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ABSTRACT 

We consider the following problem: given a labelled 
directed graph G and a regular expression R, find all pairs 
of nodes connected by a simple path such that the concate- 
nation of the labels along the path satisfies R. The problem 
is motivated by the observation that many recursive 
queries can be expressed in this form, and by the imple- 
mentation of a query language, G+, based on this observa- 
tion. We show that the problem is in general intractable, 
but present an algorithm than runs in polynomial time in 
the size of the graph when the regular expression and the 
graph are free of conflicts. We also present a class of 
languages whose expressions can always be evaluated in 
time polynomial in the size of both the database and the 
expression, and characterize syntactically the expressions 
for such languages. 

1. INTRODUCTION 

The design of our query language G+ 
[CMW87,CMW88] is based on the observation that many 
of the recursive queries that arise in practice-and in the 
literature-amount to graph traversals. For example, see 
lAgra87, GSS87,RS86]. In G+, we view the database as a 
directed, labelled graph, and pose queries which are graph 
patterns; the answer to a query is the set of subgraphs of 
the database that match the given pattern. In our prototype 
implementation, queries are drawn on a workstation screen 
and the database and query results are also displayed pic- 
tOlidly. 

EXAMPLE 1.1: Let G be a graph representing airline 
flights: the nodes of G denote cities, and an edge labelled a 
from city b to city c means that there is a flight from b to c 
with airline a. Assume that we want to find all pairs of 
cities that are connected by a sequence of flights such that 
(a) at least one flight is with Air Canada (AC), and (b) no 
city is visited more than once. 
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This query can be expressed by the graph pattern in Figure 
1.1. 

la--al 
Figure 1.1. A graphical query. 

The !irst box in the figure contains the pattern graph, while 
the second box contains the summary graph which 
specifies how the output is to be presented to the user. The 
edges of a pattern graph can be labelled with regular 
expressions; in this case the desired expression is _ ‘AC l 

(where the underscore matches any edge label in G). This 
regular expression is used to match the edge labels along 
simple paths in G, thereby satisfying our original request. 
cl 

Figure 1.2 shows two screens from the G prototype. 
In the lirst screen, one window contains a database graph 
where the nodes are cities and the edges are flights 
between cities, labelled with airline names. The other win- 
dow contains a query graph asking for all pairs of nodes 
connected by a simple path of a certain form. The second 
screen shows one of the answers, displayed by shading 
nodes of the database graph. Instead of using a summary 
graph, the user has chosen from a menu to display only the 
endpoints of each path. 

Although queries in G+ can be a lot more general 
than exemplified above, this special case is challenging 
enough from an algorithmic point of view if we want to 
process queries efficiently. The problem addressed in this 
paper is: given a regular expression R and a graph G, find 
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Figure 1.2. The G+ user interface 
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all pairs of nodes in G which are connected by a simple 
path p, where the concatenation of edge labels comprising 
p is in the language denoted by R. 

When trying to find an efficient solution for this 
problem to incorporate in our implementation of G+, we 
were somewhat surprised to discover that the query of 
Example 1.1 is in fact NP-complete. Using results in 
[FHw8O,LaPa84], we show in Section 2 that for certain 
fixed regular expressions (such as R in the above example), 
the problem of deciding whether a pair of nodes is in the 
answer of a query is NP-complete, making the general 
problem NP-hard. We first attacked this problem by deter- 
mining what it is in the language of R that makes the prob- 
lem hard. In Section 3, we present a class of languages for 
which query evaluation is solvable in time polynomial in 
both the length of the regular expression and the size of the 
graph. We characterize these languages syntactically in 
terms of the regular expressions that denote them and the 
finite automata that recognize them We then designed a 
general algorithm, presented in Section 4, which is correct 
for arbitrary graphs and queries, and is guaranteed to run 
in polynomial time in the size of the graph if the regular 
expression and graph are free of “conflicts”, in a sense to 
be defined precisely in that section. As special cases, any 
query is free of conflicts with any acyclic database graph’ 
and any restricted expression query is free of conflicts with 
any arbitrary graph. Since we cannot restrict our prototype 
to work only on conflict-free queries and graphs, and it is 
expensive to test for conflict-freedom beforehand, it is 
quite convenient to have a single algorithm that works in 
all cases, and we have in fact incorporated the algorithm of 
Section 4 into our implementation. 

