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Abstract 

We investigate the role of commutativity in query process- 
ing of linear recursion. We give a sufficient condition for 
two linear, function-free, constant-free, and range-restricted 
rules to commute. The condition depends on the form of 
the rules themselves. For a restricted class of rules, we 
show that the condition is necessary and sufficient and can 
be tested in polynomial time in the size of the rules. Using 
the algebraic structure of such rules, we study the relation- 
ship of commutativity with several other properties of linear 
recursive rules. We show that commutativity is in the 
center of several important special classes of linear recur- 
sion, i.e., separable recursion and recursion with recursively 
redundant predicates. 

1. INTRODUCTION 
Several general algorithms have been proposed for 

the processing of recursive programs in database systems 
(DBMSs). Recursive query processing is recognized as an 
expensive operation, and all the proposed algorithms incur 
some significant cost. Thus, the importance of identifying 
special cases of recursion on which specialized and more 
efficient algorithms are applicable is obvious. Such special 
cases of recursion include bounded recursion (uniform and 
otherwise), transitive closure, separable recursion, and 
onesided recursion. In this paper, we elaborate on another 
special case of recursion, where participating operators (or 
rules) commute with each other. When this happens, recur- 
sive queries can be decomposed into smaller queries, which 
are expected to have a lower total execution cost than the 
original query. 
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Commutativity has already been identified as a 
significant special case of recursion [Ioan88a]. It has been 
shown how several types of queries are affected by the 
applicability of commutativity and how the general algo- 
rithms for recursive queries are affected. Constants can 
also he used in conjunction with commutativity to reduce 
the amount of data the system has to look at to answer a 
query with selections. This earlier work on commutativity 
was done within the algebraic framework of linear recursive 
operators (rules) [Ioan86a,Ioan88a]. In this paper, we use 
the first order logic representation of rules to give necessary 
and sufficient conditions for two linear recursive rules of a 
restricted form to commute with each other. These condi- 
tions are based on the form of the ales themselves and 
make no direct use of the definition of commutativity, 
which requires composing the two rules in both ways and 
examining the two composites for equivalence. We also 
use the algebraic formulation of recursion to compare com- 
mutativity with other special classes of recursion, in partic- 
ular, separable recursion and recursion with recursively 
redundant predicates, and discuss the effects of commuta- 
tivity on the algorithms proposed for them. 

The paper is organized as follows. Section 1 is an 
introduction. Section 2 is a summary of the algebraic 
model for linear recursion, which has been introduced else- 
where [Ioan86a, Ioan88aJ. In Section 3, we define commu- 
tativity in the algebraic model and we compare the notion 
of commutativity with separability and recursive redun- 
dancy. Section 4 manipulates rules in the logic model and 
gives a decision algorithm for commutativity for a restricted 
class of rules. In Section 5, separability and recursive 
redundancy are reexamined for the restricted class of rules 
studied in Section 4. Finally, Section 6 presents our conclu- 
sions and gives some directions for future work. 

2. ALGEBRAIC MODEL 
In this section, we provide a summary of the alge- 

braic model for linear recursion [Ioa&a,Ioan88a]. Con- 
sider a linear recursive rule 

P (g(O)) A Q &(‘3 A * * - A Q&.“)-) + P~(c+13,(2.1) 

where for each i , x(‘) is a vector of variables. No restriction 
is imposed on the form of the rule, or on the finiteness of 
the relations corresponding to the various predicates in the 
rule. Thus, for example, the rules can contain functions. 
Each one of P @) and the Q i @)‘s is a (positive) literal. 
In relational terms, if (qi ) is a set Of relations (q i 
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corresponding to the predicate Qi), and f(P, (qi)) is a 
function that accepts as input and produces as output rela- 
tions of the same schema as P, the above rule can be 
expressed as 

or equivalently P u f (I’, (q i )) = P. Given the existence of 
an additional nonrecursive rule of the form 

(2.2) 

which in relational terms, given q a relation corresponding 
to Q, is expressed as q c P, the problem of recursive infer- 
ence can be stated as one of finding P such that 

P=f Op. (qi))“% 
P is minimal with respect to (a), 
i.e., P’ satisfying (a) implies P s P’. 

The fUllCtiOll f (P, (q i )), having (qi ) as parameters 
and P as input, can be thought of as a linear relational 
operator applied to the recursive relation P to produce 
another relation of the same schema. Let R be the set of all 
such operators. We can establish an algebraic framework in 
which we can define operations on relational operators as 
follows. Mulfiplicurion of operators is defined by 
(A *B)P =A(BP) and addition by (A+B)P =AP uBP. 
+ For notational convenience we omit the operator *. The 
multiplicative identity (1P = P) and the additive identity 
(OP = 0, 0 the empty set) are defined in obvious ways, 
The n-th power of an operator A is inductively defined as: 
A’= 1, A” =A*A”-‘=A”-‘*A. Equality of operators in R 
is defined as A=B e VPJP=BP. Finally, a partial 
order<isdetinedonR asASB e> VP,APE;BP. Theset 
R with the operations defined above forms a closed semir- 
ing bad3a]. 

