Gral: An Extensible Relational Database System for Geometric Applications

Ralf Hartmut Gütting

Fachbereich Informatik, Universität Dortmund
D-4600 Dortmund 50, West Germany

Abstract: We describe the architecture of a relational database system that is extensible by user-defined data types and operations, including relation operations. The central concept is to use languages based on many-sorted algebra to represent queries as well as query execution plans. This leads to a simple and clean extensible system architecture, eases the task of an application developer by providing a uniform framework, and also simplifies rule-based optimization. As a case study the extensions needed for a geometric database system are considered.

I. Introduction

Much of the database research of recent years was aimed at providing a better support for non-standard applications such as office information systems, geographic information systems, CAD databases, etc. A common need of these applications is the representation and manipulation of more complex objects than those representable by a tuple of a relation in the traditional relational model, for example, an office form, a complete map or a river, say, in a geographic information system, or the design of a VLSI circuit.

A fundamental choice for the representation of a complex object is whether its structure should be visible or hidden at the level of the data model. Speaking in terms of the relational model, for representation the question is whether the object should be described by a collection of tuples from various relations, or by a single attribute value from a specific domain for this kind of objects. For manipulation, the distinction is whether the internal structure is accessible to the general facilities of the query language (selection of subobjects, for example) or only to domain-specific operations. The two ways of handling complex objects have been called structural and behavioural object orientation, respectively [Di86].

Both approaches are obviously needed and are appropriate for certain applications. For example, one should be able to define the internal structure of an office document within the data model and to access it through the query language. On the other hand, a river can well be represented as an atomic entity, for example, a function returning the length.

A lot of work has been done to support the modeling of visible object structures. Enhancements to the relational model have been proposed by linking together tuples to represent an object either explicitly [Co79, HaL82] or implicitly, through the use of nested relations [Sc86]. Most of the more recent data models and system proposals do also support structural object orientation, for example [MaD86, CaD88, PiT86].

The idea of allowing application-specific abstract data types as base types, or attribute domains, of a database system was perhaps first put forward in [StR83]. Since base types need to be implemented in a programming language and because they are application-specific, a user must be able to implement such a type and to add it to a database system. This observation has led to efforts by several groups to construct extensible database systems. Two directions can be distinguished. One is to select a data model and to implement for this data model a system with well-defined interfaces for user extensions. This is the approach chosen by the POSTGRES [StR86] and Starburst [Schw86] projects, based on the relational model, and within the PROBE project [Daya87] for an extended functional data model. A different view is taken in the EXODUS [Car86] and GENESIS [Bato86] projects where a collection of powerful tools for building a database system is provided. In this case an application developer ("user") providing extensions also been called "database implementor" [Car86] or "database customizer" [Lo88] implements the whole database system, aided by the tools. With this approach there is more flexibility for the application even to select a specific data model.

In this paper we describe an (implemented and running) relational database system, called Gral1, extensible by user-defined data types and operations. This means that an application developer (AD) can
- add data types and operations to the query language,
- add the representation of a type to the system,
- add new relation representations or index structures to support type-specific storage or searching,
- add the implementation of type-specific operations, and
- add rules to the system to describe the implementation of a new query language operation and to support optimization for this operation.

The key concept embodied in Gral, which distinguishes it from other work, is many-sorted algebra. Gral uses many-sorted algebra as a query language and also as an executable language to describe query plans (access plans). The whole system is centered around this formal concept and we show that this leads to a very simple and clean extensible system.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.

Proceedings of the Fifteenth International Conference on Very Large Data Bases

1 Gral stands for "Gen-Relational Algebra" which is the query language of the Gral system.

Amsterdam, 1989
Algebraic query languages have been used before [Gr84] and are perhaps now viewed as old-fashioned. However, they have clear advantages for the use in an extensible system, because they are inherently modular and extensible. SQL- or QUEL-like languages accommodate easily new functions or predicates for new atomic types (e.g., in where-clauses). Yet it is awkward to add new relation operators to such languages. As we shall see, non-standard applications do require special relation operations (see also [OsH86]). Many-sorted algebra and the Gral system allow to add any kind of user-defined relation mapping. The particular kind of algebra that we use includes very powerful retrieval operations such as selection or join with an arbitrary algebra expression as condition and the embedding of derived values (described by algebra expressions) into relations.

The optimizer translates query language expressions to query execution plans. In Gral both are algebraic languages with the same structure. This eases considerably the application developer’s task who needs to be familiar with both language levels. In particular it makes it relatively easy to formulate the rules driving the query optimizer.

The Gral project started with the goal of building an efficient database system for geometric applications. While this is still our goal, the need for extensibility was soon recognized and the focus shifted initially to provide a clean and simple extensible architecture. We find that having in mind a specific application is quite helpful to see clearly what kind of extensibility is required.

We consider an extensible system to have a model and a system part and, orthogonally, an application-independent and an application-specific part. We use the following terminology. The application-independent parts are called the **Gral model frame** and the **Gral kernel system**. Speaking of application extensions in general we use the terms **Gral application model** and **Gral application (system)**. Finally, the running Gral prototype is one specific application; its data model is geo-relational algebra and we call it the Gral system. The following three sections describe Gral's query language, its executable language, and the system architecture. Related work is mentioned in Section 5.

2. An Extensible Data Model and Query Language

Basically Gral uses an extended relational algebra as a query language. More precisely, Gral's data model and query language are based on the formal concept of a **many-sorted algebra**. A many-sorted algebra is a collection of sets and functions between these sets; it is described by an **S-sorted signature** Σ where S is a set of sorts (names for the sets) and Σ a family of sets Σw,s of operator symbols (names for the functions). where w ∈ S* and s ∈ S describe the functionality of operators in Σw,s [GoTW78]. For Gral, this algebra has one sort for relations and further sorts for atomic data types; the operations include relational operators such as selection or join and operations on atomic data types such as integer multiplication or a test whether two polygons intersect.