2. INTRACTABILITY RESULTS 

We begin by defining the graph structures as well as 
the class of queries over these structures in which we are 
interested. 

DEFINITION: A database graph (db-graph, for short) 
G = (N, E, v, X, h) is a directed, labelled graph, where N is 
a set of nodes, E is a set of edges, and w is an incidence 
function mapping E to NxN. So multiple edges between a 
pair of nodes are permitted in db-graphs. The labels of G 
are drawn from the finite set of symbols X, called the 
alphabet, and h. is an edge labelling function mapping E to 
L;. 

DEFINITION: Let Z be a finite alphabet disjoint from 
{E, 0, (,)}. A regular expression R over Z and the 
language L(R) denoted by R are defined in the usual way. 
Let G=(N,E,y,Z,h) be a db-graph and 
p=h,el,. . . , e,-l,v,,), where vi~N, lliln, andeiEE, 
IljSn-1, be apath inG. We sayp is asimplepathifall 

the vi’s are distinct for l<kn. We call the string 
Wd - - - h(e,-1 ) the path label of p, denoted by h(p) E C’. 
Let R be a regular expression over C. We say that the path 
p satisjies R if h(p) EL(R). The query JZR on db-graph G, 
denoted by QR(G), is defined as the set of pairs (x,y) such 
that there is a simple path from x to y in G which satisfies 
R. 
If(x,y)EQR(G), then (x,Y) sa@M QR. 

A naive method for evaluating a query QR on a db- 
graph G is to traverse every simple path satisfying R in G 
exactly once. The penalty for this is that such an algorithm 
takes exponential time when G has an exponential number 
of simple paths. Nevertheless, we will see below that in 
general we cannot expect an algorithm to perform much 
better, since we prove that, for particular regular expres- 
sions, the problem of deciding whether a pair of nodes is in 
the answer of a query is NP-complete. On the other hand, 
refinements can lead to guaranteed polynomial time 
evaluation under conditions studied in the following two 
sections. 

Consider the following decision problem 

REGULARSMPLEPATH 
Instance: Db-graph G = (N, E, yt, I; A), nodes x,y EN, reg- 
ular expression R over E 
Question: Does G contain a directed simple path 
p=(el,..., et) from x to y such that p satisfies R, that is, 
h(eG.02) -- *h(e3~L(R)? 

This ‘is equivalent to asking “Is (x,y)~ QR(G)?“. 
When the instance comprises only the db-graph, we refer 
to the problem as HXED REGULAR PATH(R). That is, for 
mm rumbut PAm(R) we measure the complexity only 
in terms of the size of the db-graph. We prove below that, 
for certain regular expressions R, PIXED REGULAR PATH@) 
is NP-complete (which implies that REGULAR SIMPLE PATH 
is NP-hard). 

THEOREM 2.1: Let 0 and 1 be distinct symbols in Z 
FIXED REGULAR PATH(R), in which R is either (1) (OO)‘, or 
(2) 0’ lo’, is NP-complete. 