Having embedded the linear relational operators in 
the above algebraic framework of the closed semiring, the 
set of Horn clauses (2.1) and (2.2). assuming that A is the 
operator that corresponds to (2.1), can be rewritten as 

APsP, 

q SP. 

The minimal solution of the system is the minimal solution 
of the equation 

P=APuq. (2.3) 

’ The above definitions are valid only if the operates involved are 
apppriately ccmpatible, e.g.. for +, the opcrato~~ have to agree on the 
schema of their input and the a&ma of their output. Altbough in the rest 
of the paper we only deal with appmpriately compatible operatan. the gen- 
eral algebraic theory incoqmates all operators [Ioanlh]. 

The solution is a function of q. Hence, P can be written as 
P = B q, and the problem becomes one of finding the 
operator B . Manipulation of (2.3) results in the elimination 
of q, so that the equation contains operators only. In this 
pure operator form, the recursion problem can be restated as 
follows. Given operator A, find B satisfying the following: 

(a) 
09 

l+A B =B, 
B is minimal with respect to (a), 
i.e., l+A C = C =S B I C. 

(2.4) 

Theorem 2.1: [IoarS&] The solution of equation 
(2.4a) with restriction (2.4b) is A l =kek. 

The operator A’ is called the transitive closure of A. 
Theorem 2.1 is originally due to Tarski [TarsS], and in the 
database context, it was first examined by Aho and Ulhuan 
[Aho79b]. It is the fh-st time though that the solution of 
(2.4) is expressed in an explicit algebraic form within an 
algebraic structure like the closed semhing of the linear 
relational operators. The implications of the manipulative 
power thus afforded on the implementation of A* are 
significant [Ioar&%, Ioan86b, Ioan87, Ioan88al. In this 
paper, we shall concentrate on the implications of commu- 
tativity of operators in the implementation of A l . 

Note that, although an operator A may be derived 
from a recursive rule, the operator itself is nonrecursive, 
i.e., it corresponds to a conjunctive query [Chan77]. Also 
note that A’ represents an operator. ‘lhe query answer is 
the result of applying A’ to a given relation q. This is only 
an abstraction, however, that allows us to study recursion 
within the closed semiring of relational operators. It poses 
no restriction whatsoever in the processing order of the 
query, i.e., it does not enforce that tirst A l is computed and 
then it is applied to q. For example, assume that A’ can be 
decomposed into B’ and C’, i.e., A’=B’ C’, so that the 
final computation is B’ C’ q. The computation may 
proceed by first computing C’ , then applying it to q, and 
then applying seminuive [Banc85] with B as the basic 
operator and (C’ q) as the initial relation. The significance 
of the algebraic formulation lies in the abstraction that it 
offers, within which the capability of the decomposition 
A* =B’C’canbeexhibited. 

3. COMMUTATIVITY VS. SEPARABILITY and 
RECURSIVE REDUNDANCY 

3.1. Commutativity 
We say that two operators B and C commute if 

B C = C B . Consider computing the transitive closure of 
A, A’, where A=B+C. It has been shown that if 
CBIB’C’,forsomek,I withR~(O,l)orf~(O,l),then 
A* = B‘ C’ [Ioan88a]. Commutativity is a special case of 
this condition. The computation of A is decomposed into 
two smaller computations, those of B and C (plus an 
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additional multiplication of them). The complexity of B 
and C is smaller than that of A. In general, this is expected 
to affect the total cost of the computation significantly. 
Hence, it is important to be able to identify when two 
operators commute. In Section 4, we present a sufficient 
condition for commutativity, which for rules of some res- 
tricted form is shown to be necessary and sufficient. 

3.2. Commutativity vs. Separability 
Separable recursions have been identified by Naugh- 

ton as an important class of linear recursion where efficient 
algorithms can be applied [Naug88]. In this section, we 
shall show that the efficient separable algorithm is applica- 
ble to the class of commutative recursions. For the sake of 
simplicity, we shall concentrate on two operators A, and 
A2 The extensions of the results to an arbitrary number of 
operators is straightforward. 

Theorem 3.1: Given two operators A I and A2 that 
commute, and a selection Q that commutes with one of 
them, the separable algorithm can be used for the computa- 
tion of a(A l+A 9’ . 

