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Abstract 

An enumeration of individual objects is not always the 
best means of infonnation exchange. This papiz concerns 
the problem of providing aggregate responses to database 
queries. An aggregate response is an expression whose 
terms an3 quantified concepts. The tradeoff between the 
conciseness and preciseness of an aggregate response is 
studied. Conciseness is measured by the length (the 
number of terms) of an expression, and preciseness is 
measured by the entropy or the amount of uncertainty as- 
sociated with the expression. For a given length, an ex- 
pression with the minimum amount of entropy is called 
optimal. Under a one-level taxonomy with the same cardi- 
naliries for all leaf concepts, the problem of tinding an op 
timal expression can be solved inexpensively. An efficient 
heuristic is also proposed for the general one-level taxono- 
my. For a taxonomy of more than one level, an efficient 
heuristic is suggested which experiments indicate yields 
good solutions. 

1. Introduction 

Conventional responses in database systems, usually 
given as lists of atomic objects, although sticient to serve 
the purpose of conveying information, do not necessarily 
provide efficient and effective communications between a 
user and the system. This argument is particularly true 
wheat the numbet of entities or objects which satis@ the 
query is very large. Consider the personnel database of a 
largecorporation~~wery 

“Who earns more than 3O,&.X.I?” 
If theE is a large number of employees whose salaries are 
more than 30,000, and if it turns out that all engineers and 
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all managers are in the response, then it seems reasonable 
for the system to let the user know of the situation. Re 
cently, new notions of answers to queries have been re- 
ceiving more research inten%. For example, in [l], an 
answer to a query is expressed in &ms of both atomic 
facts and general rules; in [2,3,4], intentional descriptions 
orconceptsarebeingusedaspartofananswer. 

ln [4], exln-essions for answers are given in terms of 
concepts and individuals. Exceptions within individual 
concepts are allowed. Thus responses like 

“all engineers except John Smith” or 
“all engineers except electrical engineers” 

can be expressed when? engineers and electrical engineers 
are concepts and John Smith is an individual. One of the 
motivations behind such forms of answers is their concise- 
ness. Instead of a list of names of, say 99 out of 100 en- 
gineess,’ we can give a short and easily comphensible 
answer. However, we see an immediate drawback if, say 
40 out of 100 engineers, satisfy the query. No longer are 
we able to express our answer concisely. A possible “solu- 
tion” to this problem is to sacrifice preciseness for concise- 
ness. Infac&thisisnotan -le iradeoff. Imagine 
how often one hears a request like 

“Tell me in a few words . . . ” 
Apparently, the questioner is aware of the fact that a pre- 
ciseanswermaybealongoneanditmaynotbeeasyto 
comprehend, and, therefore, is willing to make the tra- 
deoff. We want to make it clear that by sacrificing precise- 
ness, we do not want to do away with soundness. An 
answer is sound [5l if every listed entity satisfi~ the query 
conditions. Thus, we cannot just say “en- when ob- 
viously some of the engineers do not belong to the answm. 
Ontheotherhand,wealso&notwanttolistarly,say 10 
engineers, when we know that 40 of them satisfy the 
query. llrat is, we still want our answer to be conrglcte PI 
in the sense described above. Let us consider the follow- 
ing foml of responsez 

“40 100 engineers”. 

The impreciseness of such an answer derives from the fact 
that we cannot pinpoint the qualified individuals even 
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though we know who the engineers are. But still it is 
“sound” and “complete” in a certain sense. In this paper. 
we are interested in answers of this type and will refer to 
them as aggregate responses. 

Aggregate responses are, in fact, very common in 
statistical databases (databam that are mainly used for 
statistical analysis). summary tables, tabular lepmsenta- 
tions of aggregate data, are so important in statistical data- 
bases that almost all systems provide some form of limited 
summary table output formatting capabilities [6l. Our ag 
gqwe responses. in ===c correspondtoaspecialtype 
of summary table with percentages as the aggregate out- 
put- 

Here we will study quantitatively the impreciseness 
of aggregate responses- We will follow an infamation- 
theoretic apptoach. In Section 2, we introduce the fotm of 
expressions which will be used as answecs to queries 
throughout the paper. An entropy measure for the infor- 
mation content of an expression will be defhted in Section 
3. Then we consider the criteria for measuring the good- 
ness of such expressions and attempt to fmd efficient algo- 
rithms for generating “good” expressions. Section 5 sug- 
gests other applications for the entropy measure. We sum- 
makeourworkinSection6. 

