
ACHIEVING ZERO INFORMATION-LOSS
IN A CLASSICAL DATABASE ENVIRONMENT*

Gautam Bhargava
Shashi K. Gadia

Computer Science Department
Iowa State University

Ames, IA 50011

Abstract. The research in temporal databases has, so
far, concentrated on the history of an object as it exists in
the real world. Instead, in this paper we view the history
of an object as it is recorded in a database. Such a history
is obtained by extr
(insert, modify, and Yr

lating the outcome of the u$ttes
elete) made to the object at drscrete

instants. Our model su ports two kinds of query-users: the
s stem-user, and the coszical-user. For the classical-user,
E

P
t e interface to the database is identical to the usual inter-
face in classical snapshot databases. We extend the classi-
cal relational model so that a transaction, i.e., an update or
a (retrieval) query is recorded in such a way that its effect
can be determine d at any time in the future; thus, our
model is a zero information-loss model
logical structure im

P
I
Theorem 1). The

oeed upon the mode allows us to give
a powerful algebra or the system-user to query the circum-
stantial information surrounding updates and queries. In
addition, a single execution of a query can be identified
with the relation it retrieves; thus, a user can query
queries, query queries on queries, ad infinitum. The model
represents an application of temporal databases to main-
stream databases. It can be used in auditing, and as a
foundation for building secure systems.

1. INTFUJDUCTION.

An update operation in classical databases is destructive
- it not only destroys the environment in which it is exe
cuted, but also destroys the environment for queries. After
an update is made, only the new database state is available,
without even a clue to its past states.

A transaction in a database system is either sin update,
or a query. The activities in a database system consist of a
sequence T of such transactions. We present a model,
called the zero injbmatin-loss model, in which no

*This work was supported in part by the National Science
Foundation under grant IRI-8810704.

Permission to copy without fee all or part of this material is
granted provided that the copies ase not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherun’se, or to republish, requires a fee
and/or special permission from the Endowment.

information is ever lost - not even the circumstantial
information surrounding the transactions. Transactions in
our model are recorded by imposing a logical structure on T

in such a way that the precise effect of any transaction, as
well as the transaction itself, can be determined at any
time in the future. In addition, the logical structure
imposed upon transactions gives rise to a simple, yet
powerful, algebra

We use certain temporal relations, called transaction
history relations, in which we associate a timestamp with
every data value. Such relations form a foundation for the
sero information-loss model. We use the time universe
[O,Now) to model the past and present (Now) hiitory of data
in a uniform manner. As opposed to the usual approach of
looking at the time dimension as the real world time, we
consider it as the transaction time and use it to model the
changing values of object attributes in the database.

. . u Consider the data value taken by the attri-
bute COLOR, as shown in Figure 1.1. The semantics of thii
data value are: “from transaction time 15 to 20, the value
of COLOR was known to be ‘red’ in the database, and from
21 to 25 the value was known to be ‘blue’.” Thus, for
example, a user querying the color at transaction time 24
would retrieve ‘blue’ as its value. From this data value we
can infer that the COLOR object was created at transaction
time 15, modified at transaction time 21, and deleted at
transaction time 26. This illustrates how the temporal
relations in our model can be used to “store” update
operations.

Figure 1.1. A timestamped data value of COLOR

Proceedings of the Fifteenth International
Conference on Very Large Data Bases Amsterdam, 1989

- 217 -

2 Definition of the zero information-loss mod& Let ‘R be . .
a database scheme. Then, a zero inf;onnotion-loss model
over Z is a triple ((0, Shadow), Q-log), where,

l 0 is the basic model For every R E ‘R there irr a trane-
action history relation r(R) E 0, and a relation
shadow(r) E Shadow.

l Q-log is a single relation.

