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Abstract 

This paper describes a new signature generation 
method for constructing multi-level signature files to 
support both relational queries which contain multiple 
conjunctive (AND) predicates and generic document 
text queries. We describe the major problems with 
traditional multi-level signature files and then describe 
how to build multi-level signature files using a new 
composite method of parent signature generation. 
Performance of this signature generation scheme im- 
proves as more key fields are provided in the query. 
A combinatorial error problem common to all multi- 
level signature structures is identified and addressed. 
We show how a signature access method can provide 
query support for a large number of fields in a relation 
for which no index exists and can dramatically reduce 
the number, of relation tuples that must be accessed 
during a normal scan. If one or more fields of the 
relation contain long tield data such as text, the same 
signature mechanism can also provide query support 
for text search predicates. 

1. Introduction 

Signatures have been used extensively for informa- 
tion retrieval in electronic offtce and document tiling 
systems and to some extent in database systems (Sacks- 
Davis87, Pfaltz80, Roberts79). Signatures are bit- 
vectors formed by a hash encoding of data objects 
such as long fields of text or relation tuples (records). 
Signatures are useful in filtering large quantities of 
data when queries are performed. In relational data- 
base systems, queries are traditionally answered by 
executing a plan generated by a query optimizer. The 
plan may require performing relatively expensive re- 
lation scans over a potentially large number of tuples, 
scanning one or more B-tree indexes which have been 
created and maintained over the key fields of the 
query, or by using some combination of the two. 

In this paper we propose a signature access method 
within a relational database system to support con- 
junctive multi-field queries. If fields in a relation are 
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used to store text data as externally defined abstract 
data types (Wilms88) we show how text search pred- 
icates can be supported by the same signature mech- 
anism. We show that signature files can be incorpo- 
rated into the Starburst extensible database architecture 
(Lindsay87) by extending an existing B-tree access 
method. 

In Section 2 we present an overview, a definition 
of terminology, a discussion of single level signature 
files and the motivation for multi-level signature file 
structures. In Section 3 we describe the two main 
problems with multi-level signatures. Our proposal to 
solve these probkms is presented in Section 4. In Sec- 
tion 5 we describe how an implementation of a multi- 
level signature tile was achieved in the Starburst ex- 
tensible DBMS. In Section 6. we discuss relevant 
query optimizer issues. In Section 7 we present con- 
cluding remarks. 

2. A Summary of Signature Techniques 

2.1. Signature Description and Terminology 

Signatures compactly encode information about an 
object. For example, bits in the signature may repre- 
sent field substrings of length k called k - ruples (Har- 
rison71). Examples of other signature encoding tech- 
niques are discussed in (Roberts79, Pfahz80, and 
Deppisch86). 

Data objects and query values are encoded using 
the same signature algorithm. When the bits of the 
query signature completely cover the signature bits of 
the data objects, the data object is a candidate that 
may satisfy the query. These data objects are then 
accessed and examined. Access of candidate objects 
that fail an exact match test are called fake drops. 
False drops are due to hash collisions in the object 
signatures. Matches are called hits. Ideally, a query 
signature will reject all data signatures where the orig- 
inal data objects do not satisfy the specified query. 

Signatures should be significantly smaller than the 
actual data object (lo-20%). easy to compute, and 
provide a high degree of selectivity or data filtration. 
Prior work has shown that, optimal selectivity usually 
occurs when 50% of the bits in the signature pattern 
are set to 1s (Roberts79, Severance76). If too few or 
too many signature bits are set, the query signature 
cannot reject a large number of data object signatures 
and consequently, many additional objects must be 
accessed and examined. Under some conditions when 
duplicates are frequent, (Sacks-Davis83) and (Rob- 
erts79) show that values less than 50% are desirable. 
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All signature generation algorithms fall into one of 
two categories: superimposed or disjoint. Signature 
generation methods dependent on partitions within the 
data object (such as fields in a tuple) are called disjoint 
coding. For each partition or field of the object, 
different signature functions may be used. Each of 
these functions may yield signatures of different lengths. 
If one signature function is applied over an entire data 
object without regard to any internal object partition- 
ing, the signature scheme is called superimposed cod- 
ing. Superimposed coding schemes cannot directly 
preserve the relative ordering of attributes within an 
object. 

