
Finding Regular Simple Paths in Graph Databases

Albert0 0. Mendelzon
Peter T. Woodt

Computer Systems Research Institute
University of Toronto

Toronto, Canada M5S IA4

ABSTRACT

We consider the following problem: given a labelled
directed graph G and a regular expression R, find all pairs
of nodes connected by a simple path such that the concate-
nation of the labels along the path satisfies R. The problem
is motivated by the observation that many recursive
queries can be expressed in this form, and by the imple-
mentation of a query language, G+, based on this observa-
tion. We show that the problem is in general intractable,
but present an algorithm than runs in polynomial time in
the size of the graph when the regular expression and the
graph are free of conflicts. We also present a class of
languages whose expressions can always be evaluated in
time polynomial in the size of both the database and the
expression, and characterize syntactically the expressions
for such languages.

1. INTRODUCTION

The design of our query language G+
[CMW87,CMW88] is based on the observation that many
of the recursive queries that arise in practice-and in the
literature-amount to graph traversals. For example, see
lAgra87, GSS87,RS86]. In G+, we view the database as a
directed, labelled graph, and pose queries which are graph
patterns; the answer to a query is the set of subgraphs of
the database that match the given pattern. In our prototype
implementation, queries are drawn on a workstation screen
and the database and query results are also displayed pic-
tOlidly.

EXAMPLE 1.1: Let G be a graph representing airline
flights: the nodes of G denote cities, and an edge labelled a
from city b to city c means that there is a flight from b to c
with airline a. Assume that we want to find all pairs of
cities that are connected by a sequence of flights such that
(a) at least one flight is with Air Canada (AC), and (b) no
city is visited more than once.

rCunrnt addrtsa: Jkpamnent of Computer Science. University of Cape
Town, South Africa.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
ditect commexial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very LaTge Data Base
Endowment. To copy otherwise, OT to republish, Tequizes a fee
and/or special permission from the Endowment. - 185

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

This query can be expressed by the graph pattern in Figure
1.1.

la--al
Figure 1.1. A graphical query.

The !irst box in the figure contains the pattern graph, while
the second box contains the summary graph which
specifies how the output is to be presented to the user. The
edges of a pattern graph can be labelled with regular
expressions; in this case the desired expression is _ ‘AC l

(where the underscore matches any edge label in G). This
regular expression is used to match the edge labels along
simple paths in G, thereby satisfying our original request.
cl

Figure 1.2 shows two screens from the G prototype.
In the lirst screen, one window contains a database graph
where the nodes are cities and the edges are flights
between cities, labelled with airline names. The other win-
dow contains a query graph asking for all pairs of nodes
connected by a simple path of a certain form. The second
screen shows one of the answers, displayed by shading
nodes of the database graph. Instead of using a summary
graph, the user has chosen from a menu to display only the
endpoints of each path.

Although queries in G+ can be a lot more general
than exemplified above, this special case is challenging
enough from an algorithmic point of view if we want to
process queries efficiently. The problem addressed in this
paper is: given a regular expression R and a graph G, find

Amsterdam, 1989

Figure 1.2. The G+ user interface

- 186 -

all pairs of nodes in G which are connected by a simple
path p, where the concatenation of edge labels comprising
p is in the language denoted by R.

When trying to find an efficient solution for this
problem to incorporate in our implementation of G+, we
were somewhat surprised to discover that the query of
Example 1.1 is in fact NP-complete. Using results in
[FHw8O,LaPa84], we show in Section 2 that for certain
fixed regular expressions (such as R in the above example),
the problem of deciding whether a pair of nodes is in the
answer of a query is NP-complete, making the general
problem NP-hard. We first attacked this problem by deter-
mining what it is in the language of R that makes the prob-
lem hard. In Section 3, we present a class of languages for
which query evaluation is solvable in time polynomial in
both the length of the regular expression and the size of the
graph. We characterize these languages syntactically in
terms of the regular expressions that denote them and the
finite automata that recognize them We then designed a
general algorithm, presented in Section 4, which is correct
for arbitrary graphs and queries, and is guaranteed to run
in polynomial time in the size of the graph if the regular
expression and graph are free of “conflicts”, in a sense to
be defined precisely in that section. As special cases, any
query is free of conflicts with any acyclic database graph’
and any restricted expression query is free of conflicts with
any arbitrary graph. Since we cannot restrict our prototype
to work only on conflict-free queries and graphs, and it is
expensive to test for conflict-freedom beforehand, it is
quite convenient to have a single algorithm that works in
all cases, and we have in fact incorporated the algorithm of
Section 4 into our implementation.

