
A Signature Access Method for the Starburst Database System

Walter W. Chang
Hans J. Schekl

IBM Almaden Research Center

Abstract

This paper describes a new signature generation
method for constructing multi-level signature files to
support both relational queries which contain multiple
conjunctive (AND) predicates and generic document
text queries. We describe the major problems with
traditional multi-level signature files and then describe
how to build multi-level signature files using a new
composite method of parent signature generation.
Performance of this signature generation scheme im-
proves as more key fields are provided in the query.
A combinatorial error problem common to all multi-
level signature structures is identified and addressed.
We show how a signature access method can provide
query support for a large number of fields in a relation
for which no index exists and can dramatically reduce
the number, of relation tuples that must be accessed
during a normal scan. If one or more fields of the
relation contain long tield data such as text, the same
signature mechanism can also provide query support
for text search predicates.

1. Introduction

Signatures have been used extensively for informa-
tion retrieval in electronic offtce and document tiling
systems and to some extent in database systems (Sacks-
Davis87, Pfaltz80, Roberts79). Signatures are bit-
vectors formed by a hash encoding of data objects
such as long fields of text or relation tuples (records).
Signatures are useful in filtering large quantities of
data when queries are performed. In relational data-
base systems, queries are traditionally answered by
executing a plan generated by a query optimizer. The
plan may require performing relatively expensive re-
lation scans over a potentially large number of tuples,
scanning one or more B-tree indexes which have been
created and maintained over the key fields of the
query, or by using some combination of the two.

In this paper we propose a signature access method
within a relational database system to support con-
junctive multi-field queries. If fields in a relation are

1-t adbpss: Eni smlss F-al Institute of Te3dmolo9Y, smlt?.erlard.

Permission to copy without fee all OP part of this material ia
granted psovided that the copies are not made or distributed for
direct commehzl advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

used to store text data as externally defined abstract
data types (Wilms88) we show how text search pred-
icates can be supported by the same signature mech-
anism. We show that signature files can be incorpo-
rated into the Starburst extensible database architecture
(Lindsay87) by extending an existing B-tree access
method.

In Section 2 we present an overview, a definition
of terminology, a discussion of single level signature
files and the motivation for multi-level signature file
structures. In Section 3 we describe the two main
problems with multi-level signatures. Our proposal to
solve these probkms is presented in Section 4. In Sec-
tion 5 we describe how an implementation of a multi-
level signature tile was achieved in the Starburst ex-
tensible DBMS. In Section 6. we discuss relevant
query optimizer issues. In Section 7 we present con-
cluding remarks.

2. A Summary of Signature Techniques

2.1. Signature Description and Terminology

Signatures compactly encode information about an
object. For example, bits in the signature may repre-
sent field substrings of length k called k - ruples (Har-
rison71). Examples of other signature encoding tech-
niques are discussed in (Roberts79, Pfahz80, and
Deppisch86).

Data objects and query values are encoded using
the same signature algorithm. When the bits of the
query signature completely cover the signature bits of
the data objects, the data object is a candidate that
may satisfy the query. These data objects are then
accessed and examined. Access of candidate objects
that fail an exact match test are called fake drops.
False drops are due to hash collisions in the object
signatures. Matches are called hits. Ideally, a query
signature will reject all data signatures where the orig-
inal data objects do not satisfy the specified query.

Signatures should be significantly smaller than the
actual data object (lo-20%). easy to compute, and
provide a high degree of selectivity or data filtration.
Prior work has shown that, optimal selectivity usually
occurs when 50% of the bits in the signature pattern
are set to 1s (Roberts79, Severance76). If too few or
too many signature bits are set, the query signature
cannot reject a large number of data object signatures
and consequently, many additional objects must be
accessed and examined. Under some conditions when
duplicates are frequent, (Sacks-Davis83) and (Rob-
erts79) show that values less than 50% are desirable.

Amsterdam, 1989

- 145 -

All signature generation algorithms fall into one of
two categories: superimposed or disjoint. Signature
generation methods dependent on partitions within the
data object (such as fields in a tuple) are called disjoint
coding. For each partition or field of the object,
different signature functions may be used. Each of
these functions may yield signatures of different lengths.
If one signature function is applied over an entire data
object without regard to any internal object partition-
ing, the signature scheme is called superimposed cod-
ing. Superimposed coding schemes cannot directly
preserve the relative ordering of attributes within an
object.

The types of queries we want to support will de-
termine whether disjoint or superimposed coding
should be used. A Partial Match Query (PMQ) is
defined to be a query with one or more predicates on
which an exact string match is desired. Predicates are
always connected conjunctively (by a Boolean AND
operator.) An example of PMQ is shown below.