2. Definitions and Notation 

We consider a fhtite domain D of individuals, and 
concepts relative to D. A concept is a unary pmdkate Ce) 
defined over D, where C, with possible subscripts, is the 
label of the concept. For convenience, we will also denote 
the extension of the pmdicam (x I C(x)) by C. ‘The con- 
text should suffice to disambiite. A concept Ct is said 
tobesubsumedbyanotherconceptC2ifandonlyif 
Cl s C2. We shall use both set terminology (union, inter- 
section, complementation, set inclusion, difTerence) and 
logic terminology (disjunction, conjunction, negation, sub- 
sumption) when referring to concepts. Fmthe?, we denote 
thecardh&yofaconceptCas ICI. Theextensional 
answer A to a query is simply a subset of D whose ele- 
ments satisfy the query conditions. The problem is to 
&scribe query responses concisely in terms of some pre- 
&flnedwncepts. 

We are not dealing with an arbitrary collection of 
concepts; instead, we are interested in a taxonomy of con- 
ceps* 

Definition 2.1 A mommy is a finite tree whose nodes 
are labeled by concepts. Any node other than the leaf 

node has two or more succek9sors. The successor con- 
cept of each node is subsumed by its parent concept. 
The union of all successor concepts of any non-leaf 
node is equal to the parent concept. A taxonomy is 
called strict if all sibling concepts are mutually ex- 
clusive. 

Since we will be working mostly with strict taxonomies, 
the word taxonomy will simply be used to refer to a strict 
taxonomy unless otherwise stated. An extensional answer 
A to a query is related to a taxonomy by the following 
deft&ion. 

Ddnltion 2.2 A set of individuals A is class$ab~e by a 
taxonomy T ilT the root concept of T contains A. We 
also refer to the individuals of A as qua&d individu- 
UlS. 

Next we look at how to describe an extensional answer A 
intennsofconceptsfromataxonomyTgivendratAis 
classifiablebyT. Tothisend,weneedthenotionofan 
expression. 

‘Definition 2.3 ‘Ihe alphabet of an expn-z&on de&d 
over a taxonomy T is composed of the following: 
1. Concepts: Cl $2, l * - , 

EachconceptisalabelofanodeinT. 
2. Rational Numbers: t 1 ,r2, * l * , 

EachrationalntunbermustbebetweenOand1. 
3. Concatenation Operatorx +. 

Next we innoduoe the notion of a term, followed by the 
syntax of an expression. 

Definition2.4 LetrberationalnumberandCbeacon- 
cept. A term is a couple cr,c> and is simply denoted as 
rCwithnoconfusion. Wesometimesrefertoatermas 
a quant$ed concept. 

Dellnltlon 2.5 An expression ova the taxonomy T is 
Mined inductively as follows: 
1. A term is an expression. 
2. Ifel ande~areexpressions,soisel+e~. 

Expressions are introduced so that extensional answers can 
be described in terms of high level concepts, though 
perhaps imprecisely. 

Ddldtlon 2.6 Let A be an extensional answer to a 
query classifiable by a taxonomy T. Then e is an ex- 
pression for A ovec T if: 

i. For all terms, r&i of e, 
I CinA I 

I c I = ri. 
i 

ii. AE;U(Ci) whererici’saretermsofc. 
iii. If riCi and r’iC’i ate terms Of C* Ci * C’i. 
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Condition (i) merely gives the meaning of a term in an ex- 
pression. The ti component ri Of a term riC* is the frac- 
tion of qualified individuals within the concept Ci. Since 
we also intend for a term to supply to a user information 
about the Cardinahty of its associated concept, ri is not re- 
duced to lowest common denominator. Condition (ii) en- 
sures that every individual in A is cowred by some terms 
in e. It is in this sense that we consider our expression 
“complete”. Condition (iii) precludes redundant terms 
from an expression. 