2. INTRACTABILITY RESULTS

We begin by defining the graph structures as well as
the class of queries over these structures in which we are
interested.

DEFINITION: A database graph (db-graph, for short)
G = (N, E, v, X, h) is a directed, labelled graph, where N is
a set of nodes, E is a set of edges, and w is an incidence
function mapping E to NxN. So multiple edges between a
pair of nodes are permitted in db-graphs. The labels of G
are drawn from the finite set of symbols X, called the
alphabet, and h. is an edge labelling function mapping E to
L;.

DEFINITION: Let Z be a finite alphabet disjoint from
{E, 0, (,)}. A regular expression R over Z and the
language L(R) denoted by R are defined in the usual way.
Let G=(N,E,y,Z,h) be a db-graph and
p=h,el,. . . , e,-l,v,,), where vi~N, lliln, andeiEE,
IljSn-1, be apath inG. We sayp is asimplepathifall

the vi’s are distinct for l<kn. We call the string
Wd - - - h(e,-1) the path label of p, denoted by h(p) E C’.
Let R be a regular expression over C. We say that the path
p satisjies R if h(p) EL(R). The query JZR on db-graph G,
denoted by QR(G), is defined as the set of pairs (x,y) such
that there is a simple path from x to y in G which satisfies
R.
If(x,y)EQR(G), then (x,Y) sa@M QR.

A naive method for evaluating a query QR on a db-
graph G is to traverse every simple path satisfying R in G
exactly once. The penalty for this is that such an algorithm
takes exponential time when G has an exponential number
of simple paths. Nevertheless, we will see below that in
general we cannot expect an algorithm to perform much
better, since we prove that, for particular regular expres-
sions, the problem of deciding whether a pair of nodes is in
the answer of a query is NP-complete. On the other hand,
refinements can lead to guaranteed polynomial time
evaluation under conditions studied in the following two
sections.

Consider the following decision problem

REGULARSMPLEPATH
Instance: Db-graph G = (N, E, yt, I; A), nodes x,y EN, reg-
ular expression R over E
Question: Does G contain a directed simple path
p=(el,..., et) from x to y such that p satisfies R, that is,
h(eG.02) -- *h(e3~L(R)?

This ‘is equivalent to asking “Is (x,y)~ QR(G)?“.
When the instance comprises only the db-graph, we refer
to the problem as HXED REGULAR PATH(R). That is, for
mm rumbut PAm(R) we measure the complexity only
in terms of the size of the db-graph. We prove below that,
for certain regular expressions R, PIXED REGULAR PATH@)
is NP-complete (which implies that REGULAR SIMPLE PATH
is NP-hard).

THEOREM 2.1: Let 0 and 1 be distinct symbols in Z
FIXED REGULAR PATH(R), in which R is either (1) (OO)‘, or
(2) 0’ lo’, is NP-complete.

PROOF: Consider the problem EVEN PATH, which is
“Given a directed graph G = (N,E) and nodes x,y EN, is
there a directed simple path of even length from x to y?“,
and DISJOINT PATHS, which is “Given a directed graph
G = (N,E) and pairs of distinct nodes (wJ), (y,z) E Nx N, is
there a pair of disjoint directed simple paths in G, one from
w to x and the other from y to z?“. For (l), the reduction is
from EVEN PATH, which is shown to be NP-complete in
lLaPa84]. For (2), the reduction is from DISJOINT PATHS,
whose NP-completeness follows immediately from results
in [FHw801. 0

- 187 -

Theorem 2.1 is a rather negative result, since it
implies that queries might require time which is exponen-
tial in the size of the db-graph, not only the regular expres-
sion, for their evaluation. Thus, for regular expressions
such as those in Theorem 2.1, we certainly would not
expect an evaluation algorithm to run in polynomial time.
This result, however, is not a function of the complexity of
the particular regular expression but rather of the nature of
the language denoted by the regular expression. A class of
languages for which REGULAR SIMPLE PATH is in P is the
subject of the next section.