PrKi!: SELECT * FROM Tl
WHERE

(COMPANY = 'IBM') AND
~DIVISION = ‘Research’ 1)

When the match constraints are relaxed and
substring matches are allowed, the queries are called
Partial Partial Match Queries (PPMQ.) An example
of PPMQ is shown below. Data and query values
are regarded as strings, i.e. domains are handled as if
they were of type CHAR and VARCHARO. The
“LIKE” operator used with the ‘o/O’ wildcard symbol
designate a substring match operation.

PPW: SELECT * FROM Tl
WHERE

(TITLE LIKE '%Engineer') AN0
(EMPLOYEE LIKE '%Waltar')j

PPMQs will always occur when text is a field type
consisting of sentences or words. In this paper, we do
not address using signatures to solve queries where
the predicates may be connected by the logical OR
operator or where predicates may be preceded by a
logical NOT operator. These functions are not elli-
ciently supported by signatures, although some discus-
sion has addressed these issues (see Dadam83.)

An important characteristic of both PMQ and
PPMQ is the concept of query weight. The query
weight strongly influences the selectivity of a query
signature. Let s designate the signature of the query
expression Q. 3-h e query weight is defined as the
Hamming Weight (HW) of SQ, i.e. @my Weighf(SQ)

=HW(signature(Q)) or simply the number of bits set
to 1 in the query signature. As more bits are set in
the query signature, the signature becomes more se-
lective in filtering data object signatures. This property
is true regardless of whether one or more predicates
are entered and independent of the type (PMQ or
PPMQ). Thus, queries with higher weights will cause
fewer data objects to be accessed and will have fewer
false drops since all bits of the query signature are less

likely to be covered by bits in the object signature.

2.2. Single Level Signature Files

The simplest structure for a signature file is a
single-level organization. Tuple signatures and Tuple-
IDS (IIDs) are stored in a file in fixed sized units of
storage called pages. A signature is computed for a
query expression and then compared sequentially
against all tuple signatures. Candidate tuples are re-
trieved using the TID and then examined. Single-level
signature organizations may be suitable for applications
where the number of data objects is small (e.g., less
than SK.) An example of a signature tile and sample
query are shown in figure 1. In this example a single
predicate of (EMPLOYEE LIKE ‘Chang’) would have
a signature of 01000010 and would qualify the first
and fourth tuples but would reject all other tuples
shown. After accessing and inspecting the first and
fourth tuples, only the first would match the query.

Early in our work we conducted a series of single-
level signature tile experiments using records from in-
ternal IBM corporate telephone directory tiles. The
results are summarized in the table in figure 2. These
results and those of (Deppisch86) show that signature
selectivity is very high as a function of the query
weight. For query weights greater than 3, over 98%
of the objects were immediately rejected by the signa-
ture. Other experiments, all with similar behavior
convinced us that signatures would be a promising,
simple, and generic method to provide coverage over
several or all fields .of each database record.

In the table in ligure 2, our test relation required
270 pages and with no pages in memory took 45
seconds to scan on an IBM RT/PC workstation. A
regular index over the LASTNAME field required 58
pages while a one-level signature tile required 61 pages.
This data indicated that access time was reduced by
a factor of 2 to over a factor of 10. Combined
signature,lrelation page 10s can be reduced by a factor
of 2.5 when compared to a pure relation scan which
would require all tuples on all 270 relation pages to
be accessed. While this is a major improvement, a
normal index still gives better search performance over
signatures. However, one index tile is required for
each different key-column, while one signature file
provides coverage for all columns of the relation. This

Pucrv: EMPLOYEE LIKE “Chanb”

EMPLOYEE TITLE

011010l1.TID1 = match.
01101010.TID4 = false drop.

Tuple Sisnatures

F&m I: A Single Level Sl@mtmc File.

- 146 -

has a significant impact on updates.

Relation contains 10000 tuples, Pages are 4KB.

9uery Tuples Tuples
Weight Rejected Accessed

bY Sl bv Sl

False l4atche9 Time
Drops (Sec. 1

1 7513.1 2486.0 2343.6 143.3 27.9
2 8051.9 1948.2 1503.7 444.5 21.4
3 9201.9 798.1 519.0 279.2 11.8
4 9860.8 139.2 136.4 2.8 4.8
5 9956.9 43.1 40.7 2.5 3.9
6 9988.6 11.4 10.3 1.1 3.4
7 9993.6 6.3 5.3 1.0 3.3
8 9998.4 1.6 0.6 1.0 3.0
9 9998.8 1.2 0.2 1.0 3.2

10 9999.0 1.0 0.0 1.0 3.1

Figure t: Performance of A Single Level Signature File

To compare the search and update effort, we es-
timated the number of page accesses needed when a
signature was used and when an index was used. We
assumed each record contained F total fields and that
a query specified f tields. For the signature access
path, all 61 signature pages must be inspected during
a query, independent off. In case of the index, we
take every value of the query and follow the path from
the root to the leaf page where we fetch the tuple
addresses (TIDs.) If each index contains I levels, we
need f x I index page accesses.

