
COMMUTATIVITY AND ITS ROLE
IN THE PROCESSING OF LINEAR RECURSION

Yannis E. Ioannidis +

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

Abstract

We investigate the role of commutativity in query process-
ing of linear recursion. We give a sufficient condition for
two linear, function-free, constant-free, and range-restricted
rules to commute. The condition depends on the form of
the rules themselves. For a restricted class of rules, we
show that the condition is necessary and sufficient and can
be tested in polynomial time in the size of the rules. Using
the algebraic structure of such rules, we study the relation-
ship of commutativity with several other properties of linear
recursive rules. We show that commutativity is in the
center of several important special classes of linear recur-
sion, i.e., separable recursion and recursion with recursively
redundant predicates.

1. INTRODUCTION
Several general algorithms have been proposed for

the processing of recursive programs in database systems
(DBMSs). Recursive query processing is recognized as an
expensive operation, and all the proposed algorithms incur
some significant cost. Thus, the importance of identifying
special cases of recursion on which specialized and more
efficient algorithms are applicable is obvious. Such special
cases of recursion include bounded recursion (uniform and
otherwise), transitive closure, separable recursion, and
onesided recursion. In this paper, we elaborate on another
special case of recursion, where participating operators (or
rules) commute with each other. When this happens, recur-
sive queries can be decomposed into smaller queries, which
are expected to have a lower total execution cost than the
original query.

’ Supported by the National Science Fouadatkm under Grant IRI-
8703592.

Permission to copy without fee all OP part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requiv-es a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

Commutativity has already been identified as a
significant special case of recursion [Ioan88a]. It has been
shown how several types of queries are affected by the
applicability of commutativity and how the general algo-
rithms for recursive queries are affected. Constants can
also he used in conjunction with commutativity to reduce
the amount of data the system has to look at to answer a
query with selections. This earlier work on commutativity
was done within the algebraic framework of linear recursive
operators (rules) [Ioan86a,Ioan88a]. In this paper, we use
the first order logic representation of rules to give necessary
and sufficient conditions for two linear recursive rules of a
restricted form to commute with each other. These condi-
tions are based on the form of the ales themselves and
make no direct use of the definition of commutativity,
which requires composing the two rules in both ways and
examining the two composites for equivalence. We also
use the algebraic formulation of recursion to compare com-
mutativity with other special classes of recursion, in partic-
ular, separable recursion and recursion with recursively
redundant predicates, and discuss the effects of commuta-
tivity on the algorithms proposed for them.

The paper is organized as follows. Section 1 is an
introduction. Section 2 is a summary of the algebraic
model for linear recursion, which has been introduced else-
where [Ioan86a, Ioan88aJ. In Section 3, we define commu-
tativity in the algebraic model and we compare the notion
of commutativity with separability and recursive redun-
dancy. Section 4 manipulates rules in the logic model and
gives a decision algorithm for commutativity for a restricted
class of rules. In Section 5, separability and recursive
redundancy are reexamined for the restricted class of rules
studied in Section 4. Finally, Section 6 presents our conclu-
sions and gives some directions for future work.

2. ALGEBRAIC MODEL
In this section, we provide a summary of the alge-

braic model for linear recursion [Ioa&a,Ioan88a]. Con-
sider a linear recursive rule

P (g(O)) A Q &(‘3 A * * - A Q&.“)-) + P~(c+13,(2.1)

where for each i , x(‘) is a vector of variables. No restriction
is imposed on the form of the rule, or on the finiteness of
the relations corresponding to the various predicates in the
rule. Thus, for example, the rules can contain functions.
Each one of P @) and the Q i @)‘s is a (positive) literal.
In relational terms, if (qi) is a set Of relations (q i

Amsterdam, 1989

155 -

corresponding to the predicate Qi), and f(P, (qi)) is a
function that accepts as input and produces as output rela-
tions of the same schema as P, the above rule can be
expressed as

or equivalently P u f (I’, (q i)) = P. Given the existence of
an additional nonrecursive rule of the form

(2.2)

which in relational terms, given q a relation corresponding
to Q, is expressed as q c P, the problem of recursive infer-
ence can be stated as one of finding P such that

P=f Op. (qi))“%
P is minimal with respect to (a),
i.e., P’ satisfying (a) implies P s P’.

The fUllCtiOll f (P, (q i)), having (qi) as parameters
and P as input, can be thought of as a linear relational
operator applied to the recursive relation P to produce
another relation of the same schema. Let R be the set of all
such operators. We can establish an algebraic framework in
which we can define operations on relational operators as
follows. Mulfiplicurion of operators is defined by
(A *B)P =A(BP) and addition by (A+B)P =AP uBP.
+ For notational convenience we omit the operator *. The
multiplicative identity (1P = P) and the additive identity
(OP = 0, 0 the empty set) are defined in obvious ways,
The n-th power of an operator A is inductively defined as:
A’= 1, A” =A*A”-‘=A”-‘*A. Equality of operators in R
is defined as A=B e VPJP=BP. Finally, a partial
order<isdetinedonR asASB e> VP,APE;BP. Theset
R with the operations defined above forms a closed semir-
ing bad3a].