PROOF: Consider the problem EVEN PATH, which is 
“Given a directed graph G = (N,E) and nodes x,y EN, is 
there a directed simple path of even length from x to y?“, 
and DISJOINT PATHS, which is “Given a directed graph 
G = (N,E) and pairs of distinct nodes (wJ), ( y,z) E Nx N, is 
there a pair of disjoint directed simple paths in G, one from 
w to x and the other from y to z?“. For (l), the reduction is 
from EVEN PATH, which is shown to be NP-complete in 
lLaPa84]. For (2), the reduction is from DISJOINT PATHS, 
whose NP-completeness follows immediately from results 
in [FHw801. 0 
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Theorem 2.1 is a rather negative result, since it 
implies that queries might require time which is exponen- 
tial in the size of the db-graph, not only the regular expres- 
sion, for their evaluation. Thus, for regular expressions 
such as those in Theorem 2.1, we certainly would not 
expect an evaluation algorithm to run in polynomial time. 
This result, however, is not a function of the complexity of 
the particular regular expression but rather of the nature of 
the language denoted by the regular expression. A class of 
languages for which REGULAR SIMPLE PATH is in P is the 
subject of the next section. 

3. RESTRICTED REGULAR EXPRESSIONS 

We first introduce some terminology and definitions. 

DEFINITION: A nonakterministic finite automaton 
(NDFA) M is a 5tuple (S, Z, 6, so, F), where S is a finite 
set of states, Z is the input alphabet, 6 is the state transi- 
tion function, so ES is the initial state, and F E;S is the set 
of final states. The concepts of the extended transition 
function 6*, the language L (M) accepted by M, and the 
transition graph associated with M are defined in the stan- 
dard way, as is the notion of a deterministicfinite automa- 
ton (DFA) [HoU179]. 

DEFINITION Given an NDFA M = (S, Z, 6, so, F), for 
each pair of states s, t E S, we &fine the language from s to 
t, denoted by L,,, as the set of strings that take M from state 
s to state t. In particular, for a state s ES, the s@x 
language of s, denoted by LS~ (or [s], for short), is the set 
of strings that take M from s to some tinal state. Clearly, 
[so] = L (M). Similar definitions apply for a DFA. 

Given a regular expression R over X, an e-free 
NDFA M =(S, I; 6, so, F) that accepts L(R) can be con- 
structed in polynomial time [AHU74]. From now on, we 
will assume that all NDFAs are e-free. 

EXAMPLE 3.1: Figure 3.2 shows the transition graph 
T of a DFA M. State 0 is the initial state of M, while all 
states are final (denoted by a double circle). (We do not 
show (reject) states that are not on some path from the ini- 
tal state to a final state.) L(M) is denoted by the regular 
expression O’+ l*+ 0’ 1. The suffix language of state 1 is 
[l]=O*+O*l, while [2]=e. 0 

Let R1 and R a be regular expressions. In the subse- 
quent analysis, it will be useful to refer to an NDFA which 
accepts the language L (R InRz). The construction of 
such an NDFA is defined as follows. 

DEFINITION: Let MI =(SI,Z&,PO,FI) and 
Mz=(Sz,Z&qo,Fz) be NDFAs. The NDFA for 
MlnM2 is I=(SIXS~, C 6, (po,qo), FlxFz), where, for 
a EC, (p2,qd~Wpl,qlha) if ami only ifp2~h(pl,a) 
and q2 l &(q~,a). We call the transition graph of I the 

intersection graph of Ml and Mt. 

We saw in the previous section that, for certain regu- 
lar expressions R, it is very unlikely that we will find an 
algorithm for evaluating QR on an arbitrary graph G that 
will always run in time polynomial in the size of G. One 
such regular expression is 0’ 10’. However, it turns out 
that if the regular expression R = 0’ lo*+ 0’ is specified 
instead, then QR is evaluable in polynomial time on any 
db-graph G. The reason is that if them is an arbitrary path 
from node x to node y in G that satisfies R, then there is a 
simple path from x to y satisfying R. In such a case, we 
need not restrict ourselves to looking only for simple paths 
in G, but can instead look for any path satisfying R. We 
define the corresponding decision problem below. 

REGULAR PATH 

Instance: Db-graph G = (N, E, v, 2, a), nodes x,y EN, reg- 
ular expression R over L 
Question: Does G contain a directed path (not necessarily 
simple) p=(el, . . . , ek) from x to y such that p satisfies R, 
that is, h(e t)X(e2) * - - X.(ek) E L (R)? 