Assume the number of different items to be put
into an index is 10000 and the average number of
different items within one record is 10. We utilize a
B-tree for the items with 3 levels under these assump-
tions. Further we assume that the address list or TID-
list of any item fits into one page. For many practical
queries, f = 3 or f = 4 and therefore 9 to 12 index
pages are accessed during a search as opposed to 61
in the signature case.

For insertion or deletion using the signature method
one page access is needed. For indexes, we need at
least as many (leaf> page accesses as we have values
in the record, in our example F= 10. If any of our
index pages split, non-leaf pages must alSo be accessed.
Thus, if the relation is fully indexed, each insert will
require us to touch typically F x I (30 pages in our
example). This discussion shows that signatures behave
well in a dynamic environment and require substan-
tially less update activity than full or even partial in-
version schemes. We will show in the following dis-
cussion that multi-level signatures, if applied carefully,
can meet this requirement.

2.3. Multi-Level Signature Organizations 3. Problems with Multi-level Signatures

In the previous example, if N = the number of
tuples, a single-level signature file requires N compar-
isons between the query signature and the tuple sig-
natures. The complexity is linear, and if N is large,
we want to avoid the sequential signature scan, even
if a single signature test is efficient.

One method of avoiding the linear scan is to cluster
signatures together and create a group signature by
superimposing or bit-ORing the individual signatures.

A query signature is first compared to the group sig-
nature and if the query signature does not completely
cover the group signature, the entire group can be
discarded without further inspection. If the test with
the group signature is positive, the query signature is
tested against the individual signatures of the group.
Shown below in figure 3 is a partial diagram of a
multi-level signature structure.

Different multi-level signature organizations have
already been investigated (Roberts79, Pfahz80,
Deppisch86, Sacks-Davis87). In this paper, B-tree ter-
minology will be used. A “leaf signature” is stored at
the lowest level, a “parent signature” is stored at higher
levels.

auerv Leaf lChildrcn1
signature sisnaturer

Parent lGroup1
sisnatures

01111011 ptr. J

10011010 Ptr

10010100 ptr

root p99e

leaf
P99C

I ’ I1C.f
P999

Relation TUPICS

TIDl Chans. Walter EnSineW

TIDP Schek. Hans scientist
I I

Flgwe 3: Mulli-kwl rignatvc Rk.

Each tuple signature and its TID is stored as a
pair (sZGi, 7’ZDi) on leaf pages. The set of Signature-
TID pairs on a leaf page forms a group. The parent
signature of each group is denoted by sp. Query sig-
natures that reject the parent signature sp reject all
leaf signatures which belong in that group. In figure
3, since the bits of the query signature completely
cover the bits of the first parent signature but not those
of the second, the first leaf page would be searched
but the second page would not. Bit-slice multi-level
signature organizations exist but are not considered
due to their significantly higher disk update costs (Sack-
Davis87.) We now turn to the difficulties involved
with multi-level signature organizations.

There are two major problems associated with
multi-level signatures. One is the density of set bits in
the parent signatures. The second problem is the rate
of “combinatorial errors* caused by a large class of
queries. These are key problems because both cause
query signatures to unnecessarily qualify more object
signatures thereby increasing the false drop rate. While
the first problem has received some treatment, e.g.,
(Deppisch86), the second problem has received little
attention until recently (Sacks-Davis87.)

- 147 -

Problem I: Density of Set-l’s in Parent Signatures

As more signatures are added into a group, the
group signature saturates to an all l’s bit vector. For
a signature s, the density of s is defined as H W(s) + m
where m is the length of the signature in bits. This
saturation effect unfortunately happens quickly for
even a small number of signatures when leaf signatures
have the “optimal” density of 0.5. Let NL be the num-
ber of signatures/leaf page, a~ be the probability that
the i’th bit of a leaf signature bit is 1, and ap be the
probability that the i’th bit of a parent signature bit is
1. The probability that the i’th bit in the parent is set
to 1 is obtained by computing first the probability that
the i’th parent bit is 0. For this to be true, each of the
i’th bits of all NL signatures in the leaf cluster must
be 0. This yields the well-known formula:

(1) L%p=l-(1 - aL)*L , also

-LlIl(l-a,)

(3) .a,=1 -eNL
R3=(v119 v22) 9

From equation (l), for optimal object signatures
with a~ = 0.5, ap = 0.938 if the clustersize NL is only
4. Experiments using 4-byte and 6-byte signatures con-
firmed these expectations. More advanced clustering
techniques have been proposed and tested successfully
by (Deppisch86) using S-Trees. Another solution to
solve this problem is presented in (Sacks-Davis83) and
uses large “segment” or block descriptors which are
stored in a bit-slice organization. However, even if the
parent level saturation problem is addressed, a second
problem still remains.

.

