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Abstract 

This paper presents a parallel algorithm for recursive 
query processing and shows how it can be efficiently 
implemented in a local computer network. The algo- 
rithm relies on an interpretive approach where recur- 
sive rule processing and data retrieval are merged in a 
top-down computation. It employs “sideways informa- 
tion passing” to restrict to relevant facts the informa- 
tion extracted from the relational database. Evalua- 
tion is divided into a compilation phase and a dynamic 
phase. The compilation phase statically constructs a 
derivation tree that expresses the decomposition of a 
query into subqueries and the “sideways information 
passing” strategy. In the dynamic phase, cooperative 
processes are associated with subsets of “equivalent” 
nodes of the derivation tree. They communicate by 
message passing without sharing memory. Some opti- 
mizations are discussed for a practical parallel imple- 
mentation. Gains in efficiency with respect to classical 
sequential algorithms are also discussed. 

1 Introduction 

A disiributed database [5] is a collection of data which 
are distributed over different computers of a computer 
network. Relations are partitioned into fragments ver- 
tically and/or horizontally. The vertical hgmenlaiion 
of a relation is the subdivision of its attributes into 
groups; fragments are obtained by projecting the rela- 
tion on each group. The horizontal jhgmentaiion of a 
relation consists in partitioning its tuples into subsets. 

Query evaluation in distributed databases is per- 
formed in parallel through the computer network. The 
existence of several cooperating processors results in 
increasing performance. 

Databases can be given deductive capabilities by the 
addition of de&Zion rules. Rules are often restricted 
to be definite Horn clauses. They define new relations 
and can be recursive. 
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This paper presents a parallel algorithm for evalu- 
ating atomic queries in deductive databases and shows 
how it can be efficiently implemented in a local com- 
puter network (locality is necessary because parallelism 
in the algorithm is relatively fine-grained). It sug- 
gests a multi-computer architecture well-fitted for dis- 
tributed deductive databases where some processors 
handle fragments of the distributed database while oth- 
ers are devoted to the evaluation of recursive queries. 
Such an architecture is currently being developed in 
the database tract of the PRISMA project (PRISMA 
for PaRallel Inference and Storage MAchine) [13]. 

From a logical point of view, a deductive database’ is 
a finite set of function-free definite clauses. It is com- 
posed of an eztensional database and of an intensional 
database. The extensional database is a set of ground 
atomic formulas called facts. The intensional database 
is a set of rules. 
Example 1 
Consider a directed graph with two types of arcs and 
two predicates el(X,Y) and ez(X,Y) meaning that 
there exists an arc, respectively of type 1 or 2, from 
Node X to Node Y. Then, the following rules 

P@, Y) + el(X, Y), 
dx, Y) + e2(X, z), P(& T), e2K Y), 

define a virtual predicate p true for couples of nodes 
(X,Y) such that there exists a path from X to Y all 
of whose arcs are of type 2 except the central one. l 

It can be assumed, without loss of generality, that a 
fact in the extensional database and an atomic formula 
in the head of a rule of the intensional database are 
never instances of the same predicate. The predicates 
of the deductive database some of whose instances are 
heads of rules of the intensional database are called 
virtual predicates, the other ones are called base predi- 
cates. 

The semantics of a deductive database B is given by 
its least Herbrand model MB which can be constructed 
by fixpoint computation. A closed formula F is true in 
the deductive database B if ~~~ F. 

A first approach for evaluating queries in deductive 
databases consists in adding to the traditional rela- 
tional algebra a least fixpoint operator LFP. If p is a 
virtual predicate, LFP(p) = (a 1 ~~~ p(a)}. 

In Example 1, the query p(a,Y)? is translated into 

‘For more details about deductive databases, see [12]. 
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CQ=,LFP(~). Unfortunately, commuting selection and 
least fixpoint operator is not possible in general and 
that leads, for Example 1 and the query p(u,Y)?, to 
the necessity of computing the complete extension of 
p. Yet, in order to answer the query, only part of the 
extension of p is strictly necessary. The facts that effec- 
tively contribute to the answer are said to be relevant 
to the query. A good evaluation strategy should not 
extract other facts from p. In general, which facts are 
relevant also depends on an ordering of the predicates 
in the right-hand sides of the rules [4]. 

Various proposals have been made to overcome this 
problem [7,8,10,15,20,27] but they are restrictive in 
that they are complete only for special (typically lin- 
ear) types of recursion. 

Another approach takes advantage of the decom- 
position of queries into subqueries and of the possi- 
ble constant propagation among them. This approach 
seems more fruitful and has been heavily investigated 
recently. In [16], an active connection graph is dy- 
namically created, with rule nodes and goal nodes cor- 
responding to queries and subqueries. Solutions flow 
across the rule nodes to the goal nodes. However, con- 
stant propagation is poor and therefore, the algorithm 
is rather inefficient. Also the APEX algorithm [14] 
clearly lacks an efficient propagation of constants. The 
Recursive Query/Subquery (QSQR) and QoSaQ ap 
proaches [24,25], the Alexander method [19], and the 
generalized counting method [4] are algorithms which 
compute only relevaut facts. 

A uniform presentation of recursive query evaluation 
methods can be found in [18]. The algorithms are clas- 
sified in three classes according to their halting con- 
dition. They are also compared on completeness and 
efficiency criteria 

Another efficiency requirement, which has received 
little attention until now, is the minimiration of the 
number of database accesses, It can be addressed in 
two ways. First, when the same query on base predi- 
cates is generated at different times, a good evaluation 
process should access the database only once. Further, 
the strategies mentioned above repeatedly instantiate 
subsets {zil, . . . . zi,) (bin) of variables in base predi- 
cate p(cl, . . . . a,), and access the extensional database 
for all the facts p(ur , . . . . Zen) such that (uil, . . . . w,,) are 
the values instantiating (zir, . . . . zik). It is clear that, 
rather than accessing the extensional database each 
time an instance is generated, a better strategy should 
accumulate successive instances and make a single ac- 
cess for solving all of them simultaneously. 