3. RESTRICTED REGULAR EXPRESSIONS

We first introduce some terminology and definitions.

DEFINITION: A nonakterministic finite automaton
(NDFA) M is a 5tuple (S, Z, 6, so, F), where S is a finite
set of states, Z is the input alphabet, 6 is the state transi-
tion function, so ES is the initial state, and F E;S is the set
of final states. The concepts of the extended transition
function 6*, the language L (M) accepted by M, and the
transition graph associated with M are defined in the stan-
dard way, as is the notion of a deterministicfinite automa-
ton (DFA) [HoU179].

DEFINITION Given an NDFA M = (S, Z, 6, so, F), for
each pair of states s, t E S, we &fine the language from s to
t, denoted by L,,, as the set of strings that take M from state
s to state t. In particular, for a state s ES, the s@x
language of s, denoted by LS~ (or [s], for short), is the set
of strings that take M from s to some tinal state. Clearly,
[so] = L (M). Similar definitions apply for a DFA.

Given a regular expression R over X, an e-free
NDFA M =(S, I; 6, so, F) that accepts L(R) can be con-
structed in polynomial time [AHU74]. From now on, we
will assume that all NDFAs are e-free.

EXAMPLE 3.1: Figure 3.2 shows the transition graph
T of a DFA M. State 0 is the initial state of M, while all
states are final (denoted by a double circle). (We do not
show (reject) states that are not on some path from the ini-
tal state to a final state.) L(M) is denoted by the regular
expression O’+ l*+ 0’ 1. The suffix language of state 1 is
[l]=O*+O*l, while [2]=e. 0

Let R1 and R a be regular expressions. In the subse-
quent analysis, it will be useful to refer to an NDFA which
accepts the language L (R InRz). The construction of
such an NDFA is defined as follows.

DEFINITION: Let MI =(SI,Z&,PO,FI) and
Mz=(Sz,Z&qo,Fz) be NDFAs. The NDFA for
MlnM2 is I=(SIXS~, C 6, (po,qo), FlxFz), where, for
a EC, (p2,qd~Wpl,qlha) if ami only ifp2~h(pl,a)
and q2 l &(q~,a). We call the transition graph of I the

intersection graph of Ml and Mt.

We saw in the previous section that, for certain regu-
lar expressions R, it is very unlikely that we will find an
algorithm for evaluating QR on an arbitrary graph G that
will always run in time polynomial in the size of G. One
such regular expression is 0’ 10’. However, it turns out
that if the regular expression R = 0’ lo*+ 0’ is specified
instead, then QR is evaluable in polynomial time on any
db-graph G. The reason is that if them is an arbitrary path
from node x to node y in G that satisfies R, then there is a
simple path from x to y satisfying R. In such a case, we
need not restrict ourselves to looking only for simple paths
in G, but can instead look for any path satisfying R. We
define the corresponding decision problem below.

REGULAR PATH

Instance: Db-graph G = (N, E, v, 2, a), nodes x,y EN, reg-
ular expression R over L
Question: Does G contain a directed path (not necessarily
simple) p=(el, . . . , ek) from x to y such that p satisfies R,
that is, h(e t)X(e2) * - - X.(ek) E L (R)?

LEMMA 3.1: REGULAR PATH can be decided in poly-
nomial time.

PROOF: Given db-graph G along with nodes x and y
inG,wecanviewGasanNDFAwithinitialstatexand
final state y. Consauct the intersection graph I of G and
M = (S, I; 6, SO, F), an NDFA accepting L(R). There is a
path from x to y satisfying R if and only if there is a path in
I from (x,so) to (y,sf), for some sf EF. All thii can be
done in polynomial time lHRS76]. 0

We are interested in conditions under which REGU-
LAR SIMPLE PATH (which is appropriate because of our
SemaNk.S)calI bereducedt0REGULARPATI-I. The fOuOW-
ing lemma states one such condition.

LEMMA 3.2: REGULAR SIMPLE PATH can be decided in
polynomial time on acyclic &graphs.