Problem 2: The Combinatorial Error

With F fields, the group signature represents
(Pl x P2 x ... x PF) records where pj is the number of
distinct &‘s or cardinality of the j’th held. This
product has a drastic influence on the “combinatorial
error* which occurs when a query requests a record
by specifying f fields. In the simple example above,
by specifying two fields, four queries are possible, but
only two of these queries will find matches. The other
two queries will be satisfied by the group signature sp
but will be false drops since the corresponding tuples
are not in the database. More generally, when field
values are unique within the N records, the probability
PMarCh for finding a matching tuple given a query in
which all F fields are constrained by a predicate, where
the j’rh predicate consists of any value in field j, is
given by: The second serious problem is the combinatorial

error. It appears in two seemingly different classes of
signature applications: (1) conjunctive multi-predicate
database queries consisting of PMQ and PPMQ, and
(2) text search queries.

We consider the conjunctive multi-predicate case
tirst. Assume we have N records with F tields each.
Assume that we have already computed good selective
signatures Si for each of the N individual records.
Such signatures either are obtained by a concatenation
of the individual held signatures su as in formula (4),
or by superimposing the individual signature patterns
for the j’th field values of a record, as in formula (5).

(4) Si =Sil 1 Sj2 1 *** 1 SiF

(5) Si =Sil U Si2 U ... U SiF

For the following discussion, we may even assume
that the Si are perfect, i.e., there will be no false drops
for whatever PMQ is posed. In reality, this can be
achieved by the use of long signatures. We will now
consider the group signature sp formed by superim-
posing all single signatures Si. Thus,

sp=s] u 9u...,,sNL

Due to superimposing, any sp signature represents not
only the given N records but also all records which
may be obtained by any Cartesian Product of field
value combinations from the given field values of the
N records. This causes our second problem. As an
example, consider the simplest case of two records
which contain only two fields. Here Ri designates a
record with two fields and f$ designates the k’th
value from the j’th field.

R2 = (529 v22)

The group signature here would represent not only R1
and R2. but also records with combinations of these
fields:

(6) P N --
Match - p

n 4
j=l

Therefore, the risk Pcerror of having a combinatorial
error is given by the following:

P Cerror = 1 - pM&h

This gives the probability for a combinatorial error
when each of thif field values Vt, V2, . . . ,Vffrom the
query occur individually in at least one of the N
records. More precisely, we assume that for each
predicate for which the query values are
VjR, k=1,2 ,..., pj, there exists a record in the group
which has value f$& in the j’th field.

- 148 -

Let ql...qf represent the list off fields for which
predicates are specified in the query. If Pi. is the
cardinality of a field in the query and is less than N,
duplicate values will be present in this field. The total
number of distinct records, considering only the ql...qf
fields, is represented by Nq1..,4f . This value is a func-
tion of the cardinality and distribution of Vpi’s. By
generalizing (6) and (7), the match and combmatorial
error probability for a specific query with f predicates
is now given by:

,
I-I ‘qi

,=l

P Cerror = 1 - pMotch

Since the query contains values from the Nql...q,
records, the query signature will necessarily cover the
group signature. Thus, formula (9) gives an estimate
for the probability that the group does not contain a
matching record due to the combinatorial error. From
our experiments, even for small values of N and f,
this error is considerable. Consider a simple example
in which field values are unique, i.e., pi = N. Equations
(8) and (9) reduce to the two special cases:

P 1 P 1
Motch = Nf-l ’

Cerror = 1 -- Nf-1

Suppose, for example, that N = 10, f= 2, and let
~1 = ~2 = N. Since there are no duplicates, Nq,...q, is
the total number of distinct records when two Celds
are considered and, is just N. For a query Q, the
probability that the group of 10 records does not con-
tain a match is already 0.9. As f increases, the com-
binatorial error also increases. If f = 3 and JAM = N,
the probability that we do not have a match is already
0.99.

We now turn to the case of text. Substantial work
has been done in order to find good signatures for
text based on statistics and information theory
(Schck78, Christodoulakis84, Faloutsos85a,85b,87).
Since text is a set or sequence of words and a query
is also a set or sequence of words, there is still a
considerable combinatorial error problem. Consider
the following text consisting of two phrases as an ex-
ample:

t = <database index extension>,
<operating system kemel>>

Assume that a signature s has been assigned to r and
that a query asks for all documents with the phrase
< database kemal> . The signatures would indicate a
match even though the query did not match the actual
text. Text signatures built on a word basis represent
not only the original text phrase. They also represent
every phrase which could be formed by any combina-
tion of the words in the original phrase. Thus, we
have to deal with the same combinatorial ptobte-m.

The probability for this error increases as more
phrases in the text are clustered to compute s and as
more words are specified in the query. Formula (9),
shows this to be a problem with group signatures with
only a few phrases and a two- or three-word query.

- While various aspects of the l’s bit saturation prob-
lem have been addressed in the literature, the combi-
natorial error problem remains. (Schek78) has exam-
ined estimating frequent pairs or triples of words and
more recently, (Sacks-Davis87) has proposed multi-
level signatures using larger parent signatures and set-
ting bits based on common word-pairs to address one
aspect of this combinatorial problem.