The pair (O,Shadow) can be viewed ae a logically
structured log of all updates. In a database system, the
role of an update ie to change the state of a databave by
modifying certain data vdues. Alao, au update operation ia
associated with certain environmental parametera - the
person authorizing the update, the reason for the update,
the time of the update, etc. Along these lines, an update u
to a relation r in our model can he decomporred into two
p&r: III, con&sting of the new data value, and us, condat-
ing of the circumstantial information surrounding the
update u. The effects of ut and u2 are reflected in r and
shadow(r), respectively. This decomposition of the data
and the circumstances of u is not lomy: the key of the
updated tuple, and the time of the update can be ueed to

glue them back together. The reason for separating r and
shadow(r) is that their structures are very different. This
separation allows ua to maximdly harnew the potential of
the relational approach for querying them.

The Q-log ia a single relation uned for storing a log of
all the queries, together with the information about their

execution environments. With Q-logs not only can we look
at the details of (or, even n-execute) past queries, but alao
query queries, query queries on queries, ad infinitum. This
extended capability hae enormourr potential in applications
where it itr important to monitor the accemes made to the
database.

1.3, A cglplprehensive d Suppoee we have an emp
transaction history relation with NAME, SALARY, and DEP!l’
attributes, with NAME iu) the key, and that the shadow
information corresponding to any update in the emp rela-
tion include-a the transaction time (TT), the AU!l’HORI!&ER,

the USER, and the REASON for the update. Now, consider
the following sequence of transactions in the database:

Tl: TT=~;USER=&U~.
iwcrt (NAME: John; SALARX~~K; DEpT:Toys) ia emp
rilh (AUTHORIZER=Don; RRMON=New Employee);

T2z TT = 40; USER = Ryne.

modify (NAbfEz John) to (DEPT: Shoes; SALARY: 26K)
in emp

witi (AUTHORIRRR = Don; REASON = Reassignment);

T3: TT=42,uSrm=Vance.
Q!. Y’2at is John’s salary?

T4: TT = 48; USER = Rick.

insert (NAME: Doug; SALARY: 20K; DEPT: Auto)
in emp

witA (MJTHORlZER = Joe; REASON = New Employee);

T5: TT = 53; USER I Damon.
delete (NAlrLE: John) in emp

with (AUTFDRIZER = Don; REASON = Fired);

T6: TT = 54; U~RR = Andre.
Ql: What irr John’s aedary?

T7: TT = 55; USER = Mitch.
QZ: What is John’s department?

T8: TT = 56; USER = Don.

03: Who made inquiries about John’s r&try?

Corresponding to these traunactione, the instance of our
model ((0, Shadow), Q-log) is shown in Fire 1.2. Note
that the symbol -II reprwento WIIW.

Note that the valuee of NAME in emp and ehadow(emp)
set up a logical correspondence between tupka of emp and
ahadow(emp). By including the transaction time, thi cor-
respondence can be refined to a one-to-we correspondence
between all updatea to emp and the toplea in rhadow(emp).
As a result, the tran&ions {Tl, T2, T4, T5) can be
completely restored from the current atate of emp and
shadow(emp), and (T3, T6, T7, T8) can be completely
restored from emp and the Q-log. Now, using TT, the
transaction time, we can order (Tl, T2, T4, T5) U (T3,
T6, T7, T8) to obtain the original sequence of tramactione.
Theorem 1 (the’ Zero-loee Theorem) says that this is true in
general, i.e., a transaction log can be restored from the
current state of the zero information-law, model; thus,
indeed, there ia no lotw of information in our model.

The remainder of this paper is organ&d as follows.
The basic model, 0, and a summary of a relational algebra
for it, are briefIy presented in Section 2. In Section 3 we
formally define update operations, transactions, transaction
loge, and state the Zero-loos Theorem. In Section 4 we

