following, we suppose r is a transaction history relation 
over R, with KCR as its key. The other relational expres- 
sions are defied as follows. 

If s is a relational expression over R, with KCR as its 
key, then r-s, rUs, rt% are transaction history relations 
over FI, with K as their key. In giving the semantics for 
r& it is assumed that for the same object, the versions 
of their transaction histories in r and s do not differ at 

any instant; otherwise, rUs is undefined. Thii is analo- 
gous td the classical case where, if r and s are snapshot 
relations with K as their key, then K may not be a key 
of rUe. 

If K C X E R then %(r) is a transaction history relation 
with K as its key. We recall that the condition K<X 
has been imposed in thii paper to ensure that the key of 
R,(r) does not have to be changed. 

If f is a Boolean expression, and p a temporal e.xpres- 
sion, then u(r;f;r) is a transaction history relation over 
I%, with K as its key. u is an important operator in 
temporal databases. It allows a tuple 7 in r to be 
examined with respect to a Boolean criterion f, and then 
restricted to dz). It stands for the transaction history 

relation {I tA 7): 7Er A f( 7)). 

If s is a relational expression over S, with K’ as its key, 
then r M s is a transaction history relation over RS with 
KUK’ as its key. The expression r n s evaluates to 
{( 7071) t([+[#]): tir A &s). The restriction of ro2071 
to I+[f 1 is necessary to ensure homogeneity. In 
general, the key may be a proper subset of KUK’. 

l If A E R and B g R, then the transaction history 
relation pA+B( ) r is obtained from r by renaming the 
attribute A to B. If A E K, the new key is (K-A)UB. 

2.8. The auerp-users. AS 0 encapsulates the entire 
database history of objects, it is very rich in content. Our 
model supports two kinds of query-users: (i) The system 
user, who has access to the entire database 0 and can use 
the powerful operators to be introduced in Section 4. (ii) 
The classical-user, who can only access 0 tHow = {r INow: 
rE0}, the current state of the database. In ~~NCIW, the 
only timestamps are NOW. Such timestamps are clearly 
redundant, and are hidden from the classical-user. This 
user has no we of temporal expressions; his/her needs are 
adequately covered by the Boolean expressions. Thus, the 
third argument of u is not made available to him/her. In 
this way, the query interface for the classical-user of our 
model is similar to that for a user in a classical snapshot 
database. 

29 We look at some queries that can be asked . . 
of transaction history relations by a system-user. All these 

queries refer to the emp relation of Figure 1.2. 

. . . -Die. According to the database, at what trans- 
action time was John’s salary shown as 15K while he was 
working in Toys? This query is expressed as: 

[a(emp; NAME = John; (SALARY = 15Kl* 
ADEPT = ToYs~)~ 

. . . Examde. Give details about the employees for 
whom the database showed a salary greater than 24K while 
they worked in the Clothing or the Shoes department. 
u(emp; TRUE; ISALARY > 24K) * ((DEPT = Shoes1 + 

[DEPT = ClothingI)) 

3 TRANSACTIONS AND ZERO INFORMATION-LOSS. 

Informally, a transaction is either a single update or a 
single query. We impose a logical structure on the log of 

all transactions to obtain the model ((0, Shadow), Q-log) 
from which we can restore the log at any time. Thus, there 
is no loss of information in this model, and it is called a 
zero information-loss model. The advantage of the logical 
structure is that it lends itself to a powerful query 
language. The query language is the subject of study in the 

next section. 
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1 Shadow relations. . . Just as a transaction history 
relation records the update made in the value of an attri- 
bute, the shadow relation records the environment of the 
update. Consequently, every transaction history relation 
has a shadow relation associated with it, and for every 
update represented in the transaction history relation, there 
is a corresponding tuple in the shadow relation. 

Suppose r is transaction history relation over R in 0, 
with KER as its key. Then the scheme of shadow(r) must 
contain {USER, 'IT} U K. A USER is one who makes the 
update, and it can be a person, an algorithm, a machine, or 
any other decision making body. The transaction time TT 
is supplied by the system clock when an update becomes 
effective. The purpose of K is to establish a connection 
between an object in a transaction history relation, and the 
corresponding tuple in its shadow. Other attributes in 
shadow(R) depend upon the nature of r. For example, in 
an employee shadow relation it might be relevant to record 
who authorized the salary update, whereas in a weather 
record shadow relation it may make sense to record the 
space coordinates of the satellite reporting the information. 
Figure 1.2 shows the shadow(emp) relation, over NAME TT 
AUTHORIZERUSERREASON. 