4. A Solution to the Combinatorial Problem

In this section, we describe a general approach to
building second level signatures that exhibit a signifi-
cantly reduced false drop sensitivity due to the com-
binatorial error.

The Combinatorial Signature

We propose a new signature function that encodes
combinations of values within a record rather than
single values from a record. This is equivalent to
computing a new signature based on a combination
of multiple bits in the original object signature. First,
a leaf signature Sl with ml bits is computed for each
record. Techniques for finding the length and hash
function for Sl are well-known (see Faloutsos87).

In our new technique, for each Sl leaf signature
a larger combinaroriul signature CSl of qsl bits is
computed. CSl is formed by testing a complete set
or subset of all r pairs of bit positions in Sl and setting
one of the rncsl bit positions in CSl to 1 if l’s appear
at both bit positions indicated in Sl. This could be
extended to bit triplets, quadruplets, etc. For now, we
consider only bit-tuples consisting of bit pairs.

To form a group (parent) signature for a set of NL
leaf signatures, all of the CSl’s are superimposed (bit-
OR’ed). Assume signatures are computed for records
RI and R2 and that each field value P$k sets one Sl
signature bit when it is hashed. When a combinatorial
signature CSl is computed by selecting pairs of bits
in Sl, each CSI bit indicates the presence of a com-
bination of record attributes. If a query is posed
which specifies combinations of values (such as (Vt t,
V22) or (VIZ. Vzl)). a conventional S2 signature formed
by bit-ORing leaf-level Sl signatures will not reject Sl
signature groups. This query is said to contain a
combinatorial error. However, an CS2 signature
formed by bit-ORing CSl signatures will indicate the
presence of combinations of values and have a high
probability of rejecting lower level leaf signature
groups. An example of how the new combinatorial
signature CSl works is shown in figure 4.

- 149 -

Figure 4: Rejection of guey with combinatorial enw

When a new object signature is incrementally added
into the group covered by an CS2 signature, we com-
pute the new object’s CSl signature from its Sl sig-
nature and then bit-OR the CS1 signature into the
parent CS2.

The basic strategy for generating the combinatorial
signature CSl is to encode a full or partial subset of
all combinations of Sl bit pairs. To compute CSl,
we first identify a set of unique bit position pairs in
Sl. Each of these Sl bit pairs is bit-ANDed and each
result is mapped to a specific bit position in CSl.
When this is done systematically, the ml bits of Sl will
form ml - 1 bit partitions in CSI of size (ml - 1).
(ml - q,..., 1. For example: Bit 1 of CSI is set by
bit-ANDing bits 1 and 2 of Sl. Bit 2 of CS1 is set
by bit-ANDing bits 1 and 3 of Sl. This is shown
below in Figure 5.

Field I Field 2

Chang. Yaltcr Enginear
I *-I

1=1 2 3 4 5 6.. ml=8 bits

Sl I 1 0 1 0 0 1 1 0 I Leaf signature

csla...
1=1 2 3 bit i

-I I I
.-. 0000 000 10 0

I
vs1=28 bits

Figure 5: Computation of the combinatorial signatmx.

Using this method, we can determine the value of
mcsl for the required length of CSl. CSl is partitioned
into a set of bit fields of length (ml - l), (ml - 2),
(ml - (ml - 1)). To find the total number of bits re-
quired for CSl, we sum the number of bits of all of
the partitions:

(10)

ml-l

maI = ((ml - I)m,) - c i, which gives:
i=l

(11)
(ml - 1) ma,=ml----

1

Beyond a combinatorial signature, we can also use a

second parent signature LS2 which is obtained by
longer leaf signatures LSl with rnLsl bits using other
known methods (Sacks-Davis87). These longer LSl
signatures and the new combinatorial CSl signature
associated with Sl do not have to be stored in the leaf
levels of the signature file since they are used only to
build higher level signatures. In this sense, LSl and
CSI signatures are “virtual”.

Whether bit position pairs in Sl are selected at
random or in sbme systematic way, for each CSl bit,
there is a small probability that selected Sl bit positions
represent k-tuples from the same field. If this is the
case, our new CSl signature will not provide protection
against combinatorial errors. Fortunately. this prob-
ability is low. If each record consists of F fields and
we assume the signature encoding of the i’th field sets
bi signature bits in Sl, the probability that a bit in
CSl was set by u Sl bits from the same record field
i is given by:

P
bi u

same= iq- 0
where u = 2 for bit pairs. For example, if a record
consists of F = 8 fields and yields a signature Sl with
ml = 64 total bits, and an average field requires bi = 8
signature bits, Psam = 0.016. We expect this amount
to be quite tolerable.