LEMMA 3.1: REGULAR PATH can be decided in poly- 
nomial time. 

PROOF: Given db-graph G along with nodes x and y 
inG,wecanviewGasanNDFAwithinitialstatexand 
final state y. Consauct the intersection graph I of G and 
M = (S, I; 6, SO, F), an NDFA accepting L(R). There is a 
path from x to y satisfying R if and only if there is a path in 
I from (x,so) to (y,sf), for some sf EF. All thii can be 
done in polynomial time lHRS76]. 0 

We are interested in conditions under which REGU- 
LAR SIMPLE PATH (which is appropriate because of our 
SemaNk.S)calI bereducedt0REGULARPATI-I. The fOuOW- 
ing lemma states one such condition. 

LEMMA 3.2: REGULAR SIMPLE PATH can be decided in 
polynomial time on acyclic &graphs. 

PROOF: Follows immediately from Lemma 3.1 and 
the fact that every path in an acyclic graph is simple. 0 

Suppose that we want to characterize a class of regu- 
lar expressions for which we can guarantee that REGULAR 
SIMPLEPATH~~~U~~S~OREGULARPATH andhenceissolv- 
able in polynomial time. If we assume that we know noth- 
ing about the structure of the db-graphs, we have to ensure 
that, for such a regular expression R, whenever string w is 
in L(R), every string obtainable from w by removing one 
or more symbols must also be in L(R). Otherwise, if 
w=xayisinL(R)butxyisnotinL(R)(whereaoCand 
x,y EZ*), we can construct a graph G comprising a single 
simple path from u to v and passing through z, in which 
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there is a loop at z labelled u, the path from u to z is 
labelled X, and the path from z to v is labelled y (see Figure 
3.1). There is a non-simple path from u to v in G that 
satisfies R but no simple path from u to v satisfying R. 

a 

Figure 3.2. DFA for 0*+ l*+O’l. 

Property and R i is restricted is no coincidence, as the fol- 
lowing theorem states. 0 

Figure 3.1. 

DEFINITION: ( [Carr79] ) An abbreviation of a string 
w is any string that can be obtained from w by removing 
one or more symbols of w. 

So we are looking for a class of regular expressions 
which &note languages that are closed under abbreviation. 
Now consider the following definition for the class of res- 
tricted regular expressions. 

DEFINITION: For a E Z, denote the regular expression 
(a+&) by (a?) (as is done in the grep utility of Unix+, for 
example). Given a regular expression R, let R ’ be a regu- 
lar expression obtained by replacing some occurrence of a 
symbol a E Z in R by (a ?). R is restricted if and only if 
R 3 R ‘, for any R ‘obtained from R as defined above. 

EXAMPLE 3.2: The regular expression 
R I= O*+ l’+ 0’ 1 is restricted since R 1 can be rewritten as 
O’(l?)+ l’, which is equivalent to (O?)*(l?)+ (l?)‘. 
Recall, from Theorem 3.1, that FIXED REGULAR PATH(R) is 
NP-complete for R = 0’ 10’. R is not restricted, but 
R ‘= 0’ 10’ + 0’ is restricted, since R ’ can be written as 
0’ (l+&) 0’, which is equivalent to (O?)’ (1 ?) (O?)’ . 0 

DEFINITION: A DFA M = (S, X, 6, so, F) exhibits the 
Su& Language Containment Property (the Containment 
Property, for short) if, for each pair s,t ES such that s and t 
are on a path from SO to some final state and t is a succes- 
sor of s, [s ] 1 [t ] (that is, LsF 2 Lu). 

