
On the design and implementation of information systems 
from deductive conceptual models 

Antoni Olive 
Facultat d’lnformatica. Universitat Politecnica de Catalunya 

Pau Gargallo, 5. 08028 Barcelona. Catalonia 

ABSTRACT 

Deductive conceptual models (DCMs) aim at providing a 
complete specification of information systems, expressing 
only its logic component. It has been shown that DCMs have 
some advantages with respect to traditional, operational 
conceptual models, but they are more difficult to implement. 
We present a new approach to the design and implementation 
from a DCM. It consists in deriving from the DCM a new 
model, which we call the internal events model. This model 
describes the actions the information system must perform in 
terms of the inputs. The use of this model for data base and 
transactions design is discussed. 

1. INTRODUCTION 

During the last years we have seen the emergence and rapid 
growth of the logic programming field. This is due to a number 
of reasons, perhaps one of the most important being the clear 
distinction found in logic programming between the logic and 
control components of a program. As Kowalski says, “Logic 
programs express only the logic component of a program. The 
control component is exercised by the program executor, 
either following its own autonomously determined control 
decisions or else following control instructions provided by 
the programmer” [7]. 

There is a parallel trend at the information systems level in 
the conceptual modelling field [l]. Conceptual models of 
information systems express more and more the logic 
component of the system, but unfortunately they still somehow 
define (part of) the control component. The field is still 
dominated, both in theory and practice, by the “operational” 
approach to conceptual modelling. By this we mean models in 
which: 

a) Changes in the Information Base (IB), corresponding to 
changes in the Universe of Discourse (UoD), are defined by 
means of operations. Occurrence of a real-world, external 
event triggers the execution of an operation (tmnsaction), 

Perti&mtocopy wilhoulfeeallorplrtoflhismaterial irgrankdprovided 
that lhe copies are ~1 maak or distributedfordirect commercialadwnlage, 
the VLDBcopyrigh~no~iceandthe ritleofHtepuMicaiionandilsdaleappear. 
andnotice irgiven that copying is bypermksion of the Very Large Data Base 
Endowment. Tocopy otherwise, orlo republirh, requiresafee andlorspecial 
permission from the Endowment. 

Proceedings of the Fifteenth International 
Conference on Very Large Data Bases 

which reflects the effects of the event on the IB. These effects 
are usually expressed by some kind of insertions, updates or 
deletions to the IB. 

b) Operations, as well as queries and integrity constraints, 
can only access to the current state of the IB. 

Deductive Conceptual Models (DCMs) aim at providing a 
complete specification of an information system expressing 
only its logic component. The specification of the control 
component is entirely left to the subsequent phases of 
information systems development. A DCMrelates the contents 
of the IB to the external events in terms of deduction rules. On 
the other hand, they allow to define integrity constraints and 
queries as if a complete history of the IB were available. 

A detailed comparison of the operational and deductive 
approaches can be found in [3,13]. The main conclusions are 
that DCMs provide more local definitions, favour the 
understanding of informations, are easier to change and to 
accomodate new requirements, and provide more design 
freedom. However, DCMs are much more difficult to 
implement than operational models. The reason is that an 
operationaImodelalreadyembeddessomearchitecturaldesign 
decisions, which are not made in DCMs. 

It is clear that progress in deductive conceptual modelling 
is hampered by the lack of efficient implementation methods. 
We can expect that progress in the fields of knowledge bases 
and deductive data bases will make implementation of DCMs 
easier. However, an ideal solution would be to have methods 
for the design and implementation of DCMs in conventional 
hardware/software environments. 

This paper is a step in that direction. We present a formal 
method to derive from a DCM a new model, called the internal 
events model, which is much easier to implement. The paper 
is structured as follows. In Section 2 we present the DCMs, 
including an example used throughout the paper. In Section 3 
we review some approaches to design from DCMs. Section 4 
presents a method for the derivation of the internal events 
model, which is the main part of the paper. The use of this 
model for the design and implementation is briefly discussed 
in Section 5. Finally, Section 6 gives the conclusions and 
points out future work. 

Amsterdam, 1989 

-3- 



There are several languages for deductive conceptual 
modelling of information systems. Among them are CIAM 
[5], DADES [12] and IFL [16]. These languages differ in 
many aspects, but all share a common approach. Incidentally, 
this approach is very similar to the one taken by the recent 
Event Calculus [83 for representing and reasoning about time 
and events within a logic programming framework. In this 
paper, we will abstract from the details of specific languages 
and try to characterize the deductive conceptual modelling 
approach in a first order logic framework. 

Time plays a major role in this approach. Every possible 
information i about the UoD is associated with a time point 
T(i), which states when the information holds in the UoD. It 
can be called the occurrence or observation time. This time 
pointisacomponentoftheinformationproper,soinformations 
are self-describing in this respect. We will assume that 
occurrence times are always expressed in a unique time unit 
(such as second,day, etc.) small enough to avoid ambiguities. 

By life span T of an information system we mean the tin Y 
interval in which the system operates. It is defined as an 
ordered set of consecutive time points T = (tt,,...,tr), where b 
and tr are the initial and final times, respectively, and where 
each t&T is expressed in the given time unit. We can then say 
that, for any information i, T(i)aT. 