Having embedded the linear relational operators in
the above algebraic framework of the closed semiring, the
set of Horn clauses (2.1) and (2.2). assuming that A is the
operator that corresponds to (2.1), can be rewritten as

APsP,

q SP.

The minimal solution of the system is the minimal solution
of the equation

P=APuq. (2.3)

’ The above definitions are valid only if the operates involved are
apppriately ccmpatible, e.g.. for +, the opcrato~~ have to agree on the
schema of their input and the a&ma of their output. Altbough in the rest
of the paper we only deal with appmpriately compatible operatan. the gen-
eral algebraic theory incoqmates all operators [Ioanlh].

The solution is a function of q. Hence, P can be written as
P = B q, and the problem becomes one of finding the
operator B . Manipulation of (2.3) results in the elimination
of q, so that the equation contains operators only. In this
pure operator form, the recursion problem can be restated as
follows. Given operator A, find B satisfying the following:

(a)
09

l+A B =B,
B is minimal with respect to (a),
i.e., l+A C = C =S B I C.

(2.4)

Theorem 2.1: [IoarS&] The solution of equation
(2.4a) with restriction (2.4b) is A l =kek.

The operator A’ is called the transitive closure of A.
Theorem 2.1 is originally due to Tarski [TarsS], and in the
database context, it was first examined by Aho and Ulhuan
[Aho79b]. It is the fh-st time though that the solution of
(2.4) is expressed in an explicit algebraic form within an
algebraic structure like the closed semhing of the linear
relational operators. The implications of the manipulative
power thus afforded on the implementation of A* are
significant [Ioar&%, Ioan86b, Ioan87, Ioan88al. In this
paper, we shall concentrate on the implications of commu-
tativity of operators in the implementation of A l .

Note that, although an operator A may be derived
from a recursive rule, the operator itself is nonrecursive,
i.e., it corresponds to a conjunctive query [Chan77]. Also
note that A’ represents an operator. ‘lhe query answer is
the result of applying A’ to a given relation q. This is only
an abstraction, however, that allows us to study recursion
within the closed semiring of relational operators. It poses
no restriction whatsoever in the processing order of the
query, i.e., it does not enforce that tirst A l is computed and
then it is applied to q. For example, assume that A’ can be
decomposed into B’ and C’, i.e., A’=B’ C’, so that the
final computation is B’ C’ q. The computation may
proceed by first computing C’ , then applying it to q, and
then applying seminuive [Banc85] with B as the basic
operator and (C’ q) as the initial relation. The significance
of the algebraic formulation lies in the abstraction that it
offers, within which the capability of the decomposition
A* =B’C’canbeexhibited.

3. COMMUTATIVITY VS. SEPARABILITY and
RECURSIVE REDUNDANCY

3.1. Commutativity
We say that two operators B and C commute if

B C = C B . Consider computing the transitive closure of
A, A’, where A=B+C. It has been shown that if
CBIB’C’,forsomek,I withR~(O,l)orf~(O,l),then
A* = B‘ C’ [Ioan88a]. Commutativity is a special case of
this condition. The computation of A is decomposed into
two smaller computations, those of B and C (plus an

- 156 -

additional multiplication of them). The complexity of B
and C is smaller than that of A. In general, this is expected
to affect the total cost of the computation significantly.
Hence, it is important to be able to identify when two
operators commute. In Section 4, we present a sufficient
condition for commutativity, which for rules of some res-
tricted form is shown to be necessary and sufficient.

3.2. Commutativity vs. Separability
Separable recursions have been identified by Naugh-

ton as an important class of linear recursion where efficient
algorithms can be applied [Naug88]. In this section, we
shall show that the efficient separable algorithm is applica-
ble to the class of commutative recursions. For the sake of
simplicity, we shall concentrate on two operators A, and
A2 The extensions of the results to an arbitrary number of
operators is straightforward.

Theorem 3.1: Given two operators A I and A2 that
commute, and a selection Q that commutes with one of
them, the separable algorithm can be used for the computa-
tion of a(A l+A 9’ .

Proof: Let A *A PA pI ,. The transitive closure of the
sum ofAl and AZ is given by (A1+Ad* =A; A; [Ioan88a].
Given an initial relation q and a query with a selection Q
that commutes with A 1, we have

a(A,+A$q =A; (aA;)q. (3.1)
To take advantage of the selection, the following algorithm
may be used to derive the query answer given in (3.1). The
variables B and C contain operators whereas the variables R
and S contain relations. Multiplication of operators is
shown explicitly for readability.