Exam@ I: Consider a taxonomy T of three con- 
cepts with CO = (dl,d~,d3,d4,4) the mot concept, and 
let Ci = (di,ds,d3) and C2= (d&) be its chikhen. 
Further, let A= (dl,d4,d5) be the extensional answer. 
Thenitiseasytoseethatthefollowingareexpressiansfor 
AoverT: 

,. “5 
‘J Co” 

If a user has full knowledge of T and its associated con- 
cepts. the first two expressions then essentially fumish ex- 
actly the same amount of information with respect to the 
extensional answer A. The third expression, on the other 
hand, tells somewhat less than the previous two. In the 
next section, we will account for the amount of informa- 
tion associated with such expressions quantitatively. 

3. Entropy Preliminaries 

When we say f$y@eers are in the answer set A 
of a query, there is a certain amount of uncertuinfy associ- 
ated with the expression. Here we would like to quantify 
this uncertainty. Informally, in the language of probability 
theory, the expression can be view as describing a jnite 
probability space l composed of two mutually exclusive 
events El and E2 and their associated probabilities. Et is 
the event that a randomly selected engineer belongs to A 
and its probability p l is -$-; whereas, E2 is the event that 
the engineer does not belong to A and its probability p2 is 
$. It is well-known [7l that Shannon entropy 

1. A finite probability space is a set of mutually disjoint events 
(A;) with probabilities 

PIAi)(lri5n.p(A*)Z10:~VL,)=l) 
i=l 

Hh92)=-(P1 w!m +PzMP2) 

is a very suitable measure of the uncertainty involved, the 
logarithms are taken to an arbitrary but tixed base, and we 
always take p log p = 0 if p = 0. In general, however, we 
can have n mutually disjoint events. 

DeMtion 3.1 Let S be a tinite probability space com- 
posed of mutually disjoint events El,E2, - - - ,E,, with 
probabilities p192r * * * ,pn. Then the Shannon entropy 
OfthespaceSisgivenby 

HtS)=H(pl,P2, ***.plJ=- i p& log& 
k=l 

First, we review a number of properties this function has 
and which we might expect of a masonable measure of un- 
certaintyofaspace. 

First of all, we see immediately that 
HtPl .P2, ’ l l .p,,)=O if and only if one of the 
PI 92. ~*~,p,isoneandalltheothersarexero. Butthisis 
just the case where there is no wrcertainty as to its out- 
come. In all other cases the entropy is positive. Further- 
m~,forfixednitisobviousthatthespacewiththemost 
mceminty is the one with equally lihely outcomes, that is, 

Pk =+g=l~, -*- ,n), and indeed the entropy assumes 

its largest value [8] 

H(P~.P~. . ..p”)ilogn=H(~.~....,~) 

Next, consib along with space S (events 
Si, 1 <i Sn), another tinite space R with events 
Rk,l<R<m. IfitisknownthateventR~occurred,then 
the events Si of the space S have the new probabilities 

P Wd 
PR,(Si) = - 

P @c) 

instead Of the previouS~(Si)~ 
0usenmopyofthespaceS 

I 

(i = 12, * * * ,n) 

Correspondingly, the previ- 

H(S) =-I: PC&3 lWP(Si) 
i=l 

is replaced by the new quantity 

HR, 69 = -i PR, 6) log PRI W* 
id 

which, natumlly, we shall regard as the conditional entro- 
py of the space S under the assumption that the event & 
occurred in the space R. A specific value of HsJS) is as- 
sociated with each of the events Rk of space R, so that 
&(S) can be regarded as a random variable defined over 
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the space R. The expected value of this random variable is 
the subject of the following detition. 

Jh&ition3.2 LetSandRbetwo8niteprobability 
spares with events (Si) (i = 1.2, * l * ,n) and (Rk) 
(k = 12, - - - ,m), respectively. Then the cc&i&au/ en- 
noWofthespaceSavaasedoverthespaceRis 

k-1 

This quantity indicates the average amount of uncertainty 
withrespecttospaceS,ifitishrownwhichoftbeevcPrts 
ofthespaceRactuallyoccurred. 