A DCM consists of a set B of base predicates, a set D of 
derived predicates, a set DR of deduction rules, a set IC of 
integrity constraints, and a set OR of output requirements. 
Each of them is described in the following,and illustrated with 
references to the DCM example of figure 1. 

2.1 Bmm 

Base predicates model the external event types of the UoD. 
They are the inputs to the information system. Each fact of a 
base predicate, called base fact, corresponds to an occurrence 
of an external event. We assume, by convention, that the last 
term of a base fact gives the time when the external event 
occurred. If p(a ,,... ,a,,t,) is a fact we say that p(a ,,... ,a”) is true 
or holds at $. 

In the example of figure 1 we have three base predicates: 
start, end andassign. Abase fact start(pl,el,dl,tl) means that 
project p 1 has started at time t 1, is planned for termination at 
time el, and corresponds to department dl. A base fact 
end(pl,tl)reportsthatprojectpI effectively endsat time tl. A 
base fact assign(pl,pgl,tl) means that at time tl,programmer 
pgl is assigned to project pl. 

start(project,end,department,time) 
end(project,time) 
assign(projectprogrammer,time) 

Jkxivexl Drl?dlcm 

DR.1 

DR.2 
DR.3 
DR.4 
DR.5 

DR.6 

DR.7 
DR.8 

active(p,t) t start(p,e,d,tl) A tl I t A 
7 completed(p,t) 

pend(p,e,t) t start(p,e,d,tl) A tl I t A active&t) 
dpt(p,d,t) t start(p,e,d,tl) A tl It A active&t) 
COmpleted(p,t) + end(p,tl) A tl 5 t 
assigned(p,pg,t) t assign@,pg,tl) A tl 5 t A 

active@,t) 

has-worked(d,pg,t) t starts-working(d,pg,tl) A 

tl ZGit 
starts-worW&l,pg,t) t as&@,pg,t) A dp0,d.t) 
new-indept(d,pg,t) c starts-working(d,pg,t) A 

-, has-worked(d,pg,t- 1) 
DR.9 critical(p,t) t p-end(p,e,t) A t > e - 8 A t I e 

mtv con- 

IC.l c start(p,e,d,t) A e I t 

1C.2 t start(p,e,d,t) A aCtiVe@,tl) A tl C t 

IC.3 c end&t) A Tactive@,t-l) 

IC.4 t assign(p,pg,t) A assigned(p,pg,t-1) 
IC.5 t assign(p,pg,t) A Tactive(p,t-I) 

OR.1 01(t) -+ QW 
01(t) = (cp,e> I critical@,t) A p-end(p,e,t)) 

OR.2 02(tI) t w(t1.t) A t1 5 t 
fwtl) = (<p& 1 W.tmW)) 

OR.3 03(pg,t) t new-in-dept(d,pg,t) 
mpg.0 = I<pg.p> l a=&=d(p*PgJ)] 

Figure 1. Example of Deductive Conceptual Model 

2.2 Derived medicat- 

Derived predicates model the relevant types of knowledge 
about the UoD. Each fact of a derived predicate, called derived 
fact, represents an information about the state of the UoD, at 
a particular time point. We will also assume that the last term 
of aderived fact gives the time when the information holds. In 
the example there are nine derived predicates: active, p-end, 
dpt, completed, assigned, has-worked, starts-working, new- 
in-dept and critical. The semantics of a derived predicate is 
given by its deduction rules. 

-4- 



2.3 Deduction rulg 

There are one or more deduction rules for each derived 
predicate. Let p(x 1 ,..., xn,t) be a derived predicate, with n+l 
terms. A deduction rule for p has the form p(xl,...,xn,t) t $ 
where $ is a literal or a conjunction of (positive or negative) 
literals, and all variables are assumed to be universally 
quantified. 

The terms in the rule head must be distinct variables. The 
terms in $ (rule body) must be constants or variables. We 
assume every rule to be range-restricted, i.e. every variable 
occurring in the head, or in a negative literal in @, occurs in a 
positive literal in $ as well [4]. We also assume every rule to 
bc time-restricted. This means that, for every base or derived 
predicate q occurring in the body as a positive literal q(...,tl), 
the condition $ + t 1 I t must hold. This condi tion ensures that 
PW ,...,xn,t) is defined in terms of q-facts holding at time t or 
before. 

In the example, the nine deduction rules are (hopefully) 
self-explanatory. Note the use of variable t-l as a syntactic 
convention instead oft’ and t’= t - 1. Thus, in DR.8, new-in- 
dcpt(d,pg,t) holds if programmer pg starts working for 
department d at time t, and pg had not worked for d at time 
t- 1. 

2.4 Intemitv constraints 

Integrity constraints are closed formulae that base and/or 
derived facts must satisfy to be consistent. An integrity 
constraint can only be falsified by the presence (or absence) of 
new base facts, and it is assumed that some mechanism of 
integrity constraints enforcement will reject (or require) those 
facts to maintain the informations consistent. We deal here (as 
in [93) with constraints that have the form of a denial c L, A 
. . . AL,, where the Li am literals, and variables are assumed to 
be quantified over the whole formula. 