More precisely, again, the structured data objects in Gral are not relations (sets of tuples) but **sequences of tuples**, or ordered relations. This allows, for example, to include sequence and sorting operators in the algebra.

Since Gral is an extensible database system together with one specific extension we can distinguish between the application-independent model frame and the application-specific data model called geo-relational algebra. The model frame describes any application as a many-sorted algebra; it defines the application-independent sorts and operators and is abstract with respect to the application-specific sorts and operators. The set of sorts is \(S = \{ s_1, \ldots, s_n \} \) with \(s_1 = \text{REL} \) and \(s_2 = \text{BOOL} \). The collection of operators (signature) of the model frame is \(\Sigma = \Sigma_G \cup \Sigma_A \) (G for "general", A for "application-specific") of which \(\Sigma_G \) is defined within the model frame. Some operators of \(\Sigma_G \) are shown in the following table.

<table>
<thead>
<tr>
<th>REL × REL</th>
<th>REL</th>
<th>REL</th>
<th>REL</th>
<th>BOO L × BO O L</th>
<th>BOO L</th>
<th>BOO L</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ REL</td>
<td>union</td>
<td>product</td>
<td>join</td>
<td>concat</td>
<td>_ #</td>
<td>_ #</td>
</tr>
<tr>
<td>→ REL</td>
<td>select</td>
<td>project</td>
<td>extend</td>
<td>ord</td>
<td>head _ #</td>
<td></td>
</tr>
<tr>
<td>→ ATOM</td>
<td>extract</td>
<td>_ (#)</td>
<td>_ (#)</td>
<td>_ (#)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ BOO L</td>
<td>and</td>
<td>or</td>
<td>_ (#)</td>
<td>_ (#)</td>
<td>_ (#)</td>
<td></td>
</tr>
</tbody>
</table>

The model frame contains sorts for relations (sequences of tuples) and Boolean values and their associated operations. The rightmost column shows the syntax for using an operator within an expression (a query); "_" denotes an operand and "#" the operator, parentheses are to be used as indicated. For example "rell rel2 union" and "(x and (y or z))" are well-formed expressions. Some operators take parameters which appear in square brackets behind the operator symbol, for example, in "cities select [cpop > 500000] project [cname, cpop]", for a "cities" relation with attributes for city name and population.

The set of sorts S has a subset ATOM = \{s_2, \ldots, s_n\} which contains the atomic data types. The model frame provides also a set ORD ⊆ ATOM containing the atomic data types that are one-dimensional ordered domains so that a relation can be sorted by attributes of such a type. Any application-specific database system must specify its atomic data types and may provide within \(\Sigma_A \) any operations on these atomic types, but also operations involving relations. Standard types such as integer, real, and string with suitable operations are likely to occur in most applications. Sorts INT, REAL, and STR are also part of the geo-relational algebra together with the following operations:

<table>
<thead>
<tr>
<th>STD_1 × STD_1</th>
<th>INT</th>
<th>INT</th>
<th>REAL × NUM</th>
<th>NUM × REAL</th>
<th>REL</th>
<th>NUM*</th>
<th>NUM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ BOOL</td>
<td>+, -, *</td>
<td>INT</td>
<td>/</td>
<td>REAL</td>
<td>count</td>
<td>REAL</td>
<td>sum, min, max</td>
</tr>
<tr>
<td>=, ≠, <, ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this listing some abbreviations are used. STD and NUM denote sets of sorts, namely, $STD = \{\text{INT, REAL, STR}\}$ and $NUM = \{\text{INT, REAL}\}$. The notation X_i with such a set identifier means that X_i is to be consistently replaced by the same element of set X. So the first line allows comparisons of any two operands of equal type. The notation X^* denotes a relation operand where an attribute of type X is specified, or, intuitively, a set of X values. The attribute is given as a parameter of the operator. For example, “(cities avg [cpop])” returns the average population of cities (within the cities relation) as a real number. The last line is also an abbreviation for two lines with the functionalities $\text{INT}^* \to \text{INT}$ and $\text{REAL}^* \to \text{REAL}$.

We can now illustrate the operators of the model frame by a few examples.

1. Determine the five cities with the highest population numbers.

 cities ord [cpop -] head [5]

 The ord operator sorts cities descending by population; from the resulting sequence head returns the first five tuples.

2. Add to each city tuple an attribute giving its population in percent of the maximal population.

 cities extend [(cpop/(cities max [cpop]))*100 (percent)]

 The extend operator takes a list of algebra expressions as parameters. Each expression is followed by a new attribute name. For each expression, the relation will have a new attribute whose value is determined for each tuple by evaluating the expression.

3. Find pairs of cities whose population number differs by less than 50000.

 cities (*->*2) join [(cpop - cpop2) < 50000]

 For the second operand relation, the attributes are first renamed (appending a suffix "2") before the join operator is applied. Note that the select as well as the join operator take arbitrary algebra expressions with Boolean result as parameters.

4. How many people live in Dortmund, in thousands?

 cities extract [cname="Dortmund"; cpop] div 1000

 The extract operator allows one to extract from a relation a single atomic value which is then available for further operations. Parameters of extract are an algebra expression (as a selection condition which must return exactly one tuple) and an attribute name.

An application may decide to choose the collection of standard types and operators shown here "from the shelf". However, since all atomic types, except for BOOL, are considered application-specific, it may instead also use very long integers, text fields containing formatting instructions, etc.

