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1. Abstract 

The SQL language allows useIs to express queries 
that have nested subqueries in them. Optimization of 
nested queries has received considerable attention over 
the last few years. Most of the previous optimization 
work has assumed that at most one block is nested within 
any given block. The solutions presented iu the literature 
for the general case (where an arbitrary number of blocks 
are nested within a block) have either been incorrect or 
have dealt with a restricted sub& of queries. The two 
main contributions of this paper are:. (1) optimization 
strategies for queries that have an arbitrary number of 
blocks nested within any given block, and (2) a new 
dataflow algoritbm for the execution of nested queries, 
involving one or more outer joins, in a multi-processor 
environment such as the one found in GAMMA. The 
new algorithm cuts down on message and CPU costs 
over conventional datiow algorithms. 

2. lIltrodnction 

Traditionally, database systems have executed 
nested SQL [Astrahan75] queries using Tuple Iteration 
Semantics (TIS). It was analytically shown in [Kim821 
that executing queries by TIS can be very inefficient. It 
was first pointed out in [Kim821 that nested queries can 
be evaluated very efficiently using relational algebra 
operators or set-oriented operations. The process of 
obtaining set-oriented operations to evaluate nested 
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queries is known as u~esting. 

It was later pointed out in [Kiessliug84] and [Gan- 
ski871 that the unnesting techniques presented in [Kim821 
do not always yield the conect results for nested queries 
that have non equi-join conelation predicates or for 
queries that have the COUNT function between nested 
blocks. Unnesting solutions for these types of queries 
were provided in [Ganski87]. These solutions were 
further refined and extended in [Dayal87]. 

In this paper, we will focus our attention on 
unnesting Join-Aggregate (JA) [Kim821 type queries. 
These queries have conelation join predicates and an 
aggregate function (AVG, SUM, MIN, MAX, or 
COUNT) between the nested blocks. The reason for 
focusing on JA type queries is that many other nesting 
predicates (such as EXISTS, NOT EXISTS, ALL, ANY) 
can be reduced to JA rype queries [Ganski87, Dayal871. 
An example of a JA type query is: 
SELECT R,.a 
PROM R1 
WHERE Rl.b = 

(SELECT COUNT &.b) 
PROM R2 
WHERE R1.c > R2.c) 

TIE predicate (R,.c > Rz.c) is the conelation join 
predicate. We will explain the meaning of these types of 
queries in the next section. 

We introduce a couple of definitions here: 

Definition 1: A (Nested) Linear Query is a JA 
type query in which at most one block is nested within 
any block. 

Definition 2: A (Nested) Tree Query is a JA type 
query in which there is at least one block which has two 

or more blocks nested within it at the same level. 

Amsterdam, 1989 
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It is worth pointing out that the unnesting solution 
presented in [Ganski87] for a linear query with more 
than two blocks is incorrect (see Section 4). payal 
does not discuss tree queries. 

The rest of the paper is organized as follows: In 
Section 3, we introduce the notation that we will use for 
JA type queries and explain the meaning of these queries 
using TIS. In Section 4 we will briefly summarize the 
results presented in [Dayal87] that enable us to unnest 
nested linear queries. We will present our solution for 
tree queries in Section 5. Section 6 discusses a new 
dataflow algorithm for nested queries in a multi-processor 
environment (such as the one found in GAMMA 
[Dewitt86], [Gerber86]). The new dataflow algorithm 
reduces processing and message costs. Finally, we will 
present an algorithm that takes a tree query as input and 
generates an execution tree that can be routed using our 
new &tallow algorithm. 

3. Interpreting JA Type Queries 

The easiest way to understand a general nested 
query is by means of Tuple Iteration Semantics (TIS). 
TIS provide an algorithm, albeit inefficient, for obtaining 
the result of a nested query. It is instructive, however, to 
interpret a nested query using TIS. In order to explain 
the meaning of JA type queries, we iirst define a notation 
which we will use in this paper to represent such queries. 