In the example, there are five integrity constraints. If a 
project starts at t, its planned end time must be greater than t 
(IC.1). and it can not have been active before (IC.2). IC. 3 
requires a project to be active at time t-l if it ends at t. 
Programmerpgcanbeassignedtoaprojectpattimetifpgwas 
not assigned to p at t-l (IC.4) and project p was active at t-l 
(ICS). 

2.5 &&rut reuuiremen& 

An output requirement defines an output that must be 
produced by the information system. It has the form: 

Output c Condition 
Output = Contents 

meaning that whenever the condition is satisfied, the system 
must produce an output with the defined contents. 

In its simplest form, the condition is a query Qi with some 
parameters. In the example, OR.1 and OR.2 are of this form. 
The meaning is: 
- When query Ql is issued at time t, the system must provide 
the set of projects which are critical at t, and their planned end 
times. 
- When query 42 is issued at time t, with parameter tl, the 
system must provide the projects that were active at time tl , 
and their corresponding departments. Note that this query 
requires the system to know the complete history of predicate 
W- 

In its most general form, the condition is any base or derived 
predicate(infact,weregardqueriesasbasepredicatesalthough, 
for convenience, we do not require to define them explicitly as 
such). An example is predicate new-in-dept(d,pg,t) in OR.3. 
The meaning is that as soon as a new fact of new-indept is 
known, the output must be produced. Thus, every time that a 
programmer pg is new in a department, the system must give 
the set of projects to which pg is assigned at t. 

2.6 DCM vs. deductive data bases 

As can be observed, there is a strong similarity in form 
betweenaDCMandadeductivedatabase,However,thereare 
some fundamental differences between both, and it may be 
worthwhile to comment them briefly before closing this 
section. 

A deductive data base consists of a set of base facts, a set of 
deduction rules and a set of integrity constraints [4]. The base 
facts are explictly stored in the data base, the deduction rules 
are used to augment the knowledge of the data base, and the 
integrity constraints are used to control its consistency. 

A DCM does not include any fact. It is a model of a future 
information system, independent of any particular fact. On the 
other hand, a DCM does not assume any particular data base 
contents. It is left to the designer to decide which facts will be 
explictly stored and which ones will be deduced, and when 
and how will this deduction take place. Furthermore, a DCM 
includes a list of output requirements that the system must 
satisfy. This list (completed with quantitative data such as 
frequence, volume and response times) is the basis from which 
thedesignermustdevelopanefficientimplementation.Finally, 
a DCM adopts a temporal view of informations, instead of the 
“single state” view of most current deductive data bases. 

3. DESIGNING FROM A DCM 

In this Section we first present the main decisions a designer 
must make when designing an information system from a 
DCM, then review some relevant work in this context, and 
finally outline our contribution. 

-5- 



3.1 Design decisions convenient means for validation purposes, but inefficient for 
the final system. 

The two main design decisions are: Data base design and 
Transactions design. In turn, data base design consists of data 
base contents design and data base schema design. In data 
basecontentsdesign,thedesignermustdecidewhichpredicates 
of the Information Base will be explicitly stored in the data 
base and, for each of them, the time interval for which the 
informations will be stored. There are, of course, many valid 
alternatives in this decision, and they must be evaluated with 
respect to the design objectives (cost, time, etc.). 

In data base schema design, the designer must decide how 
to represent the data base contents in the data model used. 
Several options can also be available. If, for example, we use 
therelationaldatamodel,wecan group twoormorepredicates 
in a single relation scheme. Full time history of a predicate can 
be represented by means of “events” data bases [63 or by 
associating a “time start” and “time end” components to each 
tuple [lo]. When only the current state is stored we can 
eliminate the time component of the facts, making it implicit. 

In transactions design, the designer must decide which 
transactions will exist and, for each of them, when will be 
executed, its pre-conditions and the actions to be performed, 
including data base updates and output production. 

3.2 Previous work 

The CIAM methodology [5] discusses in detail the design 
decisions required once the DCM is defined, but it does not 
provide a formal procedure for making them. CIAM suggests 
two phases: Conceptual information processing system (CIPS) 
designandDBMSadaptation.DuringClPSdcsign,thedesigner 
defines two models: A Conceptual data base model (CDBM), 
and a Conceptual processing model (CPM). The former 
describes the information which will be stored in the data base, 
while the latter decribes the processes for the maintanance of 
the datadescribed in the CDBM. TheCIPS level is independent 
of the DBMS that will be used. Adaptation to the chosen 
DBMS is done in the second phase. 

The DADES methodology [12] also discusses the design 
decisions, and emphasizes the verification aspect, but again no 
precise method is given. It suggests an initial transaction 
structure, which is then refined to improve efficiency. 