The types of queries we want to support will de- 
termine whether disjoint or superimposed coding 
should be used. A Partial Match Query (PMQ) is 
defined to be a query with one or more predicates on 
which an exact string match is desired. Predicates are 
always connected conjunctively (by a Boolean AND 
operator.) An example of PMQ is shown below. 

PrKi!: SELECT * FROM Tl 
WHERE 

(COMPANY = 'IBM') AND 
~DIVISION = ‘Research’ 1) 

When the match constraints are relaxed and 
substring matches are allowed, the queries are called 
Partial Partial Match Queries (PPMQ.) An example 
of PPMQ is shown below. Data and query values 
are regarded as strings, i.e. domains are handled as if 
they were of type CHAR and VARCHARO. The 
“LIKE” operator used with the ‘o/O’ wildcard symbol 
designate a substring match operation. 

PPW: SELECT * FROM Tl 
WHERE 

(TITLE LIKE '%Engineer') AN0 
(EMPLOYEE LIKE '%Waltar')j 

PPMQs will always occur when text is a field type 
consisting of sentences or words. In this paper, we do 
not address using signatures to solve queries where 
the predicates may be connected by the logical OR 
operator or where predicates may be preceded by a 
logical NOT operator. These functions are not elli- 
ciently supported by signatures, although some discus- 
sion has addressed these issues (see Dadam83.) 

An important characteristic of both PMQ and 
PPMQ is the concept of query weight. The query 
weight strongly influences the selectivity of a query 
signature. Let s designate the signature of the query 
expression Q. 3-h e query weight is defined as the 
Hamming Weight (HW) of SQ, i.e. @my Weighf(SQ) 

=HW(signature(Q)) or simply the number of bits set 
to 1 in the query signature. As more bits are set in 
the query signature, the signature becomes more se- 
lective in filtering data object signatures. This property 
is true regardless of whether one or more predicates 
are entered and independent of the type (PMQ or 
PPMQ). Thus, queries with higher weights will cause 
fewer data objects to be accessed and will have fewer 
false drops since all bits of the query signature are less 

likely to be covered by bits in the object signature. 

2.2. Single Level Signature Files 

The simplest structure for a signature file is a 
single-level organization. Tuple signatures and Tuple- 
IDS (IIDs) are stored in a file in fixed sized units of 
storage called pages. A signature is computed for a 
query expression and then compared sequentially 
against all tuple signatures. Candidate tuples are re- 
trieved using the TID and then examined. Single-level 
signature organizations may be suitable for applications 
where the number of data objects is small (e.g., less 
than SK.) An example of a signature tile and sample 
query are shown in figure 1. In this example a single 
predicate of (EMPLOYEE LIKE ‘Chang’) would have 
a signature of 01000010 and would qualify the first 
and fourth tuples but would reject all other tuples 
shown. After accessing and inspecting the first and 
fourth tuples, only the first would match the query. 

Early in our work we conducted a series of single- 
level signature tile experiments using records from in- 
ternal IBM corporate telephone directory tiles. The 
results are summarized in the table in figure 2. These 
results and those of (Deppisch86) show that signature 
selectivity is very high as a function of the query 
weight. For query weights greater than 3, over 98% 
of the objects were immediately rejected by the signa- 
ture. Other experiments, all with similar behavior 
convinced us that signatures would be a promising, 
simple, and generic method to provide coverage over 
several or all fields .of each database record. 

In the table in ligure 2, our test relation required 
270 pages and with no pages in memory took 45 
seconds to scan on an IBM RT/PC workstation. A 
regular index over the LASTNAME field required 58 
pages while a one-level signature tile required 61 pages. 
This data indicated that access time was reduced by 
a factor of 2 to over a factor of 10. Combined 
signature,lrelation page 10s can be reduced by a factor 
of 2.5 when compared to a pure relation scan which 
would require all tuples on all 270 relation pages to 
be accessed. While this is a major improvement, a 
normal index still gives better search performance over 
signatures. However, one index tile is required for 
each different key-column, while one signature file 
provides coverage for all columns of the relation. This 

Pucrv: EMPLOYEE LIKE “Chanb” 

EMPLOYEE TITLE 

011010l1.TID1 = match. 
01101010.TID4 = false drop. 

Tuple Sisnatures 

F&m I: A Single Level Sl@mtmc File. 
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has a significant impact on updates. 