The algorithms cited above are sequential and lit- 
tle attention has been paid to parallelism until now. 
Parallelism is however recognized as a very important 
optimization feature for recursive query evaluation. A 

few proposals exist for evaluating transitive closures 
in distributed database systems [1,9,22]. More gener- 
ally, several classes of logic programs, e.g., the class of 
linear single rule programs, can be evaluated in par- 
allel without introducing interprocess communication, 
or synchronization overhead [26]. A first step towards 
a parallel algorithm for general recursive queries has 
been proposed in [23]. A first attempt to implement 
that algorithm on top of a multi-computer system [21] 
has not proved satisfactory, due to an excess of dupli- 
cated work. 

This paper is a continuation of [ll] where we pre- 
sented a new sequential algorithm, in the same vein 
as the QSQR approach, that accepts general recursion 
and guarantees termination and completeness. This 
paper describes a parallel version of the algorithm. The 
evaluation of a query is decomposed into two parts. 
The first one is static: it is a compilation of the query 
into an AND/OR tree. The second one is dynamic: 
cooperative processes associated with nodes of the tree 
rule the flow of data traversing the tree. They commu- 
nicate by message passing and do not share memory. 
We also discuss possible optimiaations for a practical 
parallel implementation. 

The paper is organized as follows. Definitions and 
notations are introduced in the following section. The 
compilation phase is described in Section 3 while Sec- 
tion 4 presents the parallel processes of the dynamic 
phase. Section 5 discusses some possible optimizations: 
choice of a selection function, minimisation of the nnm- 
ber of database accesses, and increase of parallelism. 
Section 6 is a conclusion. 

2 Basic definitions 

Variables in rules are taken in an alphabet V not con- 
taining the symbol *. In addition, V* is a new set of 
variables where CC* is au element of V* if-and only if 2 

is an element of V. 
A query scheme associated with a predicate p is 

any atomic formula ~421, ..,, 2,) without constants and 
whose variables are in V* or in V. Two variables 2 E V 
and 2*~ V* cannot both be present in the same query 
scheme. If 2* is present, 2 is called an entry vatiable of 
the query scheme. The ezit variables of a query scheme 
are those belonging to V. 

Two query schemes associated with an n-ary predi- 
cate p are said to be equivalent if they are identical up 
to a renaming of their variables respecting their entry 
or exit character. 

An entry (resp., ezit) due for a query scheme with 
n entry (resp., exit) variables is any set of n vari- 
able/value pairs where each variable appears once and 
only once. 
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A mechanism is assumed, provided for example by 
a (distributed) DBMS, that, given a query associated 
with an n-ary base predicate, computes its solution 
from the extensional database. More precisely, if Q is 
a query scheme associated with a base predicate, in-u 
is an entry value of Q, and BE is the database, then, 
ans(Q, in-V, BE) = {in-vu out-v 1 out-v is an exit value 

of Q & Q[in-uU out-v] E BE} 
where F[a] denotes the result of applying the substi- 
tution o to the formula F. 

3 The compilation phase 

The result of compiling a query scheme is a derivation 
tree whose nodes are labeled with query schemes. 

Derivation trees are special kinds of AND/OR trees 
[17]. They can be viewed as a kind of hypertree, where, 
instead of arcs connecting pairs of nodes, hyperarcs 
connect a parent node to an ordered lit of successor 
nodes. The derivation tree of a query scheme makes 
explicit its possible decompositions (derived from the 
deduction rules) into subquery schemes. Like in Prc+ 
log, the ordering of subqueries governs the propagation 
of the instantiations of the entry variables. 

The compilation phase constructs the derivation tree 
by recursively splitting each query scheme in as many 
sequences of subquery schemes as there are deduction 
rules defining the query scheme predicate in the inten- 
sional database. The resulting derivation tree has the 
following properties: 

l when several equivalent query schemes are present 
in the derivation tree, only one of them is explicitly 
decomposed; 

l the subquery order in a decomposition is imposed 
by a selection function. Different selection func- 
tions can generate different derivation trees. A good 
choice of the function is important: the efficiency of 
the evaluation process is very sensitive to the or- 
dering. Heuristics guiding the choice of a selection 
function are discussed in Section 5.1; 

l a variable in a subquery scheme SQ at the extremity 
of a hyperarc h is an entry variable if it is an entry 
variable of the query scheme which is the origin of h 
or an exit variable of a subquery scheme preceding 
SQ in the extremity of h. 

Example 2 
For the query scheme p(X’, Y) and the database of 

Example 1, the following tree is a possible derivation 
tree (a hyperarc is denoted by several binary arcs joined 
together by a curved line and nodes are numbered for 
easier reference.): 

e2(X * z)mez(T Y) * * 
2 ’ 3 ’ 4 ’ 

Note, for example, that 2 which is an exit variable 
at Node 2 becomes an entry variable at Node 3. l 

Example 3 
In the following database, the virtual predicates 01 and 
cl are mutually recursive: 

al(x,Y,Z) + b(X,Zl),al(T,Zl,Z),cl(Zl,T,Y). 
cl@, Y, 2) +- 4X, G), al(G, 2, Y). 
al(X,Y, 2) + 4X, Y, 2). 
cl(x,Y,q + f(X,Y,Z). 

The predicates b, d, e and f are base predicates. 
The query scheme ul(X*,Y*, 2) leads to the possible 
derivation tree: 

g1(X',Y'J) 

A 

* $X',Y', 2) 

l 

Before considering the dynamic phase, some more 
definitions are needed. A node n1 of the derivation tree 
precedes a node n2 (or, equivalently, no follows nl) if 
they are extremities of the same hyperarc and if n1 is 
on the left of n2. In Example 3, Node 2 precedes Node 
3 and Node 7; Node 5 precedes Node 6. A node with- 
out a predecessor is called an in&a2 node (Nodes 0, 1, 
2, 4 and 5) and a node without a successor a terminal 
node (Nodes 0, 1, 4, 6 and 7). 