B:=a;
c:=q
repeat

B:=B*A,;
C:=B+C;

until C doesn’t change
R:=Cq:
s :=R;
repeat

R:=AIR;
S:=SuR;

until S doesn’t change

The first loop actually involves manipulating relations that
are parameters of the various operators If that is taken into
account, and some small optimizations are incorporated so
that, in every application of an operator inside each loop,
only the new tuples produced in the previous iteration are
used, the above algorithm is precisely the one proposed for
separable recursions with full selections + [Naug88]. 0

In general, given a set of operators (Ai) , lli In, that
are mutually commutative, and a set of selections (Do),
04’ In, such that Oi commutes with all O~XUOB except Ai,
the following holds:

~owJ2 -q(A,+A2+-+A,)* =

Usually, most of the selections will not be present. In the
presense of multiple selections, it is an interesting optimiza-
tion problem to choose the order in which the various
operators should be computed and the time when an opera-
tor should be applied to the input relation.

33. Commutativity vs. Recursive Redundancy
The class of recursions that contain recursively

redundant predicates was also identifkd by Naughton
[Naug86]. Consider the operator A that is the product of a
et of operators (Ai), i.e., AylA2--*A,. In this CZX,

every term in the series A l = xAk is a product of the Ai’s
k=O

some number of times. An operator Ai, &iSn , is reczu-
sively redwtdant if the= is some N such that each term in
the series of A’ needs Ai factored in less than N times. The
nonrecursive predicates appearing in Ai are ah called
recursively redundant. Before stating the main result of this
subsection we need the following definitions. An operator
B isun’orml bounded,iftkreexistK andN,K<N,such
that B,3f,B2 . An operator B is torsion, if there exist K
and N, KdV, such thatBN = BK . Clearly, every torsion is
uniformly bounded, but the opposite is not true in general.
The effect of the presense of recursively redundant opera-
tors on the query processing algorithm of an operator is
given by the following result [Ioan88a].

Theorem 3.2: If B and C are mutually commutative
and B is torsion, then B is recursively redundant in (B C)’ .

Sketch of prool: Consider an operator A, such that
A=BC=CB andtbereexistK andN,K<N,suchthat
B”=B=. Then,

A’ = (B C)’ = +C” + (~BmC”)(CN-=)*.
m=O m=K

The details of the above derivation are given elsewhere
[Ioan88a]. Note that B ‘-’ is the highest power of B used in
any term of A’, i.e., B is recursively redundant. Clearly,
the above formula corresponds to a more efficient algorithm
than processing A as a whole, since B is processed only for
a fixed finite number of times, i.e., N-l, beyond which only
C isprocessed. cl

’ The precise detinitim of full sclectims is given by Naughton
mauggg]. The key observation is that if A tA p4 d t and oAt=A to, then
u is a full sekxtion.

- 157 -

4. CHARACTERIZATION OF COMMUTATMTY
We now turn our attention to commutativity as

expressed in a logic framework. We restrict ourselves to
linear, function-free, constant-free, and range-restricted
recursive rules, i.e., every variable in the consequent
appears at least once in the antecedent as well. Thus, for
any finite database, the answer to any query is finite. If a
variable appears in the consequent of a rule, it is called dis-
tinguiskd, otherwise it is called nondistinguiskd. We
assume that the rules have the same consequent and share
no nondistinguished variables. Moreover, repeated vari-
ables in the consequent are replaced by distinct ones, while
adding the appropriate equality predicates in the antecedent.
Finally, although the original task is to compute the transi-
tive closure of two recursive rules with the same conse-
quent, we are interested in the commutativity of the under-
lying nonrecursive rules, i.e., conjunctive queries. (Com-
mutativity as defined in Section 3, is a property of nonrecur-
sive rules (operators).) Given a recursive rule, the
corresponding underlying nonrecursive one will be written
with po as the (output) predicate in its consequent and PI
as the (input) predicate in its antecedent. Nevertheless, we
shall still be referring to these two predicates as instances of
the recursive pmdicate.

We say that two rules rl and r2 with the same conse-
quent commure if composing rl with ~2, i.e., resolving the
consequent of r2 with the literal of the recursive predicate
in the antecedent of r 1, (denoted by r i r 2) and composing r2
with rl (denoted by r2ri) give equivalent rules, i.e., given
any relations for the predicates in their antecedents produce
the same output relation for the predicate in their conse-
quent. This, in turn, is equivalent to the existence of
homomorphisms from each composite to the other
EChan’77, Aho7%3. Given two rules r and s , a homomor-
phism f : r + s is a mapping from the variables of r into
those of s , such that (i) if x is a distinguished variable then
f(x)=x, and (ii) if Q(xr,...,x~) appears in the antecedent of
r, then Q(f(xl),...J(x,)) appears in the antecedent of s.
Clearly, the definition of commutativity suggests a straight-
forward algorithm to test it for two rules rl and r% The
algorithm involves checking for equivalence of the two
composites r 1 rs and t-23 1. Therefore, a polynomial time
implementation of this algorithm is unlikely to exist, since
equivalence of conjunctive queries is known to be an Np-
complete problem lChan77, Aho7%].