Relation contains 10000 tuples, Pages are 4KB. 

9uery Tuples Tuples 
Weight Rejected Accessed 

bY Sl bv Sl 

False l4atche9 Time 
Drops (Sec. 1 

1 7513.1 2486.0 2343.6 143.3 27.9 
2 8051.9 1948.2 1503.7 444.5 21.4 
3 9201.9 798.1 519.0 279.2 11.8 
4 9860.8 139.2 136.4 2.8 4.8 
5 9956.9 43.1 40.7 2.5 3.9 
6 9988.6 11.4 10.3 1.1 3.4 
7 9993.6 6.3 5.3 1.0 3.3 
8 9998.4 1.6 0.6 1.0 3.0 
9 9998.8 1.2 0.2 1.0 3.2 

10 9999.0 1.0 0.0 1.0 3.1 

Figure t: Performance of A Single Level Signature File 

To compare the search and update effort, we es- 
timated the number of page accesses needed when a 
signature was used and when an index was used. We 
assumed each record contained F total fields and that 
a query specified f tields. For the signature access 
path, all 61 signature pages must be inspected during 
a query, independent off. In case of the index, we 
take every value of the query and follow the path from 
the root to the leaf page where we fetch the tuple 
addresses (TIDs.) If each index contains I levels, we 
need f x I index page accesses. 

Assume the number of different items to be put 
into an index is 10000 and the average number of 
different items within one record is 10. We utilize a 
B-tree for the items with 3 levels under these assump- 
tions. Further we assume that the address list or TID- 
list of any item fits into one page. For many practical 
queries, f = 3 or f = 4 and therefore 9 to 12 index 
pages are accessed during a search as opposed to 61 
in the signature case. 

For insertion or deletion using the signature method 
one page access is needed. For indexes, we need at 
least as many (leaf> page accesses as we have values 
in the record, in our example F= 10. If any of our 
index pages split, non-leaf pages must alSo be accessed. 
Thus, if the relation is fully indexed, each insert will 
require us to touch typically F x I (30 pages in our 
example). This discussion shows that signatures behave 
well in a dynamic environment and require substan- 
tially less update activity than full or even partial in- 
version schemes. We will show in the following dis- 
cussion that multi-level signatures, if applied carefully, 
can meet this requirement. 

2.3. Multi-Level Signature Organizations 3. Problems with Multi-level Signatures 

In the previous example, if N = the number of 
tuples, a single-level signature file requires N compar- 
isons between the query signature and the tuple sig- 
natures. The complexity is linear, and if N is large, 
we want to avoid the sequential signature scan, even 
if a single signature test is efficient. 

One method of avoiding the linear scan is to cluster 
signatures together and create a group signature by 
superimposing or bit-ORing the individual signatures. 

A query signature is first compared to the group sig- 
nature and if the query signature does not completely 
cover the group signature, the entire group can be 
discarded without further inspection. If the test with 
the group signature is positive, the query signature is 
tested against the individual signatures of the group. 
Shown below in figure 3 is a partial diagram of a 
multi-level signature structure. 

Different multi-level signature organizations have 
already been investigated (Roberts79, Pfahz80, 
Deppisch86, Sacks-Davis87). In this paper, B-tree ter- 
minology will be used. A “leaf signature” is stored at 
the lowest level, a “parent signature” is stored at higher 
levels. 

auerv Leaf lChildrcn1 
signature sisnaturer 

Parent lGroup1 
sisnatures 

01111011 ptr. J 

10011010 Ptr 

10010100 ptr 

root p99e 

leaf 
P99C 

I ’ I1C.f 
P999 

Relation TUPICS 

TIDl Chans. Walter EnSineW 

TIDP Schek. Hans scientist 
I I 

Flgwe 3: Mulli-kwl rignatvc Rk. 

Each tuple signature and its TID is stored as a 
pair (sZGi, 7’ZDi) on leaf pages. The set of Signature- 
TID pairs on a leaf page forms a group. The parent 
signature of each group is denoted by sp. Query sig- 
natures that reject the parent signature sp reject all 
leaf signatures which belong in that group. In figure 
3, since the bits of the query signature completely 
cover the bits of the first parent signature but not those 
of the second, the first leaf page would be searched 
but the second page would not. Bit-slice multi-level 
signature organizations exist but are not considered 
due to their significantly higher disk update costs (Sack- 
Davis87.) We now turn to the difficulties involved 
with multi-level signature organizations. 