The concept of father node has its usual meaning: 
Node 0 is the father of Nodes 1, 2, 3, and 7. 

In the derivation tree, it may happen that several 
nodes are labeled with equivalent query schemes. The 
first one encountered during a depth-first traversal of 
the tree is called archetype node. In Example 3, Nodes 
0, 1, 2, 3, 4 and 5 are archetype nodes. This concept 
will be useful for the dynamic phase. 

4 The dynamic phase 

An atomic query is a query scheme together with an 
entry value for it. It is denoted by the query scheme 
where entry variables have been instantiated with the 
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entry value. The dynamic phase operates on an atomic 
query and the derivation tree of its scheme, as con- 
structed during the compilation phase, and produces 
a set of exit values for the query scheme. This set 
is computed step-by-step by repeatingly traversing the 
tree. 

The dynamic phase consists of the interleaving of 
parallel processes. Each process executes in a dynamic 
coded. A context remembers the minimal part of the 
computation state necessary to carry on with the com- 
putation. Active queries remember the subqueries gen- 
erated during the evaluation process with their partial 
solution and the contexts in which they were issued. 
Contexts and active queries play an essential role in 
avoiding redundant work as well as in guaranteeing 
correctness and completeness. They are presented in 
Section 4.1. Parallel processes are informally described 
in Section 4.2 and their precise algorithms are given in 
Section 4.3. 

4.1 Contexts and active queries 

A context of invocation of a process at a node n has 
the form <n,~~~Ev,in-v-f > where 

l 

0 

in-o-f is an entry value for n’s father node ({3 if n 
is the root node), 
ml-0 is (L relevant value of n, i.e., a set of vari- 
able/value pairs which comprises the values of 

l entry variables of nodes which follow n in the 
extremity of a hyperarc provided those variables 
are also entry variables of the father of n or exit 
variables of nodes preceding n, 

l exit variables of the tither of n which are exit 
variables of nodes preceding n. 

The variables in a relevant value of a node n are 
called relevad variables of n. During evaluation, the 
relevant value in a context of n remembers the values of 
variables that are known before evaluating the current 
query at n and that are still needed after its evaluation. 

To illustrate these concepts, consider the following 
derivation tree: 
Example 4 

At Nodes 0 and 1, the set of relevant variables is 
empty, at Node 2, it is (X3, at Node 3, it is (X,Y), 
at Node 4, (X,Y, W) and at Node 5, {Y). 

At Node 4, a context comprises, besides a reference to 
Node n itself: 

l a relevant value (Y/cl, X/c,, W/c,). Y/cl is a part 
of a possible solution of the query at Node 0 with 
entry value {X/es} while X/c, and W/c, are needed 
at Node 5 to find solutions for 2, 

l an entry value for Node 0: {X/CO). 
From this context and an exit value from Node 4, 

a context and an entry value can be constructed for 
Node 5. A context and an exit value of Node 5 allow 
to construct an exit value of Node 0. A context of a 
node remembers the minimal part of the computation 
state necessary to go on in the computation when an 
exit value is found at the node. l 

During the evaluation process, information units, 
called active queries, are associated with each node 
to remember queries previously requested at the node, 
their partial solution, and the contexts in which the 
requests were issued. As distinct nodes may be labeled 
with equivalent query schemes, it is enough to associate 
active queries only with archetype nodes. 
An active query at an archetype node n comprises: 

l an entry value (it uniquely identifies the active 
query at the node), 

l a set of exit values for that entry value (this set will 
be used to avoid repeating the same computation 
and, in particular, to avoid cycling), 

l a set of contexts of nodes whose archetype is n (this 
set will be used to guarantee completeness, that is, 
to guarantee that exit values are used in all the con- 
texts in which they were requested). 

During the evaluation process, the set of exit values 
of the active queries are not necessarily complete, i.e. 
do not contain all the solutions of the query. That 
is why the contexts where queries are generated are 
remembered: each time a new solution .is found for 
an active query of a node w, it is propagated along 
alI contexts remembered in that active query. This 
guarantees completeness: each exit value of each active 
query is propagated along each context. At the end of 
evaluation, each active query has received a complete 
set of exit values. 

Query schemes at equivalent nodes differ by their 
variables. If n and n’ are equivalent nodes and v is 
an entry or exit value for n, the corresponding value 
for n’ will be denoted van’. In Example 3, Nodes 
0 and 7 are equivalent. An entry value of Node 7 is 
<T/a, 21/b>. Then, <T/a, Zl/b>@O = < X/o,Y/b> 
is an entry value of Node 0. 

4.2 Parallel processes 

There is one process Evaluate(n) for each archetype 
node n. They interactively solve subqueries generated 
during evaluation. 
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To each archetype node n, we associate: 

l a process Evaluate(n,) which computes and propa- 
gates the answers of active queries at n,, 

l a private memory Memory(n,), that is, a set of active 
queries of n,, 

l two buffers, if n, is a virtual node, to store messages 
sent by other processes: 

Request(n,), a set of Tequest messages for no, 
Ansurer( a set of answer messages for n,, 

l a buffer Request(n,), if ncr is a base node. 

A Tequest message for n, is a pair made of an entry 
value and a context for a node whose archetype is n,. 
An answer message is a set of variable/value pairs for 
the variables of no. 

In Example 4, four processes coexist: Evaluate(%) 
for i = 0, 1,2,5. A query such as s(z,Y, 2) (lower case 
letters denote constants) is solved by executing: 

Evaluate(no) 11 . . . 11 Evaluate(ns) 

after having sent the message <{X/x),<no, (3, {3>> 
to Request(no). PI 11 Pa denotes the parallel computa- 
tion of PI and P2. 

