
Estimating the Size of Generalized Transitive Closures*

Richard J. Lipton and Jeffrey F. Naughton
Computer Science Department

Princeton University

Abstract

We present a framework for the estimation of the size
of binary recursively defined relations. We show how
the framework can be used to provide estimating algo
rithms for the size of the transitive closure and gener-
alizations of the transitive closure, and also show that
for bounded degree relations, the algorithm runs in
linear time. Such estimating algorithms are essential
if database systems that support recursive relations
or fixpoints are to be able to optimize queries and
avoid infeasible computations.

1 Introduction

Deductive database or knowledge base systems re-
quire estimates of relation sizes so that a good
order of evaluation can be found for conjunctive
queries [IW87,KBZ86,SG88,SG85]. Avoiding a bad
choice of evaluation order is critical to the efficiency
of the query evaluation procedure. For example, in
the query

richCASenator(X) :- livesInCA &
rich(X) &
senator(X).

first finding all senators (100) then finding those that
live in California (2) then checking to see if those two

‘Work supported by DARPA and ONR contracts NO0014-
85-C-0456 and NOOO1485K-0465, and by NSF Cooperative
Agreement DCR8420948

Permission to copy without fee all or past of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OP to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

are rich would be far more efficient than first finding
all California residents (millions) then checking these
to see if they are rich and senators.

Some progress has been made toward estimat-
ing the size of relations that are defined by re-
lational expressions rather than being stored in
the database [Chr83,Dem80,IIOT88,Lyn88,PSC84,
Row83]. However, currently there are no known tech-
niques for estimating the size of relations that are
recursively defined. Such relations arise in not only
in deductive database systems, but in any relational
system that allows one to take the fixpoint of a rela-
tional expression. This paper considers a method for
estimating the size of an important subset of such re-
lations, which we term generalized tmnsitiue closures.

Previous work on generalized closures [AJ87,Ioa86,
IR88,LMR87,Lu87,NSRU89,Nau87,RIIDM86] has fc+
cussed on efficiently constructing the answer to the
query rather than on answer size estimation. Of
course, constructing the relation is one way to es-
timate its size; our goal is to get a rough estimate of
the size much more cheaply.

The problem of estimating the size of a recursively
defined relation is difficult. For concreteness, consider
the transitive closure of a binary relation e. We may
interpret e as being the edge relation of a digraph.
Figure 1 shows a graph, with uniform out-degree 1,
such that the closure of the graph is O(n). Figure 2
shows another graph, also with uniform out-degree 1,
such that the closure of the graph is O(n*). An esti-
mation algorithm based on local (rather than global)
properties of the graph will miss the difference be-
tween the two.

As another example of a hard case, consider the
graph in Figure 3. Here, the graph again has uniform
in- and out-degree 1. But while the transitive closure
of the graph is O(n*), the closure of the graph formed
by deleting the clique at the right is O(n). Note that
the portion of the graph that makes the difference
between O(n) and O(n*) here involves only l/6 of

Amsterdam, 1989

- 165 -

III u . . . u
Figure 1: A bounded degree graph with closure O(n).

f” ---
L . . .

Figure 2: A bounded degree graph with closure O(n*).

nodes in the graph.
In this paper we give an adaptive sampling algo-

rithm for estimating the size of generalized transitive
closures. It is a sampling algorithm in that it esti-
mates the size of the complete closure by sampling
subsets of the closure; it is adaptive in that the num-
ber of samples made varies with the information ob-
tained from each sample.

For the specific case of the transitive closure, if the
underlying graph over which the transitive closure is
being computed is of bounded degree, our sampling
algorithm runs in linear time and, for 0 < e < 0.5,
estimates the size of the closure to within a factor of
l/e with probability 1-2~. An algorithm for bounded
degree graphs is especially important, as we expect
that the bulk of relations encountered in practice are
of bounded degree when interpreted as graphs.

When we move from the simple transitive closure
to generalized closures, the error and accuracy of our
estimation algorithm are unchanged. However, the
running time will depend on the specific recursion in
question.