Conditional entropy is an important concept in our 
study. To see this, let us look back at Example 1. First, 
consider the third expression, + C,,,foranswerAoverthe . 
taxonomy T. This expression can be translated into a 
iinite probability space S of two mutually exclusive events 
S1 andSs. Sr istheeventthatanindividualinCsbelongs 
to A and its probability of outcome is 5; whereas, Ss is 
the event that an individual in Co does not belong to A and 
its probability of outcome is 5. Thus we define the uncer- 
tainty of this singletermed expression as ‘the entropy of 
spaces 

Next, we tum to the expression $+fC2. Inwords. 
this expression can be inmrpmted as: 
i. IfanindividudlisinC,,thentheprobabilitythatit 

belongs to A is +. 
ii. If an individual is in Cz, then the probability that it 

belongs to A is 3. 
Now we can introduced another finite probabitity space R 
of two events R 1 and R 2. R 1 is the even; that an individu- 
al belongs to Cl and its probability is 7’; whereas, R2 is 

the event that it belongs to C2 and its probability is +. 
Suppose one has full knowledge of the taxonomy T, its 
coopts and the individuals associated with each concepL 
llien the uncertainty of this two-termed expression for the 
answer A should ccwrespond to the conditional entropy of 
thespaceSaveragedoverthespaceR 

It should not be surprising that the amount of uncertainty 
inthislatterexpressionissmallexthanthepmiousone. 
In fact, the expression SC0 can be deaived from 

5C1+~C2,tOgCthCTWiththeN1~wlodgeofeach 
concept. It should be note that, however, in general [8] 

Whatthisamountstoisthat,ontheavaage,theamountof 
tmmtain@inthespaceScaneithcedeaeascaremain 
thesame,ifitisknownwhicheventoccurmdinsomeoth- 
erspaceR. Tberncataintyofasituationuumotbein- 
cswsed as a result of obmining additional information. 

Notiee that the concepts Ct and Cs in the expression 
abovearedisjointandthustheconditionat~Rcanbe 
consuuctedinastraightforwardmanner. hgsnael,th@ 
concep&asso&mdwithanexpressionforAoverTare 
notneces&lydisjoint. Forinsmnce,itisquitenatumlfor 
anexpressiontohavetheform 

“40 3 engineers + s electrical engineers”, 

where say, the total number of engineers and 
electrical engineers are 100 and 40 respectively. Obvi- 
ously, electrical engineers are engineers, and thus, the two 
concepts are not disjoint. But this expression can, 
equivalently, be rephrase as 

ns electid engineers + $ otkr enginccts”, 

where otkr engineers ate alI engineers except elccticd. 
Nowthesetwoconce#saremutuaUydisjoint. Wecan 
form the probability space R of two events and evaluate 
the tmceminty of this expression as the conditional entro- 
py averaged over the space R. More fmy, and more 
generally, we have the following definition: 

Definition 3.3 Let e=rlCl+ a-- +r,C,,, be an ex- 
pression for an answer A over a taxonomy T and let R 
be the root concept of T. Define 

Ii= (i 1 CiCC~alIdthereisnorkCkinC 
stKhthatCicCkcC/) 

rjlCjl - ZrilCil 

pi = 
id, 

l?jl 

forj= 1,2, -*a ,m. Theenfropyforeis 

It is not di5CUlt to see that the C;'S are disjoint sets Of ill- 
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dividuals and their CaTesponding $s specify the fractions 
of qualified individuals within the CI’s. With the entropy 
of expressions de&M, we can now compare two expres- 
sions. 

Definition 3.4 Two expressions c 1 ,e2 for an answer A 
overataxonomyTareequivu&~i@H(e1)=H(e2). 

Notice that two equivalent expressions may involve 
different concepts. The first two expressions in Example 1 
illustrate such a case. 