An application will then introduce its own more specific data types. Gral's data model, the geo-relational algebra, is designed to support geometric applications in the plane, perhaps with a bias towards supporting geographic information systems. Gral has therefore types for points, lines, and regions in the plane. A line is conceptually a finite sequence of straight line segments. A region is a hole-free, non-selfintersecting polygon. Actually there are two types of regions called PGON and AREA; for type AREA the restriction holds that no two polygons that are attribute values of the same relation may intersect. Type AREA is used to model subdivisions of the plane as they often occur in maps. So the complete set of sorts of the geo-relational algebra is $S = \{\text{REL, BOOL, INT, REAL, STR, POINT, LINE, PGON, AREA}\}$. To simplify the signature there is also a hierarchy within the geometric types: $\text{REG} = \{\text{PGON, AREA}\}$ (regions), $\text{EXT} = \{\text{LINE}\} \cup \text{REG}$ (extended objects), and $\text{GEO} = \{\text{POINT}\} \cup \text{EXT}$ (any geometric object). A selection of the operators is shown below:

$$
\begin{align*}
\text{GEO} \times \text{REG} & \rightarrow \text{BOOL} & \text{Inside} & (_ _ _)
\text{EXT} \times \text{EXT} & \rightarrow \text{BOOL} & \text{Intersects} & (_ _ _)
\text{LINE}^* \times \text{LINE}^* & \rightarrow \text{POINT}^* & \text{Intersection} & (_ _ _)
\text{LINE}^* \times \text{REG}^* & \rightarrow \text{LINE}^*
\text{PGON}^* \times \text{REG}^* & \rightarrow \text{PGON}^*
\text{POINT}^* \times \text{POINT} & \rightarrow \text{REL} & \text{Closest} & (_ _ _)
\text{POINT} \times \text{POINT} & \rightarrow \text{REAL} & \text{Dist} & (_ _ _)
\text{LINE} & \rightarrow \text{REAL} & \text{Length} & (_ _ _)
\text{REG} & \rightarrow \text{REAL} & \text{Perimeter} & (_ _ _)
\text{AREA} & \rightarrow \text{REAL} & \text{Area} & (_ _ _)
\end{align*}
$$

The inside operator tests whether any kind of geometric object is wholly contained within a region. The intersects operator checks extended objects for intersection. The intersection operator (with functionality $\text{LINE}^* \times \text{LINE}^* \rightarrow \text{POINT}^*$) is applied to two relation operands; for each operand an attribute of type LINE is specified. It returns a relation which "looks like" the cartesian product of the operand relations extended by a POINT attribute. To be precise, the result relation contains one tuple for each intersection point of a line of the first operand with a line of the second operand. This tuple consists of all attributes of the (tuple with the) first line, all attributes of the second line, and the intersection point. Intuitively, the functionality should be read "The intersection of two sets of lines is a set of points". Forming the intersection of lines is embedded in this way into a relation operation because even the intersection of two single lines is generally a set of points, so one cannot define an atomic operator with functionality $\text{LINE} \times \text{LINE} \rightarrow \text{POINT}$. The intersection operator can be applied similarly to a set of lines and a set of regions, or two sets of regions. The closest operator is given a relation with a point attribute specified, and a (query) point; it returns the tuple (or those tuples) of the operand relation whose point attribute has minimal distance to the query point. Finally, our selection shows operators to compute the distance between two points, the length of a line, and perimeter and area of a region. Some example queries, based on relations representing cities, states, rivers, and highways of West Germany, illustrate the use of these operators.

$$
\begin{align*}
\text{cities} & \quad \text{cname} \quad \text{center} \quad \text{cpop} \quad \text{INT} \\
\text{states} & \quad \text{sname} \quad \text{region} \quad \text{spop} \quad \text{NUM} \\
\text{rivers} & \quad \text{name} \quad \text{route} \quad \text{str} \quad \text{LINE} \\
\text{highways} & \quad \text{name} \quad \text{way} \quad \text{str} \quad \text{LINE}
\end{align*}
$$

- 35 -
(5) Associate with each city the state containing it.
 cities states join [center inside region] project [name, state]

(6) Find rivers passing through the state of Bayern (Bavaria).
 states select [name="Bayern"] rivers join [route intersects region] project [name]

(7) Which city with more than 100000 inhabitants is closest to the point where highway A1 passes the Rhine?
 rivers select [name="Rhine"]: highways select [name="A1"]
 intersection [route, way, (crossing)] extract [true; crossing] (crosspoint);
 cities select [cpop > 100000] crosspoint closest [center]

The query consists of two steps. In the first step the intersection point of river Rhine and highway A1 is computed and made available as a POINT object named "crosspoint". In the second step the closest operator is applied to the cities with more than 100000 inhabitants, and the point "crosspoint".

(8) Sort cities by distance from München (Munich).
 cities extract [name="Munich"; center]
 Munich;
 cities extend [dist (center, Munich) [MunDist]]
 ord [MunDist +]

By a data model we mean a mathematical model for data and operations on data. In this sense, the Gral model frame is a data model; its structured objects (sequences of tuples) and operations have been formally defined in [GU88b]. The essential part of the semantics definition is the treatment of nested algebra expressions (since an operator, for example select, join, extend may have an algebra expression as a parameter); this and most of the operator definitions can also be found in [GUZZC88]. For the application-specific extension the Gral model frame is extensible in that new sorts for atomic data objects is described by a hypothetical series of applications of operators to the stored objects. It is the task of the system to return; this data object is described by a hypotheetical series of applications of operators to the stored objects. It is the task of the system to return; this data object is described by a hypothetical series of applications of operators to the stored objects.

3. Descriptive and Executable Algebra

Before describing the Gral system architecture it is important to introduce the distinction between descriptive and executable algebra. In any Gral application a query is formulated as an expression of the application-defined many-sorted algebra. It should be clear that such a query is to be understood as the user's specification of some data object (relation or atomic object) that the system should return; this data object is described by a hypothetical series of applications of operators to the stored objects. It is the task of the system to translate this query to an executable query plan and, in fact, to select among many available query plans the most efficient one.

In an extensible database system it is necessary that the application developer understands this "language of query plans" since obviously it must also be extensible. A central idea of the Gral system is that the language of query plans should also be an algebra, with the same syntactical structure, although with different sorts and operators, as the query language algebra. This simplifies the task of the application developer since he/she needs to understand only a single formalism; it is surely preferable to introducing a quite different way of describing query plans. The optimization process can then be understood (and partially be formulated) by the application developer as a translation from one algebra expression to another one. To distinguish, we call the query language algebra the descriptive and the "language of query plans" the executable algebra.