The reception of <(X/x),<no,{),{)>> in buffer 
Request(no) initiates the computation. The process 
Evaluate(w) adds to Memory(no) the active query 
({X/x), {3, {<no, {3, {3>3). That query is solved by 
parallel decomposition along each hyperarc issuing 
from node 0 as follows: 

1. A request message <(X/x),< nr, {3, (X/x)>> is 
sent to Request(nl). Node ni is a base node. 
The request is solved by Evaluate(ni) which com- 
putes S = ans(p(X*, Y, Z), {X/x), BE) and sends 
it to Answer(no). That computation is remem- 
bered by adding to Memory(nl) the active query 
((Xlz3, S, (<al, 0, (X/x)>)). If, later, nl is 
queried again with the same entry value X/x, the 
set of answers is already present in Memory(nl) 
and no new access to the extensional database is 
necessary. 

2. A request message <{X/x),<n~,{X/x),{X/x)>> 
is sent to Request(nz). Exit values {Y/y,T/t) are 
computed by Ev&&e(n~) by accessing ki for 
q (see 1.). For each of them, the request mes- 
sage <(T/t),<ns, (X/x, Y/y), (X/x)>> is sent to 
Request(no), since no is the archetype of n3. 
Two situations may then arise, in general, for 
Evaluate(no): 

l there exists in Memory(no) an active query 
Q with entry value (X/t). In that case, if 
the context <na, (X/x, Y/y), {X/x)> is not 
already in the set of contexts of Q, it is 
added to it. For each {Y/yr, Z/z13 in the 
set of exit values of Q, the request message 

<(U/y13,<7h,{X/x, Y/y, W/213, {X/x3>> is 
sent to Request(no)(no is the archetype of nq), 
otherwise, an active query with the en- 
try value {X/t), an empty set of exit val- 
ues and a singleton set of contexts con- 
taining <na, {X/x, Y/y), (X/x)> is added to 
Memory(no). Its set of exit values is computed 
by parallel decomposition as described above for 
the original query s(x, Y, 2). 

3. Each <{U/yl),<n4, (X/x, Y/Y, W/a), (X/x3>> 
in Request(no) is also solved by parallel decomposi- 
tion. Each answer {U/yi, V/v, R/r) generates a re- 
quest <{W/a, R/r, X/xh<ns, {Y/Y), (X/xl>> 
in Request(n5). These requests are solved by 
Evaluate(ns) by accessing BE for t(zr,T,x, 2). 
Each value zr of 2 resulting from that evaluation 
generates an answer message {X/x, Y/y, Z/z23 
sent to AnsweT(no). 

Answer messages are processed in parallel with re- 
quest messages. Notice that two active queries in the 
private memory of a process have different entry values. 
If a query is encountered more than once at equivalent 
nodes, there will be, in the private memory of the pro- 
cess associated with their archetype node, an active 
query with several contexts to remember the different 
states where the queries appeared. The contexts of a 
query ((X/a), S, C) at no are of one of the form: 
a. <no, O,O>, 
b. <n3, (X/x, Y/Y), Wx3>, 
c- <n4, {X/x, Y/y, Wlw3, (X/x3>. 

During the evaluation process, the set of exit values of 
the active queries are not necessarily complete, i.e. do 
not contain all the solutions of the query (except for 
queries on base predicates). That is why the contexts 
where queries are generated are remembered: each 
time a new solution is found for an active query of 
Memory(R), Evaluate(w) propagates it along all con- 
texts remembered in that active query. This guarantees 
completeness: each exit value of each active query is 
propagated along each context. At the end of evalua- 
tion, each active query has received a complete set of 
exit values. 

Given a solution {X/a,Y/b, Z/c3 of Answer(no) 
and the active query ((X/a),S,C) at Node no, if 
{Y/b,Z/c) is not already in the current solution S, 
it is added to S and the solution is propagated in each 
context in C of the form b or c2, i.e., 

type b: <{U/b),<na, (X/x, Y/y, W/c), (X/x)>> is 
sent to Request(no), 

type c: <{W/w, R/c, X/x3,<~, {Y/Y), (X/x)>> 
is sent to Request(ns). 

2There is no propagation in the context of type a which is the 
context of the initial query. 
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Termination occurs when all request and answer 
buffers are empty and when all processes are waiting 
for new messages. 

4.3 Algorithms 

Some properties of entry, exit and relevant variables 
will be useful for writing the algorithms: 

1. The entry and relevant variables of an initial node 
are also entry variables of its father. 

2. The entry and relevant variables of a node with a 
predecessor are among the exit and relevant vari- 

ables of the predecessor. 
3. If n is terminal, then n’s relevant and output vari- 

ables make up the exit variables of n’s father. 
Let us call Oi”(nt(uup) those elements in a list of vari- 

able/value pairs vvp whose variables are entry variables 
of n and O~f(vvp) those elements whose variables are 
relevant to n. With these notations, the preceding 
properties write: 

1. if n is an initial node and in-v-f is an entry value of 
n’s father, Bin,n’(in-v-f) is an entry value of n and 
Oyr(in-v-f) is a relevant value of n, 

2. if n has a successor n-sue, if reLv is a relevant value 
of n and out-v is an exit value of n, O~~~,,,(reZ-v U 

o&v) is an entry value of n-sue and Oz’,,,,, (4-v 
U out-u) is a relevant value of n+uc, 

3. if n is terminal and if ml-v is a relevant value of n 
and out-v is an exit value of n, rt4v U out-v is an 
exit value of n’s father. 

All the elements necessary to present the processes are 
now gathered3. 
If n, is a virtual archetype node: 

Evaluate(n,): 
While he do 

1. if Requesi(n,) # 0, then call actionI( 
2. if Answer(n,) # (1, then call actionz(n,). 

actionl(n,): 

* 
* 

1. take an element <in-v,0 (c = <n,reZ-v,in-v-f>) 
out of Requesl(n,); 

2. if there exists an active query Q = (in-v&,, S, C) 
in Memory( n,) , 
then, 
if c is not in C, 

1. add c to C; 
2. for each out-v in S, 

call propagate( out-vOn,c) 
else, 

1. create the new active query 
w = (in-v&l, 0, {c}); 

3Correctness and completeness of the corresponding scquen- 
tial algorithm have been proved in [ll]. The demonstration could 
easily be transformed for the parallel version. 