Proof: Let A *A PA pI ,. The transitive closure of the 
sum ofAl and AZ is given by (A1+Ad* =A; A; [Ioan88a]. 
Given an initial relation q and a query with a selection Q 
that commutes with A 1, we have 

a(A,+A$q =A; (aA;)q. (3.1) 
To take advantage of the selection, the following algorithm 
may be used to derive the query answer given in (3.1). The 
variables B and C contain operators whereas the variables R 
and S contain relations. Multiplication of operators is 
shown explicitly for readability. 

B:=a; 
c:=q 
repeat 

B:=B*A,; 
C:=B+C; 

until C doesn’t change 
R:=Cq: 
s :=R; 
repeat 

R:=AIR; 
S:=SuR; 

until S doesn’t change 

The first loop actually involves manipulating relations that 
are parameters of the various operators If that is taken into 
account, and some small optimizations are incorporated so 
that, in every application of an operator inside each loop, 
only the new tuples produced in the previous iteration are 
used, the above algorithm is precisely the one proposed for 
separable recursions with full selections + [Naug88]. 0 

In general, given a set of operators (Ai ) , lli In, that 
are mutually commutative, and a set of selections (Do ), 
04’ In, such that Oi commutes with all O~XUOB except Ai, 
the following holds: 

~owJ2 -q(A,+A2+-+A,)* = 

Usually, most of the selections will not be present. In the 
presense of multiple selections, it is an interesting optimiza- 
tion problem to choose the order in which the various 
operators should be computed and the time when an opera- 
tor should be applied to the input relation. 

33. Commutativity vs. Recursive Redundancy 
The class of recursions that contain recursively 

redundant predicates was also identifkd by Naughton 
[Naug86]. Consider the operator A that is the product of a 
et of operators (Ai), i.e., AylA2--*A,. In this CZX, 

every term in the series A l = xAk is a product of the Ai’s 
k=O 

some number of times. An operator Ai, &iSn , is reczu- 
sively redwtdant if the= is some N such that each term in 
the series of A’ needs Ai factored in less than N times. The 
nonrecursive predicates appearing in Ai are ah called 
recursively redundant. Before stating the main result of this 
subsection we need the following definitions. An operator 
B isun’orml bounded,iftkreexistK andN,K<N,such 
that B,3f,B2 . An operator B is torsion, if there exist K 
and N, KdV, such thatBN = BK . Clearly, every torsion is 
uniformly bounded, but the opposite is not true in general. 
The effect of the presense of recursively redundant opera- 
tors on the query processing algorithm of an operator is 
given by the following result [Ioan88a]. 

Theorem 3.2: If B and C are mutually commutative 
and B is torsion, then B is recursively redundant in (B C)’ . 

Sketch of prool: Consider an operator A, such that 
A=BC=CB andtbereexistK andN,K<N,suchthat 
B”=B=. Then, 

A’ = (B C)’ = +C” + (~BmC”)(CN-=)*. 
m=O m=K 

The details of the above derivation are given elsewhere 
[Ioan88a]. Note that B ‘-’ is the highest power of B used in 
any term of A’, i.e., B is recursively redundant. Clearly, 
the above formula corresponds to a more efficient algorithm 
than processing A as a whole, since B is processed only for 
a fixed finite number of times, i.e., N-l, beyond which only 
C isprocessed. cl 

’ The precise detinitim of full sclectims is given by Naughton 
mauggg]. The key observation is that if A tA p4 d t and oAt=A to, then 
u is a full sekxtion. 
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4. CHARACTERIZATION OF COMMUTATMTY 
We now turn our attention to commutativity as 

expressed in a logic framework. We restrict ourselves to 
linear, function-free, constant-free, and range-restricted 
recursive rules, i.e., every variable in the consequent 
appears at least once in the antecedent as well. Thus, for 
any finite database, the answer to any query is finite. If a 
variable appears in the consequent of a rule, it is called dis- 
tinguiskd, otherwise it is called nondistinguiskd. We 
assume that the rules have the same consequent and share 
no nondistinguished variables. Moreover, repeated vari- 
ables in the consequent are replaced by distinct ones, while 
adding the appropriate equality predicates in the antecedent. 
Finally, although the original task is to compute the transi- 
tive closure of two recursive rules with the same conse- 
quent, we are interested in the commutativity of the under- 
lying nonrecursive rules, i.e., conjunctive queries. (Com- 
mutativity as defined in Section 3, is a property of nonrecur- 
sive rules (operators).) Given a recursive rule, the 
corresponding underlying nonrecursive one will be written 
with po as the (output) predicate in its consequent and PI 
as the (input) predicate in its antecedent. Nevertheless, we 
shall still be referring to these two predicates as instances of 
the recursive pmdicate. 