- 218 -

NAME SALARY DEFT

[8,523 John [8,391 15K 18,393 Toys
[40,521 20K 140,521 Shoes (

[48&l Doug [48,itl 20K [48 ,+I] Auto 4

The emp transaction history relation

-

1 I
1 NAME] TT] AUTEORIZER 1 USER 1 REASON 1 I
I I I I I I I
I John I 8 1 Don I Mark I New Employee k-1

I John I 40 I Don 1 Ryne 1 Reassignment 1-I

I Doug I 48 I Joe I Rick I New Employee

I John 1 53 1 Don 1 Damon I Fired E I

The shadow(emp) relation

I QUERY 1 Tl’ 1 USER 1

1 91: John’s SALARY I 42 I Vance I

I Ql: John’s SALARY I 54 I Andre. I

I 02: John’s DEPT 1 55-I Hitch 1

1 03: USER ID of IJl 1 56 1 Don 1

The Q-log relation

extend the basic algebra to query the whole zero informa-
tion-loss model. We end this section with a list of assump-

tions made in this paper, a discussion of related papers, and
some remarks about our notational conventions.

1.4. AssumDtions. To simplify our presentation and avoid
unnecessary distraction from the main theme of this paper,
we make the following assumptions. These assumptions

can be eliminated along the lines of [GB].

. The key of an object (tuple) in a transaction history
relation r E 0 does not change, and it is known correct-
ly at all times. In the absence of this assumption, a new
update operation, which allows keys of several objects
to be changed simultaneously, becomes necessary [GB].

. At a given transaction time instant, there is only one
transaction, i.e., the transactions are not batched to-
gether. This assumption is relaxed in [GB].

. No redundant updates are made, i.e., we do not change
any attribute value of an object to itself. This assump
tion is also relaxed in [GB].

Figure 1.2. The model (({emp}, {ehadow(emp)}), Q-log)

. . ated works. Algebras for temporal databases have

appeared in [Gal,Ta,LJl. (Sn] introduces a temporal model
with two time dimensions and&es a QUEL like query lan-
guage for it. [GB], frequently referenced here, relaxes the
assumptions made in this paper; a very preliminary version
of [GB] appeared in [GY2].

6 Notations. We write a singleton {x} of any sort with- . .
out braces. If R and S are schemes, BS denotes FUJS. If r
and 7’ are tuples, then 707’ denotes their concatenation;
thus, if the schemes of r and 7’ are R and S, respectively,
then the scheme of 7071 is BS.

2 THE BASIC MODEL AND ITS ALGEBRA.

In this section we present a brief overview of the basic
model 0. For a more detailed and generalized treatment of
this basic model, the reader may refer to [GB].

2 .1,~ We assume that we are given a e
universe of time instants [O,tUlW] = (0, 1, 2, . .a, Hm},
along with a linear order < on it. NOW denotes the current

- 219 -

time according to the system clock. A subset I of [O,NowJ is

an intervalif VtIt2t3(t,EI A $61 A tl _< t$ t2 * t$I).

2.2. Temooral elements. A tempod element is a finite
union of intervals. An interval is obviously a temporal
element. An instant t may be identified with the temporal
element [t,t]; th UB it may be regarded as a temporal
element. The set of all temporal elements is closed under +

(union), * (intersection) and - (complementation), and
thus forms a Boolean algebra. Temporal elements make a
striking simplification in query languages for temporal
databases [GYl,G&].

. . e or urnments. To capture the time-vanaut
properties of objects, we introduce the notion of a temporal
aaaignment. A temporal assignment t to an attribute A,
with a temporal element p as its temporal domain, ia a

function from t such that for each instant t E H t(t) is an
element of dam(A). Figure 1.1 shows a temporal assign-
ment to COLOR with [15,25] aa its temporal domain.

If t is a temporal aeaignment, then [Cl denotea its
temporal domain and I(1 denotes its range {t(t) : t E [(I}.
We may denote a temporal assignment t as (v, * a,, . . .,
u m -a,), where v1 ..a , vrn are temporal elements, t(t) =
‘4 if t E vi, 1 5 i i m. If t is a temporal alignment, and c a

temporal element, then t tr denotes the restriction of t to
the temporal domain I[[P*:a

2 4 8 na ination. . . - v Suppose t1 and ts are temporal assign-
ments to &comparable attributea. We define [t,e&$ =

~tB~,B*UCJl: t,(t)KJt)l. The const~~ IC,ef,l is of
fundamental importance in temporal databases. It evalu-
ates to a time domain between fl and I[$]t[&J. If the
value ia 8, it implies that the two temporal Msignmente
were never related. We define the Boolean c,Qz to be an

dheviation for (It, 0 C2P = UC,B*Ut,l A ItlB*It,l # @I.