The estimate produced by our algorithm is admit-
tedly crude - by taking c = 0.1 we see that the al-
gorithm estimates the closure to within a factopof 10
with 80% certainty. However, in optimizing queries,
the key is to identify gross differences between the
sizes of relations (e.g., the difference between the
livesInCA relation and the senator relation in the
example above.)

There is another reason why even rough estimates
are essential in database systems that support recur-
sion or fixpoints: even on modest sized databases,
recursively defined relations can be too large 2 be
computed. If a system is to be robust, it must de-
tect such computations and produce a warning rather
than attempting to compute the relation.

For example, suppose again that we wish to com-
pute the transitive closure of a 1OOK tuple relation,
and that each tuple of the relation takes 100 bytes.
(Such a relation is small by database standards - it
will easily fit in the memory of many workstations
today - but it will serve to illustrate the point.)
Then the transitive closure will fall somewhere be-
tween w lo5 tuples (w 10Mbyte) and m 10” tuples
(m a terabyte.) Computing a terabyte relation will
almost certainly be infeasible, no matter how clever
an algorithm we use to compute the closure. The
estimating algorithm presented in this paper can de-
termine quickly whether the proposed relation can
sensibly be computed.

In Section 2 we present an urn model that estab-
lishes the theoretical underpinnings for the estimation
algorithm. Section 3 discusses a general approach to
estimating the size of binary recursively defined re-
lations based on the results of Section 2. Section 4
considers the special case of the transitive closure.
We conclude in Section 5.

2 An Urn Model

In this section we consider an urn model that ab-
stracts the estimation problem.

Consider an urn U in which there are n balls. As-
sociated with ball i is a number 1 5 ai 2 n, for
1 5 i 5 n. The cosl of sampling ball i is ai; the cost
of a set of samples is the sum of the cost of the sam-
ples in the set. The quantity we wish to estimate is
A = Cy=‘=, ai. Consider doing so with the following
procedure:

Algorithm 2.1 Repeatedly sample with replace-
ment until S, the sum of the costs on the balls sam-
pled, is greater than 2n. Let the number of samples

- 166 -

n III . . .
n(k - 1)/k nodes n/k nodes

Figure 3: A hard example for size estimation.

this takes be m. Estimate that A = nS/m.

The main result of this section is the following the-
orem.

Theorem 2.1 Let A be ihe estimaie of A in the
above procedure, and lel A > 0. Then for 0 < e < 0.5,
with probabiliiy 2 1 - 2e Algon’lhm 2.1 estimates A
io within a factor of l/c.

Before proving the theorem, we establish a series
of lemmas. Let Xi be a random sample from the urn.

Lemma 2.1 Let $i be a random sample from ihe
urn. Then

1. E[afi] = A/n.

2. E[*.f] 5 A.

9. Var[Zi] 5 A.

Proof:

1. E[zi] = CFzI ai/n = A/n.

2. E[Xf] = CL1 af/n 5 Cy ai = A (since ai/n 5
1).

3. Var[&] = E[Zf] - E[Zi]’ 5 A.

Cl
The next lemma is useful in proving a lower bound

on the expected number of samples made before stop-
ping. We represent the probability of an event z by
Pr[x].

Lemma 2.2 Lel m = en2/A. Then

Pr[% + . . . + k:, 2 cn] 5 e/(c - e)’

Proof: Then

Pr[Zl + . . . + 2, 2 cn]

= Pr[(x, - A/n) + . . . + (J?:, - A/n) 2 cn - en]

But by Lemma 2.1, Var[gi] 5 A, SO

Pr[*l + . . . + *m 1 cn] 5
1 CnZA

(c - e)2n2 A

s (CL)2
0

We bound the error in the estimate with the fol-
lowing lemma.

Lemma 2.3 Lei m 2 en2/A and d > 0. Then

Proof:

Pr
I

_ &mVar[$] <

Let m = Xn2/A, where X 1 C. Then the above prob-
ability is less than or equal to

--&mVar[&] < 7 n2 A
- A$@

which is just A2/Xt2. Setting Ad = t gives

cl
We can now prove Theorem 2.1.
Proof: (Theorem 2.1) There are two ways that the

algorithm can fail - it can stop too early to guaran-
tee a good error bound, or it can stop after enough
samples but with a bad estimate.