PROOF: Follows immediately from Lemma 3.1 and
the fact that every path in an acyclic graph is simple. 0

Suppose that we want to characterize a class of regu-
lar expressions for which we can guarantee that REGULAR
SIMPLEPATH~~~U~~S~OREGULARPATH andhenceissolv-
able in polynomial time. If we assume that we know noth-
ing about the structure of the db-graphs, we have to ensure
that, for such a regular expression R, whenever string w is
in L(R), every string obtainable from w by removing one
or more symbols must also be in L(R). Otherwise, if
w=xayisinL(R)butxyisnotinL(R)(whereaoCand
x,y EZ*), we can construct a graph G comprising a single
simple path from u to v and passing through z, in which

- 188-

there is a loop at z labelled u, the path from u to z is
labelled X, and the path from z to v is labelled y (see Figure
3.1). There is a non-simple path from u to v in G that
satisfies R but no simple path from u to v satisfying R.

a

Figure 3.2. DFA for 0*+ l*+O’l.

Property and R i is restricted is no coincidence, as the fol-
lowing theorem states. 0

Figure 3.1.

DEFINITION: ([Carr79]) An abbreviation of a string
w is any string that can be obtained from w by removing
one or more symbols of w.

So we are looking for a class of regular expressions
which ¬e languages that are closed under abbreviation.
Now consider the following definition for the class of res-
tricted regular expressions.

DEFINITION: For a E Z, denote the regular expression
(a+&) by (a?) (as is done in the grep utility of Unix+, for
example). Given a regular expression R, let R ’ be a regu-
lar expression obtained by replacing some occurrence of a
symbol a E Z in R by (a ?). R is restricted if and only if
R 3 R ‘, for any R ‘obtained from R as defined above.

EXAMPLE 3.2: The regular expression
R I= O*+ l’+ 0’ 1 is restricted since R 1 can be rewritten as
O’(l?)+ l’, which is equivalent to (O?)*(l?)+ (l?)‘.
Recall, from Theorem 3.1, that FIXED REGULAR PATH(R) is
NP-complete for R = 0’ 10’. R is not restricted, but
R ‘= 0’ 10’ + 0’ is restricted, since R ’ can be written as
0’ (l+&) 0’, which is equivalent to (O?)’ (1 ?) (O?)’ . 0

DEFINITION: A DFA M = (S, X, 6, so, F) exhibits the
Su& Language Containment Property (the Containment
Property, for short) if, for each pair s,t ES such that s and t
are on a path from SO to some final state and t is a succes-
sor of s, [s] 1 [t] (that is, LsF 2 Lu).

EXAMPLE 3.3: Consider the regular expression
R 1 = O*+ l’+ 0’ 1 from the previous example, and a DFA M
accepting L (R 1) whose transition graph T is given in Fig-
ure 3.2. We can verify that M exhibits the Containment
Property by noting that [3] is denoted by l’, [2] by E, [l]
by O*+O’l, and [O] by O’+ l*+O*l. Obviously, [l] a[11
and [31 ;z 131. It is easy to check that [l] 2 [2], [0] 2 [l]
and 1012 133. The fact that M exhibits the Containment

THEOREM 3.1: Let R be u regular expression over Z,
and M = (S, I; 6, so, F) be a DFA accepting L(R). The
following three statements are equivalent:

(I) R is a restrkted regular expression,
(2) L(R) is closed under abbreviations, and
(3) M exhibits the Containment Property.

PROOF: (Sketch)

(1) => (2) Assume that R is restricted but that L(R)
is not closed under abbreviations. Then there is a symbol
UEZ and strings x,y~Z* such that TEL(R) but
xy&L(R). Let MR =(T, C, b to, E) be an NDFA that
accepts the language L (R). Let T’= p*(tO,x), that is, the
set of states MR can be in after reading n. Since
L(MR)=L(R) andxy&L(R), for no reT’can y be in [r].
On the other hand,xayEL(MR), so there is a statepET’
such that q ~p(p,u) and YE [q]. Since R is restricted,
adding an Mmnsition from p to q leaves L(MR)
unchanged. But if we do so, then y E [p I, xy EL (MR), and
L (MR, is no longer equal to L (R), which is a contradiction.
We conclude that L (R) is closed under abbreviations.

(2) =a (3) Assume that [s] ti [t] for some pair s,t of
reachable states in M such that 6(s,u) = t, for some a E C.
That is, there is a string y E Z* for which y E [t] but yl[s].
Let x EC* be a string for which ~*(so,x) = s. It follows that
xay EL(M), but that xy&L (M). Since L(M)=L (R), we
conclude that L (R) is not closed under abbreviations.