3.1. Notation 

A JA type query may be represented as a tree. 
Each node in the tree corresponds to a SQL query block. 
Query blocks that are nested within a parent block am 
represented as child nodes of the node corresponding to 
the parent block. For ease of explanation, we shall 
assume that each block has one relation in its FROM 
clause. By definition, a node is also its own ancestor. A 
predicate clause in a given block may reference a rela- 
tion associated with any ancestor block. Predicate 
clauses may either be selection or join predicates. 

The relation associated with block (or node) i is 
represented by Ri (i > 0). Lower case letters (a, b, etc.) 
represent attribute names. A ‘*’ is used to &note all the 
attributes of a relation. Ri.# is some unique key of Ri. 
4, ri’, ri” are each used to denote a tuple of relation Ri. 
OP, (n > 0) is any one of the following operators (=, f, 
<, 5, >, 2). F&) represents a selection predicate in the 

ith block on R. To simplify the notation, we will 
assume that all join predicates am binary’. A join pmdi- 
cate in the ith block is then represented as Fi(Rjl Rk), 
wherej,k>Oandj+k. Ifapredicateintheithblock 
does not reference Ri, then it is called an outer predicate. 
In this paper we will assume that there are no outer 
predicates in our queries. Outer predicates can be han- 
dled as shown in fDayal871. 

3.2. Interpretation using TIS 

Consider the following linear JA type Query. 
Example 1: A Two Block Linear Query 
SELECT R,.a 
FROM R, 
WHERE WV 
AND Rt.b OP1 

(SELECT COUNT (IQ.*) 
FROM R2 
WHERE F2@2) AND F2(R2, RI)) 

Fr(Ri) and F2(Rz) ate selection predicates on Ri 
and R2 respectively, while F2&, Ri) is a correlation join 
predicate between R1 and R2. 

A run time system that would execute the above 
query using TIS would proceed as follows: A tuple rl 
from R, would be fetched If F,(R) is false for rlr tuple 
rl will not be present in the result. Assuming Fr(Rt) is 
true, the values of the relevant attributes of rl would be 
substituted into predicates at deeper levels (F2(R2, R,)). 
The two block query now becomes a single block query 

SELECT COUNT (R2.*) 
FROM R2 

WHERE F2’@2) 

F2’&) is a predicate on R2 and is equivalent to 
F2(R2) AND F2(R2, R,) after values of ri’s attributes have 
been substituted in Fs(Rs, RI). 

Let the COUNT value returned by this block be C 
(C >= 0). C represents the number of tuples of Rs that 
satisfy F2’(Rz). If (ri.b OPi C) is true, rl will be in the 
result. Notice that each tuple of Rt can occur in the 
result at most once. Using TIS, the system executes a 
query on R2 (the inner relation) for every tuple of RI (the 
outer relation) leading to a very inefficient execution 

hry join predicates can be easily incoxporated into the 

sohltions presented in this paper: 
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strategy Kin-1821. 

One can easily interpret SQL queries with multiple 
levels of nesting using TIS. For example, consider the 
three block linear query shown in Example 2. 

Example 2: A Three Block Linear Query 
SELECT Rr.a 
FROM RI 
WHERE FdRJ 
AND Rl.b OP, 

(SELECT COUNT (R2.*) 
FROM R2 

WHERJZ WW AND Mb, RI) 
AND R2.c OP, 

(SELECT (couNT(R3.*) 
FROM R3 
WHERE WRd .QJD WR3, R2) 

AND F3@3r RI))) 

After reducing the above query to a two block 
query, one would substitute values from each tuple of RI 
and R2 that satisfied Fr(Rr) AND F2(R2) AND F2(R2, RJ 
into the thud block and evaluate COUNT(R3.*). Those 
tuples of R2 that satisfy Ra.c OP, COUNT(R,.*) will be 
returned as part of the two block query. Notice that a 
COUNT(R2.*) is associated with every relevant tuple of 
RI (satisfying Fr(Rr)) and a COUNT(R3.*) is associated 
with every relevant pair of tuples of R, and R2. This 
implies that the system would have to execute a query on 
R3 for every relevant pair of tuples from RI and R2. Pic- 
torially this can be represented as shown in Figure 1. 