There are two major problems associated with 
multi-level signatures. One is the density of set bits in 
the parent signatures. The second problem is the rate 
of “combinatorial errors* caused by a large class of 
queries. These are key problems because both cause 
query signatures to unnecessarily qualify more object 
signatures thereby increasing the false drop rate. While 
the first problem has received some treatment, e.g., 
(Deppisch86), the second problem has received little 
attention until recently (Sacks-Davis87.) 
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Problem I: Density of Set-l’s in Parent Signatures 

As more signatures are added into a group, the 
group signature saturates to an all l’s bit vector. For 
a signature s, the density of s is defined as H W(s) + m 
where m is the length of the signature in bits. This 
saturation effect unfortunately happens quickly for 
even a small number of signatures when leaf signatures 
have the “optimal” density of 0.5. Let NL be the num- 
ber of signatures/leaf page, a~ be the probability that 
the i’th bit of a leaf signature bit is 1, and ap be the 
probability that the i’th bit of a parent signature bit is 
1. The probability that the i’th bit in the parent is set 
to 1 is obtained by computing first the probability that 
the i’th parent bit is 0. For this to be true, each of the 
i’th bits of all NL signatures in the leaf cluster must 
be 0. This yields the well-known formula: 

(1) L%p=l-(1 - aL)*L , also 

-LlIl(l-a,) 

(3) .a,=1 -eNL 
R3=(v119 v22) 9 

From equation (l), for optimal object signatures 
with a~ = 0.5, ap = 0.938 if the clustersize NL is only 
4. Experiments using 4-byte and 6-byte signatures con- 
firmed these expectations. More advanced clustering 
techniques have been proposed and tested successfully 
by (Deppisch86) using S-Trees. Another solution to 
solve this problem is presented in (Sacks-Davis83) and 
uses large “segment” or block descriptors which are 
stored in a bit-slice organization. However, even if the 
parent level saturation problem is addressed, a second 
problem still remains. 

. 

Problem 2: The Combinatorial Error 

With F fields, the group signature represents 
(Pl x P2 x ... x PF) records where pj is the number of 
distinct &‘s or cardinality of the j’th held. This 
product has a drastic influence on the “combinatorial 
error* which occurs when a query requests a record 
by specifying f fields. In the simple example above, 
by specifying two fields, four queries are possible, but 
only two of these queries will find matches. The other 
two queries will be satisfied by the group signature sp 
but will be false drops since the corresponding tuples 
are not in the database. More generally, when field 
values are unique within the N records, the probability 
PMarCh for finding a matching tuple given a query in 
which all F fields are constrained by a predicate, where 
the j’rh predicate consists of any value in field j, is 
given by: The second serious problem is the combinatorial 

error. It appears in two seemingly different classes of 
signature applications: (1) conjunctive multi-predicate 
database queries consisting of PMQ and PPMQ, and 
(2) text search queries. 

We consider the conjunctive multi-predicate case 
tirst. Assume we have N records with F tields each. 
Assume that we have already computed good selective 
signatures Si for each of the N individual records. 
Such signatures either are obtained by a concatenation 
of the individual held signatures su as in formula (4), 
or by superimposing the individual signature patterns 
for the j’th field values of a record, as in formula (5). 

(4) Si =Sil 1 Sj2 1 *** 1 SiF 

(5) Si =Sil U Si2 U ... U SiF 

For the following discussion, we may even assume 
that the Si are perfect, i.e., there will be no false drops 
for whatever PMQ is posed. In reality, this can be 
achieved by the use of long signatures. We will now 
consider the group signature sp formed by superim- 
posing all single signatures Si. Thus, 

sp=s] u 9u...,,sNL 

Due to superimposing, any sp signature represents not 
only the given N records but also all records which 
may be obtained by any Cartesian Product of field 
value combinations from the given field values of the 
N records. This causes our second problem. As an 
example, consider the simplest case of two records 
which contain only two fields. Here Ri designates a 
record with two fields and f$ designates the k’th 
value from the j’th field. 