(3) => (1) Assume that R is not restricted, and let
MR be an NDFA accepting L(R) as above. Then there is
an u-transition in MR from s to t for which adding an e-
transition from s to t alters L (MR). Let x E Z* be a string
for which s l p*(t~,x). That is, there is a string y E [t] such
that y& [r] for any r E p.*(t,-,,x). Now consider the DFA M.
Assume that 6’(so,x)=p. Since L(MR)=L(M) and
xuy eL(MR), there must be a state q in M such that
G(p,u)=q and yE[q]. However, y&[p], for otherwise
xy EL(M) which would mean that L(M) #L (MR). Hence,

’ Unix is a trademark of AT&T. [p] 2 [q], so M does not exhibit the Containment Pro-
PefiY. El

- 189 -

COROLLARY 3.1: REGULAR SIMPLE PATH can be
decided in polynomial time for resmkted regular expres-
sions.

PROOF: By Theorem 3.1, if R is a restricted regular
expression, then L(R) is closed under abbreviations, which
implies that REGULAR SIMPLE PATH reduces to REGULAR
PATH. By Lemma 3.1, REGULAR PATH can be decided in
polynomial time. 0

Note that we our results show that R being restricted
iS a SUffiCieMCOndition for REGULARSlMPLEPATHbeing
solvable in polynomial time, but it is not necessary. For
example, the expression 01’ is not restricted, but the
corresponding query can be evaluated in polynomial time
on arbitrary graphs using the algorithm we present in Sec-
tion 5. It would be interesting to find other naturally
defined classes of regular expressions that lead to a poly-
nomial time SOlutiOn for REGULAR SIMPLE PATH.

By adapting an algorithm to minimize the number of
states of a DFA [HoU179], we can compute the suffix
language containment relation for all pairs of states in a
DFA M. This relation will be used in the next section; it
also provides an obvious method for testing whether or not
a regular expression R is restricted (using Theorem 3.1).
Since the construction of a DFA M accepting L(R) may
take exponential time (in the size of R), this test is not
efficient. However, it is important to stress that we am try-
ing to avoid the possibility of spending exponential time in
the size of the db-graph in answering a query. Also, we
have the following.

THEOREM 3.2: Let R be a regular expression over
alphabet (0). Deciding whether R is not restricted is NP-
complete.

PROOF: By reduction from the problem of deciding
whether a regular expression does not denote 0’, which is
shown to be NP-complete in [StMe731. 0

4. AN EVALUATION ALGORITHM

In this section, we describe an algorithm for evaluat-
ing a query QR on a db-graph G. As is to be expected
from the results of Section 2, the algorithm does not run in
polynomial time in general. It does, however, run in poly-
nomial time under the sufficient conditions identified in
Section 4, namely, when G is acyclic or R is restricted. In
fact, we show that the algorithm runs in polynomial time if
G and R are conflict-free, a condition implied whenever G
is acyclic or R is restricted.

The evaluation algorithm traverses simple paths in
G, using a DFA M accepting L(R) to control the search by
marking nodes as they are visited We must record with
which state of M a node is visited, since we must allow a

node to be visited with different states (which correspond
to distinct nodes in the intersection graph of G and M). In
order to avoid visiting a node twice in the same state, we
would like to retain the state markings on nodes as long as
possible. Unfortunately, the following example shows
that, in general, traversing only simple paths in G and
retaining state markings can lead to incompleteness in
query evaluation.

EXAMPLE 4.1: Consider the query QR, where
R = aaa. An automaton M accepting L(R) and a db-graph
G are shown in Figure 4.1.

M:

Figure 4.1. A DFA M and db-graph G.

Assume that we start traversal from node A in G, and fol-
low the path to E, C and D. Nodes A, B, C and D are
marked with states 0, 1,2 and 3, respectively (as shown in
Figure 4.1), and the answer (A,D) is found, since 3 is a
6naI state. If we now backttzk to node C, we cannot
mark B with state 3 because (A,B,C,B) is a non-simple
path. So we backtrack to A, and visit D in state 1. If we
have retained markings, however, we cannot visit node C
as it is aheady marked with state 2. Consequently, the
answer (A$) is not found. 0

As we will see below, it is safe to retain markings
when G is acyclic or R is restricted . However, we can do
better; because of the structure of a particular db-graph G,
it may be the case that we can retain markings and evalu-
ate QR in polynomial time even if G is not acyclic and R is
not restricted.