4. Expression Conciseness 

We have detined alternative ways for presenting an 
answer to a user, not as an exhaustive list of individuals, 
but rather as an expression of quanti6ed concepts. Such . 
expressions, in general, can no longer be regarded as pre- 
cise answers; however, it is often possible to express them 
in a concise manner. Since concisenessisoneofourmain 
ccmcems here, the number of terms appearing in an ex- 
pression is clearly an important criterion against which to 
measure how good such an answer is. The simplest ex- 
pression (one with the least number of terms) for an 
answer A over a taxonomy T is, of course, a singletermed 
expression with the root as its only quantitied concept. 
However, the amount the unceaGnty in~oduced in such a 
singletermed expression is usually very high. Clearly, 
there is a tradeoff between the length (i.e. number of 
terms) of an expression and its associated uncertainty. 
With our entropy measure of expression uncertainty, we 
can formulate the following problem. 

OPTIMAL EKI’RESSION 
INSTANCE: An extensional answer A to a query 
classi6able by a taxonomy T and a positive integer K. 
PROBLBMz Find an expression e for A ovet T such 
thatthelengthofeism,morethanKandf~anyother 
expression e’ for A over T whose length is no more than 
K, H(e) 5 H(e’). 

4.1 The Greedy Approach 

A naive apptoach to the OPTIMAL EXPRESSION 
problem is to form all expressions (for the extensional 
answer A over the taxonomy T) of length K and identify 
the one with the minimum entropy. However, such an ap- 
proach quickly becomes impractical as the taxonomy T 
and the allowable length K grow. In fact, it is not hard to 
see that the number of expressions to check in this simple 

dgOIithm increases in 0 (A+); where N is number of con- 
cepts in the taxonomy T. 

Itmayappearthatifwedonotinsistonobtainingthe 
OPTlMAL EXPRESSION, a “greedy” algaithm will 
p&ably lead to “good”, although perhaps not optimal 
solutions. Unfortunately, we arc able to show that even 
fcr a simple onelevel taxonomy, the seemingly plausible 
“gnxdy” algaithm can result in unboundal dative error. 
‘Ihis can be shown by cons&u&g insuuuxs in which it 
behaves arbitrarily badly. Pii 1 shows the algorithm. 
Letusconside.rthisalgorithmappliedtothetaxonomyT 
inFigure2. 

Input: A l-level taxonomy with root R and 
leaves (Cl, * * * ,C,) 

An extensional answer A classifiable by T 
Allowable length of expression k (k < N) 

Output: Expmssion E for A over T with length t 
begin 

E := IA nR’ R. 
IRI * 

whilethelengthofEislessthankdo 
beein 

addaterm 
IA nCIl 

,c, Ci tOEtOf=E’ 

suchbatH~E)-H(E~ismaximum; 
(comment: break ties arbitrarily) 
E>E’ 

end 
end 

Fig 1. Greedy Heuristic for OPTIMAL EXPRESSION 

The number accompanying each concept in the figure 
represents the fraction of the individuals within the con- 
cept which are in the extensional answer. suppose the 
number of allowable terms for the expression is three. 
lhenitcaneasilybeveri8edthattheoptimalexpre&onis 

E OP =~co+-&c,++-c5 

First, we give an intuitive explanation for the expression 
Eop. It should be obvious that any express&~ with less 
than five tams here must include the root as a quantified 
concept; otherwise, it cannot “completely” describe the ex- 
tensional answer A. Next, consib the infcrmation re- 
garding those concepts which ate not explicitly represent- 
ed in the expression, but which can be derived ti the 
response; the only such information is the fraction of 
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qualified individuals in the union of excluded concepts. 
For example, Cl, Cz and Cs are such concepts in the 
above expression and the only information available is that 
an individual belonging to any one of those concepts has a 
% chance of belonging to A as well. Since the uncertain- 
ty associated with this quantity is relatively small, so is the 
entropy (H (E,,,J = 0.334). 