The edges at level 1 in this tree represent all the 
tuples of R, that satisfy F,(Rr). Only those tuples of RI 
will be present in the result for which (RI.b OP1 
COUNT(R2.*)) is also true. Under each tuple of RI, are 
those tuples of Ra for which Fz(Ri) AND F2(R2, R,) is 
true. Only those tuples of R2 that also satisfy (R2.c OP, 
COUNT(R3.*)) will contribute to COUNT(R2.*). Simi- 
larly, the tuples of Rs under each relevant pair of tuples 
of Rr and R2 represent tuples that satisfy F3(R3) AND 
F3(R31 W AND F3O-b. RI). 

4. From TIS to Set-Oriented Semantics 

In this section, we briefly summarize the general 
solution presented in [Dayal and show how it can be 
applied to mutest linear queries. For reasons of space 
constraints, we do not discuss the more spectic solutions 

Figure 1: Pictorial Representation of the 

Three Block Query of Example 2 

c 
R2 

. 

R3 

that are based on the strategies presented in [Kim82]. 
Besides, the solutions in iJGrn82] are not general and 
hence can be applied only in special cases (as pointed 
out in Section 2). However, as pointed out in Dayal87], 
the unnesting solutions presented in [Kim821 (when 
applicable) may yield a more efficient execution strategy 
than the general solution. 

Let us now return to the Query of Example 1 in 
Section 3.2. A naive unnesting algorithm would join RI 
and R2 using predicate Fz(R2, RI) (after performing the 
respective selections first). The algorithm would then 

group the result by Rr.# (some unique key of Rr2) and 
compute COUNT(R2.*) for each group and select only 
those groups associated with each tuple of RI that satisfy 
(Rr.b OPr COUNT&.*)). 

‘he naive algorithm gives rise to the COUNT bug 
[KiesslingM, Ganski871. The COUNT bug arises if there 
are no joining tuples in R2 for a particular tuple rl in Rr. 
rl would then be lost after the join. However, the 
COUNT associated with rl is 0 and if (r,.b OPr 0) is 
.inte, tuple rl should appear in the result. In order to 

2A unique key is required in order to avoid the problem 
with duplicates in RI [Ganski87]. 
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preserve tuples in RI that have no joining tuples in Rs, 

an outer join3 (OJ) is performed when the COUNT func- 
tion is present between two blocks [Ganski87]. 

A linear query with multiple blocks will give rise 
to a ‘linear J/OJ expression’ where each instance of an 
operator is either a join or an outer join. A general 
linear J/OJ expression would look like: 

RI J/OJ R2 J/OJ R3 J/OJ . . . J/OJ R,, 

Relation R, is associated with the outermost block, 
relation R, with the next inner block and so on. An 
outer join is required if there is a COUNT between the 
respective blocks. In all other cases (AVG, MAX, MIN, 
SUM), we need perform only a join. The joins and outer 
joins am evaluated using the appropriate predicates. 
Since joins and outer joins do not commute with each 
othefl, a legal order may be obtained by computing all 
the joins first and then computing the outer joins in a left 
to right order (top to bottom if you like) [Dayal87]. 
Thus, the expression RI OJ Rs J R3 J & OJ R5 J & can 
be legally evaluated as ((RI OJ (R2 J R3 J h)) OJ (Rs J 
FtJ). Since we can evaluate joins in any order, we can 
choose the cheapest join order to join Rs, R3, and R4. 

It is worth pointing out here that the solution 
presented in Section 9 of [Ganski87] for multiple level 
queries was incomplete in the sense that it does not dis- 
cuss legal orderings when joins and outer joins are 
present in the same expression. 

After all the joins and outer joins have been 
evaluated, the aggregate functions am evaluated in a 
bottom-up order after grouping the result by the appropri- 
ate unique keys. This is best illustrated with an example. 

