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Abstract 

We present a framework for the estimation of the size 
of binary recursively defined relations. We show how 
the framework can be used to provide estimating algo 
rithms for the size of the transitive closure and gener- 
alizations of the transitive closure, and also show that 
for bounded degree relations, the algorithm runs in 
linear time. Such estimating algorithms are essential 
if database systems that support recursive relations 
or fixpoints are to be able to optimize queries and 
avoid infeasible computations. 

1 Introduction 

Deductive database or knowledge base systems re- 
quire estimates of relation sizes so that a good 
order of evaluation can be found for conjunctive 
queries [IW87,KBZ86,SG88,SG85]. Avoiding a bad 
choice of evaluation order is critical to the efficiency 
of the query evaluation procedure. For example, in 
the query 

richCASenator(X) :- livesInCA & 
rich(X) & 
senator(X). 

first finding all senators (100) then finding those that 
live in California (2) then checking to see if those two 
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are rich would be far more efficient than first finding 
all California residents (millions) then checking these 
to see if they are rich and senators. 

Some progress has been made toward estimat- 
ing the size of relations that are defined by re- 
lational expressions rather than being stored in 
the database [Chr83,Dem80,IIOT88,Lyn88,PSC84, 
Row83]. However, currently there are no known tech- 
niques for estimating the size of relations that are 
recursively defined. Such relations arise in not only 
in deductive database systems, but in any relational 
system that allows one to take the fixpoint of a rela- 
tional expression. This paper considers a method for 
estimating the size of an important subset of such re- 
lations, which we term generalized tmnsitiue closures. 

Previous work on generalized closures [AJ87,Ioa86, 
IR88,LMR87,Lu87,NSRU89,Nau87,RIIDM86] has fc+ 
cussed on efficiently constructing the answer to the 
query rather than on answer size estimation. Of 
course, constructing the relation is one way to es- 
timate its size; our goal is to get a rough estimate of 
the size much more cheaply. 

The problem of estimating the size of a recursively 
defined relation is difficult. For concreteness, consider 
the transitive closure of a binary relation e. We may 
interpret e as being the edge relation of a digraph. 
Figure 1 shows a graph, with uniform out-degree 1, 
such that the closure of the graph is O(n). Figure 2 
shows another graph, also with uniform out-degree 1, 
such that the closure of the graph is O(n*). An esti- 
mation algorithm based on local (rather than global) 
properties of the graph will miss the difference be- 
tween the two. 

As another example of a hard case, consider the 
graph in Figure 3. Here, the graph again has uniform 
in- and out-degree 1. But while the transitive closure 
of the graph is O(n*), the closure of the graph formed 
by deleting the clique at the right is O(n). Note that 
the portion of the graph that makes the difference 
between O(n) and O(n*) here involves only l/6 of 
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Figure 1: A bounded degree graph with closure O(n). 
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Figure 2: A bounded degree graph with closure O(n*). 

nodes in the graph. 
In this paper we give an adaptive sampling algo- 

rithm for estimating the size of generalized transitive 
closures. It is a sampling algorithm in that it esti- 
mates the size of the complete closure by sampling 
subsets of the closure; it is adaptive in that the num- 
ber of samples made varies with the information ob- 
tained from each sample. 

For the specific case of the transitive closure, if the 
underlying graph over which the transitive closure is 
being computed is of bounded degree, our sampling 
algorithm runs in linear time and, for 0 < e < 0.5, 
estimates the size of the closure to within a factor of 
l/e with probability 1-2~. An algorithm for bounded 
degree graphs is especially important, as we expect 
that the bulk of relations encountered in practice are 
of bounded degree when interpreted as graphs. 

When we move from the simple transitive closure 
to generalized closures, the error and accuracy of our 
estimation algorithm are unchanged. However, the 
running time will depend on the specific recursion in 
question. 

The estimate produced by our algorithm is admit- 
tedly crude - by taking c = 0.1 we see that the al- 
gorithm estimates the closure to within a factopof 10 
with 80% certainty. However, in optimizing queries, 
the key is to identify gross differences between the 
sizes of relations (e.g., the difference between the 
livesInCA relation and the senator relation in the 
example above.) 