Whereas for the descriptive algebra the foremost design goals are expressive power and simplicity, and efficiency plays no role at all, the major issue in the design of an executable algebra is efficiency. On the other hand, because of the requirement of extensibility the executable algebra should still be as simple as possible, so a reasonable balance between efficiency and simplicity must be found.

Some important ideas to achieve efficiency at the level of the executable algebra are the following:

- Use index structures (access paths).
- Support processing in "tuple mode", that is, as far as possible perform a series of operations on a single tuple instead of copying the relation for each operation.
Use complex operators. That means, whenever an operator needs to process a relation, it should do as much as possible during this access. For example, a sorting operator should include a selection condition to eliminate tuples before sorting, and allow to process each tuple further after sorting.

These are well-known strategies for the implementation of relational database systems. We show how they can be incorporated into the design of an executable algebra.

In the descriptive algebra a sort is associated with a set of objects and an operator with a function; neither is a representation specified for the objects nor an algorithm for computing the function. In contrast, in the executable algebra a sort corresponds to a specific object representation within the system and each operator has associated a fixed algorithm or procedure in the system. Generally for a Gral application system the set of sorts will consist of the following subsets and specific sorts:

- **REL** - each sort in REL describes one kind of physical representation (primary index) of a relation.
- **INDEX** - each sort describes one specific secondary index structure.
- **TUPLE** - a sort describing a tuple in memory.
- **TIDSEQ** - a sort describing a collection of tuple identifiers (through which tuples represented in one of the REL representations can be accessed).
- **ATOM** - these are the sorts for atomic objects that are also present in the descriptive algebra.

In the currently running Gral prototype there is only a single sort SREL in REL corresponding to a simple sequential representation of a relation. Primary and secondary index structures will be added soon. To illustrate the general approach we describe an executable algebra already containing index structures. In this design we have

\[
\text{REL = (SREL, STIDREL, BTREE)}
\]

SREL is a sequential representation used, for example, for temporary relations during the processing of a query. STIDREL is a permanent representation providing tuple identifiers; a relation represented in this way can be accessed sequentially or through a secondary index. BTREE is a B*-tree representation ordered by one of the attributes. It can be accessed through the primary index, through a secondary index, or sequentially. Let TIDREL = (STIDREL, BTREE) be the structures accessible through a secondary index.

\[
\text{INDEX = (SBTREE, SGRID, SMLGRID)}
\]

All of these structures allow to obtain a collection of tuple identifiers. SBTREE is a B*-tree used as a secondary index, SGRID a grid file [NiHS84], supporting geometric searches on a set of points in the plane, SMLGRID a multi-layer grid file [SiWSS88] supporting searches on a set of rectangles in the plane. The stored rectangles in an SMLGRID index are the bounding boxes of extended objects such as lines or polygons.

Sorts TUPLE and TIDSEQ are also present and we have

\[
\text{ATOM = (BOOL, INT, REAL, STR, POINT, LINE, PGON, RECT)}
\]

The executable algebra has an additional sort for rectangles which are needed as bounding boxes of LINE and PGON objects.

The set of atomic types with ordered domains is ORD = (BOOL, INT, REAL, STR).

A subset of the operators of the current Gral executable algebra extended by some operators for index structures is shown in Figure 3-1.

![Figure 3-1: Operators of the Executable Algebra](image-url)

The executable algebra contains also atomic operations on standard types; these are as in the descriptive algebra. Also operators for SBTREES have been omitted; they are similar to those on primary BTREES but return sets of tuple identifiers.

The **scan** operator has a parameter list of the form \([E_1, E_2]\) where \(E_1\) is an algebra expression of result type BOOL and \(E_2\) an expression of result type TUPLE. This operator scans a relation given in any of the REL representations. \(E_1\) is a filter expression which is evaluated for each tuple of the operand relation; those tuples passing the filter are then made available to the second expression \(E_2\) by the keyword **tuple** to which tuple operators can be applied. So \(E_2\) allows processing in "tuple mode". For example, the query "List the names of big cities" looks in descriptive (D) and executable (E) algebra as follows:

\[
\text{D cities select [copol > 500000] project [cnamel}
\]

\[
\text{E cities scan [copol > 500000; tuple proj [cnamel]}
\]

The **sort** operator realizes the \(\text{ord}\) operator of the descriptive algebra but has also an input filter expression and a tuple expression applicable to tuples after sorting.
Similarly the binary relation operators have two input filter expressions and a tuple expression to be applied to the concatenated tuples resulting from the operation. For example, the product operator computes the Cartesian product of the operand relations and has a parameter list of the form \([E_1, E_2; E_3]\) where \(E_1\) and \(E_2\) are the filter expressions and \(E_3\) is the tuple expression. It can be used to answer query (5) from Section 2 “Associate with each city the state containing it”:

\[
\begin{align*}
\text{D cities states} & \text{ join} [\text{center inside region}] \\
\text{project} & \text{ [cname, sname]} \\
\text{E cities states} & \text{ product} \{\text{true, true}; \text{tuple sel} [\text{center pr_inside region}]\} \\
\text{proj} & \text{ [cname, sname]}
\end{align*}
\]

The selection operator on tuples \(\text{sel}\) either returns the operand tuple or a special object called \(\text{notuple}\); any tuple operator receiving \(\text{notuple}\) as an operand also returns \(\text{notuple}\). The same query could also have been realized using the \(\text{inside_join}\) operator. This operator can be applied to (a relation with) a set of points and (a relation with) a set of regions; it performs a plane-sweep \([PrS85]\) to join tuples of the two operand relations where the point is contained in the region. We consider a slightly more complicated example query with this operator “List for big cities their population number as a percentage of their state’s population”:

\[
\begin{align*}
\text{D cities states} & \text{ select} [\text{cpop} > 500000] \\
\text{join} [\text{center inside region}] \\
\text{extend} & \{\{(\text{cpop/spop})\times100 \text{ (percent)}\} \\
\text{proj} & \text{ [cname, percent]} \\
\text{E cities states} & \text{ inside_join} [\text{cpop} > 500000, \text{true}; \text{center, region}] \\
\text{tuple extend} & \{\{(\text{cpop/spop})\times100 \text{ (percent)}\} \\
\text{proj} & \text{ [cname, percent]}
\end{align*}
\]