- 167 -

First we claim that the procedure is unlikely to stop
with m 5 n2/A. We have that

Pr[(($)(j 5 m) A (21 + . . . + 2j > cn))]

I P@l + . . . + Zm 2 cn]

where m = cn2/A, because the event to the right
of the inequality implies the event to the right. But
by Lemma 2.2, the right side of this equation is at
most e/(c - c)~. Substituting c = 2 and noting that
0 < c < 0.5, we get that this probability is less than c.

Next we turn to the accuracy of the estimate. If
m = cn2/A, by Lemma 2.3 the estimate,

A =- n Cm&
m

ix1

is within dA of A with probability 2 1/(cd2). Letting
d = l/c, this is just c.

Putting the two ways of failure together, we get
that the total probability of failure is less than c +
(1 - c)c, which is less than 2~. Finally, note that
because A > 0, there must be at least one i such that
ei > 0, so the algorithm will terminate. 0

An interesting aspect of this urn theorem is that
the sampling is adaptive: usually such sampling pro-
cedures perform a fixed number of samples. Here it
is critical that the procedure adapt its behavior.

3 Binary Relation Estimation

First some notation. We let R(Q, D) represent the
binary relation defined by the query Q over the
database D. The size of R(Q,D) is just the num-
ber of tuples in D, and is represented by IR(Q,D)l.
Using notation from relational algebra, the tuples
in relation R with some constant c in column i is
bi&R(Q,D)). In the remainder of this paper we
will assume without loss of generality that i = 1.
Such a binary query Q can be considered a general-
ization of the transitive closure, as it is expressing a
“reachability” relationship between the constants of
D.

We can map the urn problem of Section 2 to
the problem of estimating IR(Q, D)l as follows.
We let the balls represent the constants appearing
in D. If ball i represents a constant ci, then ai =
Iulzei(R(Q, D))l. Sampling ball i corresponds to
evaluating the query ulze(R(Q, D)). Clearly, for any
binary relation R(Q, D), if there are n distinct con-
stants in D, Jal=,(R(Q, D))l < n, and the relation
R(Q, D) = UcE~ul=c(R(Q, D)). Note, however, that
in the urn model we have 1 5 ai 5 n, whereas here
we have 0 5 lqze(R(Q, D))l 5 n.

We can now state the adaptive sampling algorithm
for estimating IR(Q, D)l.

Algorithm 3.1 Let R(Q, D) be a binary relation.

1. Set 8 c 0.

2. Repeatedly choose a random constant c from D,
and set s +- s + rnax(l,l~i=~(R(Q, D)I), until
s 2 2n.

3. Let m be the number of vertices chosen in Step 2.
Estimate IR(Q, D)l = ns/m.

Theorem 3.1 Let 0 < e < 0.5. Then algorithm 9.1,
estimates the size ofR(Q, D) to within IR(Q, 0)//e+
n(1 + l/e) with probability 1 - 26.

Proof: First, note that if lulzci(R(Q, D))l 2 1 for
all i, then the correspondence between Algorithm 2.1
and Algorithm 3.1 is exact. Then by Theorem 2.1,
Theorem 3.1 holds.

Next, note that for any sample Iu~=~~(R(Q, D))I,
we have that

hc. W(Q, @)I 5 m=(l, IUl=ci(R(Q, D))l)
and

m=(l, IUl=ci(R(Q,D))I) 5 lul=,i(R(Q~ D))l + 1
This means _that the quantity actually being esti-
mated, say IR(Q, D)l, is such that

IR(Q, WI 5 l@Q, D)l
and

lfi(Q,D)l 5 IR(Q,D)I +n
Since by Theorem 2.1 Algorithm 3.1 estimates
IR(Q,D)) to within IR(Q,D)I/e with probability
1 - 26, Algorithm 3.1 estimates IR(Q, D)l to within

(lR(Q,D)l+ n e n, or IR(Q,D)I/c+n(l+l/c). 0)/ +
If IR(Q,D)l > O(n), then the O(n) term in the

error of the estimate is asymptotically neglible.
We now turn to the running time of the algorithm.