. . * u If C, denotes the assignment to COLOR, as

in Figure 1.1, and tz denotes ([O,Now] - blue), then

ut,=E,D = Pv51*

. . aneaction historv tuoles. A transaction history tuple

7, over a scheme FL, is a function from R such that for each
attribute A in R, r(A) is a temporal assignment to A.
Suppose 7 is a transaction history tuple over R If p is a
temporal element, then 7tc(is the function from R such
that (7 tp)(A) = 7(A) tb for every A E R. We say that 7 ie
Aomogeueow if [z(A)1 is the same for all attributes A E R

In this paper we will only be interested in homogeneous
tuples. Weeaythatrisnullif(7(A))mBforsomeAER.

%.S. Transaction hiatorv relations. A transtaction hi&ny
relation r over R, with KCR a8 its tey, is a finite set of non-
-null homogeneous transaction history tuples over R such
that (i) Iv(A)1 is a singleton for every A E K, and (ii) if 7

and 7’ are tuples in r such that VA E K()v(A)I = If(A)
then r = f. Figure 1.2 shows the emp transaction history
relation over NAME SALARY DEPT with NAME as its key.

Note that our assumption that the value of a key attri-
bute does not change with time has been used in the defini-
tion of a key of a transaction history relation. The behav-
ior of a key in temporal dath is more complex than its
classical counterpart; its detailed account would force the
surfacing of eeveral subtleties and auxiliary definitions
[GY2,GB], and cauw a substantial distraction from the
main theme of the paper.

The algebra presented in this Section is limited in the
following two respecte: (i) We do not introduce certain
restructuring operators which are necessary to change the
key attributer, of a transaction history relations. (ii) We
give a limited definition of the projection and natural join
operators. Both of there limitations are overcome in the

detailed prewntation provided in [GB]. An informal dip
cumion of the problema involved is given in [GY2].

If r ia a transaction history relation over R, then ir]l =
U,, 1~). For example, for the state of the emp relation
shown in Figure 1.2, [emp] = [8,nOnr]. If t ia a temporal
element then r)p = { 71c(: 7 E r}. If t ia an instant, then
r h i6 called a tenspod map&t of r at 1.

. *
for mtlon h&orv relation& . We

assume that a database 0, conaiating of finitely many
transaction history relations is given. The set of all
algebraic exprecsiona can be divided into three mutually

exclusive group: temporal expreesione, Boolean expres
nions, and relational expressions. In the following defini-

tions, a constant temporal amdgnment ([O,wow] - a) is
abbreviated a~ a.

.
17.1. %md ex~reeaons. Temporal expressions, the
syntactic counterpart of temporal elements are formed from

Id, IC,f$l, +, *, and -. If I(ie a temporal expreadon and
7 is a tuple, then l((z), the result of substituting T in /L, is
defined in a natural manner.

- 220 -

2.7.1.1. Examole. Let us consider the emp relation of
Figure 1.2. Suppose 7 denotes John’s tuple. Then
[SALARY # 2OKjj is a temporal expression, and for 7 its
value is [8,39]. Similarly, [DEPT = ShoesD(T) = [40,52].
The result of substitufing 7 in the temporal expression
[SALARY # 20K] + [DEPT = Shoes1 is [8,521.

2.7.2. Boolean exDreasions. Atomic Boolean expressions are
of the form, TRUE, FALSE, tI&$, and &. More complex
expressions are formed by using the Boolean operatora A, V,

and 1.

3 Relational expressions are 2.7. .

syntactic counterparts of transaction history relations.
Every relation r E 0 is a relational expression. In the
following, we suppose r is a transaction history relation
over R, with KCR as its key. The other relational expres-
sions are defied as follows.