The DADES/GP prototype generator system 1151 generates 
prototypes of information systems from DCMs written in the 
DADES language, with a minimum of designer intervention. 
DADES/GP stores in the data base the full history of all base 
and derived predicates. When a new fact is received all derived 
facts implied by it are generated and stored. Outputs are 
derived directly from the data base. The prototypes are thus a 

The same applies to the implementation discussed by 
Weigand [ 171. He uses DCMs written directly in PROLOG, 
which are then interpreted. New base facts are added to the 
facts base. Derived facts are produced only when requested in 
some output, and never stored. Output response times can thus 
be unacceptable for a final system. 

Some work from the deductive data bases field is also 
relevant here. Nicolas and Y azdanian [ 111 discuss the use of 
deduction rules for the generation of derived facts when anew 
fact is inserted in the data base. Their strategy is not directly 
applicable to a DCM, mainly because a “single state” view of 
the data base is taken. If that strategy were to be used in our 
example, this would imply that facts of predicates like active 
and has-worked would be generated for each instant of the life 
span. They cannot recognize that a project remains active until 
terminated and, thus, it is not necessary to generate and store 
the state of a project in all time points. We will see, however, 
that their strategy can be used once the DCM is transformed. 

3.3 Our work 

Our work is based on the idea of internal events. We define 
an internal event as a change in the extension of a predicate, 
and thus it corresponds to an update of the Information Base. 
An internal event rule is a rule that defines when an internal 
event happens. Internal events rules can be derived formally 
from the DCM. The set of internal events rules corresponding 
to a DCM is the internal events model. The internal events 
model allows us to know which internal events are implied by 
a given occurrence of an external event (base fact). We can 
then use the model as a basis for data base and transaction 
design. Both uses are discussed in section 5. 

4. -EVENTS 

4.1 wification of derived ured&&g 

In trying to develop a method for the design and 
implementation of an information system from a DCM, we 
have observed that not all derived predicates should be treated 
in the same way. There are fundamental differences among 
several kinds of derived predicates, and an effective method 
should be able to recognize them. For this reason, we have 
built a classification of derived predicates that captures those 
differences. It consists of two dimensions, that we call the 
PositiveandNegativedimensions.Intheformer,wedistinguish 
among five types, and among two types in the latter. Each 
derived predicate has a type in the Positive dimension (P-type) 
and a type in the Negative one (N-type). 

-6- 



We may infer from the deduction rules to which P- and N- 
type a given predicate belongs to. However, we believe that 
our classification is so natural, and so intrinsically related to 
the intended meaning of a predicate, that we would be in 
favour of requiring the designer to explicitly define these 
types. Once the model is complete, we can then formally 
deduce them. In case of disagreement, either the deduction 
rules are incorrect or the perception the designer has of the 
predicate meaning is wrong. 

Positive dimension 

Let p be a derived predicate, x a vector of variables, c a 
vector of constants, and p(c) any fact that is true at time t-l. 
What can we say about the truth value of p(c) at time t?. Three 
cases are possible: 
a) p(c) will be true at t. We say that p is P-steady. 
b) p(c) will be false at t. We say that p is P-momentary. 
c) p(c) may be true or false at t. 
In this third case, assume now that no extcmal events happen 
at time t. We find then three subcases: 
cl) p(c) will be true at t. We say that p is P-state. 
c2) p(c) will be false at t. We say that p is P-transient. 
c3) p(c) will be true or false, depending on the truth value of 
a predicate $(c,t). We say that p is P-spontaneous. 

In what follows we define each case formally, and give some 
examples. 

P-steady A predicate p is P-steady iffi 
(4-l) v&t rINx,t-1) + pW)l 
That is, if p(x) is true at time t-l, then it is also true at time t, 
independently of the external events that have occurred at f, 
and of any internal condition. In the example of figure 1, 
predicates completed and has-worked are of this type. If a 
project is completed at a given time, then it remains completed 
at any later time. 

P momentarv A predicate p is P-momentary iff: 
(4.2) w [p(x,t-1) --j +Gf)l 
In the example, new-in-dept is of this type. In a programmer 
is new in a department at time t-l, he cannot be new again in 
the same department at t. 

p-state A predicate p is P-state iff: 
(4.3) Vx,t [p(x,t-1) A noextev(t) + p(x,t)l 
where noextev(t) means that no external events have occurred 
at time t. Formally, if p,(y,,t) ,..,, pm&“,t) are the base predicates: 

W [noextw(t) t) +y,p,ty,,t) v . . . . . v $p,O,,t))l 

In the example, predicates active, p-end, dpt and assigned are 
of this type. 

P-transient A predicate p is P-transient iff: 
(4.4) Vxf [p(x,t-1) A noextev(t) + Tp(x,t)] 
In the example, predicate starts-working is of this type. If a 
programmer starts working for a department at time t-l, and is 
not assigned to any project at t, he will not “start working for” 
any department at t. 

P snontaneo~ A predicate p is P-spontaneous iffi 
(4.5) Vx,t [p(x,t-1) A noextev(t) A $(x,t) + p(x,t)] 
and vx,t [p(x,t-1) A noextev(t) A -$(x,t) + -p(x,t)] 
where +(x,t) is distinct from the true predicate. We call $(x,t) 
the persistence condition. The meaning is: If p(x) holds at t-l 
and there are not external events at t, and the persistence 
condition is true, then p(x) holds at t (the fact persists). If the 
persistence condition is false, then p(x) does not hold at t. In 
the example, predicate critical is of this type. 