Because the algorithm is guaranteed to make at most
O(n) samples, if the time to perform an individual
sample is O(f(n)), the time for the entire algorithm
is O(nf(n)). However, if the problem R(Q, D) has
the property that the time to perform a sample is a
well-behaved function of the size of the sample, we
can prove a tighter bound.

Theorem 3.2 Suppose that the running time of
obtaining a sample max(l,lasj=,(R(Q, D))l) is

bounded by f(m=(l, IUSj=ci(R(Q, D))I)), whew f(x)
is such that for all a, b > 0, f(a) + f(b) 5 f(a + b).
Then Algorithm 3.1 runs in time O(f(lR(Q, D)l)),

- 168 -

Proof: The proof follows from the observation
that, for any function f(z) such that a, b > 0 implies
that p(a) + f(b) 5 f(a + b), and any set zi such that
zi > 0 for all i, we have z f(xi) = O(f(Ci zi)). 0

The functions of interest in this paper (includ-
ing nk, where t > 0) are all well-behaved in this
way.

Since in Algorithm 3.1 a sample is just a selection
on the query, if we are to use our framework to esti-
mate a query Q, we must have an efficient algorithm
to answer selection queries on the relation defined
by Q-

In the remainder of this section, we use Datalog
notation. Informally, the Datalog rule

tcx,r> :- t(X,W>, e(U,Y).

may be read “the tuple (X,Y> is in t if there is some
tuple (X,U> in t and some tuple (U,Y> in e.” We
consider only “safe” Datalog programs consisting of
a linear recursive rule and a nonrecursive rule. Fol-
lowing Prolog conventions, we use uppercase letters
to denote variables and lowercase to denote constants.
Thus, the relational algebra expression uslze(t) may
be rendered t(c,Y)?.

Consider estimating the size of the following trivial
generalization of the transitive closure:

t(X,Y> :- e(X,W) .tw.Y).
t(X,Y) :- tO(X,Y).

(It is a generalization in that the body of the nonre-
cursive rule contains the predicate t0 rather than e.)
We might choose to sample the relation t based on
its first argument, that is, we would evaluate t (c,Y)
for constants c appearing in tO and e.

The straightforward way of evaluating the query
t (c,Y) is to begin at the constant c, performing a
breadth-first search through e. For each constant a
encountered in this search, we check if there is a tuple
(a,b) in to, and if so, add b to the result.

This breadth-first search evaluates t (c,Y) in time
linear in the sizes of e and to hence can be considered
“efficient .” However, this cost of evaluating t (c , Y) is
not any function of the answer size, because we could
trace arbitrarily long paths through e such that there
is no tO edge reachable from any node along that
path.

On the other hand, if we sample on the second
column oft instead, one can verify that if the number
of answers returned by a sample is Jr, the time to
evaluate the sample is O(h’).

Definition 3.1 Let r be a Datalog rule in which
some predicate, say t, appears both in the head and
in the body. Then a variable appearing in the same

argument position both in the instance of t in the
rule head and the instance oft in the rule body is a
stable variable. An argument position of t is a
stable argument position if it contains a stable vari-
able.

First, we note that if the recursive predicate in a re-
cursion has a stable argument position, a good heuris-
tic is that the stable argument position is the column
that should be sampled. This is because zero-size
samples can be detected in O(1) (a sample on a con-
stant c is of zero size if and only if no tuple exists in
the relation defined by the nonrecursive rule with the
constant c in the sampled column.) Unfortunately,
having a stable argument position is not sufficient to
guarantee that the running time of a sample is a func-
tion of the size of the sample.

Example 3.1 Consider the recursion

t(X,Y) :- t(X,U),e(U.Y).
t0.Y) :- a(X,U) ,b(U.Y).

and suppose that the database is

a(l,i). b(l,l).
a(l,2). b(2,l).
a(l,3). b(3,l).

. .

a(1.n). b(n,l).

where the relation e is empty. Then the sample
t(l,Y)? will take time O(n), but will only return
a single answer. 0

Identifying classes of recursions for which the time
to compute a sample is a function of the sample size
is an interesting open question. The following section
shows that the standard transitive closure is one im-
portant example of a recursive query for which the
running time of a sample is indeed a function of the
sample size.