If s is a relational expression over R, with KCR as its
key, then r-s, rUs, rt% are transaction history relations
over FI, with K as their key. In giving the semantics for
r& it is assumed that for the same object, the versions
of their transaction histories in r and s do not differ at

any instant; otherwise, rUs is undefined. Thii is analo-
gous td the classical case where, if r and s are snapshot
relations with K as their key, then K may not be a key
of rUe.

If K C X E R then %(r) is a transaction history relation
with K as its key. We recall that the condition K<X
has been imposed in thii paper to ensure that the key of
R,(r) does not have to be changed.

If f is a Boolean expression, and p a temporal e.xpres-
sion, then u(r;f;r) is a transaction history relation over
I%, with K as its key. u is an important operator in
temporal databases. It allows a tuple 7 in r to be
examined with respect to a Boolean criterion f, and then
restricted to dz). It stands for the transaction history

relation {I tA 7): 7Er A f(7)).

If s is a relational expression over S, with K’ as its key,
then r M s is a transaction history relation over RS with
KUK’ as its key. The expression r n s evaluates to
{(7071) t([+[#]): tir A &s). The restriction of ro2071
to I+[f 1 is necessary to ensure homogeneity. In
general, the key may be a proper subset of KUK’.

l If A E R and B g R, then the transaction history
relation pA+B() r is obtained from r by renaming the
attribute A to B. If A E K, the new key is (K-A)UB.

2.8. The auerp-users. AS 0 encapsulates the entire
database history of objects, it is very rich in content. Our
model supports two kinds of query-users: (i) The system
user, who has access to the entire database 0 and can use
the powerful operators to be introduced in Section 4. (ii)
The classical-user, who can only access 0 tHow = {r INow:
rE0}, the current state of the database. In ~~NCIW, the
only timestamps are NOW. Such timestamps are clearly
redundant, and are hidden from the classical-user. This
user has no we of temporal expressions; his/her needs are
adequately covered by the Boolean expressions. Thus, the
third argument of u is not made available to him/her. In
this way, the query interface for the classical-user of our
model is similar to that for a user in a classical snapshot
database.

29 We look at some queries that can be asked . .
of transaction history relations by a system-user. All these

queries refer to the emp relation of Figure 1.2.

. . . -Die. According to the database, at what trans-
action time was John’s salary shown as 15K while he was
working in Toys? This query is expressed as:

[a(emp; NAME = John; (SALARY = 15Kl*
ADEPT = ToYs~)~

. . . Examde. Give details about the employees for
whom the database showed a salary greater than 24K while
they worked in the Clothing or the Shoes department.
u(emp; TRUE; ISALARY > 24K) * ((DEPT = Shoes1 +

[DEPT = ClothingI))

3 TRANSACTIONS AND ZERO INFORMATION-LOSS.

Informally, a transaction is either a single update or a
single query. We impose a logical structure on the log of

all transactions to obtain the model ((0, Shadow), Q-log)
from which we can restore the log at any time. Thus, there
is no loss of information in this model, and it is called a
zero information-loss model. The advantage of the logical
structure is that it lends itself to a powerful query
language. The query language is the subject of study in the

next section.

- 221 -

1 Shadow relations. . . Just as a transaction history
relation records the update made in the value of an attri-
bute, the shadow relation records the environment of the
update. Consequently, every transaction history relation
has a shadow relation associated with it, and for every
update represented in the transaction history relation, there
is a corresponding tuple in the shadow relation.

Suppose r is transaction history relation over R in 0,
with KER as its key. Then the scheme of shadow(r) must
contain {USER, 'IT} U K. A USER is one who makes the
update, and it can be a person, an algorithm, a machine, or
any other decision making body. The transaction time TT
is supplied by the system clock when an update becomes
effective. The purpose of K is to establish a connection
between an object in a transaction history relation, and the
corresponding tuple in its shadow. Other attributes in
shadow(R) depend upon the nature of r. For example, in
an employee shadow relation it might be relevant to record
who authorized the salary update, whereas in a weather
record shadow relation it may make sense to record the
space coordinates of the satellite reporting the information.
Figure 1.2 shows the shadow(emp) relation, over NAME TT
AUTHORIZERUSERREASON.