Consider the three block linear query of Example 2 
in Section 3.2. The corresponding linear expression is Rt 
OJ Rs OJ Rs and hence a legal order is (RI OJ Rs) OJ 

‘When we talk about outer joins, we implicitly mean left 
outer joins. 

‘Dayal proposed the notion of generalized joins (G-Joins) 
to make joins and outer joins commutable but the equation 
given in the paper was incorrect. Without repeating the nota- 
tion used in defining G-Join and the formal de&&ion of G-Join, 
we simply state that the following equation was given in [Day- 
al87]: G-Join (R, G-Join@, T; 0; J2); R*; Jl) = G-loin( G- 
Join(R, S; R.*; Jl), T, R.*; J2). However, it can be shown that 
this equation does not hold for the query in Figure 4.1 on page 
202 in Dayal’s paper. 

R3. The predicate for RI OJ R2 is F,(R,, R,) and the 
predicate for the outer join with R3 is F3(R3, R2) AND 
F3@3r Rd. 

We now show how the query of Example 2 can be 
evaluated using set-oriented operations. The result is 
obtained by executing more than one query. The result 
from one query may be pipelined to the next query. The 
two queries in this case am (not in strict SQL syntax!): 
Query A: SELECT INTO TEMP 

Rr.#, R,.a, RI.b, R,.* 
FFwM RI, R2. R3 

WHERE& OJRs)OJR3 
GROUP BY Rt.#, Rz.# 
HAVING Rs.c OP2 COUNT(R3.*) 

Query B: SELECT Rt.a 
FROM TEMP 
GROUP BY Rr.# 
HAVING R,.b OP, COUNT(R2.*) 

The results from Query A are fed into Query B. 
Even though the selection predicates (F@i), i = 1, 2, 3) 
have not been shown in Query A, they are applied to the 
respective relations before they participate in the outer 
joins. The outer join predicates are also implicit in 
Query A 

4.1. A Few Subtleties 

Query A has a few subtleties that were not men- 
tioned in [Dayal and deserve to be highlighted. These 
subtleties will lead us to the development of the new 
dataflow algorithm (described in Section 6). The outer 
join between RI and Rs results in two sets of tuples, viz., 
(R,- X NULL)5 and R,R2. RlR2 denotes the set {(rt, rz>: 
FAW AND F2&, RJ AND FdWJ, where the rl tuple 
E RI and the r2 tuple E R2. Let RI+ denote the set of 
tuples of RI present in RrRs (tuples of RI that partici- 
pated in the join with Rd. RI- denotes the set RI - (RI+) 
(the tuples of RI in the anti-join). 

Similarly, let R1R2R3 denote the set {(rr, r2, r3): 
b(R3) AND F3(R3, R2) AND F3oR3, RI) AND F20 

AND F2(R2, R,) AND F@I)]. Let the set of (rl. rz) 
tuples in RlR2 that joined with at least one tuple of R3 be 
denoted by R,R2+. The set of (rI, r;> tuples that did not 
join with any tuple of R3 is denoted by RtRs- and is 

*X represents the cartesian product operation. 
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equal to R,R, - (RtR,+). Thus, the outer join with R3 
may yield up to three distinct sets of tuples, viz., (Rr- X 
NULL X NULL), (R,Rz- X NULL), and R1R2R3 respec- 
tively. 

The (GROUP BY . . . HAVING) operation in Query 
A has special semantics associated with it. For a given 
group of (rt.#, r2.#), if (rz.c OPz COUNT(R3.*)) is true, 
the (r,.#, r2.#) group is passed along to Query B. How- 
ever, if (r2.c OP, COUNT(R3.*)) is false, the (r,.#, r2.#) 
group cannot be discarded. If the (r,.#, rz.#) is discarded 
and if this is the only group in which r1 was present, 
COUNT(Rz.*) associated with the rl tuple is 0 and hence 
should be preserved. If (rt.b OP, 0) is true, rl will be 
part of the result. The (r,, r2) tuple that does not satisfy 
(r2.c OPz COUNT(R3.*)) should be passed along to 
Query B as (rr, NULL). Similarly, for tuples in the set 
(R,- X NULL X NULL), the GROUP BY . . . HAVING 
operation passes them as (Rt- X NULL) to Query B 
because the predicate (r2.c OPz COUNT(R3.*)) is false as 
(NULL OP 0) is false. 