R2 = ( 529 v22) 

The group signature here would represent not only R1 
and R2. but also records with combinations of these 
fields: 

(6) P N -- 
Match - p 

n 4 
j=l 

Therefore, the risk Pcerror of having a combinatorial 
error is given by the following: 

P Cerror = 1 - pM&h 

This gives the probability for a combinatorial error 
when each of thif field values Vt, V2, . . . ,Vffrom the 
query occur individually in at least one of the N 
records. More precisely, we assume that for each 
predicate for which the query values are 
VjR, k=1,2 ,..., pj, there exists a record in the group 
which has value f$& in the j’th field. 
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Let ql...qf represent the list off fields for which 
predicates are specified in the query. If Pi. is the 
cardinality of a field in the query and is less than N, 
duplicate values will be present in this field. The total 
number of distinct records, considering only the ql...qf 
fields, is represented by Nq1..,4f . This value is a func- 
tion of the cardinality and distribution of Vpi’s. By 
generalizing (6) and (7), the match and combmatorial 
error probability for a specific query with f predicates 
is now given by: 

, 
I-I ‘qi 

,=l 

P Cerror = 1 - pMotch 

Since the query contains values from the Nql...q, 
records, the query signature will necessarily cover the 
group signature. Thus, formula (9) gives an estimate 
for the probability that the group does not contain a 
matching record due to the combinatorial error. From 
our experiments, even for small values of N and f, 
this error is considerable. Consider a simple example 
in which field values are unique, i.e., pi = N. Equations 
(8) and (9) reduce to the two special cases: 

P 1 P 1 
Motch = Nf-l ’ 

Cerror = 1 -- Nf-1 

Suppose, for example, that N = 10, f= 2, and let 
~1 = ~2 = N. Since there are no duplicates, Nq,...q, is 
the total number of distinct records when two Celds 
are considered and, is just N. For a query Q, the 
probability that the group of 10 records does not con- 
tain a match is already 0.9. As f increases, the com- 
binatorial error also increases. If f = 3 and JAM = N, 
the probability that we do not have a match is already 
0.99. 

We now turn to the case of text. Substantial work 
has been done in order to find good signatures for 
text based on statistics and information theory 
(Schck78, Christodoulakis84, Faloutsos85a,85b,87). 
Since text is a set or sequence of words and a query 
is also a set or sequence of words, there is still a 
considerable combinatorial error problem. Consider 
the following text consisting of two phrases as an ex- 
ample: 

t = <database index extension>, 
<operating system kemel>> 

Assume that a signature s has been assigned to r and 
that a query asks for all documents with the phrase 
< database kemal> . The signatures would indicate a 
match even though the query did not match the actual 
text. Text signatures built on a word basis represent 
not only the original text phrase. They also represent 
every phrase which could be formed by any combina- 
tion of the words in the original phrase. Thus, we 
have to deal with the same combinatorial ptobte-m. 

The probability for this error increases as more 
phrases in the text are clustered to compute s and as 
more words are specified in the query. Formula (9), 
shows this to be a problem with group signatures with 
only a few phrases and a two- or three-word query. 

- While various aspects of the l’s bit saturation prob- 
lem have been addressed in the literature, the combi- 
natorial error problem remains. (Schek78) has exam- 
ined estimating frequent pairs or triples of words and 
more recently, (Sacks-Davis87) has proposed multi- 
level signatures using larger parent signatures and set- 
ting bits based on common word-pairs to address one 
aspect of this combinatorial problem. 

4. A Solution to the Combinatorial Problem 

In this section, we describe a general approach to 
building second level signatures that exhibit a signifi- 
cantly reduced false drop sensitivity due to the com- 
binatorial error. 

The Combinatorial Signature 

We propose a new signature function that encodes 
combinations of values within a record rather than 
single values from a record. This is equivalent to 
computing a new signature based on a combination 
of multiple bits in the original object signature. First, 
a leaf signature Sl with ml bits is computed for each 
record. Techniques for finding the length and hash 
function for Sl are well-known (see Faloutsos87). 

In our new technique, for each Sl leaf signature 
a larger combinaroriul signature CSl of qsl bits is 
computed. CSl is formed by testing a complete set 
or subset of all r pairs of bit positions in Sl and setting 
one of the rncsl bit positions in CSl to 1 if l’s appear 
at both bit positions indicated in Sl. This could be 
extended to bit triplets, quadruplets, etc. For now, we 
consider only bit-tuples consisting of bit pairs. 