4.1. A Suflkient Condition
In this section, we shall give a sufficient condition for

commutativity that avoids producing the two composites.
The condition can be tested in exponential time, because it
potentially involves testing for equivalence of conjunctive
queries. The test, however, is still more efficient than the
one based on the definition of commutativity, because the
exponential part is only occasionally applied on parts of the
original rules as opposed to always being applied on the

composites of the two rules.
As a notation vehicle, we shall use a version of the

a-graph of a rule (which we shall also call a-graph), which
was introduced for the study of uniform boundedness
lh~n851. The a-graph of a rule is defined as follows.
(0

00

(iii)

For every variable in the rule, a node is put in the
graph.
If two variables x y appear in two consecutive argu-
ment positions of some nonrecursive predicate Q in
the rule, an undirected edge (x-y) is put in the graph
between the corresponding two nodes x y . Also, ifx
appears in a unary nonrecursive predicate Q in the
rule, an undirected edge (x-x) is put in the graph. In
both cases, the label of the edge is Q.
If two variables xy appear in the same position of
the recursive predicate P in the antecedent and the
consequent respectively, then a directed arc (x -+y) is
put in the graph from node x to node y .
The following definitions about the connected com- . .

ponents of the (underlying undirected graph of the) a-graph
of a rule are also necessary. A persistent component is one
that contains exactly one variable, which is distinguished,
and no nonrecursive predicates (undirected edges). Its vari-
able is also called persistent. A permutation component is
one that contains only distinguished variables (i.e., their
positions in the antecedent is a permutation of their posi-
tions in the consequent) and no nonrecursive predicates
(undirected edges). Its variables are also called permutation
variables. Any other component is called a general com-
ponent. Each one of its distinguished variables that is the
head and the tail of a directed am (i.e., it appears in the
same position in the recursive predicate in the antecedent
and the consequent) is called semi-persistent. Any other
remaining distinguished variable is called general. Notice
that every persistent component is a permutation component
as well. Also, every persistent variable is both a semi-
persistent and a permutation variable as well. Whenever it
is necessary to exclude persistent components (variables)
from the other classes, we shall qualify the terms by nun-
friviuf, e.g., a nontrivial permutation component is a permu-
tation component that is not persistent.

Example 4.1: The following is the a-graph of the
rule

6 p.0 0
I4 x Y 1

Figure 4.1: Example of an a-graph.

- 158 F

Variable z is persistent, variables w and y are semi-
persistent, variables u and v are permutation, and variable
x is general. 0

For a rule r , we define the function h from the set of
distinguished variables in r to the set of all variables in r.
For a distinguished variable x, h(x) is the variable that
appears in the recursive predicate in the antecedent in the
same position as x appears in the consequent. Since dis-
tinguished variables are assumed to appear exactly once in
the consequents of rules (with the potential of repeated vari-
ables being real&d by equalities in the antecedent), h is a
function. Note that, if h (x)=y , then there exists a directed
arc (r+x) in the u-graph of the rule. We also define
powersofh as

h’(x)=h (x), and

h”(x)=h(h”-l(x)), if h”-*(x) is distinguished.

For two rules rl and r2, we define two more functions, g t2
on the variables of ra and gzl on the variables of r 1. Since
the two rules are assumed to share no nondistinguished
variable, the former is defined as

2 z is nondistinguished
t? 12b *

h,(z) z is distinguished

and similarly the latter. By definition, when r t r2 is formed,
a variable z in a predicate of r2 is always replaced by
tflZ(Z)-

Finally, two sets of permutation components are con-
sistent if they are formed by the same (distinguished) vari-
ables, and for every variable x in them, it is
h&(x)) = h2(hl(x)). Clearly, consistent permutation
components commute.

The following theorem gives a sufficient condition
for commutativity of rules of the form specitied in the
beginning of Section 4. Its proof is omitted and can be
found in the complete version of this paper [Ioan88b].
Another, less general sufficient condition for commutativity
has been independently discovered and reported elsewhere
[Ramaw.

Theorem 4.1: Two rules rl and r2 with the same
consequent commute if
(a) the nontrivial semi-persistent variables in rt are

semi-persistent in t2 also (similarly for r Z),
(b) the nontrivial permutation variables in rl belong to

consistent petmutation components in t2 (similarly
for rZ),

(c) the general variables in r l either belong to an
equivalent component in r2, or they are persistent in
r2 (similarly for r2).

Example 4.2: The following two ales, whose CL-
graphs are shown in Figure 4.2, commute with each other.

Po(x.~s):-Px(uys)~Q(~y)

Po(x,y,z):-P~(~,y,v)~R(ty)

Both composites are equal to the rule below.

Po(xy,z):-P~(uy,v)~Q(~y)~R(x.~)

i 0
X Y z

r1

0 d
X Y 2

r2

Figure 4.2: a-graphs of commuting rules
satisfying the condition of Theorem 4.1.