There is another reason why even rough estimates 
are essential in database systems that support recur- 
sion or fixpoints: even on modest sized databases, 
recursively defined relations can be too large 2 be 
computed. If a system is to be robust, it must de- 
tect such computations and produce a warning rather 
than attempting to compute the relation. 

For example, suppose again that we wish to com- 
pute the transitive closure of a 1OOK tuple relation, 
and that each tuple of the relation takes 100 bytes. 
(Such a relation is small by database standards - it 
will easily fit in the memory of many workstations 
today - but it will serve to illustrate the point.) 
Then the transitive closure will fall somewhere be- 
tween w lo5 tuples (w 10Mbyte) and m 10” tuples 
(m a terabyte.) Computing a terabyte relation will 
almost certainly be infeasible, no matter how clever 
an algorithm we use to compute the closure. The 
estimating algorithm presented in this paper can de- 
termine quickly whether the proposed relation can 
sensibly be computed. 

In Section 2 we present an urn model that estab- 
lishes the theoretical underpinnings for the estimation 
algorithm. Section 3 discusses a general approach to 
estimating the size of binary recursively defined re- 
lations based on the results of Section 2. Section 4 
considers the special case of the transitive closure. 
We conclude in Section 5. 

2 An Urn Model 

In this section we consider an urn model that ab- 
stracts the estimation problem. 

Consider an urn U in which there are n balls. As- 
sociated with ball i is a number 1 5 ai 2 n, for 
1 5 i 5 n. The cosl of sampling ball i is ai; the cost 
of a set of samples is the sum of the cost of the sam- 
ples in the set. The quantity we wish to estimate is 
A = Cy=‘=, ai. Consider doing so with the following 
procedure: 

Algorithm 2.1 Repeatedly sample with replace- 
ment until S, the sum of the costs on the balls sam- 
pled, is greater than 2n. Let the number of samples 
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Figure 3: A hard example for size estimation. 

this takes be m. Estimate that A = nS/m. 

The main result of this section is the following the- 
orem. 

Theorem 2.1 Let A be ihe estimaie of A in the 
above procedure, and lel A > 0. Then for 0 < e < 0.5, 
with probabiliiy 2 1 - 2e Algon’lhm 2.1 estimates A 
io within a factor of l/c. 

Before proving the theorem, we establish a series 
of lemmas. Let Xi be a random sample from the urn. 

Lemma 2.1 Let $i be a random sample from ihe 
urn. Then 

1. E[afi] = A/n. 

2. E[*.f] 5 A. 

9. Var[Zi] 5 A. 

Proof: 

1. E[zi] = CFzI ai/n = A/n. 

2. E[Xf] = CL1 af/n 5 Cy ai = A (since ai/n 5 
1). 

3. Var[&] = E[Zf] - E[Zi]’ 5 A. 

Cl 
The next lemma is useful in proving a lower bound 

on the expected number of samples made before stop- 
ping. We represent the probability of an event z by 
Pr[x]. 

Lemma 2.2 Lel m = en2/A. Then 

Pr[% + . . . + k:, 2 cn] 5 e/(c - e)’ 

Proof: Then 

Pr[Zl + . . . + 2, 2 cn] 

= Pr[(x, - A/n) + . . . + (J?:, - A/n) 2 cn - en] 

But by Lemma 2.1, Var[gi] 5 A, SO 

Pr[*l + . . . + *m 1 cn] 5 
1 CnZA 

(c - e)2n2 A 

s (CL)2 
0 

We bound the error in the estimate with the fol- 
lowing lemma. 

Lemma 2.3 Lei m 2 en2/A and d > 0. Then 

Proof: 

Pr 
I 

_ &mVar[$] < 

Let m = Xn2/A, where X 1 C. Then the above prob- 
ability is less than or equal to 

--&mVar[&] < 7 n2 A 
- A$@ 

which is just A2/Xt2. Setting Ad = t gives 

cl 
We can now prove Theorem 2.1. 
Proof: (Theorem 2.1) There are two ways that the 

algorithm can fail - it can stop too early to guaran- 
tee a good error bound, or it can stop after enough 
samples but with a bad estimate. 
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First we claim that the procedure is unlikely to stop 
with m 5 n2/A. We have that 

Pr[(($)(j 5 m) A (21 + . . . + 2j > cn))] 

I P@l + . . . + Zm 2 cn] 

where m = cn2/A, because the event to the right 
of the inequality implies the event to the right. But 
by Lemma 2.2, the right side of this equation is at 
most e/(c - c)~. Substituting c = 2 and noting that 
0 < c < 0.5, we get that this probability is less than c. 