2. 
3. 

add NQ to Memory(n,); 
for each hyperarc h issuing from Node n4, * 
let n-in be the origin of h, * 

n-in, be the archetype of n-in, * 

send <O~~~,,(in-v&a,), <n-in,S&(in-u@ra.), 
in-v&a,>> to Requesi(n-in,,). * 

actionz(n,): 
1. take an element 8 out of Anewer( 
2. let Q = (in-v, S, C) be the active query of 

Memory(n,) such that in-v C 8 
if outv = s\in-v is not in S, 
then, 

1. add out-v to S; 
2. for each c = <n,reGv,in-v-f> in C 

call propagate( out-v&c). 

propagate(out-v,<n,reCv,in-v-f >): 
If n is a terminal node, 
then, 
if n has a father n-f*, 
then 
send in-v-f U n&v U out-v to Answer(n-f,), 

else, 
let n-zuc be the successor of n, 

n-sue,, be the archetype of n-auc, 
send <O~~,,c(~~-v Uout-v), <n-euc,@&( do Uout- 
v), in-v-f >> to Requesl(n-sue,). 

The process associated with a base archetype Node 
n, is similar to the one associated with a virtual node 
except that the lines of Evaluate(n,) and actions(%) 
marked by *‘s are respectively replaced by: 

if Request(n,) # {}, then call actionl(n,). 
and 
3. let Q be the query scheme labeling no, 

1. replace the empty set of exit values of NQ by 
ans(Q,in-v&a,,, BE); 

2. for each 8 in ans(Q,in-t&no, BJJ), 
call propagate((sOn)\in-v,c). 

As they are presented, the algorithms implement a 
tuple-oriented evaluation strategy: a message only con- 
tains one answer or one request. This is not inherent to 
our evaluation method. Each process could also accu- 
mulate the requests and answers it generates until its 
own Answer and Request buffers are empty and then 
only send sets of requests and answers to the other 
processes. The evaluation would then be set-oriented. 

Any other strategy that lies between those two ex- 
tremes is also possible. The choice of an optimal strat- 
egy depends on the communication costs in the dis- 
tributed architecture. If they are negligible, a tuplc 
oriented strategy can be preferable because, as each 
request and answer are sent as soon as they are gener- 
ated, the cpu utilization of the processes is optimized. 
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Otherwise, a more set-oriented strategy must be cho- 
sen. 

4.4 Termination 

In order to discuss termination, each process is as- 
sumed to acknowledge each message it receives as soon 
as it reads it and to maintain, in a counter, the number 
of messages that it sent and has not yet been acknowl- 
edged of. 

Termination occurs as soon as, for every process, 
- Request and Answer buffers are empty, 
- there is no message currently being processed, 
- the value of counter is equal to zero. 

The problem in a distributed architecture is deter- 
mining asynchronously when all the above conditions 
are satisfied. Fortunately, that problem has well-known 
solutions. Their presentations is out of the scope of this 
paper and the interested reader is invited to refer to [6]. 
That problem is also shortly discussed in [23]. 

4.5 Example 

We now present the trace of an example. It is short but 
typical due to the symmetry of the es relation on the 
couple (a, b). This symmetry is responsible for the for- 
mation of an active query with two different contexts. 
We have made explicit the consequences of the execu- 
tion of processes. The creations and alterations of the 
different active queries at the root node are indicated 
in M(no) (for Memory(no)). For the sake of simplicity 
and brevity, they are not shown for the base archetype 
nodes. The Request and Answer buffers of a node n are 
denoted R(n) and A(n). They are empty by default. 
In this simple example, entry and exit values have only 
one component. 
The intensional database is 

AX, Y) + el (X, Y) 
P(& Y) + 4% z),p(Z,T), m(T, Y). 

The ext;$o;al database is 

48,s) 
e(a,b) e(d,e) 
eatha) ez(e,f) 
en(c, 4 ea (9, A) 

The query is p(a,Y). Nodes TQ (0 5 i 5 4) are 
numbered as in Example 2. Nodes no, nl and nz are 
archetype nodes. 

I~tiab, R(n0) = (<(x/a},<m, 0, -(}>>}. 

1. EMuate 
Wno) = (((X/a3,{3,(<no,O,O>333 
R(w) = (c(X/~),<m, 0, (X/03>>) 
R(m) = (c.(X/~),<~a,o,(X/a3>>3 

2. Evaluate(nl) ]I Evaluate(ns) 
R(no) = (<{Z/b),<m, 0, (X/a3>>3 

3. EvaIuate(ns) 
Jf(no) = {({X/Q3,09 {-9 09 {3>33, 

tVlb3,Ot {-3cOB (X/o)>})) 
= {<(XIb3,<nl,O,{X/b3>>3 
= {<Wb3,<m, 0, Cx/b3>>3 

4. Evaluate(nr) 11 Evaluate(ns) 
R(no) = {<(Zla3,cm, 09 CWb3>>3 

5 ~4=-,,(,‘,“(V’l~)’ 
n 

M(no) = (i~~/~),O,{<no,~),O>,<n3,{3,{X/b)>)), 
(Cxlb3, W’lc33, j-39 C3,{X/a3>3)3 

R(m) = {<{T/c),<nr, {3, {X/a)>>) 
6. Evaluate(ns) 

Atno) = {W/a, Y/d33 
7. Evaluate(n0) 

M(n0) = 
{({X/03, (Wd33, f-09 09 O>c<nsv 09 {V3>3), 
({X/b39 {V/c339 (-390s (X/a3>3)3 

R(m) = {<{T/d),<m, {3, {X/b)>>3 
8. Evaluate(n,) 

A(no) = {{X/b,Y/e)) 
9. Evahate 

M(n0) = ' . 
{({X/a39 IWd33, ~-0, C3vOh<n39 09 {Wb3>3h 
(WP3, iO’/c3, We339 i-3, 

R(na) = {<{T/ 3 < {3 {X/ ~~~f’03’3’3 evn4, , a 
10. Evaluate(nz1 

Atno) = (W/a, Y/f 33 
11. Evaluate(no) 

dd(nn\ = -\ -, 
f(Wlo3, (W/d3, W/f33l (<no, O,O>, 

<m, 0, W/b3>3), 
(Wb3, tV/c3,W/e339 (<w 0, Wo3>3)3 

R(m) = {<Plf 3,-a, C3, Wlb3>>3 
12. Evahate 

The computation stops here and the set of answers 
is Wl4~ W/f 33. 