Note that the condition of Theorem 4.1 is satisfied by the
corresponding u-graphs. 0

Unfortunately, as the following counter-example
shows, the condition of Theorem 4.1 is not necessary for
commutativity.

Example 43: The following two rules, whose a-
graphs are shown in Figure 4.3, also commute with each
other.

Botb composites are isomorphic to the rule below.

Po(x.y):-p~(u,v)~Q(y)~Q(w)~Q(x)

W

I

Y

X L Q

r1 r2

Figure 4.3: a-graphs of commuting rules
not satisfying the condition of Theorem 4.1.

In this case, the condition of Theorem 4.1 is not satisfied. 0

- 159 -

We am not aware of any necessary and sufficient
condition for commutativity for rules of unrestricted form
that is computationally or aesthetically better than the con-
dition of the definition of commutativity. The following
theorem shows that the condition of Theorem 4.1 is neces-
sary and sufficient for commutativity if we restrict our
attention to rules with no repeated variables in the conse-
quent and no repeated nonrecursive predicates in the
antecedent The former restriction is enforced after all
equalities have been eliminated from the antecedent.
Before proceeding with the proof of the theorem, we need
the following lemmas, whose proofs can be found in the
complete version of this paper [Ioan88b].

Lemma 4.1: Consider two rules rl and r2 with no
repeated variables in the consequent and no repeated nonre-
cursive predicates in the antecedent that commute with each
other. Let x be a distinguished variable, with h i(x)=x ’ and
h 2(x)=x “, such that both x’ and x” are distinguished.
Then, one of the following holds:

09 both htx’? and hz(x’) are distinguished and
h&%&3, i.e., hdhdx&hthltx)h or

(b) both h 1(x”) and h 2(x ‘) are nondistinguished.
Lemma 4.2: Consider two rules rl and r2 with no

mpeated variables in the consequent and no repeated nonre-
cursive predicates in the antecedent that commute with each
other. Let (xk), oskIn+l, be a set of distinguished vari-
ables such that h l(xk)=xk+, , i.e., hpl (x~)=x~+~, for OlRln,
and x0 appears in a nonreeursive predicate Q. Then, one of
the following holds:
(4 h2W=x~, MG+l, or
0 h2h)=xc+l, i.e., h$+’ (x&x~+~, for (Kk4r, and x0

appears in a nonrecursive predicate Q in r2.
Theorem 4.2: Two rules r l and r2 with the same

consequent and no mpeated variables in the consequent and
no repeated nonrecursive predicates in the antecedent com-
mute if and only if
(a) the nontrivial semi-persistent variables in rl are

semi-persistent in r 2 also (similarly for r 2).
(b) the nontrivial permutation variables in rl belong to

consistent permutation components in r2 (similarly
for rz),

(c) the general variables in rl either belong to an
equivalent component in r2, or they are persistent in
r2 (similarly for r 2).
Proof: Recall that we assume that the two rules have

the same consequents and share no nondistinguished vari-
ables. The “if’ direction of the theorem follows from
Theorem 4.1.

For the other direction of the theorem, assume that r 1
and r2 commute. We shall show that for a distinguished
variable x of ri, one of (a). (b), or (c) holds in r2, depend-
ing on the type of x. Since the theorem is symmetric in rI

and r2, the variables in rs are not examined. We shall
always consider x being the first distinguished variable in
the consequent, and we shall only be writing down the parts
of the rules that are relevant to the proof. Also, unimportant
variableswillbedenotedby-.

(i) x is a nontrivial semi-persistent variable: In this
case,x a~atleasttwiceintheantecedentofr,. This
implies that it belongs to a general component, and that
there exists a set of distinguished variables (xk) , OIk In +l,
such that hl(xk)=xk+l, OSkln, with x=x,,=x,+~, and x0
appears in a nonrecursive predicate Q. If this is not true,
then there must exist repeated variables in the consequent of
rl, which is a contradiction. Applying Lemma 4.2 for x=x,,
yields h2(x,)=xn or h2(x,,)=xm+I. Since x=x,,=x,,+~, this
implies that in all cases h2(x)=x, i.e., that x is semi-
persistent in r 2.

(ii) x is a nontrivial permutation variable: If x is not a
permutation variable in r2 (i.e., it is a general variable or a
nontrivial semi-persistent variable), then there exists a set of
distinguished variables (yr), OGIn+l. such that
h&)=yk+1. OlkSn, with x=Y~+~, and yc appears in a non-
recursive predicate Q in r 2. By Lemma 4.2, this implies
that either x=hl(x) or x=hf+’ (yo) and yc appears in a non-
recursive predicate Q in r 1. In the first case, x is a semi-
persistent variable in rl, and in the second case, x is a gen-
eral variable in rl. In both cases, this is a contradiction,
since x is a nontrivial permutation variable in rl. Hence, x
must be a permutation variable in r2 also.