5. Tree Expressions or Non Linear Expressions 

So far we have restricted our discussion to linear 
queries only. If we permit more than one block to be 
nested within a given block at the same level (nested tree 
queries), we can get J/OJ expressions that am arbitrary 
trees. In this section, we will extend Dayal’s solution to 
tree queries. A simple extension, albeit inefficient, to 
evaluate a tree expression would be the following: 
Choose an arbitrary path (perhaps the least expensive 
one) from the root to a leaf and evaluate the linear 
expression specified by this path as outlined in the previ- 
ous section. This will yield a subset Rr’ of the tuples of 
the root relation Rt. Using tuples in Rr’, another path is 
evaluated yielding RI”, a subset of Rr’. This is repeated 
until all paths are exhausted and the f&l set of result 
tuples am obtained. 

Figure 2: Tree Expression for the Query 
in Example 3 

The above scheme is inefficient because relations 
that belong to two or more paths will be accessed more 
than once. For example, consider the tree query shown 
in Example 3 whose tree expression is shown in Figure 
2. ‘Ihe edges in Figure 2 am labeled either by a J 
(denoting a join) or by an OJ (denoting an outer join). 

Assume that the first path chosen is RI--RT-R3. 
After evaluating the expression (Rt OJ R?) OJ R3 and 
computing the respective aggregates bottom up, we will 

get a subset Rr’ of tuples. Using these tuples, we take 
the other path. The J/OJ expression along this path is 
Rt’ OJ (R2 J R4). Thus, the relation R2 is accessed 
again. It would be ideal if each relation is accessed only 
once. After evaluating a J/OJ expression along one path, 
we would like to compute the aggregates bottom up only 
up to the point where a new branch begins. The i&a is 
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Example 3: A Tree Query 
SELECT Rr.a 
FROM R1 
WHERE WV 
AND R,.b OP, 

(SELECT COUNT (Rz.*) 
FROM Rz 
WI-JERE F,(R,) AND F2oR2, RI) 
AND RFc 

AND R2.d 

op2 

(SELECI (COUNT&.*) 
FROM R3 

(SBLECI (AVG(%.d) 
FROM R4 
WHERE F4(R4) AND F4CR4r W 
AND F4UL RI))) 

Rl 

OJ 



to use the tuples obtained thus far to evaluate the 
remainder of the J/OJ expression along the new path. 
However, this cannot be accomplished in a straight for- 
ward manner. Two kinds of anomalies may occur. We 
will illustrate these using the tree expression of Figure 2. 

After evaluating (R, OJ Ra) OJ R3 and the aggre- 
gate COUNT&*). them are two distinct sets of tuples. 
Tuples in the first set are of the form (r,, NULL) and, 
tuples in the second set are of the fonn (rr, r2) where rl 
E R, and r2 E R2. 

Anomaly 1: Consider a tuple (rr’, NULL) from the 
fist set. If rl’ is not present in the second set, 
COUNT(R2.*) associated with rl’ is 0 and will be part of 
the result if (rl’.b OP1 0) is true. However, if (rl’, 
NULL) is joined with R4 when the second path is taken, 
rl’ will be lost (because F.&, Rz) is false since the R2 
fields ate NULL). 

Anomaly 2: Consider a tuple (rl”, r2’) loom the 
second set. If there is no tuple of R4 such that F4(R4, R1) 
is true, then the rl” tuple will be lost after the join is 
computed. However, if the second path (Rr--R2--R4) was 
taken fkst, we would have got (rr”, NULL, NULL) after 
evaluating R, OJ (R2 J R4). In this case, we do not lose 
r,“. When the other path (RI--R2--RJ) is taken, r,” will 
not be lost as there is already an outer join between the 
R2 and R3 blocks. 