&g&e dimension 
Let p be a derived predicate and let p(c) be any fact that is 

false at time t-l. Assume that no external events happen at t 
What can we say about the truth value of p(c) at t?. Two cases 
are possible: 
a) p(c) will remain false at t. We say that p is N-state. 
b) p(c) will be true or false at t, depending on the truth value 
of a predicate $‘(c,t). We say that p is N-spontaneous. 

In the Negative dimension we do not consider the types 
equivalenttoP-steady,P-momentaryandP-transient,because 
they do not seem to be of any practical interest. In what 
follows, we define both cases formally, and give some 
examples, 

N-s&& A predicate p is N-state iffi 
(4.6) Vx,t [-p(x,t-1) A noextev(t) + -lp(x,t)] 
In the example, all derived predicates, except critical, are of 
this type. 

mntaneoug A predicate p is N-spontaneous iff: 
(4.7) vX,t [-p(X,t-1) A llMXtW(t) A $(X,t) + p(X,t)] 

and vX,t [l>(X,t-1) A llOeXteV(t) A 7 y(X,t) + Tp(X,t)] 

where $‘(x,t) is distinct from true. We call #(x,t) the creation 
condition. In the example, predicate critical is of this type. 

4.2 Internal even& 

Internal events play a critical role in our approach. As we 
will see in Section 5, we use internal events as triggers for data 
base updates, output production and process execution. There 
are two classes of internal events: insertion and deletion. To 
each base or derived predicate p corresponds an insertion 
intemaleventpredicatetp,withthesamenumberofterms,and 
to each P-state or P-spontaneous predicate q corresponds a 
deletion internal event 6q, with the same number of terms. 

-7- 



Insertion events arc defined as follows. If p is a P-steady, P- 
state or P-spontaneous predicate then: 
(4.8) kt b.p(x,t) 4-P pkt) A -Jp(x,t-111 
That is, eventt.p(c) occurs at t if p(c) is true at t and it was false 
attimet-l.IfpisaP-momentary,P-transientorbasepredicate: 
(4.9) kt h.p(x,t) .f+ PWI 
That is, event up occurs at t if p(c) is true at t. Note that we 
also associate an internal event to each base fact (external 
event). 

Similarly, deletion events are defined as follows. If p is a P- 
state or P-spontaneous predicate: 
(4.10) w R$x,t) H pw1) A -qb,t)l 
Note that we do not define deletion events for P-steady, P- 
momentary, P-transient and base predicates. Deletion events 
for P-steady predicates would never happen, because if p(c) 
holds at t- 1 it also holds at any t’ > t. We are not interested in 
deletion events of P-momentary, P-transient and base 
predicates, because we require an insertion event for every 
fact. 

Rules 4.8,4.9 and 4.10 above are called internal events 
deduction rules. They allow us to deduce at any time which 
internal events occur at that time. Thus, for example, applying 
rule 4.8 to predicate active we have: 

(4.11) VP,t [tactive(p.t) t) active@,t) A Tactive@,t-1)] 

Evaluating this rule at time t (and using DR.l) we get the 
internal events tactive(c) that occur at t. However, it is obvious 
that this evaluation would be greatly inefficient, and that there 
are alternative rules much more efficient. In this case, for 
example, the rule: 
(4.12) Vp,t [tactive(p,t) tj tstart(p,e,d,t)] 
is equivalent to4.11 and quiteeasy to evaluate. Rule4.12 says 
that an occurrence of event tstart at time t produces an 
occurrence of tactive at t. The rule can be obtained from 4.11 
and DR.1 by taking into account that active is P-state and N- 
state, and the deduction rules and integrity constraints of the 
DCM. This is explained in the next sections. 

4.3 Transformation of deduction rules 

We first transform the deduction rules of the DCM into a set 
of equivalent ones. Let p(x,t) t B(x,y,t) be a deduction rule, 
where B(x,y,t) is a conjunction of one or more literals. The 
idea is to replace each literal in B, corresponding to a base or 
derived predicate, and whose time variable may range in the 
rule over a set including t, by an equivalent expression 
containing internal event predicates, whose time variables 
range only over (t), and base or derived predicates, whose 
time variables range over a set not including t. 

Let Ll,...,Ln be the literals in B corresponding to base or 
derived predicates and whose time variable may range in the 
rule over a set including t The transformation we apply toeach 
Li (i = l,...& is: 

)f Q is P-momentarv. P-transient or B 
q(z.0 = wkt) 

qw = qht-1) v Lq(z*O 
7q(z,t) = -q(z,t-1) A 7 Lq(z,t) 

IfalsPsmorPm taneous - - n 
q(Z,t) = (qkt-1) A +(Z,t)) v L&t) 

+l(Z,t) = (+&t-l) A +&,t)) V f&t)) 

Jf Li = ahtl) or Li = 7af&Q 
with tl distinct from t and ranging over a set including t: 

If a is P-momen~ient or base medicate 
q(Z,tl) = [tl < t A q(Z,tl)] V [tl = t A Lq(Z,t)] 