Next we turn to the accuracy of the estimate. If 
m = cn2/A, by Lemma 2.3 the estimate, 

A =- n Cm& 
m 

ix1 

is within dA of A with probability 2 1/(cd2). Letting 
d = l/c, this is just c. 

Putting the two ways of failure together, we get 
that the total probability of failure is less than c + 
(1 - c)c, which is less than 2~. Finally, note that 
because A > 0, there must be at least one i such that 
ei > 0, so the algorithm will terminate. 0 

An interesting aspect of this urn theorem is that 
the sampling is adaptive: usually such sampling pro- 
cedures perform a fixed number of samples. Here it 
is critical that the procedure adapt its behavior. 

3 Binary Relation Estimation 

First some notation. We let R(Q, D) represent the 
binary relation defined by the query Q over the 
database D. The size of R(Q,D) is just the num- 
ber of tuples in D, and is represented by IR(Q,D)l. 
Using notation from relational algebra, the tuples 
in relation R with some constant c in column i is 
bi&R(Q,D)). In the remainder of this paper we 
will assume without loss of generality that i = 1. 
Such a binary query Q can be considered a general- 
ization of the transitive closure, as it is expressing a 
“reachability” relationship between the constants of 
D. 

We can map the urn problem of Section 2 to 
the problem of estimating IR(Q, D)l as follows. 
We let the balls represent the constants appearing 
in D. If ball i represents a constant ci, then ai = 
Iulzei(R(Q, D))l. Sampling ball i corresponds to 
evaluating the query ulze(R(Q, D)). Clearly, for any 
binary relation R(Q, D), if there are n distinct con- 
stants in D, Jal=,(R(Q, D))l < n, and the relation 
R(Q, D) = UcE~ul=c(R(Q, D)). Note, however, that 
in the urn model we have 1 5 ai 5 n, whereas here 
we have 0 5 lqze(R(Q, D))l 5 n. 

We can now state the adaptive sampling algorithm 
for estimating IR(Q, D)l. 

Algorithm 3.1 Let R(Q, D) be a binary relation. 

1. Set 8 c 0. 

2. Repeatedly choose a random constant c from D, 
and set s +- s + rnax(l,l~i=~(R(Q, D)I), until 
s 2 2n. 

3. Let m be the number of vertices chosen in Step 2. 
Estimate IR(Q, D)l = ns/m. 

Theorem 3.1 Let 0 < e < 0.5. Then algorithm 9.1, 
estimates the size ofR(Q, D) to within IR(Q, 0)//e+ 
n(1 + l/e) with probability 1 - 26. 

Proof: First, note that if lulzci(R(Q, D))l 2 1 for 
all i, then the correspondence between Algorithm 2.1 
and Algorithm 3.1 is exact. Then by Theorem 2.1, 
Theorem 3.1 holds. 

Next, note that for any sample Iu~=~~(R(Q, D))I, 
we have that 

hc. W(Q, @)I 5 m=(l, IUl=ci(R(Q, D))l) 
and 

m=(l, IUl=ci(R(Q,D))I) 5 lul=,i(R(Q~ D))l + 1 
This means _that the quantity actually being esti- 
mated, say IR(Q, D)l, is such that 

IR(Q, WI 5 l@Q, D)l 
and 

lfi(Q,D)l 5 IR(Q,D)I +n 
Since by Theorem 2.1 Algorithm 3.1 estimates 
IR(Q,D)) to within IR(Q,D)I/e with probability 
1 - 26, Algorithm 3.1 estimates IR(Q, D)l to within 

(lR(Q,D)l+ n e n, or IR(Q,D)I/c+n(l+l/c). 0 )/ + 
If IR(Q,D)l > O(n), then the O(n) term in the 

error of the estimate is asymptotically neglible. 
We now turn to the running time of the algorithm. 