The two anomalies demonstrate that tuples will be 
lost if a join is performed after evaluating an outer join. 
These tuples can be saved if the join between the R2 and 
R, blocks is performed as an outer join. This leads to 
the following lemma. 

Lemma: Let RI--R2--...--R;--...--R, and Rr--R2--...- 
-Ri-J-Rj--... --Rq be two paths from the root Rr to the 
leaves R, and R, respectively in a tree expression. Let 
there be at least one outer join in the shared path RI-- 
R2--...-- Ri. Assuming we chose the RI--Ra--...--Rr path 
first and there is a join between Ri and Rj, we can obtain 
the CO~IIM result by treating the join between Ri and Rj 
as an outer join. 

Note tit ~IIY joins below Rj a.~ not affected as 
they will be evaluated before the outer join between the 
Ri and Rj blocks. 

The proof for the lemma can be obtained by fol- 
lowing the train of thought of the previous paragraphs 
and is omitte4i here. In summary, any join that comes 

after an outer join in a path must be evaluated as an 
outer join. Then each relation need be accessed only 
once. 

6. An Improved Dataflow Algorithm 

In this section, we will discuss a new dataflow 
algorithm for nested queries with COUNTS (and hence 
outer joins) in a multi-processor environment such as the 
one found in the GAMMA database machine [DeWitt86]. 
The new dataflow algorithm reduces message and pro- 
cessing costs over the conventional dataflow algorithm. 
The GAMMA database machine is a dataflow database 
machine that uses hash-partitioned algorithms for com- 
puting joins. A query with multiple joins can be routed 
very efficiently in GAMMA. The result of one join is 
pipelined to the next join operation. Details of the 
dataflow and scheduling algorithms of GAMMA can be 
found in [Dewitt861 and [Gerber86]. 

We will illustrate how GAMMA would have 
routed the three block query presented in Example 2, 
using the conventional dataflow algorithm. The 

Flgure 3: The Routing Method in GAMMA 

result/&pies 

group by Rl .# 

(Rl- X NULL) 
having 

Rl .b OPl COUNT(W) 
(Rl’ X NULL) 

Rl R2’ r group by (Rl .#, R2.#) 
having 

R2.c OP2 COUNTIR3.7 \ , 
(Rl- X NULL X NULL) 

3, R2) AND F3(R3, Rl) 

restriction restriction 
Fl (Rl) F2( R2) 
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optimizer in GAMMA sends the scheduler an optimized 
execution tree. The execution tree for the query in 
Example 2 is shown in Figure 3. The nodes in the exe.. 
cution tree represent operations (resttiction/join/gmup by 
etc.), while the directed arcs represent information flow. 
Tuples always flow in an upward direction. In Figure 3, 
it is important to notice that the conventional datatlow 
algorithm sends the joining tuples as well as the anti-join 
tuples to the immediate higher (parent) node. The sets 
that are propagated between the operators of the execu- 
tion tree of Figure 3 are shown along the respective 
edges (using the notation of Section 4.1). 

The set R1R2’ is derived from those tuples in 
R1RZR3 and (R1R2- X NULL) that satisfy the predicate 
(R2.c OPa COUNT(R3.*)), while the set (R,’ X NULL) is 
derived from those tuples in R1R2R3 and (R1R2- X 
NULL) that don’t satisfy the above predicate. Notice 
that the attributes of R, have been replaced by NULL for 
these tuples. 

In the presence of outer joins, a better execution 
tree may be obtained by sending the anti-join tuples to a 
node possibly higher than the parent node in the execu- 
tion tree. This will result in savings in message and pro- 
cessing (CPU) costs. The new execution tree is shown in 
Figure 4. 

Figure 4: The Improved Routing Method 

result/luples 

restriction restriction 
Fl (Rl) F2( R2) 

kinds of nodes in an execution tree, each representing a 
different kind ‘of operation. They are: 

1. Restriction nodes (R nodes): These am leaf 
nodes in the execution tree and represent the restriction 
operation on the base relations. 