EXAMPLE 3.3: Consider the regular expression 
R 1 = O*+ l’+ 0’ 1 from the previous example, and a DFA M 
accepting L (R 1) whose transition graph T is given in Fig- 
ure 3.2. We can verify that M exhibits the Containment 
Property by noting that [3] is denoted by l’, [2] by E, [l] 
by O*+O’l, and [O] by O’+ l*+O*l. Obviously, [l] a[11 
and [31 ;z 131. It is easy to check that [l] 2 [2], [0] 2 [l] 
and 1012 133. The fact that M exhibits the Containment 

THEOREM 3.1: Let R be u regular expression over Z, 
and M = (S, I; 6, so, F) be a DFA accepting L(R). The 
following three statements are equivalent: 

(I) R is a restrkted regular expression, 
(2) L(R) is closed under abbreviations, and 
(3) M exhibits the Containment Property. 

PROOF: (Sketch) 

(1) => (2) Assume that R is restricted but that L(R) 
is not closed under abbreviations. Then there is a symbol 
UEZ and strings x,y~Z* such that TEL(R) but 
xy&L(R). Let MR =(T, C, b to, E) be an NDFA that 
accepts the language L (R). Let T’= p*(tO,x), that is, the 
set of states MR can be in after reading n. Since 
L(MR)=L(R) andxy&L(R), for no reT’can y be in [r]. 
On the other hand,xayEL(MR), so there is a statepET’ 
such that q ~p(p,u) and YE [q]. Since R is restricted, 
adding an Mmnsition from p to q leaves L(MR) 
unchanged. But if we do so, then y E [p I, xy EL (MR), and 
L (MR, is no longer equal to L (R), which is a contradiction. 
We conclude that L (R) is closed under abbreviations. 

(2) =a (3) Assume that [s] ti [t] for some pair s,t of 
reachable states in M such that 6(s,u) = t, for some a E C. 
That is, there is a string y E Z* for which y E [t] but yl[s]. 
Let x EC* be a string for which ~*(so,x) = s. It follows that 
xay EL(M), but that xy&L (M). Since L(M)=L (R), we 
conclude that L (R) is not closed under abbreviations. 

(3) => (1) Assume that R is not restricted, and let 
MR be an NDFA accepting L(R) as above. Then there is 
an u-transition in MR from s to t for which adding an e- 
transition from s to t alters L (MR). Let x E Z* be a string 
for which s l p*(t~,x). That is, there is a string y E [t] such 
that y& [r] for any r E p.*(t,-,,x). Now consider the DFA M. 
Assume that 6’(so,x)=p. Since L(MR)=L(M) and 
xuy eL(MR), there must be a state q in M such that 
G(p,u)=q and yE[q]. However, y&[p], for otherwise 
xy EL(M) which would mean that L(M) #L (MR). Hence, 

’ Unix is a trademark of AT&T. [p] 2 [q], so M does not exhibit the Containment Pro- 
PefiY. El 
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COROLLARY 3.1: REGULAR SIMPLE PATH can be 
decided in polynomial time for resmkted regular expres- 
sions. 

PROOF: By Theorem 3.1, if R is a restricted regular 
expression, then L(R) is closed under abbreviations, which 
implies that REGULAR SIMPLE PATH reduces to REGULAR 
PATH. By Lemma 3.1, REGULAR PATH can be decided in 
polynomial time. 0 

Note that we our results show that R being restricted 
iS a SUffiCieMCOndition for REGULARSlMPLEPATHbeing 
solvable in polynomial time, but it is not necessary. For 
example, the expression 01’ is not restricted, but the 
corresponding query can be evaluated in polynomial time 
on arbitrary graphs using the algorithm we present in Sec- 
tion 5. It would be interesting to find other naturally 
defined classes of regular expressions that lead to a poly- 
nomial time SOlutiOn for REGULAR SIMPLE PATH. 

By adapting an algorithm to minimize the number of 
states of a DFA [HoU179], we can compute the suffix 
language containment relation for all pairs of states in a 
DFA M. This relation will be used in the next section; it 
also provides an obvious method for testing whether or not 
a regular expression R is restricted (using Theorem 3.1). 
Since the construction of a DFA M accepting L(R) may 
take exponential time (in the size of R), this test is not 
efficient. However, it is important to stress that we am try- 
ing to avoid the possibility of spending exponential time in 
the size of the db-graph in answering a query. Also, we 
have the following. 