-lq(z,tl) = [tl < t A lq(Z,tl)] V [tl = t A TLq(Z,t)] 

Jf a is ~-~bal~ 

q(Z,tl) = [tl < t A q(Z,tl) ] V [tl = t A Lq(Z,t)] 

-q(z,tl) 1 [t1 c t A -q(z,tl)] v 
[tl = t A ,q(Z,t-1) A TLq(Z,t)] 

If a is P-state or P-snort- 
q(Z,tl) = [tl < t A q(Z,tl)] V 

[tl = t A q(Z,t-l)A +(Z,t)] V 

[tl = t A Lq(Z,t)] 

Tq(Z,tl) = [tl Ct A -q(Z,tl)] V 

[tl b t A ,q(Z,t-1) A -Lq(Z,t)] V 

[tl = t A h(Z,t)] 

As an example, consider the application of the above rules 
to DR. 1 (where the time variable of start ranges over the set 
($,...,t) and the time variable of completed ranges over (t)): 

active&t) t ([start(p,e,d,tl) A tl < t] V 

tstart(p,e,d,t) A tl = t]) A tl 5 t 
A 7completed(p,t-1) A 7tcompleted@,t) 

which is equivalent to: 
active(p,t) t start(p,e,d,tl) A tl < t A 7completed(p,t-1) h 

+completed(p,t) 
active&t) t t.start(p,e,d,t) A 

7completed@,t- 1) h +completed@,t) 

Similarly, the application to DR.4 gives: 

completed(p,t) t end(p,tl) A tl c t 

completed&t) t tend(p,t) 

-8- 



4.4 Normalized internal events deduction rules 

Once we have transformed the deduction rules, we easily 
derive the normalized internal events deduction rules, which 
form the internal events model. These rules, we believe, are a 
useful basis from which the designer can develop an efficient 
implementation. The normalized internal events deduction 
rules are the same as rules 4.8,4.9 and 4.10 (in Section 4.2), 
but replacing literal .p(x,t) by the transformed body of the 
corresponding deduction rule. Thus, if for a predicate p we 
have n transformed deduction rules of the form: 

p(x,t) t) $(x,yi,t) i = l,..., n 
and we use rule 4.8, replacing p(x,t) yields: 
LP(X.0 @ bl$(X*Y,,O v *** v ~&Yn,Ol A 1p(x,t-I) 
which is equivalent to the rules: 
LP(x,t) t ~i(xYi,t) A lP(x,t-l) i = l,...,n 

As an example, using rules 4.8 and 4.10 for predicate active, 
we have: 
(4.13) tactive(p,t) t start(p,e,d,tl) A tl c t A 

+ZOmplekd@,t- 1) A 

~Lcompleted(p,t) A yactive(p,t-1) 

(4.14) tactive(p,t) t Lstart(p,e,d,t) A +ompleted@,t-1) A 

~LCOmpleted@,t)A Tactive@,t-l) 

(4.15) Gactive(p,t) t active(p,t-1) A 

-[start(p,e,d,tl) A tl < t A 

~COmpleti(p,t-1) A~LCOn@%d(p,t)] A 

7 [ Istart(p,e,d,t) A ~COtTIphed(p,t- 1) A 

~Lcompleted@,t)] 

Similarly, using rule 4.8 for predicate completed, we get: 

(4.16) LcompIeted(p,t) t end(p,tl) A tl c t A 

~completed@,t-1) 
(4.17) Lcompleted(p,t) t Lend(p,t) A Tcompleted@,t-l) 

4.5 Simnlification of rules 

These normalized rules can now be subjected to a set of 
simplifications, by combining them with the properties of the 
predicate types, (4.1) to (4.7), the deduction rules and the 
integrity constraints of the DCM. 

We can only show here the potential of these simplifications, 
bymeansofanexample.Letustakerules4.16and4.17.Being 
completed a N-state predicate, we have, by 4.6: 

noextev(t) + ~lcompleted(p,t) 
and, if Lend is false no Lcompleted events can happen, which 
means that no p, tl, t can satisfy the body of rule 4.16. 
Therefore, we eliminate rule4.16. On the other hand, we have 

by IC.3: 
(4.18) Lend@,t) + active@,t-1) 
and by DR.1: active@,t-1) + Tcompleted@,t-l) 
and, thus, we can remove literal +ompleted(p,t-1) from rule 
4.17. So, rules 4.16 and 4.17 are equivalent to: 
(4.17’) Lcompleted(p,t) t Lend(p,t) 

We give in figure 2 the resulting set of rules after 
simplification. 