The \(\text{smjoin}\) operator performs a sort/merge join. Its parameter list has the form \([E_1, E_2; E_3 \text{ cop } E_4; E_5]\). \(E_1, E_2\) and \(E_3\) are filter and tuple expressions, as before. \(E_3\) and \(E_4\) are expressions involving only attributes of the first and second operand relation, respectively, and \(\text{cop}\) is one of the comparison operators \(<, \leq, =, >, \geq\). The two operand relations are first sorted by the value of their respective expression \(E_3\) or \(E_4\) and then merged according to the comparison operator. The \(\text{extract}\) operator of the executable algebra has no parameters; it can be applied to a relation with a single tuple and a single attribute and returns the attribute value as an atomic object of the attribute’s type (see the example below).

Access to primary or secondary index structures is also realized by executable operators. A BTREE is organized by attribute values of one of the ordered data types and can be accessed with a single value of the same type or a range of such values through the \(\text{exactmatch}\) and \(\text{rangescan}\) operators. These operators also have filter and tuple expressions like the \(\text{scan}\) operator to impose additional restrictions on the returned tuples and to process these tuples further. For the following examples we assume that relations and index structures are organized as follows:

\[
\begin{align*}
\text{cites:} & \text{ BTREE(STR) ordered by the cname attribute} \\
\text{cpop_index:} & \text{ SBTREE(INT) on the cpop attribute} \\
\text{center_index:} & \text{ SGRID(POINT) on the center attribute}
\end{align*}
\]

An SGRID index stores a set of points; the \(\text{geo_range_search}\) operator returns the tuple identifiers belonging to points inside a search rectangle given as the second operand. Similarly an SMLGRID index stores a set of rectangles; the \(\text{geo_intersection_search}\) operator returns the tuple identifiers belonging to rectangles intersecting a search rectangle. The returned tuple identifiers can be processed further through the \(\text{tidscan}\) operator which accesses the original relation and allows to filter and process tuples. As an example we consider the query “Find cities in Bayern!”:

\[
\begin{align*}
\text{D (states extract [name = "Bayern"; region])} \\
\text{[Bayern];} \\
\text{cities select [center inside Bayern]} \\
\text{E (states "Bayern" exactmatch [true; \\
\text{tuple proj [region]}] extract) [Bayern];} \\
\text{center_index bbox [Bayern] geo_range_search} \\
\text{states tidscan [center pr_inside Bayern; tuple]}
\end{align*}
\]

Let us reconsider the executable algebra from the point of view of extensibility. The Gral kernel system will contain generally useful relation representations such as those given above in REL and, say, SBTREES as a secondary index structure, as well as sorts \(\text{TUPLE}, \text{TIDSSEQ}\), and \(\text{BOOL}\). It will have executable operators needed to implement the descriptive operators of the model frame, for example \(\text{scan}, \text{sort}, \text{smjoin}, \text{product}, \text{extract}, \text{exactmatch}, \text{tidscan}\), etc. Standard types such as \(\text{INT}, \text{REAL}, \text{STR}\) together with their operations will be available as a module. A Gral application system may then add its own special types such as \(\text{POINT}, \text{LINE}, \text{PGON}\), and provide operators for these types as well as special index structures such as \(\text{GRID}, \text{SMLGRID}\) with suitable operators for searching these structures.

This distinction between Gral kernel system and Gral application system arises from a practical point of view. Note, however, that the Gral architecture to be described next is absolutely uniform with respect to all sorts and operators. For example, \(\text{scan}\) and \(\text{smjoin}\) are brought into the system through the same extension mechanism as any other operator and they might as well be application-defined. Parser, query evaluator, and optimizer handle these operators in the same way as any application-defined operator. We believe that only in this way a clean architecture can be achieved.

4. An Extensible System Architecture

4.1. Survey

The Gral system prototype has been implemented during the last two years in a project at the University of Dortmund. The implementation language is Modula-2; the system runs on Sun workstations under UNIX. The interactive interface uses SunWindows and SunCGI for window management and
graphic representation of geometric objects; this interface is mostly written in C. The system currently offers the following functionality:

- Database operations: create, destroy, open, close, save a database, that is, a collection of relations.
- Relation operations: create, destroy a relation; insert a tuple into a relation.
- Load/unload: move a relation out of the system into a UNIX text file and load it from such a text file. This is currently the only way to change the contents of a relation (through a standard text editor).
- Show: display the contents of a relation. Attribute types that are textually representable are shown in a text window; types that are graphically representable (such as geometric types) are shown in a graphics window. The text window shows tuples and their attributes sequentially; one can scroll forward or backward or access directly any position within this textual representation of the relation. The graphics window shows a section of the real cartesian plane which can be selected by the user; geometric objects occurring as attribute values of the displayed relation are visible as far as they intersect this section. It is possible to overlay the graphical representations of several relations.
- Query: enter a query either in descriptive or in executable algebra. The resulting relation or atomic object is then displayed. The descriptive algebra implemented so far is a subset of the geo-relational algebra described in [GW8a].

Note that the interactive interface offering this functionality is entirely data type independent. For example, the program that displays a relation does not know how to display any attribute value. Instead, it calls through the type manager a type-specific procedure to display a value of this type which was provided by the implementor of this type. So this program is prepared to handle any attribute type that will be added to the system in the future. According to the philosophy of the Gral model frame the only object type built into the system is that of relations.

In this section we focus on the layered architecture for query evaluation and emphasize and explain extensibility at the various layers. This architecture is shown in Figure 4-1.