Because the algorithm is guaranteed to make at most 
O(n) samples, if the time to perform an individual 
sample is O(f(n)), the time for the entire algorithm 
is O(nf(n)). However, if the problem R(Q, D) has 
the property that the time to perform a sample is a 
well-behaved function of the size of the sample, we 
can prove a tighter bound. 

Theorem 3.2 Suppose that the running time of 
obtaining a sample max(l,lasj=,(R(Q, D))l) is 

bounded by f(m=(l, IUSj=ci(R(Q, D))I)), whew f(x) 
is such that for all a, b > 0, f(a) + f(b) 5 f(a + b). 
Then Algorithm 3.1 runs in time O(f(lR(Q, D)l)), 
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Proof: The proof follows from the observation 
that, for any function f(z) such that a, b > 0 implies 
that p(a) + f(b) 5 f(a + b), and any set zi such that 
zi > 0 for all i, we have z f(xi) = O(f(Ci zi)). 0 

The functions of interest in this paper (includ- 
ing nk, where t > 0) are all well-behaved in this 
way. 

Since in Algorithm 3.1 a sample is just a selection 
on the query, if we are to use our framework to esti- 
mate a query Q, we must have an efficient algorithm 
to answer selection queries on the relation defined 
by Q- 

In the remainder of this section, we use Datalog 
notation. Informally, the Datalog rule 

tcx,r> :- t(X,W>, e(U,Y). 

may be read “the tuple (X,Y> is in t if there is some 
tuple (X,U> in t and some tuple (U,Y> in e.” We 
consider only “safe” Datalog programs consisting of 
a linear recursive rule and a nonrecursive rule. Fol- 
lowing Prolog conventions, we use uppercase letters 
to denote variables and lowercase to denote constants. 
Thus, the relational algebra expression uslze(t) may 
be rendered t(c,Y)?. 

Consider estimating the size of the following trivial 
generalization of the transitive closure: 

t(X,Y> :- e(X,W) .tw.Y). 
t(X,Y) :- tO(X,Y). 

(It is a generalization in that the body of the nonre- 
cursive rule contains the predicate t0 rather than e.) 
We might choose to sample the relation t based on 
its first argument, that is, we would evaluate t (c,Y) 
for constants c appearing in tO and e. 

The straightforward way of evaluating the query 
t (c,Y) is to begin at the constant c, performing a 
breadth-first search through e. For each constant a 
encountered in this search, we check if there is a tuple 
(a,b) in to, and if so, add b to the result. 

This breadth-first search evaluates t (c,Y) in time 
linear in the sizes of e and to hence can be considered 
“efficient .” However, this cost of evaluating t (c , Y) is 
not any function of the answer size, because we could 
trace arbitrarily long paths through e such that there 
is no tO edge reachable from any node along that 
path. 

On the other hand, if we sample on the second 
column oft instead, one can verify that if the number 
of answers returned by a sample is Jr, the time to 
evaluate the sample is O(h’). 

Definition 3.1 Let r be a Datalog rule in which 
some predicate, say t, appears both in the head and 
in the body. Then a variable appearing in the same 

argument position both in the instance of t in the 
rule head and the instance oft in the rule body is a 
stable variable. An argument position of t is a 
stable argument position if it contains a stable vari- 
able. 

First, we note that if the recursive predicate in a re- 
cursion has a stable argument position, a good heuris- 
tic is that the stable argument position is the column 
that should be sampled. This is because zero-size 
samples can be detected in O(1) (a sample on a con- 
stant c is of zero size if and only if no tuple exists in 
the relation defined by the nonrecursive rule with the 
constant c in the sampled column.) Unfortunately, 
having a stable argument position is not sufficient to 
guarantee that the running time of a sample is a func- 
tion of the size of the sample. 

Example 3.1 Consider the recursion 

t(X,Y) :- t(X,U),e(U.Y). 
t0.Y) :- a(X,U) ,b(U.Y). 

and suppose that the database is 

a(l,i). b(l,l). 
a(l,2). b(2,l). 
a(l,3). b(3,l). 