We say that two rules rl and r2 with the same conse- 
quent commure if composing rl with ~2, i.e., resolving the 
consequent of r2 with the literal of the recursive predicate 
in the antecedent of r 1, (denoted by r i r 2) and composing r2 
with rl (denoted by r2ri) give equivalent rules, i.e., given 
any relations for the predicates in their antecedents produce 
the same output relation for the predicate in their conse- 
quent. This, in turn, is equivalent to the existence of 
homomorphisms from each composite to the other 
EChan’77, Aho7%3. Given two rules r and s , a homomor- 
phism f : r + s is a mapping from the variables of r into 
those of s , such that (i) if x is a distinguished variable then 
f(x)=x, and (ii) if Q(xr,...,x~) appears in the antecedent of 
r, then Q(f(xl),...J(x,)) appears in the antecedent of s. 
Clearly, the definition of commutativity suggests a straight- 
forward algorithm to test it for two rules rl and r% The 
algorithm involves checking for equivalence of the two 
composites r 1 rs and t-23 1. Therefore, a polynomial time 
implementation of this algorithm is unlikely to exist, since 
equivalence of conjunctive queries is known to be an Np- 
complete problem lChan77, Aho7%]. 

4.1. A Suflkient Condition 
In this section, we shall give a sufficient condition for 

commutativity that avoids producing the two composites. 
The condition can be tested in exponential time, because it 
potentially involves testing for equivalence of conjunctive 
queries. The test, however, is still more efficient than the 
one based on the definition of commutativity, because the 
exponential part is only occasionally applied on parts of the 
original rules as opposed to always being applied on the 

composites of the two rules. 
As a notation vehicle, we shall use a version of the 

a-graph of a rule (which we shall also call a-graph), which 
was introduced for the study of uniform boundedness 
lh~n851. The a-graph of a rule is defined as follows. 
(0 

00 

(iii) 

For every variable in the rule, a node is put in the 
graph. 
If two variables x y appear in two consecutive argu- 
ment positions of some nonrecursive predicate Q in 
the rule, an undirected edge (x-y) is put in the graph 
between the corresponding two nodes x y . Also, ifx 
appears in a unary nonrecursive predicate Q in the 
rule, an undirected edge (x-x) is put in the graph. In 
both cases, the label of the edge is Q. 
If two variables xy appear in the same position of 
the recursive predicate P in the antecedent and the 
consequent respectively, then a directed arc (x -+y ) is 
put in the graph from node x to node y . 
The following definitions about the connected com- . . 

ponents of the (underlying undirected graph of the) a-graph 
of a rule are also necessary. A persistent component is one 
that contains exactly one variable, which is distinguished, 
and no nonrecursive predicates (undirected edges). Its vari- 
able is also called persistent. A permutation component is 
one that contains only distinguished variables (i.e., their 
positions in the antecedent is a permutation of their posi- 
tions in the consequent) and no nonrecursive predicates 
(undirected edges). Its variables are also called permutation 
variables. Any other component is called a general com- 
ponent. Each one of its distinguished variables that is the 
head and the tail of a directed am (i.e., it appears in the 
same position in the recursive predicate in the antecedent 
and the consequent) is called semi-persistent. Any other 
remaining distinguished variable is called general. Notice 
that every persistent component is a permutation component 
as well. Also, every persistent variable is both a semi- 
persistent and a permutation variable as well. Whenever it 
is necessary to exclude persistent components (variables) 
from the other classes, we shall qualify the terms by nun- 
friviuf, e.g., a nontrivial permutation component is a permu- 
tation component that is not persistent. 

Example 4.1: The following is the a-graph of the 
rule 

6 p.0 0 
I4 x Y 1 

Figure 4.1: Example of an a-graph. 
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Variable z is persistent, variables w and y are semi- 
persistent, variables u and v are permutation, and variable 
x is general. 0 

For a rule r , we define the function h from the set of 
distinguished variables in r to the set of all variables in r. 
For a distinguished variable x, h(x) is the variable that 
appears in the recursive predicate in the antecedent in the 
same position as x appears in the consequent. Since dis- 
tinguished variables are assumed to appear exactly once in 
the consequents of rules (with the potential of repeated vari- 
ables being real&d by equalities in the antecedent), h is a 
function. Note that, if h (x)=y , then there exists a directed 
arc (r+x) in the u-graph of the rule. We also define 
powersofh as 

h’(x)=h (x), and 

h”(x)=h(h”-l(x)), if h”-*(x) is distinguished. 