To form a group (parent) signature for a set of NL 
leaf signatures, all of the CSl’s are superimposed (bit- 
OR’ed). Assume signatures are computed for records 
RI and R2 and that each field value P$k sets one Sl 
signature bit when it is hashed. When a combinatorial 
signature CSl is computed by selecting pairs of bits 
in Sl, each CSI bit indicates the presence of a com- 
bination of record attributes. If a query is posed 
which specifies combinations of values (such as (Vt t, 
V22) or (VIZ. Vzl)). a conventional S2 signature formed 
by bit-ORing leaf-level Sl signatures will not reject Sl 
signature groups. This query is said to contain a 
combinatorial error. However, an CS2 signature 
formed by bit-ORing CSl signatures will indicate the 
presence of combinations of values and have a high 
probability of rejecting lower level leaf signature 
groups. An example of how the new combinatorial 
signature CSl works is shown in figure 4. 
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Figure 4: Rejection of guey with combinatorial enw 

When a new object signature is incrementally added 
into the group covered by an CS2 signature, we com- 
pute the new object’s CSl signature from its Sl sig- 
nature and then bit-OR the CS1 signature into the 
parent CS2. 

The basic strategy for generating the combinatorial 
signature CSl is to encode a full or partial subset of 
all combinations of Sl bit pairs. To compute CSl, 
we first identify a set of unique bit position pairs in 
Sl. Each of these Sl bit pairs is bit-ANDed and each 
result is mapped to a specific bit position in CSl. 
When this is done systematically, the ml bits of Sl will 
form ml - 1 bit partitions in CSI of size (ml - 1). 
(ml - q,..., 1. For example: Bit 1 of CSI is set by 
bit-ANDing bits 1 and 2 of Sl. Bit 2 of CS1 is set 
by bit-ANDing bits 1 and 3 of Sl. This is shown 
below in Figure 5. 

Field I Field 2 

Chang. Yaltcr Enginear 
I *-I 

1=1 2 3 4 5 6.. ml=8 bits 

Sl I 1 0 1 0 0 1 1 0 I Leaf signature 

csla... 
1=1 2 3 bit i 

-I I I 
.-. 0000 000 10 0 

I 
vs1=28 bits 

Figure 5: Computation of the combinatorial signatmx. 

Using this method, we can determine the value of 
mcsl for the required length of CSl. CSl is partitioned 
into a set of bit fields of length (ml - l), (ml - 2), . . . . 
(ml - (ml - 1)). To find the total number of bits re- 
quired for CSl, we sum the number of bits of all of 
the partitions: 

(10) 

ml-l 

maI = ((ml - I)m,) - c i, which gives: 
i=l 

(11) 
(ml - 1) ma,=ml---- 

1 

Beyond a combinatorial signature, we can also use a 

second parent signature LS2 which is obtained by 
longer leaf signatures LSl with rnLsl bits using other 
known methods (Sacks-Davis87). These longer LSl 
signatures and the new combinatorial CSl signature 
associated with Sl do not have to be stored in the leaf 
levels of the signature file since they are used only to 
build higher level signatures. In this sense, LSl and 
CSI signatures are “virtual”. 

Whether bit position pairs in Sl are selected at 
random or in sbme systematic way, for each CSl bit, 
there is a small probability that selected Sl bit positions 
represent k-tuples from the same field. If this is the 
case, our new CSl signature will not provide protection 
against combinatorial errors. Fortunately. this prob- 
ability is low. If each record consists of F fields and 
we assume the signature encoding of the i’th field sets 
bi signature bits in Sl, the probability that a bit in 
CSl was set by u Sl bits from the same record field 
i is given by: 

P 
bi u 

same= iq- 0 
where u = 2 for bit pairs. For example, if a record 
consists of F = 8 fields and yields a signature Sl with 
ml = 64 total bits, and an average field requires bi = 8 
signature bits, Psam = 0.016. We expect this amount 
to be quite tolerable. 

Thus, the key parameters in applying this technique 
are the selection of the CSl generating algorithm, and 
an appropriate Sl signature. The selected density of 
Sl is crucial because it will determine the density in 
CSl and the number of CSl signatures which may be 
clustered to form CS2. We now address how signature 
parameters can be determined. 