DEFINITION Let I be the intersection graph of a db-
graph G and a DFA M=(S, Z,&s,,F) accepting L(R).
Assume that for nodes 1(and v in G and states s and r in M,
there are paths p from (~,se) to (VJ) and q from (VJ) to
(VJ) in I (that is, there is a cycle at v in G that satisfies LJ,
such that no first component of a node on p or q repeats
except for the endpoints of q. In other words, p and q
correspond to a simple path and a simple cycle, respec-

- 190-

tively, in G. If [s] 2 [t], then we say there is a confhct
between s and t at Y. If them are no conflicts in Z, then I is
said to be conflict-free, as are G and R.

It is obvious that if G is acyclic, then I is conflict-
free no matter what regular expression R appears in Q1(.
Also, if R is restricted, then, by Theorem 3.1, M exhibits
the Containment Property; hence, I is conflict-free
irrespective of the structure of G. We will show that QR
can be evaluated in polynomial time if I is conflict-free.
Hence, conflict-freedom is a third (weaker) sufficient con-
dition for QR to be polynomial time evaluable. For exam-
ple, if R =(OO)* and G is a bipartite (cyclic) graph, then G
and R are conflict-free and so QR can be evaluated in poly-
nomial time on G (in contrast to Theorem 2.1).

procedure SEARCH-C (u, v, s, var con.ict)
6. conf?ict t false
7. CM[vl ts
8. ifs EF then QR(G) t QR(G)u {(u,v)} fi
9. for each edge in G from v to w with label a do
10. if &,a) = t and t&PM [w] then
11. ifCM[w]=qthenconflictt([q]~ [t])fi

else /* CM [w] is null */
12. SEARCH-C (u, w, t, new-conjict)
13. conflict t conflict or new-confkt

fi
od

14. CM [v] t null
15. if not confhct then PM [v] t PM [v] u {s} fi

end SEARCH-C
The concept of conflict detection is embodied in the

following query evaluation algorithm, Algorithm C. If no
conflicts are detected the algorithm retains markings,
while whenever a conflict arises, it unmarks nodes so that
no answers are lost.

Figure 4.2. Evaluation of a query on a db-graph.

EXAMPLE 4.2: Consider again the DFA M and the
db-graph G of Example 4.1. Recall that, if markings were
retained, the answer (A,B) would not be found. However,
there is a conflict in the intersection graph of G and M.
This is because node B in G can be marked with state 1
and there is a cycle at B which satisfies Lis, but [l] 2 [33.
Algorithm C detects such conflicts and unmarks node C on
backtracking, enabling the answer (A,B) to be found. 0

Algorithm C: Evaluation of a query on a db-graph.

prevent a node in G from being visited more than once in
the same state during a single execution of Line 5(a). We
do not describe the algorithm further here, but rely on a
detailed example presented below to demonstrate how
query evaluation, and in particular the detection of
conflicts, is performed. 0

The following theorem is proved in [wood88].

THEOREM 4.1: Algorithm C is correct; that is, given
db-graph G and query Qn, Algorithm C adds (x,y) to
QR(G) ifandonly if&y) satisjes Qn.

Input: Db-graph G = (N, E, I& X, h), query QR. THEOREM 4.2: In the absence of conflicts, Algorithm

Output: QR(G), the value of QR on G. C runs in an amount of time which is bounded by a polyno-

Method: mial in the size of the db-graph.

1.
2.
3.
4.
5.

Construct an DFA M = (S, Z, 6, so, F) accepting L (R).
Initialize Q,JG) to 0.
For each node. v EN, set CM [v] to null and PM [v] to 0.
Test [s I a [t] for each pair of states s and t.
For each node v EN,
(a) call SEARCH-C(V, v, so, conjhct)
(see Figure 4.2)
(b) reset PM [w] to 0 for any marked node w EN.