3.2. Undates. Throughout this section we will assume that
we are given a fued but arbitrary transaction history
relation r E 0 over R, with KER as its key. If r E r, then
key(r) denotes the snapshot tuple r1 over K, such that for

every A E K, rl(A) = ll(A)l.
In the zero information-loss model, an update operution

transforms a transaction history relation r, and its
corresponding shadow relation, from one state to another.
The update operations on (0, Shadow), are as follows:

l insert r in r with I’;
l modify key(r) to new-7 in r with 7’;
l delete key(7) with 7’;

where 7’ is the part of the update operation that has the
circumstantial or shadow information about the update.
Several examples of these operations have already been
given in Section 1. As mentioned in the introduction, an
update operation u on (0, Shadow) can be partitioned into
two parts: ut and uz, which modify 0 and Shadow, respec-

tively. To make this partitioning more visible, we first
make syntactic modifications in our update operations so

that an update operation u can be expressed as (ut,uz):

l (insert T in r, append +okey(s) to shadow(r))
l (modify key(~) in r to new-r,

append r’okep(r) to shadow(r))
l (delete k y() e T in r, appead +okey(7) to shadow(r))

If u is an update operator on (r,shadow(r)), and ur and
uz are such that u = (ut,uz), then ut and u2 are called
update operations on r and shadow(r), respectively. Note
that “appead fokey(r) to shadow(r)” is the only update
operation for the shadow relation shadow(r). The seman-
tics of an update operation on r can be defined and the
following lemma can be proved easily.

CEHWA L If (r’,shadow(r’)) are obtained after update u to
(r,shadow(r)) by the user x at transaction time t, then

(r,~~ow(r)), u, x, and t cau be determined from
(r’,shadow(r’)) alone.

3.3. Q-104, Q-log is essentially a log of all queries. A
point of interest is that the same query may be made by
different users at different times. For example, a compiled
query program may be run at various timez. The decision
about how a query is to be stored - as a string, or as a
parse tree, or as some other semantic entity - is left to the
choice of the implementer. We only require that there be a
decision procedure for deciding whether or not two queries
are the same. This algorithm can be smart enough to try
and deduce the logical equivalence of queries, or so simple
a8 to consider textually different queries to be different.

We introduce a special attribute QUERY, and assume
that dom(QUERY) consists of all queries. We define

Q-scheme to be QUERY USER TT, and Q-log to be a rela-
tion over Q-scheme. Thus, a tuple r in Q-log is of the

form (Q, x, t), where Q is a query, x a user, and t a
transaction time instant. The meaning of r is that Q was
executed by user x at transaction time t. Figure 1.2 shows
an example of a Q-log relation.

Suppose s represents the current state of Q-log, the
query q is asked by the user x, and the system answers it
for the state of the zero information-loss model at transac-
tion time t. Then the new state of Q-log becomes 5 U {q 0
x 0 t}.

~EYY~ 2. Suppose the query q, by user I, at transaction
time t, transforms the state s of a Q-log to the state 5’.
Then s, q, x, and t can be determined from s’ alone.

- 222 -

3.4. Information about a transaction. The injovnaation
associated with a transaction is the data which is deemed

relevant for the application on hand. This definition places
the burden of deciding relevance on the system designer.
Thus, the system designer has to make a priori decisions
about what kind of circumstantial information about trans-
actions is of value and needs to be stored.

3 5 Transactions and transaction log. A transaction T in . .
the zero information-loss model is of the form (u/q,x,t),
where u/q is either an update or a query, x is a user, and t
is a transaction time instant. If the transaction T, on the
state 2 of the zero information-loss model, results in the

state Z’, we write Z’ as T(Z). The following followa from
Lemmas 1 and 2.