For two rules rl and r2, we define two more functions, g t2 
on the variables of ra and gzl on the variables of r 1. Since 
the two rules are assumed to share no nondistinguished 
variable, the former is defined as 

2 z is nondistinguished 
t? 12b * 

h,(z) z is distinguished 

and similarly the latter. By definition, when r t r2 is formed, 
a variable z in a predicate of r2 is always replaced by 
tflZ(Z)- 

Finally, two sets of permutation components are con- 
sistent if they are formed by the same (distinguished) vari- 
ables, and for every variable x in them, it is 
h&(x)) = h2(hl(x)). Clearly, consistent permutation 
components commute. 

The following theorem gives a sufficient condition 
for commutativity of rules of the form specitied in the 
beginning of Section 4. Its proof is omitted and can be 
found in the complete version of this paper [Ioan88b]. 
Another, less general sufficient condition for commutativity 
has been independently discovered and reported elsewhere 
[Ramaw. 

Theorem 4.1: Two rules rl and r2 with the same 
consequent commute if 
(a) the nontrivial semi-persistent variables in rt are 

semi-persistent in t2 also (similarly for r Z), 
(b) the nontrivial permutation variables in rl belong to 

consistent petmutation components in t2 (similarly 
for rZ), 

(c) the general variables in r l either belong to an 
equivalent component in r2, or they are persistent in 
r2 (similarly for r2). 

Example 4.2: The following two ales, whose CL- 
graphs are shown in Figure 4.2, commute with each other. 

Po(x.~s):-Px(uys)~Q(~y) 

Po(x,y,z):-P~(~,y,v)~R(ty) 

Both composites are equal to the rule below. 

Po(xy,z):-P~(uy,v)~Q(~y)~R(x.~) 

i 0 
X Y z 

r1 

0 d 
X Y 2 

r2 

Figure 4.2: a-graphs of commuting rules 
satisfying the condition of Theorem 4.1. 

Note that the condition of Theorem 4.1 is satisfied by the 
corresponding u-graphs. 0 

Unfortunately, as the following counter-example 
shows, the condition of Theorem 4.1 is not necessary for 
commutativity. 

Example 43: The following two rules, whose a- 
graphs are shown in Figure 4.3, also commute with each 
other. 

Botb composites are isomorphic to the rule below. 

Po(x.y):-p~(u,v)~Q(y)~Q(w)~Q(x) 

W 

I 

Y 

X L Q 

r1 r2 

Figure 4.3: a-graphs of commuting rules 
not satisfying the condition of Theorem 4.1. 

In this case, the condition of Theorem 4.1 is not satisfied. 0 
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We am not aware of any necessary and sufficient 
condition for commutativity for rules of unrestricted form 
that is computationally or aesthetically better than the con- 
dition of the definition of commutativity. The following 
theorem shows that the condition of Theorem 4.1 is neces- 
sary and sufficient for commutativity if we restrict our 
attention to rules with no repeated variables in the conse- 
quent and no repeated nonrecursive predicates in the 
antecedent The former restriction is enforced after all 
equalities have been eliminated from the antecedent. 
Before proceeding with the proof of the theorem, we need 
the following lemmas, whose proofs can be found in the 
complete version of this paper [Ioan88b]. 

Lemma 4.1: Consider two rules rl and r2 with no 
repeated variables in the consequent and no repeated nonre- 
cursive predicates in the antecedent that commute with each 
other. Let x be a distinguished variable, with h i(x)=x ’ and 
h 2(x )=x “, such that both x’ and x” are distinguished. 
Then, one of the following holds: 

09 both htx’? and hz(x’) are distinguished and 
h&%&3, i.e., hdhdx&hthltx)h or 

(b) both h 1(x”) and h 2(x ‘) are nondistinguished. 
Lemma 4.2: Consider two rules rl and r2 with no 

mpeated variables in the consequent and no repeated nonre- 
cursive predicates in the antecedent that commute with each 
other. Let (xk), oskIn+l, be a set of distinguished vari- 
ables such that h l(xk )=xk+, , i.e., hpl (x~)=x~+~, for OlRln, 
and x0 appears in a nonreeursive predicate Q. Then, one of 
the following holds: 
(4 h2W=x~, MG+l, or 
0 h2h)=xc+l, i.e., h$+’ (x&x~+~, for (Kk4r, and x0 

appears in a nonrecursive predicate Q in r2. 
Theorem 4.2: Two rules r l and r2 with the same 

consequent and no mpeated variables in the consequent and 
no repeated nonrecursive predicates in the antecedent com- 
mute if and only if 
(a) the nontrivial semi-persistent variables in rl are 

semi-persistent in r 2 also (similarly for r 2). 
(b) the nontrivial permutation variables in rl belong to 

consistent permutation components in r2 (similarly 
for rz), 

(c) the general variables in rl either belong to an 
equivalent component in r2, or they are persistent in 
r2 (similarly for r 2). 
Proof: Recall that we assume that the two rules have 

the same consequents and share no nondistinguished vari- 
ables. The “if’ direction of the theorem follows from 
Theorem 4.1. 