Since x is a permutation variable in rl and r2, hi(x)
and hz(x) must also be permutation variables in rl and r2
respectively (hi(x) is part of the same permutation as x in
ri). The argument in the previous pamgraph can be applied
in the case of h2(x) also and yield that h2(x) is a permuta-
tion variable in rl as well. Hence, h,(x), h2(x), and
hl(h2(x)) are distinguished variables. By Lemma 4.1,
h2(hI(x)) is also distinguished, and h2(hl(x))=hI(h2(x)).
This implies that x belongs to consistent sets of permutation
components in r t and r2.

(iii) x is a general vurkabZe: This implies that there
exists a set of distinguished variables (xk), (MRti+l. such
that hI(x+x~+I, CKkSn, with x=x,,+~, and x0 appears in a
nonrecursive predicate Q. By Lemma 4.2, this implies that
either x=h2(x), i.e., that x is a semi-persistent variable in
r2, or x=h$+* (xg), and x0 appears in a nonrecursive predi-
cate Q in r2, i.e., that x is a general variable in r2. We shall
examine the two cases separately.

If x is semi-persistent in r2, we shall show that it can-
not be nontrivial semi-persistent, i.e., it must be persistent.
Assume to the contrary that x is nontrivial semi-persistent
in r2. From case (i) for r2, we conclude that x is semi-
persistent in rl, which is a contradiction. Hence, x must bc
persistent.

If x is general in r2, we shall show that it belongs to a
component that is equivalent to its component in rl. Recall

- 160 -

that we examine the case where h&)=~~+~, for all MGr,
which implies that hi(x&ha(x~). Since x=x,,+~ is an arbi-
trary variable in its component, we may conclude that for
any distinguished variable z in that component, either both
hi(z), h,(z) arc distinguished and h,(z)=hz(z), or both
h &), h,(z) are nondistinguished, i.e., the structnrc of h for
the components of z in rl and r2 is the same. Hence, if we
assume that the two components are not equivalent, there
must be some nonrecursive predicate connected (through a
series of nonrecursive predicates) to a distinguished vari-
able in the component in tl that is not co~ected through

the same series of nonrecursive predicates to the same dis-
tinguished variable in the component in r2 (or vice-versa).
Without loss of generality, assume that x is such a dis-
tinguished variable. Also without loss of generality, assume
that h l(x)=h2(x)=y is a distinguished variable, and that
only nondistinguished variables appear in the nonrecursive
predicates connected to x (except x). The other cases are
treated similarly. This situation is depicted by the rules of
Figure 4.4 and their composites. Clearly, since y zx (x is
general and not semi-persistent), the two composites are not
equivalent, and rl and t2 cannot commute, which is a con-
tradiction. Hence, the assumption that the two components
where x belongs in rt and 12 are not equivalent is wrong. Cl

The complexity of the condition in Theorem 4.2 is
given by the following theorem.

Theorem 4.3: Commutativity of two rules with no
repeaed variables in the consequent and no repeated vari-
ablesintheantecedentcanbetestedinO(u,+nu,+nZ)
time, where u, is the arity of the recursive predicate,, a, is
the maximum arity of a nonrecursive predicate, and n is the
maximum number of the nonrecursive predicates in the

, rules.
Sketch of prod: The algorithm has the following

basic steps.

Identify the connected components of the underlying
~directed graphs of the u-graphs of the two rules,
while identifying tbe type of every distinguished vari-
able (i.e., persistent, nontrivial semi-persistent, non-
trivial permutation, or general). The quantity
a,+nu, isanupperboundonboththenodesand
the edges/arcs in the graph. So, this step can be done
in 0 (a, + n a,) time [Aho74].
For every nontrivial semi-persistent variable in tbe
one rule, check if it is semi-persistent in the other.
This step takes 0 (1) for every nontrivial semi-
persistent variable.
For every nontrivial permutation variable in the one
rule, check if it belongs in a consistent permutation
component in the other. This step takes 0 (1) for
every nontrivial permutation variable.
For every general variable in the one rule, check if it
is persistent in the other. If it is, do nothing. This
step takes 0 (1) for every such variable. If it is not,
check if it belongs in an equivalent component in the
other rule. Because the rules contain no repeated
nomecursive predicates in the antecedent,
equivalence can be tested in polynomial time as fol-
lows (the components have to be isomorphic).

W

(0

For every distinguished variable, check if the
h functions of the two rules are compatible.
This step takes 0 (4) time.
For every nonrecursive predicate in the one
rule, check if it exists in the other rule and if
the mappings between the variables are con-
sistent with the mappings of the other predi-
cates. This step takes 0 (n) time for the first
check and O(u,) time for the second check
for every nonrecursive pm&ate, for a total of
O(n a, +n2)time.

r1: P&,**~):-P~(y;~~)~Rdx~d~Rz(z~t~d * * * A R,,-I&,,-2rzm-1) A &&,t,-IA,,) A * * *

r2: Po(x;~~):-P*(y;~~)ARI(x,z’~)AR~(z’~,z’~ --- A R,,,-~(z’,,,-~,z’~~~)A * **

r1r2: Po(x;*~):-P~~;~~)A RI(Y 2’1) A R2(~‘4’2) *- * A L,(z’,n-2~‘,,,-1) A

Rdx~z)~Rztz,ti) * * * A L~(G-zJ~,-I) A b&m-l~) A * * *

r2r1: Po(x;..):-PIc, -*‘)~RdYtd~Rdz& * * ’ A LI(G-~J~,-I) A &&~-IA) A

Rl(x ,z’,) A R2(z;,z’9 . * * A &,,&‘m-2,z’m-l) A * . *

Figure 4.4: Rules with a general variable in nonequivalent components and their composites.