20 9 8 10 1 #) iii 0 iii 
10 

Fig 2. An Example One-Level Taxonomy 

In the greedy algorithm, each iteration adds a tetm to 
the expression which results in the maximum decmase in 
entropy. Since all of the individuals in Ci belong to A, 
and C, also has a relatively large card&@, intuitively, 
theterm $-Cl has the most information and, indeed, ad- 
dingittotheexpressionresultsin~maximumdecmase 
in uncertainty. Similarly, the term +Zs is included in the 
next step. Now the resulting expression has the form 

and its entropy H(E+) = 0.485. Not only is E,Q not op- 
timal,butbyscalinguptbecardMitiesofthewncepts 
and adjusting the number of qualified individuals within 
each concept appropiately, the relative error on the entro- 
pycanbemadearbitrarilylarge. Fii3showssucha 
consttuction. By similar intuitive arguments, it is not 
difEculttoseethattbeoptimalexpressionandtheexpres- 
sion resulting from the greedy algorithm will have the fol- 
lowing forms 

By Defmition 3.3, we obtain their entropies as 

Fii 3. Unbounded Relative Error for Greedy Algorithm 

Obviously, as m increases, H (Eopr) -+ 0; whereas, 
H (Ed& + 0.459. Thus, the relative emr can grow un- 
bounded. 

4.2 A Restricted Problem 

If we consider a onelevel taxonomy in which the 
cardmalities of the all leaf concepts am the same, the OP- 
TIMAL EXPRESSION problem becomes much simpler to 
solve. Although the problem may now look too restricted 
to have practical value, there is an important proper@ as- 
sociated with the solution which, we will show, leads to a 
usefid heuristic for approaching the general problem. In 
this subsection, we establish this important lxopcz~ and 
see how a simple algorithm for the restricted OPTIMAL 
RXPRESSION problem falls out natumlly as a result 

Letusbeginwithasimplecase. Consideraone- 
level taxonomy T with root concept R. and leaf concepts 
(Cl, * ’ * ,C,) where ICI I = -*a = I&I. Fcr conveni- 
ence, we also assume, throughout the rest of our discus- 
Sian, that for all)' tW0 kXlllS riCi and rC1 (15 ij SN). if 

IAnCi I 
i<j,q<ri. OfcOtEse,eaChri= ,c, wheaeAis 

the extensional answer. Now suppose we‘want an optimal 
expression for A over T with length N-l. Since the 
numbez of leaf concepts is N, they cannot all be included 
in the expmssion. For “completeness”, the root must be in- 
cluded. Now the remaining task involves picking two leaf 
concepts to be excluded from the expression. We claim 
that for the expression to be optimal, the two excluded 
concepts must have the following proper@. 



Lemma 4.1 L&t riCi and rjCj be the tW0 terms t0 
he excluded from the optimal expression and i < j. 
Thenj=i+1;thatis,thetwoexcludedtermsarecon- 
SecUGVe h the &g by ri. 

Pro& As mentioned before, the information regard- 
ing the excluded tetms is only an aggregated kaction of 

ri + ‘j qualified individuals. In this case, the quantity is 2 
since the cardinalit& of Ci and Cj am the same. Define 

- $ H(ri*l -ri) - + H(rj.1 -‘j) 

BS the gain in entropy as a result of excluding riCi and 
rJ!j. Minimizing G is therefore equivalent to minimix- 
ing the response expression. 

Assuming that rjCj is not in the optimal expression, we * 
want to find rjCj. Assume rj is COhllUOUS fOr the mO- 
ment, and differentiate G with tespect to rj 

5 = + H’(y.1 - I!$!-) - + H’(ri.1 - rj) 
i 

where H’c) = y. Since H’@) is a decreasing func- 

tion (Figure 4), E 
*I 

iS always positive for ri < 3. SO 

the Closer rj is to ri, the smaller is the entropy of the ex- 
pression and, thus, the lemma follows. 

cl 

With a simple moditication, the COllStAlt I Cj I = I Cj I 
canberelaxedfkomtheproofofknnna4.1. Letuste- 
state the Lemma in a slightly more general form which 
will be useful in establishing the next theorem. 