. . 

a(1.n). b(n,l). 

where the relation e is empty. Then the sample 
t(l,Y)? will take time O(n), but will only return 
a single answer. 0 

Identifying classes of recursions for which the time 
to compute a sample is a function of the sample size 
is an interesting open question. The following section 
shows that the standard transitive closure is one im- 
portant example of a recursive query for which the 
running time of a sample is indeed a function of the 
sample size. 

4 Transitive Closure 

We will now use theorem 3.1 to provide an estimation 
result for the transitive closure of binary relations. 
For the purposes of this section, we consider the bi- 
nary relation over which the closure is computed to 
be the edge relation of a digraph G. Hence we will re- 
fer to graphs rather than relations, edges rather than 
tuples, and vertices rather than constants. 

Here “sampling the relation” just means choosing a 
vertex v, then counting the number of vertices reach- 
able from u. If there are m edges in the graph, this 
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clearly can be done in time O(m). So, a trivial bound 
on the running time is O(nm). Because m < n2 this 
is better than the standard ns algorithm for comput- 
ing the closure. However, a much better bound can 
be proven as a corollary to Theorem 3.2. 

Corollary 4.1 Let G be a digmph with n vertices. 
Then Algorithm 3.1 estimates Me sire of Ihe tmnsi- 
live closure of G in lime O(n2). 

Proof: Recall that a sample of a vertex v is the 
number of vertices in the connected component with 
2, at the root. This quantity can be computed (via 
depth-first search, for example) in time bounded by 
the number of edges in the component. But the num- 
ber of edges is at most the number of vertices squared. 
So the sample (&(G,Q)( can be computed in time 
O(I&,(G,Q)1”). The sum over all samples is O(n), 
so we have by Theorem 3.2 that the total time is 
bounded by O(n2), as required. 0 

Note that the constant n here is not the size of the 
relation over which the closure is being performed 
- rather, it is the number of distinct constants that 
appear in that relation. In general, the size of the 
relation varies from n to n2. For a relation of size 
n2, the above bound is linear in the size of the input 
relation. For bounded degree graphs, we can prove a 
still better bound. 

Corollary 4.2 Let G be a bounded degree digmph 
with n vertices. Then Algorithm 9.1 estimates the 
sire of the transitive closure of G in iime O(n). 

Proof: The proof follows that of Corollary 4.1, 
except that for a bounded degree graph there is a 
constant d such that no node has more than d out- 
edges. This in turn implies that the number of edges 
in a connected component is linear in the number of 
nodes in the component (instead of quadratic in the 
general case.) 0 

In the preceding proofs we discussed the sampling 
evaluation procedure in standard graph-processing 
terms. In particular, we mention the use of any stan- 
dard search method, without reference to the number 
of disk I/O’s necessary to perform the computation. 
If the relation is too big to fit in memory, special- 
ized evaluation algorithms, which attempt to limit 
the number of disk I/O’s, can be used to compute 
the ci=,(R(Q, D)). (See, for example, [IRSS].) 

A more detailed analysis of the special case of the 
transitive closure appears in [LN89]. The analysis 
shows that in general the algorithm is e(nfi)‘on 
digraphs with n nodes and m edges, but is O(m) if 
the graph is of almost uniform degree. 

5 Conclusion 

In this paper we have presented a framework for the 
estimation of the size of recursively defined relations. 
We have shown how the framework can be used to 
provide size estimation algorithms for the transitive 
closure and its generalizations. In a database system 
that supports recursion, such estimation algorithms 
are essential in order to optimize conjunctive queries 
and to avoid computations that are infeasible because 
the result is too large. 

Many interesting questions remain. In general 
terms, the question is whether good estimation algc+ 
rithms exist for arbitrary datalog recursions. While 
the work presented here represents a first step toward 
such an algorithm, it is possible that datalog is suffi- 
ciently powerful that no such general estimation pro- 
cedure exists. Even if no such algorithm exists, the 
sampling algorithm presented here will be useful if we 
are correct in our conjecture that a significant frac- 
tion of the recursive relations encountered in practice 
will be generalized transitive closures. 
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