- 161 -

The total time for steps (b), (c), and (d) without (dl)
and (d2) is 0 (Us). If we add to that the time needed for (a),
(dl), and (d2). we conclude that the total running time of
thetestisO(u,+na,+n2). cl

5. SEPARABILITY AND RECURSIVE REDUN-
DANCY REVISITED

In Section 3, we examined commutativity vs. separa-
bility and recursive redundancy as expressed in the abstract
form of the algebra to obtain results that hold for any linear
rules. In this section, we restrict ourselves to function-free,
constant-free, and range-restricted rules and use our results
from Section 4 to obtain more relationships of commuta-
tivity with separability and recursive redundancy for this
class of rules.

5.1. Commutativity vs. Separability
Two rules rl and r2 with the same consequent are

separable [Naug88] if
(1) for any distinguished variable x, either hi (x)=x or

hi(x) is nondistinguished, i=1,2,
(2) for any distinguished variable x, either both x and

hi(x) appear under nonrecursiver predicates or
none, i=1,2, and

(3) the sets of distinguished variables that appear under
nonrecursive predicates in rl and r2 am either equal
or have an empty intersection.

We ignore a fourth clause that the original definition
contained, since it was identified as nonessential for the
conectness of the separable algorithm. For the case of two
rules, one can take advantage of the efficient features of the
separable algorithm only if in clause (3) the intersection of
the sets of distinguished variables that appear under nonre-
cursive predicates in rl and ts is empty. With this assump-
tion, we can prove the following lemma.

Lemma 5.1: If two rules rl and r2 with the same
consequent am separable, then they only contain semi-
persistent and general variables, and any general or non-
trivial semi-persistent variable in tl is persistent in t-2 (simi-
larly for the variables of Q.).

Combining Lemma 5.1 with Theorem 4.1 yields the
following theorem.

Theorem 5.1: If two rules are separable then they
commute, but the opposite does not hold.

Proofz If two rules rl and t2 are separable, by
Lemma 5.1, the general variables of tl satisfy condition (c)
of Theorem 4.1, and the nontrivial semi-persistent variables
of r 1 satisfy condition (a) of the same theorem (similarly for
the variables of TZ). Moreover, by the same lemma, there
are no other types of variables in ri or r2. Thus, by
Theorem 4.1, the two rules commute.

The rules of Example 4.2 serve as examples of com-
mutative rules that are not separable. They violate both
conditions (2) and (3) of the separable definition. Cl

By Theorem 5.1, commutativity is a strictly more
general notion than separability. Nevertheless, all the
efficient ptocessing algorithms for separable recursions are
applicable for commutative rules as well (Theorem 3.1).

5.2. Commutrrtivity vs. Recursive Redundancy
Given the a-graph of a rule, the augmented a-graph

is produced by disconnecting all edges emanating from
semi-persistent variables in the a-graph, and replacing the
semi-persistent variable with a distinct nondistinguished
variable for every such edge [Naug86]. A necessary and
sufficient condition for a nonrecursive predicate in a rule of
some restricted form to be redundant is given by the follow-
ing theorem.

Theorem 5.2: fNaug86j A nonrecursive predicate in
a rule with no repeated variables in the consequent and no
repfated nonrecursive predicates in the antecedent is mcur-
sively redundant if and only if it appears in a bounded com-
ponent of the augmented a-graph of the rule.

Theorems 3.2,4.2, and 5.2 imply the following.
Theorem 5.3: Let A=B C be an operator

corresponding to a rule with no repeated variables in the
consequent and no repeated nomecursive predicates in the
antecedent. Then, B is recursively redundant if and only if
B and C commute and B is uniformly bounded.

Sketch of proof: From Theorem 4.2, we can prove
that each component in the augmented a-graph, seen as an
operator, commutes with the operators of all the other com-
ponents. We can also show that, if the rules contain no
repeated variables in the consequent and no repeated nonre-
cursive predicates in the antecedent, any uniformly bounded
component of the augmented graph is torsion. Combining
this with Theorem 5.2, yields that the condition of Theorem
3.2 is necessary and sufficient (in this case the properties of
being torsion and uniformly bounded coincide). Cl

6. CONCLUSIONS
We have investigated the role of commutativity in

query processing of linear recursive rules. Using the alge-
braic structure of such rules, we have identified commuta-
tivity as the essence of many properties that give rise to
important classes of recursive rules, i.e., separable rules and
rules with recursively redundant predicates. Focusing on
range-restricted rules that contain no functions, and no con-
stants, we have given a sufficient condition for such rules to
commute. We have also shown that the condition is neces-
sary and sufficient when the rules contain no repeated vari-
ables in the consequent and no mpeated nonrecursive predi-
cates in the antecedent. In that case, the condition can be
tested in polynomial time in the size of the rules.