3.2. Undates. Throughout this section we will assume that 
we are given a fued but arbitrary transaction history 
relation r E 0 over R, with KER as its key. If r E r, then 
key(r) denotes the snapshot tuple r1 over K, such that for 

every A E K, rl(A) = ll(A)l. 
In the zero information-loss model, an update operution 

transforms a transaction history relation r, and its 
corresponding shadow relation, from one state to another. 
The update operations on (0, Shadow), are as follows: 

l insert r in r with I’; 
l modify key(r) to new-7 in r with 7’; 
l delete key( 7) with 7’; 

where 7’ is the part of the update operation that has the 
circumstantial or shadow information about the update. 
Several examples of these operations have already been 
given in Section 1. As mentioned in the introduction, an 
update operation u on (0, Shadow) can be partitioned into 
two parts: ut and uz, which modify 0 and Shadow, respec- 

tively. To make this partitioning more visible, we first 
make syntactic modifications in our update operations so 

that an update operation u can be expressed as (ut,uz): 

l (insert T in r, append +okey( s) to shadow(r)) 
l (modify key(~) in r to new-r, 

append r’okep( r) to shadow(r)) 
l (delete k y( ) e T in r, appead +okey( 7) to shadow(r)) 

If u is an update operator on (r,shadow(r)), and ur and 
uz are such that u = (ut,uz), then ut and u2 are called 
update operations on r and shadow(r), respectively. Note 
that “appead fokey( r) to shadow(r)” is the only update 
operation for the shadow relation shadow(r). The seman- 
tics of an update operation on r can be defined and the 
following lemma can be proved easily. 

CEHWA L If (r’,shadow(r’)) are obtained after update u to 
(r,shadow(r)) by the user x at transaction time t, then 

(r,~~ow(r)), u, x, and t cau be determined from 
(r’,shadow(r’)) alone. 

3.3. Q-104, Q-log is essentially a log of all queries. A 
point of interest is that the same query may be made by 
different users at different times. For example, a compiled 
query program may be run at various timez. The decision 
about how a query is to be stored - as a string, or as a 
parse tree, or as some other semantic entity - is left to the 
choice of the implementer. We only require that there be a 
decision procedure for deciding whether or not two queries 
are the same. This algorithm can be smart enough to try 
and deduce the logical equivalence of queries, or so simple 
a8 to consider textually different queries to be different. 

We introduce a special attribute QUERY, and assume 
that dom(QUERY) consists of all queries. We define 

Q-scheme to be QUERY USER TT, and Q-log to be a rela- 
tion over Q-scheme. Thus, a tuple r in Q-log is of the 

form (Q, x, t), where Q is a query, x a user, and t a 
transaction time instant. The meaning of r is that Q was 
executed by user x at transaction time t. Figure 1.2 shows 
an example of a Q-log relation. 

Suppose s represents the current state of Q-log, the 
query q is asked by the user x, and the system answers it 
for the state of the zero information-loss model at transac- 
tion time t. Then the new state of Q-log becomes 5 U {q 0 
x 0 t}. 

~EYY~ 2. Suppose the query q, by user I, at transaction 
time t, transforms the state s of a Q-log to the state 5’. 
Then s, q, x, and t can be determined from s’ alone. 
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3.4. Information about a transaction. The injovnaation 
associated with a transaction is the data which is deemed 

relevant for the application on hand. This definition places 
the burden of deciding relevance on the system designer. 
Thus, the system designer has to make a priori decisions 
about what kind of circumstantial information about trans- 
actions is of value and needs to be stored. 

3 5 Transactions and transaction log. A transaction T in . . 
the zero information-loss model is of the form (u/q,x,t), 
where u/q is either an update or a query, x is a user, and t 
is a transaction time instant. If the transaction T, on the 
state 2 of the zero information-loss model, results in the 

state Z’, we write Z’ as T(Z). The following followa from 
Lemmas 1 and 2. 

LEXHA 3. If T is a transaction on Z, then from T(Z) alone, 
we can restore T and Z. 

A trcmsoction log ia a sequence T = (T,, Tz, . * *, Tn) 
of transactions. Suppose B denotes the iqitial empty state 

of the zero information-loss model. Then the outcome of 
the transaction log T is the state Tn(TnJ *. *(T,(e))* * a). 

THEOPEY 1 (The Zero-loss Theored A tranzaction log T 
can be restored from its outcome. 

4. ALGEBBA FOR THE ZERO INFO.-LOSS MODEL. 

In this Section we extend the algebra of Section 2 to 
query the complete zero information-low model. 

4.1. Classical onerators for shadow relations . The operatom 

for Shadow are as follows: 

. Shadow relatione are the classical lnf relations, and we 
allow the classical relational operators on them. + 

4.1.1. Examples. Suppose emp(NAME SALARY DEPT) is a 
transaction history relation with NAME as its key, and 
management(DEP!t’ MANAGER) is a transaction history 
relation with DEPT as ita key. Suppose the scheme of 
shadow(emp) is az before, and the scheme of 
shadow(management) is TT AUTHOEUZER DEPT USER 
REASON. The following queries are based on the 
shadow(emp) and shadow(management) relations. 

1 1 1 Bxamnle. Give reasons for all the updates in emp. . . * . 