Thus, the key parameters in applying this technique
are the selection of the CSl generating algorithm, and
an appropriate Sl signature. The selected density of
Sl is crucial because it will determine the density in
CSl and the number of CSl signatures which may be
clustered to form CS2. We now address how signature
parameters can be determined.

Determining Signature Densities

For each key to be stored in the index, we compute
signatures Sl, LSl, and CSl from our data object, a
record. Sl is a simple encoding using the algorithm
given by (Harrison71) where we set k- 3 and use
k-tuples within fields of data objects. Leading and
trailing blanks in the tields can be ignored. Out first
goal will be to design signature functions such that
parent signatures attain the desired density when they
are formed by superimposing the NL lower level sig-
natures.

This can be achieved by using a general heuristic
for determining the lengths, density, and hash functions
for the signatures in our tile. In Figure 6, only Sl
signatures are stored in leaf pages, while longer LS2
and CS2 signatures are stored only at patent levels.
When a group of virtual LSl leaf signatures are su-
perimposed, a parent signature LS2 of the same length
is formed. cS2 is formed in a like way. The higher
level signatures LS3 and CS3 ate formed by superim-
posing groups of LS2 and CS2 signatures, respectively.
We next discuss the LSl virtual signature.

- 150-

Determining Signature Lengths

To select the length m~sl for a virtual leaf signature
LSI, an estimate is made of the number of unique
k-tuples contained in a record, since this determines
the likely number of I’s set in the signature. Since a
k-tuple is simply a substring sequence of k bytes, as k
increases, the number of distinct k-tuples within the
record decreases while for smaller k, k-tuples are more
likely to be repeated. To simplify our design, we set
k to 3 and assume a nearly uniform distribution of
k-tuples within each record. For example, if the Har-
rison algorithm is used, an estimate is made for A VGkr,
the average number of unique k-tuples per record
using equation (12). Equation (13) gives the leaf sig-
nature density a,y.sl, given the target parent density
aLs2 and leaf clustersize ~VL derived from (3).

(12) A VGk, =
Len(Record) - (k - d)

d 1
(13)

The determination of design parameters for signa-
ture CSl is trickier. Since CS2 is formed by super-
imposing CSl ‘s and CSl is derived from Sl , we work
backwards. We first need the density acsl for CSl
given NL and a selected parent target density of acs2
(typically .5 or less.) Given the density that must
occur in a parent signature CS2, acsl for a virtual
leaf combinatorial signature CSl can be directly de-
termined by using equation (3). Since bits of CSI are
set by bit-ANDing pairs of bits in Sl, the density at
for Sl can be derived from the product:

(14) DLa, = a,?

To determine the length ml of Sl, we again use
an estimate of the number of unique k-tuples present
in each record and divide by at. By altering the
k-tuple size and distance d between k-tuples, a high
degree of flexibility is possible in deciding ml. When
k = 2 and d = 1, we have the simplest case of Harrison’s
algorithm. If k and d are made variable and k-tuples
become equivalent to entire words, for large mt the
signature generalizes into a Bloom filter. The final
step is to determine the length mcsl of signature CSI.
This is done by using equation (11).

5. Incorporating Multi-Level Signatures in
Starburst B-Trees

We now describe a generic organization for multi-
level signature files using B-tree structures. Other hi-
erarchical organizations are possible, but are not dis-
cussed here. (Korth82), (Prabhakar83). and others
have attempted to integrate signatures into B-trees.
We now generalize these efforts. In our approach,
one or more signature fields are appended to leaf and
parent key entries within the B-tree index. Signature
entries in interior pages filter entire pages of lower

level signatures while leaf signatures filter specific data
objects during predicate evaluation.

For all non-leaf pages of a B-tree, page entries
consist of ordered < Dividing-key, Pointer > pairs
used to determine which child page must be accessed
next. TO incorporate signatures, for each non-leaf
entry we also store one or more parent signatures
which represent the aggregation of all lower level sig-
natures in the child pages. We selected two different
signature functions for each parent entry and designate
these by LS2 and CS2.,

The motivation for multiple signatures at non-leaf
levels is as follows: If different group signatures are
used, there is a lower chance that a group containing
all false drops will be qualified by all the signatures
generated from a query. The signature functions must
be sufficiently diKerent in the way object attributes are
captured. Examples of these signature functions are
those for which the k-tuple size is increased or the
distance d between k-tuples is increased (Ifarrison71).

In figure 6 we show a partially constructed signa-
ture tile with the constituent signature elements. The
functions key(&), tid(Ri) indicate extraction of the key
fields and TID of data record Rie Sl indicates a short
signature for each data record, LSl indicates the
longer “virtual” signature of the same object, and CSl
is the combinatorial signature derived from Sl . Par Key
indicates a regular B-Tree Parent Key used to navigate
to the leaf pages.