![Figure 4-1: Architecture for Query Evaluation](image)

Although query processing proceeds top-down, the architecture of the system is best explained bottom-up. The bottom layer provides rather traditional storage and buffer management except that page sequences are available to hold data objects occurring as attribute values (it is generally assumed that "atomic" data objects may have arbitrary size) and facilities for fixing page sequences in the buffer. Currently we see no need for this layer to be extensible. The second layer provides representations for the sorts of the executable algebra; the implementation of relation representations and index structures uses the functions offered by the storage management layer. The second layer provides also a higher level representation of a tuple in memory with suitable operations and a scan component offering uniform scanning operations for all relation representations. This layer is extensible by atomic data types, index structures, and relation representations.

The third layer consists of implementations of executable operators. These are based on the primitive access operations offered by relations or index structures and the representation of atomic types realized by the layer below. For example, the scan operator of the executable algebra uses the scan component of the representation layer. A "point inside polygon" test operator (pr_inside) accesses the representations of point and polygon objects implemented in that layer. Each executable operator is implemented by two procedures. One of these describes the schema transformation (ST) performed by the operator (for example, the product operator creates a new relation schema by concatenating the two operand schemas). The second procedure implements the occurrence transformation (OT), that is, the mapping of the
relation instances or atomic data objects. There are two separate procedures because the ST procedure is already called during the parsing of an executable algebra expression whereas the OT procedure is called during query evaluation, after parsing is completed. This layer is, of course, extensible by operator implementations.

The next layer contains the parser and query evaluation components. Given an executable algebra expression, the parser produces an operator tree representation in memory. For this purpose it accesses information in the system catalog, in particular the “Operators” table which contains for each operator its name (or symbol), the functionality, and a description of the parameter list structure, if there is one. As mentioned before, the parser also calls an operator's ST procedure to apply the operator to an operand schema (which may in turn be the result of parsing a subexpression). The parser has no built-in knowledge of any operator. The same is true for the query evaluator. This component “understands”, however, the structure of the operator trees which the parser builds. The query evaluator traverses the operator tree, computes bindings for the leaves, representing objects, and calls for each operator represented by an internal node the corresponding OT procedure. The query evaluator takes references to the operand objects from the tree and passes them to the procedure as parameters; it receives the resulting object from the procedure and links it into the tree. This layer is extensible by operator descriptions being entered into the system catalog.

Up to this layer we have a complete system capable to evaluate queries in executable algebra. As mentioned before, in the Gral system this capability is present at the user interface, that is, a user can enter queries in executable algebra. It is necessary to expose this interface to an application developer so that he/she can test new operator implementations in queries for correctness and performance. The knowledge gained in performance tests can subsequently be built into optimization rules.

The top layer consists of the optimizer/query compiler component. The optimizer calls the parser of the layer below to analyze a given descriptive algebra expression and to produce an internal tree representation; the parser again receives the necessary information from the “Operators” table in the system catalog. The same parser can be used because descriptive and executable algebra have the same syntactical structure. The information needed for optimization and query translation itself comes from a text file “OptimizationRules”. This file contains various classes of optimization/translation rules in a specific syntax and order. When the Gral system is started the contents of the file are analyzed and represented by internal data structures so that patterns occurring in rules can be matched efficiently against parts of the tree representing the query. How the optimizer works is described in some more detail in Section 4.4. The result is an expression in executable algebra which can be shown in text form to the user, if desired. For further processing of the query, however, it is passed to the query evaluator directly in internal form, so it need not be parsed again. The top layer is extensible by descriptive operators and optimization/translation rules.

In the following three subsections extensibility by data types, executable operators, and descriptive operators is discussed in a little more detail.

4.2. Extensibility by Data Types

The implementation of a data type in Gral consists of:

1. A Modula-2 type, usually opaque, together with operations for building an object associated with a variable of this type, and operations to access the components of an object. This part constitutes the Modula-2 implementation of an abstract data type.
2. Three classes of procedures:
 I Procedures for storing and loading an object. These convert the object representation in a variable to a bytestring and store the object as an attribute value in a relation and vice versa. Whenever possible the bytestring representation produced by the Modula-2 compiler is used so that no conversion is necessary. Optionally there may be procedures to load an object only partially.
 II Procedures for interactive input/output. For example, a procedure to read a string value from the keyboard or a procedure to display a polygon on the graphics screen.
 III Procedures to convert from/to textual form.

There exist two different kinds of programs using a data type: programs written before the type was implemented and that do not "know" the type, and programs written afterwards with knowledge about the type. An example of the first class is the program displaying a relation at the screen. An example of the second class is a program testing two polygons for intersection. Programs of the first class access a type through the type manager. This module provides a generic procedure for each task within classes I - III above; the generic procedure just switches to the type-specific procedure provided by the type implementation. The generic procedure is implemented in Modula-2 by an array of procedure indexed by the type.

Hence, to add a data type to the Gral system, an AD implements the type as described under (1) and (2) above, usually in a module for the type. Then the type manager module is extended: the procedures in the type module are imported and for each generic procedure in the type manager the corresponding component of its array of procedure is assigned the type's procedure. Finally a procedure "InsertType" is called to enter the name of the type and some other information (e.g., whether the type is sortable, can be displayed textually, graphically, etc.) into the system catalog and the system relation about types.

Similar ideas for providing type extensions have been reported in [SiRG83, Ong84, OhH86] although the details differ. For example, in Gral types are not defined within the system's data definition language to avoid inconsistencies with the source code which must be present in the system anyway. What is perhaps new about our treatment of types is the possibility of partial loading. Since we generally assume that objects may be arbitrarily large it is useful to allow to load only some part of an object into memory. For example, a polygon is represented by a record with fields for the bounding box, the area, the perimeter, and the vertices (given as an array). An operator testing two polygons for intersection may initially only load the bounding boxes and only load the vertices later if the bounding boxes intersect.
4.3. Extensibility by Executable Operators

Adding an executable operator to the system consists of three steps. First, one implements its schema and occurrence transformation procedures, using the primitives of the representation layer. (That layer contains also a module "SchemaTransformations" providing a data structure to represent a schema and operations on schemas such as concatenating schemas, adding an attribute, etc.). The new operator then needs to be linked into the "OpManager" module. The OpManager has separate arrays of procedure for ST and OT procedures, one array for each arity of an operator. So the second step is to assign the new procedures to appropriate array components. Through the OpManager these procedures can then be called by parser and query evaluator.