4.1.1.2. ExamDIe. Give reasons for all the updates in emp 
that were authorized by Harry. 

SE ASONS( o(shadow( emp); AUTHORIZER = Harry)) 

4.1.1.3. Bxamnle. Who made changes in both emp and 
management ? 

%hadow(emp).USER (sh=low(ew) #v‘&ER 
shadow(management)) 

4 1 1 4 Bxamole. Who made the updates in emp between . . . . 
transaction time(‘I?‘) 10 and 2O? 

l$,gEE,( u(ehadow(emp); TT 2 10 A TT 5 20)) 

The queries in the algebra for shadow relations can use 

temporal expressions involving relations in 0. This is 
illustrated by the following example. 

, . . . xamele. It is easily Been that the temporal 
expression tu(management; MANAGER = Tom; [O,tKM’])l 
retrieves the time when Tom is shown to be a manager in 
some department. Using this, the query “what were the 
reasons for updates in emp during the time Tom was a 
manager in some department?” is expressed as follows. 

?RE MONS(o(zhadow(emp); TT E (o(management; 
MANAGER = Tom; [O,Now])l)) 

. * 
42. Nav&on bet ween 0 &Shadow. Suppose r is a 
transaction history tuple over R If XCR, we define the 
temporal expression 6(7(X)) = {t: for some A E X, r(A) tt # 
v(A)t(t-1)). Clearly, 6(7(X)) is the eet of all transaction 
time instants when there is a change in t(X). 

ions in 0 and Sha ow. Because the 
structures of a transaction history relation and a anapshot 
relation are quite different, we do not want to define their 
join. Instead we define semijoin operations; whose naviga- 

tional nature is like a join, but instead of retrieving the 
concatenation of the tuples of the two operand relatione, we 
only retrieve parts of tuples of one of the operand relations. 

Suppose r(R) E 0, e, and e2 are expressions which 
evaluate to subsets of r and shadow(r), respectively, and f 
is a Boolean condition involving attributes of schemes of r 
and shadow(r). Then we introduce F, and F,, called the 
$tcr operations, as follows. 

Fl(el,eZ,f) = { tieI: 3+Ee2(W’T) C 47(R)) A f( ~+))I, 

F,(e,,e,,f) = {+Ee2: 3*1(+(‘W E 47(R)) A f(d)), 
where v’(TT) E 6(7(R)) expresses “r’ is a shadow tuple of T 
corresponding to an update operation which modified at 
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least one attribute in 7.” 

4.2.1.1. Examnle. Which tuples in emp were updated by 
Harry? 

F&emp, shadow(emp), USER = Harry) 

4.2.1.2. Examnle. Name the people who made changes in 
Tom’s tuple during [10,20]. 

sSER(F1(4(emp; NAME = Tom; PWW), 
shadow(emp)), 10 3 TT A !PT 5 20)) 

4.3. Onerators for Q-lo& Recall, a tuple in Q-log is of the 
form (Q, x, t), with the meaning that the query Q was 
executed by user x at transaction time t. If r is the tuple 
(Q, x, t), then it is natural to identify it with the relation 
retrieved by Q when it was executed at transaction time t. 
(Note that from x, we can decode whether this user is a 
system-user or a classical-user.) We denote this relation as 
[I], and defme [Q-log] = ((71: r E Q-log}. Thus, we arrive 
at the database Z = 0 U Shadow U {Q-log} U (Q-log]. Z 
can be partitioned into two parts: Zr consisting of the 
classical 1-nf relations, and Ze consisting of transaction 
history relations. On Zt we allow the classical relational 
operators, and on 22 we allow the algebra described in 
Section 2. Additionally, in this section we have introduced 
operators on 0 U Shadow. Clearly [Q-log] allows a query 

to be treated as a relation, which can be queried. Thus, we 
can query queries, query queries on queries, etc. 

4.3.1. Examnle. Name the people who executed Ql. 

~SER(b(Q-log, QUERY = 81)); 
4.3.2. ExamDle. What difference was observed in the 
execution of Ql at TT = 3 and 10 by Harry? 

[Ql,HwGOl - [QW-Y,~I. 
4.3.3. ExamDle. If Q is the query “what are all the naval 
bases,” executed by Vance at transaction time t, then 
o([Q,Vance,t]; LOCATION = Europe) can be used as an 

answer to the question “What naval base locations in 
Europe were revealed to Vance?” and the query 

I-I CoMAmER([Q,Vance,t]) can be used to answer the 

question “What COMMANDER information was released to 

Vance?” 

5. CONCLUSIONS. 

The above example demonstrates the utility of querying 
the Q-log. This has great application in areas where it is 
necessary to monitor the accesses being made to the 
database. Such query capability allows the database 

administrator to analyze the information-flow patterns. 

We have presented a relational model which incorpe 

rates the information-rich transaction log. This is done in 

a manner which allows us to query the transactions and 
their environment. As a result our model is completely 
self-contained and has zero information-loss. We believe 
that it fulfills an important need for being able to examine 
the nature of transactions in a database system. It also 
applies to a knowledge based system where it is important 
to retain, both, a complete historical knowledge and the 
evolution process of such knowledge over time. We believe 
that this model can be used as a workbench for building 
very secure systems. 
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