4 Transitive Closure

We will now use theorem 3.1 to provide an estimation
result for the transitive closure of binary relations.
For the purposes of this section, we consider the bi-
nary relation over which the closure is computed to
be the edge relation of a digraph G. Hence we will re-
fer to graphs rather than relations, edges rather than
tuples, and vertices rather than constants.

Here “sampling the relation” just means choosing a
vertex v, then counting the number of vertices reach-
able from u. If there are m edges in the graph, this

- 169 -

clearly can be done in time O(m). So, a trivial bound
on the running time is O(nm). Because m < n2 this
is better than the standard ns algorithm for comput-
ing the closure. However, a much better bound can
be proven as a corollary to Theorem 3.2.

Corollary 4.1 Let G be a digmph with n vertices.
Then Algorithm 3.1 estimates Me sire of Ihe tmnsi-
live closure of G in lime O(n2).

Proof: Recall that a sample of a vertex v is the
number of vertices in the connected component with
2, at the root. This quantity can be computed (via
depth-first search, for example) in time bounded by
the number of edges in the component. But the num-
ber of edges is at most the number of vertices squared.
So the sample (&(G,Q)(can be computed in time
O(I&,(G,Q)1”). The sum over all samples is O(n),
so we have by Theorem 3.2 that the total time is
bounded by O(n2), as required. 0

Note that the constant n here is not the size of the
relation over which the closure is being performed
- rather, it is the number of distinct constants that
appear in that relation. In general, the size of the
relation varies from n to n2. For a relation of size
n2, the above bound is linear in the size of the input
relation. For bounded degree graphs, we can prove a
still better bound.

Corollary 4.2 Let G be a bounded degree digmph
with n vertices. Then Algorithm 9.1 estimates the
sire of the transitive closure of G in iime O(n).

Proof: The proof follows that of Corollary 4.1,
except that for a bounded degree graph there is a
constant d such that no node has more than d out-
edges. This in turn implies that the number of edges
in a connected component is linear in the number of
nodes in the component (instead of quadratic in the
general case.) 0

In the preceding proofs we discussed the sampling
evaluation procedure in standard graph-processing
terms. In particular, we mention the use of any stan-
dard search method, without reference to the number
of disk I/O’s necessary to perform the computation.
If the relation is too big to fit in memory, special-
ized evaluation algorithms, which attempt to limit
the number of disk I/O’s, can be used to compute
the ci=,(R(Q, D)). (See, for example, [IRSS].)

A more detailed analysis of the special case of the
transitive closure appears in [LN89]. The analysis
shows that in general the algorithm is e(nfi)‘on
digraphs with n nodes and m edges, but is O(m) if
the graph is of almost uniform degree.

5 Conclusion

In this paper we have presented a framework for the
estimation of the size of recursively defined relations.
We have shown how the framework can be used to
provide size estimation algorithms for the transitive
closure and its generalizations. In a database system
that supports recursion, such estimation algorithms
are essential in order to optimize conjunctive queries
and to avoid computations that are infeasible because
the result is too large.

Many interesting questions remain. In general
terms, the question is whether good estimation algc+
rithms exist for arbitrary datalog recursions. While
the work presented here represents a first step toward
such an algorithm, it is possible that datalog is suffi-
ciently powerful that no such general estimation pro-
cedure exists. Even if no such algorithm exists, the
sampling algorithm presented here will be useful if we
are correct in our conjecture that a significant frac-
tion of the recursive relations encountered in practice
will be generalized transitive closures.

References

[AJ87]

[Chr83]

[Dem80]

[HOT881

[I0461

Rakesh Agrawal and H. V. Jagadish. Di-
rect algorithms for computing the tran-
sitive closure of database relations. In
Proceedings of ihe 13th VLDB Confer-
ence, pages 255-266, Brighton, England,
September 1987.

Stavros Christodoulakis. Estimating
block transfers and join sizes. In Pro-
ceedings of the ACM SIGMOD Inter-
national Conference on Management of
Data, pages 40-54, San Jose, California,
May 1983.