- 162 -

Commutativity emerges as a key property of linear
recursive rules for which efficient algorithms can be
applied. This paper is a first step in the investigation of its
power. We believe that there is much more work to be
done in this direction. Some problems we plan to study in
the future are the following: characterize commutativity in
more general classes of rules than the one studied in this
paper; investigate the relationship of commutativity and
one-sided recursion; investigate the relationship of commu-
tativity and several optimizations proposed for the magic
sets and counting algorithms (e.g., there seems to be a
strong relationship between commutativity and the semijoin
optimization lBeer871); examine ways to take advantage of
partial commutativity, i.e., when the transitive closure of a
product of operators is to be computed, only a subset of
which am mutually commutative; and examine ways to take
advantage of commutativity appearing in some higher
power of an operator.

7.REFERENCES
[Ah0741

Aho, A., J. Hopcroft, and J. Ullman, The Design and
Analysis of Computer Algorithms, Addison Wesley,
Reading, MA, 1974.

[Aho79a]
Aho, A., Y. Sagiv. and J. Ullman, “Equivalences
Among Relational Expressions”, SIAM Computing
Journal 8.2 (May 1979), pp. 218246.

[Aho79b]
Aho, A. and J. Ullman, “Universality of Data
Retrieval Languages”, in Proc. of the 6th ACM Sym-
posium on Principles of Programming Languages,
San Antonio, TX, Jamrary 1979, pp. 110-117.

[Banc85]
Bancilhon, F., “Naive Evaluation of Recursively
Defined Relations”, in Proc. of the Islamorada
Workshop on Large Scale Knowledge Base and Rea-
soning Systems, Islamorada, FL, February 1985.

[Beer873
Beeri, C. and R. Ramakrishnan, “On the Power of
Magic”, in Proc. of the 6th ACM SIGMOD-SIGACT
Symposium on Principles of Database Systems, San
Diego, CA, March 1987, pp. 269283.

[Chan77]
Char&a, A. K. and P. M. Merlin, “Optimal Imple-
mentation of Conjunctive Queries in Relational Data
Bases”, in Proc. 9th Annual ACM Symposium on
Theory of Computing, Boulder, Co, May 1977, pp.
77-w.

[Im851
Ioannidis, Y. E., “A Time Bound on the Materialixa-
tion of Some Recursively Defined Views”, in Proc.
I I th International VLDB Conference, Stockholm,

Sweden, August 1985, pp. 219-226.
Hoar&a]

Ioannidis, Y. E. and E. Wong, “An Algebraic
Approach to Recursive Inference”, in Proc. of the 1st
International Conference on Expert Database Sys-
tems, Charleston, South Carolina, April 1986, pp.
209-223.

[Ioan86b]
Ioannidis, Y. E., “On the Computation of the Transi-
tive Closure of Relational Operators”, in Proc. 12th
International VLDB Co@erence, Kyoto, Japan,
August 1986, pp. 403-411.

[Ioan87]
Ioannidis, Y. E. and E. Wong, “Query Optimization
by Simulated Anneahng”, in Proc. of the I987 ACM-
SIGMOD Conference on the Management of Data,
San Francisco, CA, May 1987, pp. 9-22.

[Ioan88a]
Ioannidis, Y. E. and E. Wong, ‘Towards an Algebraic
Theory of Recursion”, Technical Report No. 801,
University of Wisconsin, Madison (submitted for
publication), October 1988.

[Ioan88b]
Ioannidis, Y. E., “Commutativity and its Role in the
Processing of Linear Recursion”, Technical Report
No. 804, University of Wisconsin, Madison,
November 1988.

N-m861
Naughton, J., “Redundancy in Function-Free Recur-
sive Rules”, in Proc. qf the 3rd Symposium on Logic
Programmktg , September 1986, pp. 236-245.

PJwW
Naughton, J., “Compiling Separable Recursions”, in
Proc. of the 1988 ACM-SIGMOD Conference on the
Management of Data, Chicago, IL, June 1988, pp.
312-319.

[Rama
Ramakrishnan, R., Y. Sagiv, J. D. Ulhnan. and M.
Vardi, “Proof Tree Transformation Theorems and
their Applicutions”, Philadeltia, PA, Proc. of the 8th
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, March 1989, pp.
172-181.

Tarski, A., “A Lattice Theoretical Fixpoint Theorem
and its Applications”, Pacific JOWM~ of Mathematics
5 (1955), pp. 285-309.

- 163 -

- 164-