THEOREM 3.2: Let R be a regular expression over 
alphabet (0). Deciding whether R is not restricted is NP- 
complete. 

PROOF: By reduction from the problem of deciding 
whether a regular expression does not denote 0’, which is 
shown to be NP-complete in [StMe731. 0 

4. AN EVALUATION ALGORITHM 

In this section, we describe an algorithm for evaluat- 
ing a query QR on a db-graph G. As is to be expected 
from the results of Section 2, the algorithm does not run in 
polynomial time in general. It does, however, run in poly- 
nomial time under the sufficient conditions identified in 
Section 4, namely, when G is acyclic or R is restricted. In 
fact, we show that the algorithm runs in polynomial time if 
G and R are conflict-free, a condition implied whenever G 
is acyclic or R is restricted. 

The evaluation algorithm traverses simple paths in 
G, using a DFA M accepting L(R) to control the search by 
marking nodes as they are visited We must record with 
which state of M a node is visited, since we must allow a 

node to be visited with different states (which correspond 
to distinct nodes in the intersection graph of G and M). In 
order to avoid visiting a node twice in the same state, we 
would like to retain the state markings on nodes as long as 
possible. Unfortunately, the following example shows 
that, in general, traversing only simple paths in G and 
retaining state markings can lead to incompleteness in 
query evaluation. 

EXAMPLE 4.1: Consider the query QR, where 
R = aaa. An automaton M accepting L(R) and a db-graph 
G are shown in Figure 4.1. 

M: 

Figure 4.1. A DFA M and db-graph G. 

Assume that we start traversal from node A in G, and fol- 
low the path to E, C and D. Nodes A, B, C and D are 
marked with states 0, 1,2 and 3, respectively (as shown in 
Figure 4.1), and the answer (A,D) is found, since 3 is a 
6naI state. If we now backttzk to node C, we cannot 
mark B with state 3 because (A,B,C,B) is a non-simple 
path. So we backtrack to A, and visit D in state 1. If we 
have retained markings, however, we cannot visit node C 
as it is aheady marked with state 2. Consequently, the 
answer (A$) is not found. 0 

As we will see below, it is safe to retain markings 
when G is acyclic or R is restricted . However, we can do 
better; because of the structure of a particular db-graph G, 
it may be the case that we can retain markings and evalu- 
ate QR in polynomial time even if G is not acyclic and R is 
not restricted. 

DEFINITION Let I be the intersection graph of a db- 
graph G and a DFA M=(S, Z,&s,,F) accepting L(R). 
Assume that for nodes 1( and v in G and states s and r in M, 
there are paths p from (~,se) to (VJ) and q from (VJ) to 
(VJ) in I (that is, there is a cycle at v in G that satisfies LJ, 
such that no first component of a node on p or q repeats 
except for the endpoints of q. In other words, p and q 
correspond to a simple path and a simple cycle, respec- 
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tively, in G. If [s] 2 [t], then we say there is a confhct 
between s and t at Y. If them are no conflicts in Z, then I is 
said to be conflict-free, as are G and R. 

It is obvious that if G is acyclic, then I is conflict- 
free no matter what regular expression R appears in Q1(. 
Also, if R is restricted, then, by Theorem 3.1, M exhibits 
the Containment Property; hence, I is conflict-free 
irrespective of the structure of G. We will show that QR 
can be evaluated in polynomial time if I is conflict-free. 
Hence, conflict-freedom is a third (weaker) sufficient con- 
dition for QR to be polynomial time evaluable. For exam- 
ple, if R =(OO)* and G is a bipartite (cyclic) graph, then G 
and R are conflict-free and so QR can be evaluated in poly- 
nomial time on G (in contrast to Theorem 2.1). 