R. Demolombe. Estimation of the num-
ber of tuples satisfying a query expressed
in predicate calculus language. In Pro-
ceedings of Ihe Sixth VLDB Conference,
pages 55-63, Montreal, Canada, 1980.

Wen-Chi Hou, Gultekin Ozsoyoglu, and
Baldeao K. Taneja. Statistical estimators
for relational algebra expressions. In Pro-
ceedings of the Seventh ACM Symposium
on Principles of Database Systems, pages
276-287, Austin, Texas, March 1988.

Yannis E. Ioannidis. On the computa-
tion of the transitive closure of relational
operators. In Proceedings of Ihe Twelfth

- 170 -

[IR88]

[IW87]

[KBZSS]

[LMR87]

[LN89]

[Lu87]

PJYnw

[Nau87]

VLDB Conference, pages 403-411, Ky-
oto, Japan, August 1986.

Yannis E. Ioannidis and Raghu Ramakr-
ishnan. Efficent transitive closure algo-
rithms. In Proceedings of the Fourteenth
VLDB Conference, pages 382-394, Los
Angeles, California, August 1988.

Yannis E. Ioannidis and Eugene Wong.
Query optimization by simulated an-
nealing. In Proceedings of the ACM-
SIGMOD Conference on the Manage-
ment of Data, pages 9-22, San Fransisco,
California, May 1987.

Ravi Krishnamurthy, Haran Boral, and
Carlo Zaniolo. Optimization of nonrecur-
sive queries. In Proceedings of the Twelfth
VLDB Conference, pages 128-137, Ky-
oto, Japan, August 1986.

Hongjun Lu, Krishna Mikkilineni, and
James P. Richardson. Design and evalu-
ation of algorithms to compute the tran-
sitive closure of a database relation. In
Proceedings of the Third International
Conference on Data Engineering, pages
112-119, 1987.

Richard J. Lipton and Jeffrey F.
Naughton. Estimating the size of the
transitive closure of a digraph. Submit-
ted for publication, May 1989.

H. Lu. New strategies for compue
ing the transitive closure of a database
relation. In Proceedings of fhe Thir-
teenth VLDB Conference, pages 267-274,
Brighton, England, September 1987.

Clifford A. Lynch. Selectivity estima-
tion and query optimization in large
databases with highly skewed distribu-
tions of column values. In Proceedings of
the Fourteenth VLDB Conference, pages
240-251, Los Angeles, California, August
1988.

Jeffrey F. Naughton. One sided recur-
sions. In Proceedings of the ACM Sym-
posium on Principles of Daiabase Sys-
tems, pages 340-348, San Diego, Califor-
nia, March 1987.

[NSRU89]

[PSC84]

Jeffrey F. Naughton, Yehoshua Sagiv,
Raghu Ramakrishnan, and Jeffrey D. Ull-
man. Efficient evaluation of right-, left-
, and combined-linear rules. In Pro-
ceedings of the ACM SIGMOD Inter-
national Conference on Management of
Data, Portland, Oregon, May 1989.

Gregory Piatetsky-Shapiro and Charles
Connell. Accurate estimation of the
number of tuples satisfying a condition.
In Proceedings of the ACM SIGMOD In-
ternational Conference on Management
of Data, pages 256-276, Boston, Mas-
sachusets, June 1984.

[RHDM86] Arnon Rosenthal, Sandra Heiler, Umesh-
war Dayal, and Frank Manola. Traver-
sal recursion: A practical approach to
supporting recursive applications. In
Proceedings of the ACM-SIGMOD Inter-
national Conference on Management of
Data, Washington, D.C., June 1986.

[How831

[SG85]

[SG88]

Neil C. Howe. Top-down statistical es-
timation on a database. In Proceedings
of the ACM SIGMOD International Con-
ference on Management of Data, pages
135-144, San Jose, California, May 1983.

David E. Smith and Michael R. Gene-
sereth. Ordering conjunctive queries.
Artificial Intelligence, 26:171-215, 1985.

Arun Swami and Anoop Gupta. Opti-
mization of large join queries. In Pro-
ceedings of ihe ACM-SIGMOD Confer-
ence on Management of Data, pages 8-
17, Chicago, Illinois, May 1988.

- 171 -

- 172 -