5 Opt imizat ions 

5.1 The selection function 

The selection function is of great importance because 
it orders the subquery schemes generated from a query 
scheme. The evaluation processes follow this order 
when they solve queries and propagate solutions. 

In the rule o(X, Y) + b(X, Z), ~(2, Y), and for solv- 
ing the query scheme 0(X*, Y), a selection of a(Z, Y) 
before b(X*, 2) leads to the computation of the com- 
plete relation a, which is clearly unnecessary. A good 
selection function must order the subquery schemes so 
that the number of relevant facts extracted from the 
extensional database becomes minimum. 

A simple choice reducing the size of the manipulated 
relations consists of always selecting the literal with 
most entry variables, making the assumption (heuris- 
tic) that queries with more instantiated variables have 
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smaller set of exit values. Statistics could also be of 
great help. 

Another selection practice is based on recursion lev- 
els. Base predicates are by convention at level 0. A 
predicate p is of higher level than a predicate q if an 
instance of q is in the antecedent of a rule defining p or 
if there exists an r such that p is of higher level than r 
and T than Q. Of course, p and q are at the same level 
if p is of higher level than q and conversely. 

A nxursion level is a maximal set of predicates at 
the same level. 

Along this line, a good selection practice is often 
to prefer subqueries leading to lowest recursion levels. 
Thus, we propose to select, in order of preference, the 
base predicates (level 0), then the predicates of strictly 
lower level than the consequent of the rule, and finally 
the ones at the same level. The assumption is that 
before working at a level of recursion, it is better to 
have computed a m&mum of facts from lower levels 
so that maximum information is available. 

A more sophisticated strategy integrates the two se- 
lection methods just outlined. It needs the definition 
of the concept of basic determined part of a set of query 
schemes [lo]. If {Zl, ZZ,. . . , In} is a set of query schemes, 
li (0 < i 5 n) is basic determined if it is a base literal 
and if either it has an entry variable as one of its ar- 
guments or there exists a i (0 5 j 5 n) such that Zj 
is basic determined and such that li shares variables 
with 4. The basic determined part of a set of query 
schemes is the set of basic determined query schemes. 

The selection practice is then to take the entire ba- 
sic determined part first. If it is empty, one among 
the virtual predicates of lowest level with a maximum 
number of entry variables is selected. 

The basic determined part gathers together all the 
base literals which could have been chosen successively 
by the first simple selection methods. It is clearly more 
efficient to treat them as a single conjunctive query for 
accessing the extensional database instead of making 
successive elementary accesses. This can dramatically 
reduce the number of accesses. Moreover, conjunc- 
tive queries correspond to join operations, that a good 
DBMS can handle efficiently. 

To accommodate this optimieation, the compilation 
phase must ba slightly modified. The nodes of the 
derivation tree are then either virtual query schemes 
or conjunctions of base ones (in this case, they are tip 
nodes). 

The selection function is also discussed in [23]. 

5.2 Mitiimization of the number of ex- 
tensional databkse accesses 

The preceding prbcesses access the extensional 
database whenever a new base query is generated. It 
is clear that, due to the time needed by the (possibly 
distributed) DBMS to answer literal queries, there is 
a risk that requests pile up in the buffers Request(%) 
associated with base nodes while other buffers become 
empty. 

A first optimiration can be to access the extensional 
database with queries composed of a disjunction of lit- 
eral queries. In Example 2, Request(n2) can always be 
written in the form 

Retpeat = u=l{< {X/ti}s < w,f}, {X/ti)>>} 
u~I(<{z/~j},<nr,c},{x/2~}>>}. 

Instead of answering the requests separately, the 
DBMS can be accessed with the composed query 
Vy=‘=, e2(2i, Y) V i/El es(zj,Y). The answers to the 
query are then sorted by Evaluate(n2), added to 
the set of exit values of their corresponding active 
queries and propagated to Request(m) or returned to 
Anawe7jw) while another composed query is being 
solved by the DBMS. Thus, the number of accesses 
to the DBMS decreases and their efficiency increases. 

Further, a special interface process can be in charge 
of managing all queries coming from processes associ- 
ated with the base nodes. It could for example give a 
higher priority to the composed queries which are esti- 
mated to have the largest set of answers. The intuition 
underlying this strategy is that it is wise to extract the 
relevant information from the extensional database as 
early as possible in order to make it available for com- 
puting the virtual queries. Heuristics must be designed 
to implement that strategy. They could be based on 
statistical informations or more simply on the rough as- 
sumption that the larger a disjunctive composed query, 
the larger its set of answers. We will not go further in 
that kind of optimisation, because it is clearly closely 
dependent on the architecture of the DBMS. 

5.3 Increasing parallelism 

Parallelism can be increased by associating cooper- 
ative processes with Request and Answer buffers in- 
stead of archetype nodes. Indeed, the Evaluate(n,) 
process associated with a virtual archetype node no 
alternatively answers messages from Reguest(n,) and 
Answe<n,). It can clearly be split into two parallel 
processes separately managing the two buffers. Those 
two processes would share .2ldemory(n,) and some at- 
tention must be paid to their correct design. 

If Nb and N,, are the numbers of archetypes nodes 
labeled with query schemes and respectively associated 
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with base and virtual predicates, then, the number of 
involved processes becomes Nb + (2 * N,) instead of 
&+N,. 