LEXHA 3. If T is a transaction on Z, then from T(Z) alone,
we can restore T and Z.

A trcmsoction log ia a sequence T = (T,, Tz, . * *, Tn)
of transactions. Suppose B denotes the iqitial empty state

of the zero information-loss model. Then the outcome of
the transaction log T is the state Tn(TnJ *. *(T,(e))* * a).

THEOPEY 1 (The Zero-loss Theored A tranzaction log T
can be restored from its outcome.

4. ALGEBBA FOR THE ZERO INFO.-LOSS MODEL.

In this Section we extend the algebra of Section 2 to
query the complete zero information-low model.

4.1. Classical onerators for shadow relations . The operatom

for Shadow are as follows:

. Shadow relatione are the classical lnf relations, and we
allow the classical relational operators on them. +

4.1.1. Examples. Suppose emp(NAME SALARY DEPT) is a
transaction history relation with NAME as its key, and
management(DEP!t’ MANAGER) is a transaction history
relation with DEPT as ita key. Suppose the scheme of
shadow(emp) is az before, and the scheme of
shadow(management) is TT AUTHOEUZER DEPT USER
REASON. The following queries are based on the
shadow(emp) and shadow(management) relations.

1 1 1 Bxamnle. Give reasons for all the updates in emp. . . * .

4.1.1.2. ExamDIe. Give reasons for all the updates in emp
that were authorized by Harry.

SE ASONS(o(shadow(emp); AUTHORIZER = Harry))

4.1.1.3. Bxamnle. Who made changes in both emp and
management ?

%hadow(emp).USER (sh=low(ew) #v‘&ER
shadow(management))

4 1 1 4 Bxamole. Who made the updates in emp between
transaction time(‘I?‘) 10 and 2O?

l$,gEE,(u(ehadow(emp); TT 2 10 A TT 5 20))

The queries in the algebra for shadow relations can use

temporal expressions involving relations in 0. This is
illustrated by the following example.

, . . . xamele. It is easily Been that the temporal
expression tu(management; MANAGER = Tom; [O,tKM’])l
retrieves the time when Tom is shown to be a manager in
some department. Using this, the query “what were the
reasons for updates in emp during the time Tom was a
manager in some department?” is expressed as follows.

?RE MONS(o(zhadow(emp); TT E (o(management;
MANAGER = Tom; [O,Now])l))

. *
42. Nav&on bet ween 0 &Shadow. Suppose r is a
transaction history tuple over R If XCR, we define the
temporal expression 6(7(X)) = {t: for some A E X, r(A) tt #
v(A)t(t-1)). Clearly, 6(7(X)) is the eet of all transaction
time instants when there is a change in t(X).

ions in 0 and Sha ow. Because the
structures of a transaction history relation and a anapshot
relation are quite different, we do not want to define their
join. Instead we define semijoin operations; whose naviga-

tional nature is like a join, but instead of retrieving the
concatenation of the tuples of the two operand relatione, we
only retrieve parts of tuples of one of the operand relations.

Suppose r(R) E 0, e, and e2 are expressions which
evaluate to subsets of r and shadow(r), respectively, and f
is a Boolean condition involving attributes of schemes of r
and shadow(r). Then we introduce F, and F,, called the
$tcr operations, as follows.

Fl(el,eZ,f) = { tieI: 3+Ee2(W’T) C 47(R)) A f(~+))I,

F,(e,,e,,f) = {+Ee2: 3*1(+(‘W E 47(R)) A f(d)),
where v’(TT) E 6(7(R)) expresses “r’ is a shadow tuple of T
corresponding to an update operation which modified at

- 223 -

least one attribute in 7.”