The third step in adding an operator is to make its name, functionality, syntax, and parameter list structure known in the system catalog where this information is then available for the parser. Similar as for types this is achieved by calling a procedure "InsertOp" with text parameters containing corresponding descriptions. The system catalog (and the system relation about operators) has four entries for each operator:

(1) Operator name or symbol.
(2) A description of functionality and syntax in the form pattern -> result type. For example, for the scan and pr_inside operators the descriptions are:

REL scan -> REL
(POINT pr_inside PGON) -> BOOL

(3) A description of the parameter list if there is one, otherwise the word "None". Parameter lists may be either in standard form or irregular. To be in standard form means that a parameter list may be structured into a fixed number of sublists, separated by ";", each sublist may have a fixed or variable number of items, separated by ",". An item may have a fixed number of parts, separated by blanks or user defined delimiters. Parts may be recognizable for the system parser or not. Recognizable parts are constants of some atomic type, attribute names, (re)namings, and algebra expressions of specified result type. In Gral these rules are built into a grammar which defines the allowed parameter list descriptions and thus the allowed parameter lists. Parameter list descriptions for scan and proj, for example, are as follows:

scan: [Expr (BOOL); Expr (TUPLE)]
proj: [Attrname *]

If a parameter list is irregular, a procedure for parsing the parameter list must be provided by the AD with the operator implementation. In the current Gral system this was never necessary.

(4) The last entry is either "Executable" or "Descriptive" since descriptive operators are described in exactly the same way and appear also in the operator table.

The parser transforms a parameter list encountered in an algebra expression according to the description in (3) to a nested list data structure and connects this representation to the operator's node in the operator tree. When a parameter list contains an algebra expression, the parser recursively parses this expression and builds an operator tree which it links into the nested list structure. In this way nested algebra expressions are represented in the operator tree. During query evaluation, the nested list representation of a parameter list is passed to the operator's OT procedure. The implementor of this procedure (the AD) relies on the parser having built the right structure; thus the description (3) serves as an interface definition between parser and OT procedure. When an OT procedure has to process an algebra expression occurring as a parameter it simply calls the query evaluator on the tree representation of this expression. This is an important point: A user-defined OT procedure calls the system's query evaluator to handle nested algebra expressions, as they occur, for example, in scan or extend operators.

4.4. Extensibility by Descriptive Operators and Optimization/Translation Rules

In this section we briefly sketch how the optimizer/compiler works and how rules are described and arranged in the file "OptimizationRules"; a detailed report is to follow [BeG89]. The translation of a given descriptive algebra expression proceeds in the following stages:

---Descriptive multistep query---

1. Normalize: In a multistep query names of objects resulting from expressions can be replaced by these expressions without changing the semantics. This is done to obtain a single expression which can be optimized further as a whole.

---Descriptive expression---

2. Decompose: Certain operators, such as selection, join, extend, are decomposable. For example, a selection with several and-connected conditions can be transformed into several selections with simple conditions. Decomposable operators are taken apart, so that their parts (e.g. simple selections) can move freely.

3. Improve: Change the order of operators according to heuristics (classical algebraic optimization).

4. Compose: Put subsequent operators together (for example, a series of selections).

5. Eliminate constant and common subexpressions.

---Final descriptive multistep query---

For each expression in the multistep query:

---Descriptive expression---

6. Translate descriptive subexpressions to executable subexpressions. (During this stage, the optimizer works on a mixed descriptive and executable expression.)

---Executable expression---

7. Combine sequences of executable operators into a single operator.

---Final executable expression (and multistep query)---

All stages except 1 and 4 are supported by rules; these are given in the file OptimizationRules which is structured roughly according to the stages into sections. In the first stage a query formulated by a user in several steps is transformed (by embedding expressions for names) into a single expression (normal form) so that optimization of the whole query is possible. The steps selected by the user might otherwise prevent certain optimizations. Stage 2 (Decompose) is supported by a corresponding section in OptimizationRules:
DECORATING RULES

RULE
REL-1 select [BOOL-1 and BOOL-2]
REL-1 select [BOOL-1] select [BOOL-2].

RULE
REL-1 REL-2 join [BOOL-1]
REL-1 select [BOOL-1] REL-2 product
if BOOL-1.attr c REL-1.attrnames,
REL-1 REL-2 select [BOOL-1] product
if BOOL-1.attr c REL-1.attrnames.

A rule consists in general of a pattern followed by one or more replacement patterns each of which may have an associated condition. The condition may involve properties of the expression, such as the attribute names occurring, and properties of the involved objects, such as the number of tuples in an operand relation or the physical sizes of attributes or atomic objects, etc. A rule may be preceded by a specification part to simplify notation within the rule. Each rule described in this way can be viewed as a collection of rules of a production system [Ni80]. For most stages an irrevocable control strategy is used and rules are applied until no further rule is applicable. In these stages the first replacement pattern whose condition is fulfilled is selected to replace the original pattern in the expression. Different control strategies which explore alternatives are used in stages 3 and 6.

The goal of stage 3 is to arrange operators in an order which is “good” according to heuristics. For this purpose it is possible to specify a partial order on descriptive operators to indicate a desired order of operators in the expression, whether that order can be achieved is another matter. This is a general facility to formulate such familiar heuristics as selection and projection should be done as early as possible”. The partial order is given by a section “OPERATOR ORDER”. How operators may actually be exchanged to achieve a good order is described in the section “IMPROVING RULES”, one example is shown:

SPEC
op-1 in (select, project, ord);
RULE
REL-1 op-1 [Param-1] select [BOOL-1]
REL-1 select [BOOL-1] op-1 [Param-1].