For the other direction of the theorem, assume that r 1 
and r2 commute. We shall show that for a distinguished 
variable x of ri, one of (a). (b), or (c) holds in r2, depend- 
ing on the type of x. Since the theorem is symmetric in rI 

and r2, the variables in rs are not examined. We shall 
always consider x being the first distinguished variable in 
the consequent, and we shall only be writing down the parts 
of the rules that are relevant to the proof. Also, unimportant 
variableswillbedenotedby-. 

(i) x is a nontrivial semi-persistent variable: In this 
case,x a~atleasttwiceintheantecedentofr,. This 
implies that it belongs to a general component, and that 
there exists a set of distinguished variables (xk ) , OIk In +l, 
such that hl(xk)=xk+l, OSkln, with x=x,,=x,+~, and x0 
appears in a nonrecursive predicate Q. If this is not true, 
then there must exist repeated variables in the consequent of 
rl, which is a contradiction. Applying Lemma 4.2 for x=x,, 
yields h2(x,)=xn or h2(x,,)=xm+I. Since x=x,,=x,,+~, this 
implies that in all cases h2(x)=x, i.e., that x is semi- 
persistent in r 2. 

(ii) x is a nontrivial permutation variable: If x is not a 
permutation variable in r2 (i.e., it is a general variable or a 
nontrivial semi-persistent variable), then there exists a set of 
distinguished variables (yr ), OGIn+l. such that 
h&)=yk+1. OlkSn, with x=Y~+~, and yc appears in a non- 
recursive predicate Q in r 2. By Lemma 4.2, this implies 
that either x=hl(x) or x=hf+’ (yo) and yc appears in a non- 
recursive predicate Q in r 1. In the first case, x is a semi- 
persistent variable in rl, and in the second case, x is a gen- 
eral variable in rl. In both cases, this is a contradiction, 
since x is a nontrivial permutation variable in rl. Hence, x 
must be a permutation variable in r2 also. 

Since x is a permutation variable in rl and r2, hi(x) 
and hz(x) must also be permutation variables in rl and r2 
respectively (hi(x) is part of the same permutation as x in 
ri). The argument in the previous pamgraph can be applied 
in the case of h2(x) also and yield that h2(x) is a permuta- 
tion variable in rl as well. Hence, h,(x), h2(x), and 
hl(h2(x)) are distinguished variables. By Lemma 4.1, 
h2(hI(x)) is also distinguished, and h2(hl(x))=hI(h2(x)). 
This implies that x belongs to consistent sets of permutation 
components in r t and r2. 

(iii) x is a general vurkabZe: This implies that there 
exists a set of distinguished variables (xk ), (MRti+l. such 
that hI(x+x~+I, CKkSn, with x=x,,+~, and x0 appears in a 
nonrecursive predicate Q. By Lemma 4.2, this implies that 
either x=h2(x), i.e., that x is a semi-persistent variable in 
r2, or x=h$+* (xg), and x0 appears in a nonrecursive predi- 
cate Q in r2, i.e., that x is a general variable in r2. We shall 
examine the two cases separately. 

If x is semi-persistent in r2, we shall show that it can- 
not be nontrivial semi-persistent, i.e., it must be persistent. 
Assume to the contrary that x is nontrivial semi-persistent 
in r2. From case (i) for r2, we conclude that x is semi- 
persistent in rl, which is a contradiction. Hence, x must bc 
persistent. 

If x is general in r2, we shall show that it belongs to a 
component that is equivalent to its component in rl. Recall 
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that we examine the case where h&)=~~+~, for all MGr, 
which implies that hi(x&ha(x~). Since x=x,,+~ is an arbi- 
trary variable in its component, we may conclude that for 
any distinguished variable z in that component, either both 
hi(z), h,(z) arc distinguished and h,(z)=hz(z), or both 
h &), h,(z) are nondistinguished, i.e., the structnrc of h for 
the components of z in rl and r2 is the same. Hence, if we 
assume that the two components are not equivalent, there 
must be some nonrecursive predicate connected (through a 
series of nonrecursive predicates) to a distinguished vari- 
able in the component in tl that is not co~ected through 

the same series of nonrecursive predicates to the same dis- 
tinguished variable in the component in r2 (or vice-versa). 
Without loss of generality, assume that x is such a dis- 
tinguished variable. Also without loss of generality, assume 
that h l(x)=h2(x)=y is a distinguished variable, and that 
only nondistinguished variables appear in the nonrecursive 
predicates connected to x (except x). The other cases are 
treated similarly. This situation is depicted by the rules of 
Figure 4.4 and their composites. Clearly, since y zx (x is 
general and not semi-persistent), the two composites are not 
equivalent, and rl and t2 cannot commute, which is a con- 
tradiction. Hence, the assumption that the two components 
where x belongs in rt and 12 are not equivalent is wrong. Cl 

The complexity of the condition in Theorem 4.2 is 
given by the following theorem. 