Determining Signature Densities 

For each key to be stored in the index, we compute 
signatures Sl, LSl, and CSl from our data object, a 
record. Sl is a simple encoding using the algorithm 
given by (Harrison71) where we set k- 3 and use 
k-tuples within fields of data objects. Leading and 
trailing blanks in the tields can be ignored. Out first 
goal will be to design signature functions such that 
parent signatures attain the desired density when they 
are formed by superimposing the NL lower level sig- 
natures. 

This can be achieved by using a general heuristic 
for determining the lengths, density, and hash functions 
for the signatures in our tile. In Figure 6, only Sl 
signatures are stored in leaf pages, while longer LS2 
and CS2 signatures are stored only at patent levels. 
When a group of virtual LSl leaf signatures are su- 
perimposed, a parent signature LS2 of the same length 
is formed. cS2 is formed in a like way. The higher 
level signatures LS3 and CS3 ate formed by superim- 
posing groups of LS2 and CS2 signatures, respectively. 
We next discuss the LSl virtual signature. 
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Determining Signature Lengths 

To select the length m~sl for a virtual leaf signature 
LSI, an estimate is made of the number of unique 
k-tuples contained in a record, since this determines 
the likely number of I’s set in the signature. Since a 
k-tuple is simply a substring sequence of k bytes, as k 
increases, the number of distinct k-tuples within the 
record decreases while for smaller k, k-tuples are more 
likely to be repeated. To simplify our design, we set 
k to 3 and assume a nearly uniform distribution of 
k-tuples within each record. For example, if the Har- 
rison algorithm is used, an estimate is made for A VGkr, 
the average number of unique k-tuples per record 
using equation (12). Equation (13) gives the leaf sig- 
nature density a,y.sl, given the target parent density 
aLs2 and leaf clustersize ~VL derived from (3). 

(12) A VGk, = 
Len(Record) - (k - d) 

d 1 
(13) 

The determination of design parameters for signa- 
ture CSl is trickier. Since CS2 is formed by super- 
imposing CSl ‘s and CSl is derived from Sl , we work 
backwards. We first need the density acsl for CSl 
given NL and a selected parent target density of acs2 
(typically .5 or less.) Given the density that must 
occur in a parent signature CS2, acsl for a virtual 
leaf combinatorial signature CSl can be directly de- 
termined by using equation (3). Since bits of CSI are 
set by bit-ANDing pairs of bits in Sl, the density at 
for Sl can be derived from the product: 

(14) DLa, = a,? 

To determine the length ml of Sl, we again use 
an estimate of the number of unique k-tuples present 
in each record and divide by at. By altering the 
k-tuple size and distance d between k-tuples, a high 
degree of flexibility is possible in deciding ml. When 
k = 2 and d = 1, we have the simplest case of Harrison’s 
algorithm. If k and d are made variable and k-tuples 
become equivalent to entire words, for large mt the 
signature generalizes into a Bloom filter. The final 
step is to determine the length mcsl of signature CSI. 
This is done by using equation (11). 

5. Incorporating Multi-Level Signatures in 
Starburst B-Trees 

We now describe a generic organization for multi- 
level signature files using B-tree structures. Other hi- 
erarchical organizations are possible, but are not dis- 
cussed here. (Korth82), (Prabhakar83). and others 
have attempted to integrate signatures into B-trees. 
We now generalize these efforts. In our approach, 
one or more signature fields are appended to leaf and 
parent key entries within the B-tree index. Signature 
entries in interior pages filter entire pages of lower 

level signatures while leaf signatures filter specific data 
objects during predicate evaluation. 

For all non-leaf pages of a B-tree, page entries 
consist of ordered < Dividing-key, Pointer > pairs 
used to determine which child page must be accessed 
next. TO incorporate signatures, for each non-leaf 
entry we also store one or more parent signatures 
which represent the aggregation of all lower level sig- 
natures in the child pages. We selected two different 
signature functions for each parent entry and designate 
these by LS2 and CS2., 

The motivation for multiple signatures at non-leaf 
levels is as follows: If different group signatures are 
used, there is a lower chance that a group containing 
all false drops will be qualified by all the signatures 
generated from a query. The signature functions must 
be sufficiently diKerent in the way object attributes are 
captured. Examples of these signature functions are 
those for which the k-tuple size is increased or the 
distance d between k-tuples is increased (Ifarrison71). 