2. Group By . . . Aggregate nodes (GBA nodes): 
These nodes group the input tuples by the unique keys of 
the relevant relations and compute the aggregate for each 
group. Tuples that satisfy the aggregate predicate are 
sent to the immediate higher node and, if needed, tuples 
that do not satisfy the aggregate predicate are sent only 
to a GBA node that is possibly much higher in the exe- 
cution tiee (after milling appropriate fields). 

3, Join nodes (J nodes): The output of a join is fed 
to the immediate higher node in the execution tree. 

4. Outer join nodes (OJ nodes): The joining tuples 

In the first execution tree (Figure 3), we are ship- 
ping the (Rr- X NULL X NULL) tuples (from the second 
outer join node to the first group by node) and the (R,- X 
NULL) tuples (from the first group by node to the second 
group by node) unnecessarily. By doing so, we also incur 
the cost of processing them. In the second execution tree 
(Figure 4). the (Rt- X NULL) tuples are shipped directly 
from the first outer join node to the second group by 
node. 

As the depth of nesting increases, the savings in 
message and processing costs will increase if the anti- 
join tuples are sent to a (possibly) higher node than the 
parent no&. In the next section we will use the idea 
presented in Section 4.1 to send tuples that do not satisfy 
an aggregate predicate to a possibly higher node. 

6.1. From JlOJ Tree Expressions to Execution 
TreeS 

are sent to the immediate higher node, but the anti-join 
tuples (if needed) are sent only to a GBA node that is 
possibly much higher in the execution tree. 

We now describe how an execution tree is derived 
from a J/OJ expression tree. There are four different 

The outdegree of R and J nodes is one while the 
outdegree of remaining kinds of nodes is at least one and 
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at most two. The indegree of R nodes is 0, while the 
indegree of J and OJ nodes is two. The indegree of the 
GBA nodes is at least one. A GBA node can receive 
input from many internal nodes in the execution tree. 

The number of leaf nodes in the execution tree is 
equal to the number of base relations in the query (or 
blocks in the query assuming that each block has exactly 
one relation associated with it). The number of internal 
nodes in the execution tree is equal to twice the number 
of edges in the J/OJ expression tree. Half of these nodes 
are J or OJ nodes while the other half are GBA nodes. 
This is because each edge in the J/OJ expression tree can 
be associated with a join/outer join and an aggregate 
operation. 

Having determined the nodes in the execution tree, 
we need to define how the arcs are constructed. Each arc 
can be determined by its end nodes. The key is to also 
classify the nodes in terms of the structure of input tuples 
they expect and output tuples they produce. A directed 
arc will then be present between a node that produces a 
certain kind of output tuples and a node that expects that 
same kind of tuples as input. 

6.2. Input/Output Classification of Execution Tree 
Nodes 

1. R nodes: These leaf nodes only produce output. 
The output tuples from these nodes are qualifying single 
relation tuples. Attributes (from output at ail nodes) not 
required for future operations are projected out. 

2. J nodes: If relations Ri and Rj are joined at a J 
node, Ri and Rj tuples form the input. Output tuples 
have the form (ri, rj) where ri E Ri and rj E Rj. Ri and 
Rj could be base relations or composite relations. 

3. OJ nodes: If relations Ri (composed of relations 
RI, R2, . . . . RJ and Rj ~PZ outer joined at an OJ node, Ri 
and Rj tuples form the input. Joining output tuples have 
the form (ri, rj) rhea r; E Ri (ri = (rl, r2, . . . . rn)) and rj E 
Rj. One would expect the anti-join tuples to have the 
form (ri, NULL). This need not always be the csc 

Consider the case when a J node is transformed to 
an OJ node. The anti-join tuple (rl, r2, . . . . r,.,, NULL) can 
be discarded if there is no outer join in the path from R, 
to &. However, if the last outer join in the path from R1 
to R,, occurred between Rk and Rk+], 0 c k < n, the anti- 
join niple (rlv 4, -.., rk, rk+l, . . . . r,, NULL) is sent as (r,, 

$, . . . . rkr NULL) to the GBA node computing the 
cow Of hlpkS Of Rk+,. The com(Rk+l.*) aSSOCi- 

ated with the group (r,, r2, . . . . rk) may be 0 and hence 
must be preserved. 