At the leaf pages of the B-tree, entries now consist
of the record key fields, the short Sl signatures, and
TID. For each table record Ri, an LSl and CS 1 is
computed and used only to form the appropriate LS2’s
and CS2’s at the parent levels. LSl and CSl signatures
are shown on the right of the leaf pages in figure 6
and are used to compute parent signatures by a bit-
ORing operation.

Higher Signature Levels

To form higher signatures, we can repeat the idea
of superimposing lower level parent signatures until
the root level is reached. One method is to simply
Bit-OR lower level parent signatures to form higher
level parent signatures. By using properly designed
leaf, “virtual”, and combinatorial signatures, saturation
can be delayed significantly as we move to higher
levels of the index. Alternative hashing methods are
possible by varying the Harrison parameters (k,m,d)
or by using a class of universal hashing functions at
the different levels of the index (CartergO).

Many of the concurrency problems and recovery
issues which apply to index managers will also apply
to our new B-tree signature files as well. The basic
multi-record locking algorithms developed for the
Starburst index component are extended for signature
indexes, and are similar to the algorithms described
in (Bayer77, Mohan89). Due to space constraints, we
defer presenting the implementation details of the al-

- 151 -

I
. .

I I

10101 101011 QTR -
ParKey 10010 010011 PTR

Figure 6: Multi-Level Signature Index incorporating Sl, LSl, and CSI

gorithms for signature insert, delete, fetch, and scan
operations as well as index locking and recovery to a
future research report. We now address how the query
optimizer would use a signature access method.

6. Starburst Query Optimizer issues

For the query optimizer to decide whether or not
to use an existing signature, it must know which rela-
tion columns are covered by the signature and then
estimate the cardinality of field values, selectivity of a
given query, and cost of using the signature tile. To
the optimizer, the signature access method or
attachment has the same functional interface as other
attachments in Starburst for tuple insert, delete, fetch,
and scan (see Stonebraker80 and Lindsay87). Thus,
the signature attachment will appear to the Starburst
rule-based query optimizer as a scan LOLEPOP (Low-
Level Plan Operator), described in (Haas and
Lohman88).

Since the signature attachment will return an an-
swer superset rather than a precise tuple set like a
conventional index, a FILTER operator must be ap-
plied to eliminate tuples which may be false drops.
The estimated cost of using a signature is based upon
column cardinality, which is estimated by using a
model of the probability any tuple will be accessed
(selectivity), and a probabilistic model of page accesses.

The signature attachment could also be generalized
for use in plans to solve text search predicates. If
Harrison’s k-tuples are set to be entire keywords in a
document or a long field (Lehman89), than each
k - tuple represents a text keyword and precisely one
bit per keyword will be set in signatures Sl and LSI.
A signature index over text stored in a long field would
be classified as an exogenous database attachment
(Schwarz86) since the index may be bound to a long
field, rather than a base table.

Our experimental results show that for conjunctive
multi-predicate queries where f is large, signatures
compete well with indexes. For queries with weights
corresponding to two or more predicates (i.e., when
the query weight exceeded 9). measurements showed
that over 97% of the relation tuples were filtered and
less than 20% of the signature file was accessed.
Compared to relation scans, total page accesses (mea-
sured by page fixes) were reduced by over 92%. These
preliminary tests indicate that signature files are a
promising method for greatly accelerating relation scan
performance for queries when normal indexes are not
available.

7. Conclusions

We have identified an undesirable, naturally oc-
curring false drop phenomena inherent to all multi-level
signature structures which we have called the combi-
natorial error. We have presented a new combinatorial
signature generation method which significantly re-
duces the negative effect of the combinatorial error.
We have shown how to generically build multi-level
signature structures from single level signature tiles by
extending generic B-tree indexes such as the Starburst
index component. Signature files can serve as a pow-
erful extension access method to support not only da-
tabase queries usually handled by relation or index
scans, but also text applications.

Acknowledgments

We would like to express our thanks to the mem-
bers of the Starburst project who provided us with
many comments and suggestions during our work.
We would also like to thank Uwe Deppisch at the
Technical University of Darmstadt for his S-Tree ex-
periments using our test data. Finally, we would like
to thank Laura Haas, Guy Lohman, Pat Selinger, Bill
Cody, and Bob Yost for helping to review this paper.

- 152-

REFERENCES

[Bayer771 R. Bayer, M. Schkolnick, Concurrency of
Operations on B-Trees, Acta lnformatica 9,
l-21, (1977) (Springer-Verlag, 1977).

[Carter801 L. J. Carter, M. N. Wegman, Universal
Classes of Hash Functions, IBM Research
Report RC 6687 (#28796), IBM Thomas J.
Watson Research Center (1977).

[Christodoulakis84] S. Christodoulakis, C. Faloutsos,
Design Considerations for a Message File
Server, IEEE Transact. on Software Engi-
neering, Vol. SE-IO, No. 2. (March 1984).