PROOF: Let G be a db-graph with n nodes and e
edges. In the absence of conflicts, Algorithm C essentially
performs n depth-first searches of the graph, and hence
runs in 0 (ne) time. 0

EXAMPLE4.3:~tR=a((bc+&)d+ec))betheIZg~-

The algorithm marks nodes in G with states of the
DFA M when they are visited. Two types of marking are
used for each node v: (1) a current marking (CM [VI),
which (if non-null) tells us that v is already on the stack
(Lines 7 and 14), and (2) a previous marking (PM [VI),
which is a set of states and tells us earlier markings of v,
excluding the current path (Line 15). Current markings are
used to avoid following paths in G that are not simple,
while previous markings are used where possible to

lar expression for query QR. A DFA M accepting L (R)
and a db-graph G are shown in Figure 4.3. We demon-
strate the execution of Algorithm C in evaluating QR on G.
Assume that we start by marking node A of G with state 0
of M, after which we proceed to mark B with 1, C with 2,
and D with 3. Since no edge labelled d leaves D, we back-
track to C and attempt to visit B in state 3. Although B
already has a current marking (CM [B] = l), this is not a
conflict since [l] a [3]. The algorithm now backtracks to
node B in state 1 and marks E with state 4. After back-
tracking again to B in state 1, the markings are given as in
Figure 4.3. Next, the algorithm marks C with state 5 and
D with 4. On backtracking to C and attempting to mark B
with 4, a conflict is detected since [l] 1, [4]. So on back-

- 191 -

Figure 4.3. A DFA M and marked db-graph G
(PM are in parentheses).

tracking to A, the marking 5 is removed from C, 1 is
removed from B, and neither is made a previous marking.
Now D is marked with 1, but since C has a previous mark-
ing of 2, that marking is not repeated So C is marked with
5 (which was previously removed), after which B can be
marked with 4. When the algorithm backtracks to C and
attempts to visit D, it discovers that D was previously
marked with 4, so no conflict is registered. The matkings
are now given as in Figure 4.4. No more markings are
generated by Algorithm C for the traversal rooted at A, so
the set of answers with ftrst component A is
~WW4~h(A,~)3. Cl

0

Ja
A

\4j,l

Figure 4.4. The final set of markings for Example 4.3.

If R is restricted or G is acyclic, no conflicts occur so
Algorithm C runs in polynomial time. For the same rea-
son, the algorithm also runs in polynomial time on the
example of finding even paths in a bipartite graph. How-
ever, even in the presence of conflicts, Algorithm C can
run in polynomial time in the size of G. This is the case,
for example, if R is a (*)-free regular expression. In this

case, L(R) is finite; say the longest string in the language is
of length q. Then there can be at most G(n9) simple paths
in G, and in the worst case the algorithm traverses each
one exactly once.

5. CONCLUSION

We have addressed the problem of finding nodes in a
labelled, directed graph which are connected by a simple
path satisfying a given regular expression. This study was
motivated by the observation that many recursive queries
can be expressed in this form, and by the implementation
of a query language based on this observation.

We began by describing how a naive algorithm
might evaluate such queries. Although this algorithm runs
in exponential time in the worst case, we showed that we
cannot expect to do better since the evaluation problem is
in general NP-hard. Using the fact that the associated
problem for paths in general (as opposed to simple paths)
is solvable in polynomial time, we characterized the class
of restricted regular expressions, whose associated queries
can be evaluated in polynomial time. Finally, we
presented an algorithm for evaluating arbitrary expressions
on arbitrary graphs. This algorithm runs in polynomial
time if either (a) the regular expression is restricted or
closure-free, (b) the graph is acyclic, or (c) the regular
expression and graph are conflict-free.

We should point out that the analysis in this paper,
and the implementation itself, assume the graph can be
entirely stored in main memory. This is a reasonable
assumption in many cases, especially because in the
intended applications of G+ the graph is often only the
fraction of the database that can be presented visually in a
natural way. Relaxing this assumption provides an
interesting area for further study. Other researchers, inves-
tigating similar algorithms for transitive closure, have
claimed that they are amenable to efficient secondary
storage implementation [IoRa88]. Our next version of the
implementation will use the HAM hypertext package
developed at Tektronix [De!%863 as a graph storage
server; this package maintains a graph on secondary
storage, providing an efficient implementation of the
graph-based operations that are the primitive steps of our
algorithm.