In figure 6 we show a partially constructed signa- 
ture tile with the constituent signature elements. The 
functions key(&), tid(Ri) indicate extraction of the key 
fields and TID of data record Rie Sl indicates a short 
signature for each data record, LSl indicates the 
longer “virtual” signature of the same object, and CSl 
is the combinatorial signature derived from Sl . Par Key 
indicates a regular B-Tree Parent Key used to navigate 
to the leaf pages. 

At the leaf pages of the B-tree, entries now consist 
of the record key fields, the short Sl signatures, and 
TID. For each table record Ri, an LSl and CS 1 is 
computed and used only to form the appropriate LS2’s 
and CS2’s at the parent levels. LSl and CSl signatures 
are shown on the right of the leaf pages in figure 6 
and are used to compute parent signatures by a bit- 
ORing operation. 

Higher Signature Levels 

To form higher signatures, we can repeat the idea 
of superimposing lower level parent signatures until 
the root level is reached. One method is to simply 
Bit-OR lower level parent signatures to form higher 
level parent signatures. By using properly designed 
leaf, “virtual”, and combinatorial signatures, saturation 
can be delayed significantly as we move to higher 
levels of the index. Alternative hashing methods are 
possible by varying the Harrison parameters (k,m,d) 
or by using a class of universal hashing functions at 
the different levels of the index (CartergO). 

Many of the concurrency problems and recovery 
issues which apply to index managers will also apply 
to our new B-tree signature files as well. The basic 
multi-record locking algorithms developed for the 
Starburst index component are extended for signature 
indexes, and are similar to the algorithms described 
in (Bayer77, Mohan89). Due to space constraints, we 
defer presenting the implementation details of the al- 
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Figure 6: Multi-Level Signature Index incorporating Sl, LSl, and CSI 

gorithms for signature insert, delete, fetch, and scan 
operations as well as index locking and recovery to a 
future research report. We now address how the query 
optimizer would use a signature access method. 

6. Starburst Query Optimizer issues 

For the query optimizer to decide whether or not 
to use an existing signature, it must know which rela- 
tion columns are covered by the signature and then 
estimate the cardinality of field values, selectivity of a 
given query, and cost of using the signature tile. To 
the optimizer, the signature access method or 
attachment has the same functional interface as other 
attachments in Starburst for tuple insert, delete, fetch, 
and scan (see Stonebraker80 and Lindsay87). Thus, 
the signature attachment will appear to the Starburst 
rule-based query optimizer as a scan LOLEPOP (Low- 
Level Plan Operator), described in (Haas and 
Lohman88). 

Since the signature attachment will return an an- 
swer superset rather than a precise tuple set like a 
conventional index, a FILTER operator must be ap- 
plied to eliminate tuples which may be false drops. 
The estimated cost of using a signature is based upon 
column cardinality, which is estimated by using a 
model of the probability any tuple will be accessed 
(selectivity), and a probabilistic model of page accesses. 

The signature attachment could also be generalized 
for use in plans to solve text search predicates. If 
Harrison’s k-tuples are set to be entire keywords in a 
document or a long field (Lehman89), than each 
k - tuple represents a text keyword and precisely one 
bit per keyword will be set in signatures Sl and LSI. 
A signature index over text stored in a long field would 
be classified as an exogenous database attachment 
(Schwarz86) since the index may be bound to a long 
field, rather than a base table. 

Our experimental results show that for conjunctive 
multi-predicate queries where f is large, signatures 
compete well with indexes. For queries with weights 
corresponding to two or more predicates (i.e., when 
the query weight exceeded 9). measurements showed 
that over 97% of the relation tuples were filtered and 
less than 20% of the signature file was accessed. 
Compared to relation scans, total page accesses (mea- 
sured by page fixes) were reduced by over 92%. These 
preliminary tests indicate that signature files are a 
promising method for greatly accelerating relation scan 
performance for queries when normal indexes are not 
available. 

7. Conclusions 

We have identified an undesirable, naturally oc- 
curring false drop phenomena inherent to all multi-level 
signature structures which we have called the combi- 
natorial error. We have presented a new combinatorial 
signature generation method which significantly re- 
duces the negative effect of the combinatorial error. 
We have shown how to generically build multi-level 
signature structures from single level signature tiles by 
extending generic B-tree indexes such as the Starburst 
index component. Signature files can serve as a pow- 
erful extension access method to support not only da- 
tabase queries usually handled by relation or index 
scans, but also text applications. 
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