Theorem 4.3: Commutativity of two rules with no 
repeaed variables in the consequent and no repeated vari- 
ablesintheantecedentcanbetestedinO(u,+nu,+nZ) 
time, where u, is the arity of the recursive predicate,, a, is 
the maximum arity of a nonrecursive predicate, and n is the 
maximum number of the nonrecursive predicates in the 

, rules. 
Sketch of prod: The algorithm has the following 

basic steps. 

Identify the connected components of the underlying 
~directed graphs of the u-graphs of the two rules, 
while identifying tbe type of every distinguished vari- 
able (i.e., persistent, nontrivial semi-persistent, non- 
trivial permutation, or general). The quantity 
a,+nu, isanupperboundonboththenodesand 
the edges/arcs in the graph. So, this step can be done 
in 0 (a, + n a,) time [Aho74]. 
For every nontrivial semi-persistent variable in tbe 
one rule, check if it is semi-persistent in the other. 
This step takes 0 (1) for every nontrivial semi- 
persistent variable. 
For every nontrivial permutation variable in the one 
rule, check if it belongs in a consistent permutation 
component in the other. This step takes 0 (1) for 
every nontrivial permutation variable. 
For every general variable in the one rule, check if it 
is persistent in the other. If it is, do nothing. This 
step takes 0 (1) for every such variable. If it is not, 
check if it belongs in an equivalent component in the 
other rule. Because the rules contain no repeated 
nomecursive predicates in the antecedent, 
equivalence can be tested in polynomial time as fol- 
lows (the components have to be isomorphic). 

W 

(0 

For every distinguished variable, check if the 
h functions of the two rules are compatible. 
This step takes 0 (4) time. 
For every nonrecursive predicate in the one 
rule, check if it exists in the other rule and if 
the mappings between the variables are con- 
sistent with the mappings of the other predi- 
cates. This step takes 0 (n) time for the first 
check and O(u,) time for the second check 
for every nonrecursive pm&ate, for a total of 
O(n a, +n2)time. 

r1: P&,**~):-P~(y;~~ )~Rdx~d~Rz(z~t~d * * * A R,,-I&,,-2rzm-1) A &&,t,-IA,,) A * * * 

r2: Po(x;~~):-P*(y;~~ )ARI(x,z’~)AR~(z’~,z’~ --- A R,,,-~(z’,,,-~,z’~~~)A * ** 

r1r2: Po(x;*~):-P~~;~~ )A RI(Y 2’1) A R2(~‘4’2) *- * A L,(z’,n-2~‘,,,-1) A 

Rdx~z)~Rztz,ti) * * * A L~(G-zJ~,-I) A b&m-l~) A * * * 

r2r1: Po(x;..):-PIc, -*‘)~RdYtd~Rdz& * * ’ A LI(G-~J~,-I) A &&~-IA) A 

Rl(x ,z’,) A R2(z;,z’9 . * * A &,,&‘m-2,z’m-l) A * . * 

Figure 4.4: Rules with a general variable in nonequivalent components and their composites. 
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The total time for steps (b), (c), and (d) without (dl) 
and (d2) is 0 (Us). If we add to that the time needed for (a), 
(dl), and (d2). we conclude that the total running time of 
thetestisO(u,+na,+n2). cl 

5. SEPARABILITY AND RECURSIVE REDUN- 
DANCY REVISITED 

In Section 3, we examined commutativity vs. separa- 
bility and recursive redundancy as expressed in the abstract 
form of the algebra to obtain results that hold for any linear 
rules. In this section, we restrict ourselves to function-free, 
constant-free, and range-restricted rules and use our results 
from Section 4 to obtain more relationships of commuta- 
tivity with separability and recursive redundancy for this 
class of rules. 

5.1. Commutativity vs. Separability 
Two rules rl and r2 with the same consequent are 

separable [Naug88] if 
(1) for any distinguished variable x, either hi (x)=x or 

hi(x) is nondistinguished, i=1,2, 
(2) for any distinguished variable x, either both x and 

hi(x) appear under nonrecursiver predicates or 
none, i=1,2, and 

(3) the sets of distinguished variables that appear under 
nonrecursive predicates in rl and r2 am either equal 
or have an empty intersection. 