Lemma 4.2 Let rjCj and rjCj be the tW0 terms eX- 
cludedffomtheoptimalexpression(ICiI not&- 
lyequalto lCiI)andi<j. Ifthereexistsatermr&~ 
suchthati <A<jand lCkl< lCjl,thenj=A. 

proof: Similar to the proof of Lemma 4.1. Refer to 
[9] for details. 

0 

Wenowretumtotherestrictionthat lCtl= *** = l&l. 
Consider the problem of tinding an optimal expression for 
AoverTwithlengthK(KcN). Againtheroothastobe 
included for “completeness”, and the problem amounts to 
choosing A ( = N-K+l) terms to be excluded from the ex- 
pression. The property for the two excluded terms in Lem- 
ma4.1 isnowextendedtothecaseinwhichAtermsareto 
be excluded. 

H(P) 

Fig 4a Entropy Plot 

H’@) 
A 

0 ,P 
1 

Fig 4b. Entropy De&&e Plot 

Theorem 4.1 (below) basically says that the excluded 
terms r&i.‘s have to be consecutive in the o&ring by 

~Cs~terms,andifthreetermsaretobeexcluded, 
then they must be one of the following 

in order for the expression to be optimal. Now it should be 
obvious that an algorithm for the restricted OPTIMAL 
EXF’RESSION pmblem only requires checking N-K+1 
expressions whem N is total number of concepts and K is 
the allowable length of the expression. 

485 



Theorem 4.1 I&t ( ri,Ci,*“’ ,rbCi, ) be the A 
terms to be excluded from the optimal expression and 
for lSp,qzGk, iP<iq ifp<q. Thenij+i=ij+l for 
lsjsA-1. (Ihatis,theexcludedtermsmustbecon- 
secutive in the ranking by ri.) 

Proofi Assume the contrary, that is, there exists a term 
r,C,su~hthati,<~<i,~dr~C~,r~Ci,~termsex- 
eluded from the optimal exptession, while r,C, is in- 
cluded. 

Now consider the aggregate quantity r,, for the set of ex- 
cluded terms. There are two cases: 

(i) Suppose rY S r,. 

Define another aggregate quantity r; for the set of 
excluded terms minus the term rbCc. We claim 
that r; < rr. The simple proof is omitted. * 

Now mat r’&; as a pseudo tern.. By Lemma 
4.2, the expression with (r’,dYY,r,C,) excluded 
ha9 a lower entropy than the one with 
(r; C;,r$ CG ) . Contradiction. 

(ii) ‘Ihecasewithr,>rxcanbpmve.nsimilarly. 
0 

Next we give an intuitive explanation for the 
theerem. Consider concepts of the same cardklity. If the 
fraction of qualified individuals within a concept is gmater 
than f. then the more qualified individuals the concept 
has, the more information it contains. As an example, for 
1000 individuals with groups of 100 each, saying that 90 
inaparticulargroupbelangtotheanswersetiscertainly 
more informative than saying that 60 in another group be- 
long to the answer. The reverse is true if the fraction of 
qualifted individuals within a concept is less than +. llms 
for an optimal expression, the included conozp& must con- 
tain the most and/or the least qualified individuals, leaving 
the excluded concepts as &scribed by Theorem 4.1. 

Note that it is this property of the solution which al- 
lowsustosigni6cantlyreducethesearchspacefortheop- 
timal expression. In the next subsection, we adapt this 
propertyasaheuristicinthemoregeneralcaseinwhich 
thecardinalitiesoftheleafcanceptsarenot~thesame. 
ThisthenleadstoanappmachtothegeneralOPIIMAL 
EXPRESSION problem. 

4.3 The Heuristic 

We still assume a one-level taxonomy T, But we no 
longer require the cardi&ties of the leaf concepts to be 
equal. Consider the problem of Ming an optimal expres- 
sion for an extensional answer A over T with length K. 
Without the cardimuity restriction, Theorem 4.1 no longer 
holds. We can demonstrate this by the example in Figure 
5. 