IDR.l Lactive@,t) t Lstart@,e,d,t) 
IDR.2 Gactive(p,t) t Lcompleted@,t) 
IDR.3 Lp-end(p,e,t) t Lstart(p,e,d,t) 
IDRA Gp-end(p,e,t) t p-end(p,e,t-1) A &tive(p,t) 
IDR.5 Ldpt(p,d,t) c Lstart(p,e,d,t) 
IDR.6 &lpt(p,d,t) + dpt@,d,t-1) A &rctive(p,t) 
IDR.7 Lcompleted@,t) c Lend@,t) 
IDRS Lassigned(p,pg,t) t tassign(p,pg,t) A ~6active(p,t) 
IDR.9 Sassigned(p,pg,t) c assigned@,pg,t-1) A &ctive(p,t) 
IDR.10 Lhas-worked(d,pg,t) c Lstarts-working(d,pg,t) A 

Thas-worked(d,pg,t-1) 
IDR.11 Lstarts-working(d,pg,t) t Lassign(p,pg,t) A 

dpt(p,d,t-1) A 7 WNp,d,t) 
IDR.12 Lnew-in-dept(d,pg,t) t Lstarts-working(d,pg,t) A 

Thas-worked(d,pg,t-1) 
IDR.13 Lcritical(p,t) t p-end&et-1) A Gp-end(p,e,t) A 

t-l = e8 
IDR.14 Lcritical@,t) t Lp-end@,e,t) A t > e-8 
IDR.15 8critical(p,t) t critical(p,t-1) A Gp-end@,e,t) 
IDR.16 &ritical(p,t) t critical@,t-1) A p-end(p,e,t-1) A 

t =e+l 

Figure 2. Internal events model example 

5. USE OF THE INTERNAL EVENTS MODEI, 

In this Section we outline a possible use of the internal 
events model for the design and implementation of information 
systems, and show its application to the example. 

An alternative of data base contents DB(t) is characterized 
by: 
- A set of base or derived predicates of the DCM to be 
explicitly stored in the data base, and 
- For each of them, a time interval for which its facts will be 
stored. 

Wewillconsiderhereonlytwoextremeeasesoftimeintervti 
either current state or full history. If p(x,t) is a stored predicate, 
in the first case we store in the data base the set ( CX,D I p(x,t)) , 
and in the second case the set (or,tl> I p(x,tl) A tl I t). We 

-9- 



5.2 Transaction desire 
usually do not store current states of P-momentary, P-transient 
and base predicates, since this would imply to store their facts 
when produced (at time t), and to delete them immediately 
(also at time t). 

A valid alternative of data base contents DB(t) is one that 
satisfies [ 121: 

1) Internal events that happen at t can be derived from 
DB(t- 1) and base facts received at t. DB($,- 1) is assumed to 
be empty. 
2) Contents of the outputs to be produced at t can also be 
derived from DB(t-1) and base facts received at t. 
Note that the alternative of storing the full history of only base 
predicates is always a valid one. 

In our example, base facts are ~start, tend and Lassign. A 
valid alternative would then be: 

DB(t) = (cp,d,tl> I dpt(p,d,tl) A tl 5 t), 
bw,~ 1 p-e~(w,t) 1, 
(<p,pg,t> 1 Wiw4p,pg~t)). 
(<d,pg,t> I has-worked(d,pg,t)) 

The database schema corresponding to a given DB(t) can 
also be designed systematically, although we do not have 
developed the method yet. If we decide to represent each 
stored predicate as an independent relation then the following 
rules could he used: 

1) For a current state predicate p(x,t) define a relation scheme 
P(X). 

2) For a full history predicate p(x,t): 

If p is P-momentary, P-transient or base, define a relation 
scheme p(x,t). 

If p is a P-steady predicate, dclinc a relation scheme p(x,t,), 
where attribute t, will represent the first time p(x) is true. 

If p is a P-state or P-spontaneous predicate, define a relation 
scheme p(x,t&), where attributes 1, $ represent an 
interval in which p(x) holds. 

In our example, a possible data base schema could be: 

DEPARTMENT(PROJECT,DPT,T-START,T-END) 
P-END(PROJECT,END) 
ASSIGNED(PROJECr~ROGRAMMER) 
HAS-WORKED(DEPT,PROGRAMMER) 

Once the data base has been designed we can proceed to 
transaction design. Again, many alternatives exist, and several 
structuring mechanisms could be used. We only want to 
outline here a simple appmach, that can work well in some 
applications, as an illustration of the use of the internal events 
model. 

We fiit define relevant internal events as follows: 

1) Insertion and deletion events comzsponding to stored 
predicates are relevant internal events. 
2) Insertion events corresponding to output requirements 
conditions are relevant internal events. 
In the example, relevant internal events are: rdpt, Gapt, Lp-end, 
Gp-end, tassigned, &ssigned, thas-worked and mew-in-dept. 

We then build a transaction type for each base fact type. The 
purpose of each transaction will be: 

1) Read the corresponding base fact. 
2) Verify the applicable integrity constraints. 
3) Derive the relevant internal events produced by the base 
fact. This can be easily determined bottom-up from the internal 
events model. The generation strategy described in [ 111 can be 
used for this purpose. 
4) For each internal event thus produced, if it corresponds to 
a stored predicate perfom the appropiate database operation; 
and if it corresponds to an output condition produce the 
defined output contents. 

If some relevant internal event corresponds to a P- or N- 
spontaneous predicate, then we would also need a special 
transaction, to be executed at each time point of Fe life span. 

Finally, we also build a transaction type for each query type. 
The purpose of these transactions will be: 

1) Read the query parameters, if any, and 
2) Produce the defined output contents. 