We ignore a fourth clause that the original definition 
contained, since it was identified as nonessential for the 
conectness of the separable algorithm. For the case of two 
rules, one can take advantage of the efficient features of the 
separable algorithm only if in clause (3) the intersection of 
the sets of distinguished variables that appear under nonre- 
cursive predicates in rl and ts is empty. With this assump- 
tion, we can prove the following lemma. 

Lemma 5.1: If two rules rl and r2 with the same 
consequent am separable, then they only contain semi- 
persistent and general variables, and any general or non- 
trivial semi-persistent variable in tl is persistent in t-2 (simi- 
larly for the variables of Q.). 

Combining Lemma 5.1 with Theorem 4.1 yields the 
following theorem. 

Theorem 5.1: If two rules are separable then they 
commute, but the opposite does not hold. 

Proofz If two rules rl and t2 are separable, by 
Lemma 5.1, the general variables of tl satisfy condition (c) 
of Theorem 4.1, and the nontrivial semi-persistent variables 
of r 1 satisfy condition (a) of the same theorem (similarly for 
the variables of TZ). Moreover, by the same lemma, there 
are no other types of variables in ri or r2. Thus, by 
Theorem 4.1, the two rules commute. 

The rules of Example 4.2 serve as examples of com- 
mutative rules that are not separable. They violate both 
conditions (2) and (3) of the separable definition. Cl 

By Theorem 5.1, commutativity is a strictly more 
general notion than separability. Nevertheless, all the 
efficient ptocessing algorithms for separable recursions are 
applicable for commutative rules as well (Theorem 3.1). 

5.2. Commutrrtivity vs. Recursive Redundancy 
Given the a-graph of a rule, the augmented a-graph 

is produced by disconnecting all edges emanating from 
semi-persistent variables in the a-graph, and replacing the 
semi-persistent variable with a distinct nondistinguished 
variable for every such edge [Naug86]. A necessary and 
sufficient condition for a nonrecursive predicate in a rule of 
some restricted form to be redundant is given by the follow- 
ing theorem. 

Theorem 5.2: fNaug86j A nonrecursive predicate in 
a rule with no repeated variables in the consequent and no 
repfated nonrecursive predicates in the antecedent is mcur- 
sively redundant if and only if it appears in a bounded com- 
ponent of the augmented a-graph of the rule. 

Theorems 3.2,4.2, and 5.2 imply the following. 
Theorem 5.3: Let A=B C be an operator 

corresponding to a rule with no repeated variables in the 
consequent and no repeated nomecursive predicates in the 
antecedent. Then, B is recursively redundant if and only if 
B and C commute and B is uniformly bounded. 

Sketch of proof: From Theorem 4.2, we can prove 
that each component in the augmented a-graph, seen as an 
operator, commutes with the operators of all the other com- 
ponents. We can also show that, if the rules contain no 
repeated variables in the consequent and no repeated nonre- 
cursive predicates in the antecedent, any uniformly bounded 
component of the augmented graph is torsion. Combining 
this with Theorem 5.2, yields that the condition of Theorem 
3.2 is necessary and sufficient (in this case the properties of 
being torsion and uniformly bounded coincide). Cl 

6. CONCLUSIONS 
We have investigated the role of commutativity in 

query processing of linear recursive rules. Using the alge- 
braic structure of such rules, we have identified commuta- 
tivity as the essence of many properties that give rise to 
important classes of recursive rules, i.e., separable rules and 
rules with recursively redundant predicates. Focusing on 
range-restricted rules that contain no functions, and no con- 
stants, we have given a sufficient condition for such rules to 
commute. We have also shown that the condition is neces- 
sary and sufficient when the rules contain no repeated vari- 
ables in the consequent and no mpeated nonrecursive predi- 
cates in the antecedent. In that case, the condition can be 
tested in polynomial time in the size of the rules. 
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Commutativity emerges as a key property of linear 
recursive rules for which efficient algorithms can be 
applied. This paper is a first step in the investigation of its 
power. We believe that there is much more work to be 
done in this direction. Some problems we plan to study in 
the future are the following: characterize commutativity in 
more general classes of rules than the one studied in this 
paper; investigate the relationship of commutativity and 
one-sided recursion; investigate the relationship of commu- 
tativity and several optimizations proposed for the magic 
sets and counting algorithms (e.g., there seems to be a 
strong relationship between commutativity and the semijoin 
optimization lBeer871); examine ways to take advantage of 
partial commutativity, i.e., when the transitive closure of a 
product of operators is to be computed, only a subset of 
which am mutually commutative; and examine ways to take 
advantage of commutativity appearing in some higher 
power of an operator. 
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