Finally, we note that the problem of solving general
G queries is more general than REGULAR SIMPLE PATH. For
example, the language contains also aggregate operators
that allow the expression of queries such as “find the
length of the shortest path between two nodes.” Queries
with aggregates can be intractable independently of the
properties of the regular expression; for example, one can
also express the query “find the length of the fongesr sim-

- 192-

ple path between two nodes, ” which is NP-complete.
Further discussion of aggregate operators can be found in
[CrMe88]. A new language, that does not insist on simple
path semantics and captures exactly the queries comput-
able in logarithmic space, is presented in [Cons89].

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences
and Engineering Research Council of Canada. We thank
Mariano Consens and the anonymous reviewers for useful
comments.

References

Agra87.
R. AGRAWAL, “Alpha: An Extension of Relational
Algebra to Express a Class of Recursive Queries,”
Proc. 3rd Int. Corgf. on Data Engineering, pp. 580-
590,1987.

AHU74.
A.V. AHO, J.E. HOPCRO~, AND J.D. ULLMAN, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

carr79.
B. CARRE, Graphs and Networks, Oxford University
Press, Oxford, England, 1979.

Cons89.
M.P. CONSENS, “Graphlog: ‘Real Life’ Recursive
Queries Using Graphs,” M.Sc. thesis, Department
of Computer Science, University of Toronto, 1989.

CrMe88.
I.F. CRUZ AND A.O. MENDELZON, “Summary
Queries in the G+ Query Language,” in O&e and
Data Base Systems Research ‘88, ed. F.H. Lochov-
sky, pp. 160-188, Tech. Report CSRI-212, Univ. of
Toronto, 1988.

CMW87.
I.F. CRUZ, A.O. MENDELZON, AND P.T. WOOD, “A
Graphical Query Language Supporting Recursion,”
Proc. ACM SIGMOD Con. on Management of
Data, pp. 323-330, 1987.

CMW88.
I.F. CRUZ, A.O. MENDELIUIN, AND P.T. WOOD,
“G+: Recursive Queries Without Recursion,” Proc.
2nd Int. Conf. on Expert Database Systems, pp.
355-368,1988.

DeSc86.
N. DELISLE AND M. SCHWARTZ, “Neptune: a
Hypertext System for CAD Applications,” Proc.

ACM SIGMOD CoM. on Management of Data, pp.
132-143,1986.

FHW80.
S. FORTUNE, J. HOPCRO~, AND J. WYLIE, “The
Directed Subgraph Homeomorphism Problem,”
Theor. Comput. Sci., vol. 10, pp. 111-121, 1980.

GSS87.
G. GRAHNE, S. SIPPu, AND E. SOISALON-SOININEN,

“Efficient Evaluation for a Subset of Recursive
Queries,” Proc. 6th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems,
pp. 284-293, 1987.

HoU179.
J.E. HOPCROFT AND J.D. ULLMAN, Introduction to
Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

HRS76.
H.B. HUNT, DJ. ROSENKRANZ, AND T.G. SHAMAN-
SKI, “On the Equivalence, Containment, and Cover-
ing Problems for the Regular and Context-free
Languages,” J. Comput. Syst. Sci., vol. 12, pp. 222-
268,1976.

IoRa88.
Y.E. IOANNIDIS AND R. RAMAKRISHNAN, “Efficient
Transitive closure Algorithms,” Computer Sciences
Tech. Report #765, Univ. of Wisconsin-Madison,
1988.

LaPa84.
AS. LAPAUGH AND C.H. PAPADIMITRIOU, “The
Even-Path Problem for Graphs and Digraphs,” Net-
works, vol. 14, pp. 507-513,1984.

R*86.A. ROSENTHAL, S. HEILER, U. DAYAL, AND F.
MANOLA, “Traversal Recursion: A Practical
Approach to Supporting Recursive Applications,”
Proc. ACM SIGMOD Conf. on Management of
Data, pp. 166-176, 1986.

StMe73.
LJ. ST~CKMEYER AND A.R. MEYER, “Word Prob-
lems Requiring Exponential Time,” Proc. 5th Ann.
ACM Symp. on Theory of Computing, pp. 1-9, 1973.

Wood88.
P.T. WOOD, “Queries on Graphs,” Ph.D. thesis,
Department of Computer Science, University of
Toronto, Tech. Report CSRI-223, 1988.

- 193 -