4.2.1.1. Examnle. Which tuples in emp were updated by
Harry?

F&emp, shadow(emp), USER = Harry)

4.2.1.2. Examnle. Name the people who made changes in
Tom’s tuple during [10,20].

sSER(F1(4(emp; NAME = Tom; PWW),
shadow(emp)), 10 3 TT A !PT 5 20))

4.3. Onerators for Q-lo& Recall, a tuple in Q-log is of the
form (Q, x, t), with the meaning that the query Q was
executed by user x at transaction time t. If r is the tuple
(Q, x, t), then it is natural to identify it with the relation
retrieved by Q when it was executed at transaction time t.
(Note that from x, we can decode whether this user is a
system-user or a classical-user.) We denote this relation as
[I], and defme [Q-log] = ((71: r E Q-log}. Thus, we arrive
at the database Z = 0 U Shadow U {Q-log} U (Q-log]. Z
can be partitioned into two parts: Zr consisting of the
classical 1-nf relations, and Ze consisting of transaction
history relations. On Zt we allow the classical relational
operators, and on 22 we allow the algebra described in
Section 2. Additionally, in this section we have introduced
operators on 0 U Shadow. Clearly [Q-log] allows a query

to be treated as a relation, which can be queried. Thus, we
can query queries, query queries on queries, etc.

4.3.1. Examnle. Name the people who executed Ql.

~SER(b(Q-log, QUERY = 81));
4.3.2. ExamDle. What difference was observed in the
execution of Ql at TT = 3 and 10 by Harry?

[Ql,HwGOl - [QW-Y,~I.
4.3.3. ExamDle. If Q is the query “what are all the naval
bases,” executed by Vance at transaction time t, then
o([Q,Vance,t]; LOCATION = Europe) can be used as an

answer to the question “What naval base locations in
Europe were revealed to Vance?” and the query

I-I CoMAmER([Q,Vance,t]) can be used to answer the

question “What COMMANDER information was released to

Vance?”

5. CONCLUSIONS.

The above example demonstrates the utility of querying
the Q-log. This has great application in areas where it is
necessary to monitor the accesses being made to the
database. Such query capability allows the database

administrator to analyze the information-flow patterns.

We have presented a relational model which incorpe

rates the information-rich transaction log. This is done in

a manner which allows us to query the transactions and
their environment. As a result our model is completely
self-contained and has zero information-loss. We believe
that it fulfills an important need for being able to examine
the nature of transactions in a database system. It also
applies to a knowledge based system where it is important
to retain, both, a complete historical knowledge and the
evolution process of such knowledge over time. We believe
that this model can be used as a workbench for building
very secure systems.

ACKNOWLEDGEMENT. We thank the anonymous refer-
ees for their helpful comments.

REFERENCES

[Gall

PA

I-1

Gadia, Shashi K. A Homogeneous Relational Model
and Query Languages for Temporal Databases.
ACM-Transactions on Database Systems, pp
418-448, vol 13,1988.

Gadia, Shashi K. The role o
temporal databases. 1

temporal elements in
Quarter y Bull. of the Corn-

puter Society of IEEE Technical Committee on
Data Engineering, December, 1988.

Gadia, Shashi K. and Bhar
Treatment of Updotes an

ava, Gautam. A Formal
fi Errors in a Relational

Database. Submitted for publication.

[GYl] Gadia, Shaehi K. and Yeung, Chuen-Sing. lnade

i
uacy of hterual Timestamps in Temporal Data-
asss. To appear in Information Sciences.

[GY2] G&a, Shashi K. and Yeung, Chuen-SiyD4CTsr
emlized Model for a Relational Tempor
Proc ACM-SIGMOD Int. Conf. on Management of
Data, June 1988, pp. 251-257.

WI

bl

PaI

Lorentzos, Nikos A. and Johnson, Roger G. Ettend-
relakowl algebra to manipulate temporal data.

1zormation Systems, Vol13, 1988, pp. 289-296.

Snodgrass, Richard. The Temporal Query Language
T

8”
cl ACM Transactions on Database Systems,

Vo 12,1987, pp 247-298.

Tansel, A.U. Adding Time Dimension to Relational
Model Model and &tending Relatiod Alqebra. In-
formation Systems, 1986.

- 224 -