As an example, consider transaction end(p,t). The actions to 
be performed are: 

1) Read project identifier p (time t is implicit). 
2) Verify integrity constraints (not considered here). 
3) Delete tuple with PROJECT = p from P-END relation. 

(This is deduced from IDR.7,2 and 4). 
4) Read DEPARTMENT with PROJECT = p from the data 

base, and mark it as inactive: T-END = t (This is deduced 
from IDR.6). 

5) Remove all tuples with PROJECT = p from ASSIGNED 
relation. (This is deduced from IDR.9). 

- 10 - 



6. CONCLUSIONS 

We have first characterized deductive conceptual models 
(DCMs) in a first order logic framework. Then we have 
discussed the main design decisions involved in the design and 
implementation of an information system from a DCM. A new 
approach has been presented, which consists in deriving an 
internal events model from a DCM. This model is a useful 
basis from which several design alternatives can be 
systematically developed and evaluated. We have outlined a 
possible use of the internal events model in data base and 
transaction design, but other uses can be imagined as well. We 
alsoexpect that the internal events model, and the classification 
of predicates we have proposed, can be useful in the field of 
deductive data bases, although this has not been elaborated in 
the paper. 

Several research directions can be explored from the work 
reported here. First, the problem of integrity constraints 
enforcement should be taken into account. This has not been 
considered in the paper, but it is felt that work from deductive 
data bases can be easily integrated here [2]. Second, specific 
procedures for the simplification of normalized internal events 
deduction rules should be developed, perhaps integrated in an 
interactive man-machine system. Finally, one or more 
approaches todesign and implementation from internal events 
models should be completely developed, and integrated in 
existing or new methodologies. 

ACKNOWLEDGMENTS 

I would like to thank D. Costal, J.A. Pastor, M.R. Sancho and 
J. Sistac for many useful comments on earlier drafts of this 
paper. 

7. REFERENCES 
[l] Brodie,M.;Mylopoulos,J.;Schmidt,J. “On conceptual 
modelling: Perspectives from Artificial Intelligence, 
DatabasesandProgrammingLanguages”,Springer-Verlag, 
1983. 

[2] Bry,F.; Decker,H.; Manthey,R. “A uniform approach to 
constraint satisfaction and constraint satisfiability in 
deductive databases”. Proc. 1st. Int. Conf. Extending Data 
Base Technology (EDB’I’), March 1988. 

[3] BubenkoJ.;Olive,A.“Dynamicortemporalmodelling?. 
An illustrativecomparison”. SYSLAB Working Paper No. 
117, University of Stockholm, 1986. 

[4] Ga1laire.H.; MinkerJ.; NicolasJ-M. “Logic and 
databases: A deductive approach”. Computing Surveys, 
Vol. 16, No. 2, June 1984, pp. 153-185. 

[5] Gustafsson,M.; Karlsson,T.; Bubenko, J. “A declarative 
approach to conceptual information modelling”, In [14], 
pp. 93-142. 

[6] KobayashiJ. “Temporalaspectsofdatabases: Interaction 
between state and event relations”. IFIP WG 2.6 Working 
Conference DS-1, Belgium, Jan. 1985. 

[7] KowalskiR. A. “Logic for problem solving”, Nortb- 
Holland, 1979. 

[8] Kowa1skiR.A.; Sergot,M.J. “A logic based Calculus of 
Events”, New Generation Computing, 4, No. 1.1986, pp. 
67-95. 

[9] Kowalski,R.;Sadri,F.;Soper,P. “Integrity checking in 
deductive databases”. Proc. 13th. VLDB, Sept. 1987, pp. 
61-69. 

[lo] Navathe,S.B.; Ahmed,R. “TSQL- Alanguageinterface 
for history databases”, in Proc. WG 8.1 Conf. on Temporal 
aspects in information systems, Sophia-Antipolis, France, 
May 1987, pp. 113-128. 

[ 1 l] Nicolas, J-M.; Yazdanian, K. “An outline of BDGEN: 
A deductive DBMS”, IFIP 1983, North-Holland, pp. 71 l- 
717. 

[12] Olive,A. “DADES: A methodology for specification 
and design of information systems”, In [14], pp. 285-334. 

[13]Oliv~,A.“Acomparisonoftheoperationalanddeductive 
approaches to conceptual information systems modelling”, 
Proc. IFIP-86, Dublin, pp. 91-96. 

[14] Olle,T.W.; So1,H.G.; Verrijn-Stuart,A.A. (Eds.) 
“Information systemsdesignmethodologies: Acomparative 
review”, North-Holland, 1982. 

[ 153 SistacJ.; OlivC,A. “DADES/GP: A prototype generator 
from deductive conceptual models of data base systems”, 
Convention Informatique 1986, Paris. 

[16] van Griethuysen, J.J. (Ed.).“Conceptsand terminology 
for the conceptual schema and the information base”, ISOl 
TC97/sC5JWG3, March 1982. 

[ 171 Weigand,H. “Conceptual models in PROLOG”, IFIP 
WG 2.6 Working Conference DS-1, Belgium, Jan. 1985. 

- ll- 



- 12- 