Parallelism can also be increased by a better use of 
the or-parallelism of the rules. In Example 2, 
l requests in buffer Bequest generate, through 

Evaluate(no), requests in buffers Reqtceat(nr) and 
Reque.d(na), 

l requests in buffer Request(nl) generate, through 
Evaluate(nl), answers in buffer Answedno), 

l requests in buffer Request(n2) generate, through 
Evaluate(ns), answers in buffer Anaure7(no) and re- 
quests in buffer Requeai(no), 

l answers in buffer Anawe<no) generate, through 
Evaluate(no), requests in buffer Request(nz). 

Cooperative processes could be associated with those 
communication channels between buffers rather than 
with archetype nodes or Requeat and Anawer buffers of 
archetype nodes. This would again result in an increase 
of the number of involved processes. 

In Example 2, there are 3 archetype nodes, 4 Requeat 
and Answer buffers, and 6 communication channels be- 
tween buffers. 

6 Conclusion . 

Performance analysis for sequential recursive query 
evaluation strategies is not easy as shown in [3] where 
it has been carried out for several strategies on a set of 
four queries, over a range of data. 

The analysis of parallel evaluation strategies is still 
more complex. For computing the answer to a query, 
one must take into account the number of messages, 
the size of buffers and private memories, the number 
of concurrent accesses to the extensional (distributed) 
database and so on. In full generality, this is not 
straightforward, if not impossible. So we will content 
ourselves with general considerations. 

Our algorithm, in its sequential version [ll], is close 
to the QSQR algorithm of [24]. In its spirit, it is also 
similar to the Alexander method [19] or to the similar 
Magic Sets method [2]. In the latter methods, constant 
propagation is compiled into new Horn rules instead 
of being interpreted. These algorithms are among the 
most efficient for general recursive rules and general 
data [3]. 

Our main contribution, besides the introduction of 
parallelism and the attention devoted to minimizing 
the number of database accesses, is the new concept of 
contexts which remember the minimal part of the com- 
putation state necessary to go on when new exit values 
are found at nodes of the derivation tree. In QSQR, 
evaluation of queries and subqueries is repeated from 
the beginning as long as there are no more new solu- 

tions. This leads to duplicated work which is avoided 
with our contexts. In [2] and [19], contexts are hidden 
in new predicates of rewritten rules. Albeit very ele- 
gant, such a solution increases the number of virtual 
predicates. 

Further introducing parallelism is an undisputable 
speed-up. Of course, one cannot expect to gain an 
order of magnitude in the evaluation performance: the 
chosen architecture is multi-computer, with a finite and 
rather small number of processors. However, efficiency 
is significantly enhanced for the following reasons: 

l Our algorithm fits quite naturally in the framework 
of a distributed database. It can take advantage 
of this framework where access to the extensional 
database is speeded up. 

l Evaluation time heavily depends on the average num- 
ber of processors in operation at any given moment. 
The higher is the branching in base relations, the 
higher the average number of working processors. In 
the worst case, this number is close to one. This is 
true for example when computing the ancestors of 
an individual from a parent relation where every in- 
dividual has at most one child. Then, the problem 
is intrinsically sequential and no gain is obtained. In 
the most favorable case of relations with high branch- 
ing, most processors are working together and par- 
allel computation reaches its full power with a true 
improvement in execution time. 

l In a sequential architecture, the time spent in access- 
ing the extensional database is crucial. During these 
often numerous accesses, the sequential process sus- 
pends itself in a waiting state. It is a bottleneck 
that can be responsible for a very bad overall perfor- 
mance, as the total evaluation time is always much 
larger than the total accesstime to the database. In a 
parallel architecture, processors work simultaneously 
with the accesses to the database, evaluation time of- 
ten remains close to the total access time. Further- 
more, in Section 5.2, we showed that the total access 
time could be significantly decreased by gathering 
related queries as single access. 

Our work can hardly be compared with [1,9,22]. 
Those papers are dedicated to the parallel evaluation 
of transitive closure of binary relations and cannot be 
generalized to general datalog programs. Moreover, [l] 
and [22] only can compute the complete transitive clo- 
sure of a relation and thus do not focus on relevant 
data. 

The approach of [26] is very attractive because it 
introduces parallelism without the necessity of inter- 
process communication. However, it is only applicable 
to a liited class of datalog programs (a superclass of 
the linear single rule programs). 

Our work is closely related to [23] where evaluation 
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is also divided into a compilation phase that builds a 
rule/goal graph, and a top-down dynamic phase. We 
have simplified the compilation phase: our derivation 
graph is much more simple and less redundant than the 
rule/goal graph of [23]. The dynamic phase in [23] is 
very shortly and informally described. On the contrary, 
we tried to be as precise as possible and to provide clear 
guidelines and hints for implementation. 

In conclusion, we have shown that a multi-computer 
architecture is a nice framework on top of which to 
implement distributed databases with deductive capa- 
bilities. Recursive evaluation with the help of our al- 
gorithm improves the traditional sequential methods. 

ACKNOWLEDGEMENTS 
This work was supported by the Commission of the Eu- 
ropean Communities, under Project ESTEAM-316 of the 
ESPRIT Program. We are grateful to A. Pirotte and D. 
Boelants, our colleaguecl of PRLB, for their careful read- 
ings of early drafts of this paper. 

References 
[l] Fl. Agrawal and H. V. Jagadish. Multiprocessor transi- 

tive cloture algotithms. In Proccedingt of the Inttmotional 
Symposium on Databorer in Ponalltl and Dittributtd Syt- 
Ltmr, Austin, Texas, Dec. 1988. 

[2] F. Bancilhon, D. Mayer, Y. S+v, and J. Ullman. Magic 

131 

141 

151 

PI 

171 

PI 

191 

PO1 

sets and other strange nays to implement logic programs. 
In Proceedings of the jijth ACM Symposium on Principles 
of Dafabart Sytftmt, Mar& 1986. 