procedure SEARCH-C (u, v, s, var con.ict) 
6. conf?ict t false 
7. CM[vl ts 
8. ifs EF then QR(G) t QR(G)u {(u,v)} fi 
9. for each edge in G from v to w with label a do 
10. if &,a) = t and t&PM [w ] then 
11. ifCM[w]=qthenconflictt([q]~ [t])fi 

else /* CM [w ] is null */ 
12. SEARCH-C (u, w, t, new-conjict) 
13. conflict t conflict or new-confkt 

fi 
od 

14. CM [v] t null 
15. if not confhct then PM [v] t PM [v] u {s} fi 

end SEARCH-C 
The concept of conflict detection is embodied in the 

following query evaluation algorithm, Algorithm C. If no 
conflicts are detected the algorithm retains markings, 
while whenever a conflict arises, it unmarks nodes so that 
no answers are lost. 

Figure 4.2. Evaluation of a query on a db-graph. 

EXAMPLE 4.2: Consider again the DFA M and the 
db-graph G of Example 4.1. Recall that, if markings were 
retained, the answer (A,B) would not be found. However, 
there is a conflict in the intersection graph of G and M. 
This is because node B in G can be marked with state 1 
and there is a cycle at B which satisfies Lis, but [l] 2 [33. 
Algorithm C detects such conflicts and unmarks node C on 
backtracking, enabling the answer (A,B) to be found. 0 

Algorithm C: Evaluation of a query on a db-graph. 

prevent a node in G from being visited more than once in 
the same state during a single execution of Line 5(a). We 
do not describe the algorithm further here, but rely on a 
detailed example presented below to demonstrate how 
query evaluation, and in particular the detection of 
conflicts, is performed. 0 

The following theorem is proved in [wood88]. 

THEOREM 4.1: Algorithm C is correct; that is, given 
db-graph G and query Qn, Algorithm C adds (x,y) to 
QR(G) ifandonly if&y) satisjes Qn. 

Input: Db-graph G = (N, E, I& X, h), query QR. THEOREM 4.2: In the absence of conflicts, Algorithm 

Output: QR(G), the value of QR on G. C runs in an amount of time which is bounded by a polyno- 

Method: mial in the size of the db-graph. 

1. 
2. 
3. 
4. 
5. 

Construct an DFA M = (S, Z, 6, so, F) accepting L (R). 
Initialize Q,JG) to 0. 
For each node. v EN, set CM [v] to null and PM [v] to 0. 
Test [s I a [t ] for each pair of states s and t. 
For each node v EN, 
(a) call SEARCH-C(V, v, so, conjhct) 
(see Figure 4.2) 
(b) reset PM [w] to 0 for any marked node w EN. 

PROOF: Let G be a db-graph with n nodes and e 
edges. In the absence of conflicts, Algorithm C essentially 
performs n depth-first searches of the graph, and hence 
runs in 0 (ne) time. 0 

EXAMPLE4.3:~tR=a((bc+&)d+ec))betheIZg~- 

The algorithm marks nodes in G with states of the 
DFA M when they are visited. Two types of marking are 
used for each node v: (1) a current marking (CM [VI), 
which (if non-null) tells us that v is already on the stack 
(Lines 7 and 14), and (2) a previous marking (PM [VI), 
which is a set of states and tells us earlier markings of v, 
excluding the current path (Line 15). Current markings are 
used to avoid following paths in G that are not simple, 
while previous markings are used where possible to 

lar expression for query QR. A DFA M accepting L (R) 
and a db-graph G are shown in Figure 4.3. We demon- 
strate the execution of Algorithm C in evaluating QR on G. 
Assume that we start by marking node A of G with state 0 
of M, after which we proceed to mark B with 1, C with 2, 
and D with 3. Since no edge labelled d leaves D, we back- 
track to C and attempt to visit B in state 3. Although B 
already has a current marking (CM [B ] = l), this is not a 
conflict since [l] a [3]. The algorithm now backtracks to 
node B in state 1 and marks E with state 4. After back- 
tracking again to B in state 1, the markings are given as in 
Figure 4.3. Next, the algorithm marks C with state 5 and 
D with 4. On backtracking to C and attempting to mark B 
with 4, a conflict is detected since [l] 1, [4]. So on back- 
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Figure 4.3. A DFA M and marked db-graph G 
(PM are in parentheses). 