We could have sent the tuple (rl, r2, . . . . r,, NIJLL) 
to a much lower GBA node in the execution tree. How- 
ever, since the aggregate at this GBA node is not a 
COUNT, the (rl, ra, +..rkr . . . . r”) tuple would not satisfy 
the aggregate predicate because of the presence of 
NULL. Hence the tuple will be passed to the next higher 
node w (rl, r2, ,.., rk, . . . rPl, NULL). However, we need 
only to preserve (rl, r2, . . . . rk) and hence we can send (ri, 
r2, . . . . rk, m) tuple directly to the corresponding GBA 
node. 

4. GBA nodes: Assume that this GBA operation 
occurs between R,l and R, in the path from R1 to R”. 
If the aggregate operation at this node was a non 
COUNT function, then the input to this node is of the 
fom trh r2, .-., r,.+ rJ. If the aggregate fur&on was a 
COUNT function tuples of the form (rl, r2, . . . . r,i, 
NULL) will also be included in the input. The output 
formats of a GBA node are exactly similar to those of OJ 
nodes. 

6.3. An Example 

We will iIlustrate the above concepts in deriving au 
execution tree for the J/OJ expression in Figure 2. The 
execution tree will have four leaf nodes (R nodes) in the 
execution tree corresponding to the four base relations. 
There will be three pairs of J/OJ nodes and GBA nodes 
corresponding to the thtee edges. Assuming that we 
again take the left path (Ri--R2--Rs) in Figure 2 first, the 
execution tree will be as shown in Figure 5. The nodes 
are labeled for ease of reference. Each arc is labeled 
with the format of tuples flowing along that arc. Notice 
that the ‘anti-join’ tuples of node OJs are of the form (ri, 
NULL) rather than of the form (r,, r2, NULL). As per 
the Lemma, the join at this node was converted to au 
outer join. It would not be useful to send tuples of the 
form (ri, r2, NULL) to node GBA2. Node GBA2 would 
simply pass on these tuples to node GBA, as (r,, NULL). 
Instead, one saves processing and message costs by send- 
ing (rlr NULL) tuples directly from node OJs to node 
GBA3. It turns out that the operation at node OJ, is a G- 
Join [Dayal87]. Table 1 summarizes the savings realized 
in message costs. 
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Table 1. 
, 

Description I Size Conventional New 
i (in Bytes) 

Savings in Message 
Routing Path Routing Path Costs (in Bytes) 

anti-join tuples OJ,-OJz-GBA,-OJ,- 
from node OJ, Ml GBA2-GBA, OJI-GBA3 4*M1 

tuples not satisfying 
aggregate comparison ) M2 GBAI-OJ,-GBA2-GBA, GBA,-GBA, 2*M2 

at node GBAl / 
anti-join tuples 
from node 03, j M3 OJa-GBAz-CBA3 OJa-GBAa M3 

Table 1 shows that for this example, the new 
datiow algorithm rest&s in a savings cjf (4*M1 + 2*M2 
+ M,) bytes in message costs over the conventional 
dataflow algorithm. Further, a proportional savings is 
realized in processing costs. 

Figure 5: Execution Tree for J/OJ 
Expression of Figure 2 

/ 
result uples 

/’ 

RI R2 
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NU-L) & (rl r-2) . r4 

.R4 
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7. Conclusions and Future Work 

In this paper, we have presented a scheme for 
evaluating nested tree queries. We also described a new 
data&w algorithm for such queries. 

We are in the process of developing an efficient 
scheduling algoritbrn to go with our new dataflow algo- 
rithm. Our scheduling algorithm will be more complex 

than that of GAMMA’s as we may to have to activate 
many operators in the execution tree sinmhaneously. 

In this paper. we have assumed that blocks nested 
within a block at the same level are separated only by 
AND’s. We am investigating optimization techniques for 
queries that have OR’s between blocks that are nested at 
the same level. 
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