F. Bancilhon and R. Ramakrishnan. Performance evahts- 
tion of data inknzive logic programs. In J. Minker, editor, 
Foundationt of Dtduc&w Databartt and Logic Program- 
ming, pages 439-518, Morgan Ka&nann, 1988. 

C. Beeri and R. Ramakrishnan. On the power of magic. 
H Procttdingt of Sizth ACM SIGACT-SIGMOD &mpo- 
rium on Principltt of Databatt Systems, pages 26%283, 
San Diego, California, March 1987. 

S. Ceri cmd G. Pelagatti. Dittributtd Databartt. Computer 
Science Strict, McGraw-Hill, 1984. 

M. Chandy and J. Mizra. An example of skpwize re- 
flnement of distributed programz: quiescence detection. 
ACM !lVanradiont on Programming Language and Syr- 
ttmt, 8(3):326-343, July 1986. 

C. L. Chang. On the evduation of queries containing de- 
rived relations in a relational data base. In Ii. Gallaire and 
J. Minker, editors, Advancer in Data Bate Theory, vol. 1, 
paset 235-260, Plenum Pretr, New York, 1980. 

G. Gardarin and C. de Maindreville. Evduation of database 
recursive logic programs as recurrent function series. In 
Proceeding8 of the ACM-SIGMOD International Conjtr- 
tnct on Management of Data, pagez 177-186, Washington, 
May 1986. 

K. Guh and C. T. Yu. Evaluation of transitive closure in 
distributed database zyzkmz. IEEE Journal on Stltcfcd 
Artat in Communicationr, 7(3):39+407, Apr. 1989. 

L. Hen&en and S. Naqvi. On compiling queries in r- 
sive fust order databases. Journal of the ACM, 31(1):137- 
147,1984. 

P11 

WI 

[131 

[141 

[151 

WI 

1171 

@I 

1191 

WI 

r411 

WI 

[331 

[341 

1351 

WI 

1371 

0. Hnlin. An Eficitnt Inttrprstivt Algorithm for Rtcursiut 
Qutritt. Technical Report R521, Philips Retear& Labora- 
tory Brussels, Jan. 1988. 

G. Hulin, A. Piiotte, D. Roelantz, and M. Vauclair. Logic 
and databates. In A. Thayee, editor, I+om Modal Logic to 
Deductive Databattt, Wiley, 198% 

M. L. Kmkn, P. M. Apas, M. A. W. Houtsma, 
E. J. A. van Ku& and R. L. W. van de Weg. A dis- 
tributed, main-memory database machine. In Proceedings 
of the Fijth ~nttmational Workthop on Databart Machines, 
pages 498-612, Karuisawa, 1987. 

E. Lozinskii. E&tins queries in deductive databases by 
generating. In IJCAI’86 Proceedings of the Ninth Inttma- 
tional Joint Conjtrtnct on Artificial Inttlligtnct, Lot An- 
g&t, USA, pages 173-177, Aug. 1985. 

G. Marque-Pucheu, J. Martin-Gallausiaux, and G. Jomitr. 
Inkrfacing prolog and relational data base management sys- 
tans. In ICOD-L Workthop, Cambridge, England, Sep. 
1983. 

D. P. McKay and 5. C. Shapiro. Using active connection 
graphs for reasoning with reewsive rulea. In IJCAI’81 
Proceedings of the Seventh Inttmational Joint Conjtr- 
tnct on Artijicial Inttlligtnct, Vancouver, B. C. Canada, 
pages 388-376,198l. 

N. J. Nilzzon. Principltr of Artificial Inttlligtnct. Tioga, 
Palo Alto, 1980. 

D. Roelank. Recurrive R&r in Logic Databarer. Technical 
Report R513, Philips Research Laboratory Brussels, March 
1987. 

J. Rohma and R. Lescoeur. La M&hodt d’Altzandrc : Unt 
tolution pour troittr let oziomtr ricurrijs danr let baser 
de donnitt d(ductivtz. Research Report DRAL/IA/IS.Ol, 
Centre de Recherche Bull, March 1985. (in hch). 

D. Sac& and C. Zauiolo. The generalized counting method 
for recursive logic queries. In Procttdingt of the Inttma- 
tional Conjtrenct on Dotabort Theory, Roma, Sep. 1986. 

E. Sxnagge. Dittributtd Ewaluation in Pool-T of Horn 
Claurtr. PRISMA Dot. P0174, Philips Research Labora- 
tories Eindhoven, Sep. 1987. 

P. Valduries. Parallel recunive query proceasing in a share 
nothing data server. In Qvatriamt Joumitt Battt de 
DonnLtr Avon&r, pages 213-222, Benodet (F%auce), May 
1988. 

A. Van Gelder. A messap pazzing fimmework for lo+d 
query ewduation. In Procttdingr of ACM SIGMOD Inttr- 
national Conjtrenee on A4anagtmtnt of Data, ps(ler 165- 
185, Wathin8ton. May 1986. 

L. Vieille. Recursive axioms in deductive databases: the 
Query/Subquery approach In Procttdingr of the Fir& 
Inttmational Conjtrenct on Ezptrt Databatt Syrttmr, 
Columbia, XC., pa8er 253-267, Columbia, SC, 1986. 

L. Vieille. From QSQ towards QoSaQ: globd optimization 
of x-cursive queries. In Procttdingt of the Second Inttma- 
iional Conjtrenct on Ezptti Databatt Syrttmr, Warhing- 
ton, D.C., pager 421-436, Wash&ton, DC, 1988. 

0. Wolfson. Sharing the load of logic pro- evalu- 
ation. In Procttdingt of the International Sympotium on 
Databarer in Paralltl and Dirtributtd Syrttmr, pages 48- 
55, Auztin, Texas, Dec. 1988. 

H. Yokota and S. K. et al. An enhanced injtrtnct mtch- 
anism for generating rtlational algebra quttitr. Tecbnicd 
Report TR-026, ICOT, Oct. 1983. 

- 96 - 