The control strategy for stage 3 attempts to arrange operators according to the partial order in such a way that the number of “runs” (ordered subsequences) is minimized. By a suitable definition of operator order and rules, one can let a run correspond to a single operator of the executable algebra and so minimize the number of executable operators needed. The section “COMPOSING RULES” contains rules for stage 4 (no example is shown). Together, stages 2 - 4 realize the classical algebraic optimization.

No rules are necessary to support stage 5 (Eliminate). A constant subexpression is one that is evaluated once for each tuple of a relation but does not depend on the tuple’s attribute values. In query (2) of Section 2 “(cities max [cpop])” is a constant subexpression. Stage 4 translates this to a two-step query where the constant subexpression is evaluated only once initially:

(cities max [cpop]) (Constant_1);
cities extend [cpop/Constant_1 (percent)]

The next section contains rules for the translation of descriptive to executable subexpressions. This is the point where descriptive operators are associated with their executable counterparts.

TRANSLATING RULES

RULE
REL-1 select [Attrname-1 = Const-1]
REL-1 Const-1 exactmatch [true; tuple]
REL-1 REL-2 product [BOOL-1, BOOL-2; TUPLE-1]....

The first rule describes how a simple selection can be implemented either by access through primary or secondary index structures, if present, or otherwise by a relation scan. The second rule shows how the Inside operator of the descriptive algebra, defined on atomic objects, can actually be implemented by a plane-sweep algorithm which is (under certain conditions) the most efficient way to realize this kind of geometric join. This example shows how the system architecture does indeed support the efficient processing of geometric queries, which was one of the initial goals of the Gral development. The rule is also a simple example of how the optimizer can switch between various implementations: for small sets of points (here up to 100 points) forming the cartesian product with subsequent selection is preferable. The last section “COMBINING RULES” of the file OptimizationRules contains rules for combining executable operators. The previous translation stage which replaces descriptive operators independently of each other by executable operators may, for example, have produced series of scan operators, or scan followed by product, etc., which can now be combined into one:

RULE
REL-1 REL-2 product [BOOL-1, BOOL-2; TUPLE-1]
scan [BOOL-3; tuple]
REL-1 REL-2 product [BOOL-1, BOOL-2; TUPLE-1 sel [BOOL-3]].

We have given here only a rough survey of the Gral extensible optimizer; most details and the more sophisticated techniques have been left out. For example, the optimizer
can be advised by rules to search systematically all permutations of \(n \) and-connected simple conditions, within a selection or join, say, and for the translation stage (6) each replacement pattern in a rule can be assigned a numeric expression. The replacement pattern can then be selected according to the value of that expression. These facilities allow one to search the possibilities for implementing a single operator, such as a complex selection, exhaustively, and to make a good choice among these. For example, a simple condition supported by an index structure will be evaluated first. These techniques are described in more detail in [BeG89].

It is now obvious how a descriptive operator is added to the system: Its name, functionality and syntax, and parameter list structure are entered into the system catalog as for executable operators. The descriptive operator is then "implemented" by a collection of rules in the file OptimizationRules. Of course, rules can be added to or removed from the file at any time independently from adding operators.

5. Related Work

We have described the query processing architecture of an extensible relational database system based on many-sorted algebra and shown some of the specific extension mechanisms used in the Gral system. Obviously much of the previous work on extensible database systems is related in some way; some of it can be associated with specific layers of our architecture. Extensibility by relation representations and index structures and in particular the interaction between these two in update processing have been studied in [LiMP87]; their work fits nicely into our representation layer. Methods for adding atomic types, functions, and predicates have been studied in [StRG83, OsH86]. The RAD system [OslH86] uses also a query language based on relational algebra and in principle allows relation mappings (called "transformations"). However, these have not been implemented and no extension mechanisms are described. Techniques for adding operator implementations have also been studied in [St86, GrD87]. In contrast to our approach, in the INGRES [St86] or POSTGRES [St86] project the architecture of the database system is not affected as a whole by extensibility. That is, there is a collection of built-in types which are treated differently from user-defined types; also all the standard parts of the query language are implemented in a traditional way and user-defined operations are handled separately. These are essentially restricted to simple functions on atomic types; relation mappings are not foreseen. The approach of adding interfaces to a traditional architecture shows in the way how user defined operations need to specify whether certain methods of the fixed part of the system are applicable, e.g. whether hash-join is feasible for this operator. In Gral, hash-join could in principle as well be a user-defined operation.

Rule-based optimization has also been studied by Freytag [Fr87] and in the EXODUS project [GrD87]. Our techniques have some similarity to Freytag's proposal. Differences are that he describes only the translation stage, so there is no algebraic optimization before or after translation, and that his rules describe how to generate all possible query execution plans but no strategy for selecting a good one. Gral contains a complete extensible optimizer which actually produces a good query plan. Generally one could say that we have filled in many details to his proposal and implemented a relatively complete query language including aggregate functions, sorting, and geometric operators. Freytag considers essentially only selection and join. Graefe and Dewitt [GrD87] focus on the aspect of heuristically searching the space of query plans to find a good one quickly. In their relational test implementation they also consider only selection and join. Another approach to extensible query optimization using the rules of a grammar to construct query plans is described in [Lo88]. - We shall compare the methods for extensible optimization in more detail in [BeG89].

Acknowledgment

Past and present members of the Gral development team are Ludger Becker, Thadditus Behnke, Anja Huesmann, Dirk Markert, Rainer Matenia, Stefan Pölt, Markus Schneider, Norbert Suchhart, Jacqueline Teschner, Reinhilde Uphaus, Bernd Vielhauer and Leonhard Wawrzinek. Their contribution to the design and implementation of the Gral prototype is gratefully acknowledged.

References