tracking to A, the marking 5 is removed from C, 1 is 
removed from B, and neither is made a previous marking. 
Now D is marked with 1, but since C has a previous mark- 
ing of 2, that marking is not repeated So C is marked with 
5 (which was previously removed), after which B can be 
marked with 4. When the algorithm backtracks to C and 
attempts to visit D, it discovers that D was previously 
marked with 4, so no conflict is registered. The matkings 
are now given as in Figure 4.4. No more markings are 
generated by Algorithm C for the traversal rooted at A, so 
the set of answers with ftrst component A is 
~WW4~h(A,~)3. Cl 

0 

Ja 
A 

\4j,l 

Figure 4.4. The final set of markings for Example 4.3. 

If R is restricted or G is acyclic, no conflicts occur so 
Algorithm C runs in polynomial time. For the same rea- 
son, the algorithm also runs in polynomial time on the 
example of finding even paths in a bipartite graph. How- 
ever, even in the presence of conflicts, Algorithm C can 
run in polynomial time in the size of G. This is the case, 
for example, if R is a (*)-free regular expression. In this 

case, L(R) is finite; say the longest string in the language is 
of length q. Then there can be at most G(n9) simple paths 
in G, and in the worst case the algorithm traverses each 
one exactly once. 

5. CONCLUSION 

We have addressed the problem of finding nodes in a 
labelled, directed graph which are connected by a simple 
path satisfying a given regular expression. This study was 
motivated by the observation that many recursive queries 
can be expressed in this form, and by the implementation 
of a query language based on this observation. 

We began by describing how a naive algorithm 
might evaluate such queries. Although this algorithm runs 
in exponential time in the worst case, we showed that we 
cannot expect to do better since the evaluation problem is 
in general NP-hard. Using the fact that the associated 
problem for paths in general (as opposed to simple paths) 
is solvable in polynomial time, we characterized the class 
of restricted regular expressions, whose associated queries 
can be evaluated in polynomial time. Finally, we 
presented an algorithm for evaluating arbitrary expressions 
on arbitrary graphs. This algorithm runs in polynomial 
time if either (a) the regular expression is restricted or 
closure-free, (b) the graph is acyclic, or (c) the regular 
expression and graph are conflict-free. 

We should point out that the analysis in this paper, 
and the implementation itself, assume the graph can be 
entirely stored in main memory. This is a reasonable 
assumption in many cases, especially because in the 
intended applications of G+ the graph is often only the 
fraction of the database that can be presented visually in a 
natural way. Relaxing this assumption provides an 
interesting area for further study. Other researchers, inves- 
tigating similar algorithms for transitive closure, have 
claimed that they are amenable to efficient secondary 
storage implementation [IoRa88]. Our next version of the 
implementation will use the HAM hypertext package 
developed at Tektronix [De!%863 as a graph storage 
server; this package maintains a graph on secondary 
storage, providing an efficient implementation of the 
graph-based operations that are the primitive steps of our 
algorithm. 

Finally, we note that the problem of solving general 
G queries is more general than REGULAR SIMPLE PATH. For 
example, the language contains also aggregate operators 
that allow the expression of queries such as “find the 
length of the shortest path between two nodes.” Queries 
with aggregates can be intractable independently of the 
properties of the regular expression; for example, one can 
also express the query “find the length of the fongesr sim- 
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ple path between two nodes, ” which is NP-complete. 
Further discussion of aggregate operators can be found in 
[CrMe88]. A new language, that does not insist on simple 
path semantics and captures exactly the queries comput- 
able in logarithmic space, is presented in [Cons89]. 
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