[Dadam83] P. Dadam, P. Pistor, H. J. Schek,. A
Predicate Oriented Locking Approach For In-
tegrated Information Systems, Information
Processing 83: Proceedings of the IFIP 9th
World Computer Congress (Paris, France,
September 1983).

(Deppisch861 U. Deppisch, S-Tree: A Dynamic Baf-
anced Signature Index for Office Retrieval,
Proceedings of the 1986 ACM Conference
“Research and Development in Informational
Retrieval” (Pisa, Italy, September 1986).

[Faloutsos85a] C. Faloutsos, Signature Files: Design
and Performance Comparison of some Signa-
ture Extraction Methods, Proceedings of
SIGMOD, pp. 63-82. (1985).

[Faloutsos85b] C. Faloutsos, Design of a Signature
File Method that Accounts for Non-Uniform
Occurence and Query Frequencies, Proceed-
ings of VLDB. pp. 165-170. (1985).

[Faloutsos87] C. Faloutsos, S. Christodoulakis, Opti-
mal Signature Extraction and Information
Loss, ACM Transactions on Database Sys-
tems, Vol.12, No.3 Sept. 87. (1987).

[Haas88] L. M. Haas, W. F. Cody, S. Finkelstein, J.
C. Freytag, G. Lapis, B. Lindsay, G. Lohman,
K. Ono, H. Pirahesh, An Extensible Processor
for an Extended Relational Query Language,
IBM Research Report RJ 6182, IBM
Almaden Research Center, San Jose, CA.
(1988).

[Harrison711 M. C. Harrison, Implementation of the
Substring Test by Hashing, Communications
of the ACM Vol 14, No. 21. (December
1971).

[Korth82] R. P. King, H. F. Korth, B. E. Willner,
Design of a Document Filing and Retrieval
Service, 1B.M Research Report RC 9696
(#42815) 11-18-82, Thomas J. Watson Re-
search Center (1982).

[Lehman891 T. Lehman, B. Lindsay, The Starburst
Long-Field Manager, 15th Proceedings of
VLDB, 1989.

[Lindsay 871 B. Lindsay, J. McPherson, H. Pirahesh.
A Data Management Extension Architecture,
Proceedings of Association for Computing
Machinery Special Interest Group on Man-

agement of Data, 1987 Annual Conference,
May 27-29 (1987).

[Lohman88] G. Lohman, Grammar-like Functional
Rules for Representing Query Optimization
Alternatives, Proceedings of SIGMOD 1988.

[Mohan89] C. Mohan, F. Levine, Aries-IX: An Effi-
cient and High Concurrency Index Manage-
ment Method Using Write-Ahead Logging,
IBM Research Report (In preparation), IBM
Almaden Research Center (1989).

[Pfaltz80] J. L. Pfaltz, W. J. Berman, E. M. Cagley,
Partial-Match Retrieval Using Indexed De-
scriptor Fifes, Communications of the ACM
Vol. 23, No. 9 (September 1980).

[Prabhakar83] T.V. Prabhakar, H. V. Sahasrabuddhe,
Signature Trees - A Data Structure for Index
Organization, International Conference on
Systems, Man, and Cybernetics Proceedings
1983 vol. 2 (1983).

[Roberts791 C. S. Roberts, Partial-Match Retrieval
via the Method of Superimposed Codes, Pro-
ceedings of the IEEE Vol. 67. No. 12 (De-
cember 1979).

[Sacks-Davis831 R. Sacks-Davis, K.
Ramamohanarao, A Two Level Superim-
posed Coding Scheme For Partial Match Re-
trieval, Information Systems Vol. 8, No. 4
(1983).

[Sacks-Davis871 R. Sacks-Davis, A. Kent, K.
Ramamohanarao, Multikey Access Methods
Based on Superimposed Coding Techniques,
ACM Transactions on Database Systems
Vol. 12, No. 4, December 1987 (1987).

[Schek78] H. J. Schek, The Reference String Access
Method and Partial Match Retrieval, Proc.
Information System Methodology 1978, Vol.
65., G. Bracchi, P. C. Lockemann, also see:
IBM Scientific Center Report TR 77.12.008
(1978).

[Schwarz86] P. Schwarz, W. Chang, et. al., Extensi-
bility in the Starburst Database System, IBM
Research Report RJ 5311 (#54671) 09-23-86
(1986).

[Severance761 Severance, D. G., Lohman, G. M.,
Differential Files: Their Application to the
Maintenance of Large Databases, ACM
Transactions in Database Systems Vol. I,
No. 3 (September 1976)

[StonebrakerSO] Stonebraker, M, Retrospection on a
Database System, ACM Transactions in Da-
tabase Systems Vol. 5, No. 2 (June 1980)

[Wilms88] P. WiIms, P. Schwarz, H. Schek. L. Haas,
Incorporating Data Types in an Extensible
Database Architecture, 3rd International Con-
ference on Data and Knowledge Bases, June
28-30, 1988. Jerusalem, Israel (1988).

- 153 -

- 154-