10 11 12 89 
100 100 

9 
100 ii-c iii 

Fig 5. Counter Example for Theorem 4.1 

1tcaneasilybeverifie!dthat EC0 + -g+iSBnop 
timal expression of length two. To see this. we first note 
the following fact. If the cardMities of two concepts are 
of the same order, say, 100 and 200, and there is a big 
difference between the fractions oflqualitI~$dividuals 
within each concept, for instance, 100 and 200, then the 
fraction of qualigted individuals within the aggregate of the 
two ccmepts 300, repments a sign&ant loss of informa- 
tig. Now the concept Cd, with a relatively large fraction 
x of qualilied individuals, if excluded iium the 
response, can only have its information approximated by 
an aggregated fraction which also involves other concepts 
such as, Cl. Cz and/or C3. These latter concepts contain 
only a small fraction of qualifted individuals. Thus, their 
aggregation with C4 results in a relatively large loss of in- 
farmation. Excluding the term $47~. on the other hand, is 
not nearly as bad because its cardklity is much smaller. 
With $jC, in the optimal expression, the excluded terms 
are not consecutive and, therefore, Theorem 4.1 is not al- 
ways true. However, in place of Theorem 4.1, we can 
prove a somewhat similar nzsult. 
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WhenthecaNlinalitiesofconceptsarenotallthe 
same, for an expression to be optimal, the excluded terms 
must satisfy the following condition. 

Theorem 4.2 Let ?&i and ljCj be UlY tW0 &XIIlS 

excluded from the optimal expression. If thenz exists a 
term r&k such that ICkl 5 ICil and ICkl S IC’jl, and 
i<k<j,thenrkCkmustalsobeexcluded. 

Proofi SimilartoTheorem4.1. 
Cl 

Considet a simple example. If -Q1, -+, -&C3, 

$jc4, ‘OS $jc~aretem,andif~cIand~c4are --- 
excluded from an optimal expression, then, acca33ng to 
l%eozem 4.2, +Cz must also be excltu3ed. Unfw 
ly, unlike Theorem 4.1, this theorem does not kl to a 
simple algcritlun for obtain& the optimal exlxessia In 
fac~undersomerarecase8,theconditionfn3mTknwn 
4.2doesnothelpinreducingthcstarch~fortheap 
timalexptessionatall. Thesehappenwhentleexpres- 
sions for the extensional answer over the taxonomy has the 
following propmyt for any three non-rooted terms, rJr. 
tjCj, rkCk such that ri<rj<?k* either ICil > ICiI w 
lcjl > Ickl. 

Nev&less, we claim, on the mwuge, the condition 
dram Theorem 4.2 does signiticantly teduce the search 
space for the optimal expnzssion. We argue, informally, 
thatifthenumkofconceptsNinaone-leveltaxonomy 
is large, the munbez of expressions satisfying Theorem 4.2 
only inmases slowly with N. Fii we assume that the 
cardi&tyofaconcep&ingenaal,isnotrelatedtothe 
liaction of qualified individuals within that concept, and 
thus,isnotrelatedtoourassumedorderingofconcepts. 
Supposetwoleafconccptshavetobeexcludedfmman 
optimalexpression. IfTheorem42istobesatisfie&itis 
very unlikely that the two excluded concepts, say, Cl and 
Cj (i < ]),a~ very far apart; that is, j-i is large. For large 
N, it is not bard to see that j-i is almost independent of N, 
and the numb of expressions satisfying the con&mint in- 
creases almost linearly as N. Similar arguments hold for 
the general case of A excluded concepts. So far this dis- 
cussionhasbeenco~withthecaseinwhichafew 
wnwpts are excluded ikom the expR&on. Next, we give 
intuitive arguments for the case where an optimal expres- 
sion of a few terms is de&z& and thus requiring exclusion 
ofalargenumberofconcepts. Considerpickingaconcept 
Citobeincludedintheex~~fromalargenumberof 
leafconcepts. InorderforTheorem43tobesatisfie4itis 
conceivable that i should either be close to 1 or N. This 

reinainsvalidasNincreases and thus, the number of satis- 
fying expressions only illmass slowly with N. Table 1 
gives some idea of how good the heuristic is. We generate 
taxonomies of N leaf concepts. The cardMitie3 of the 
leaf COllcepts Ci’S aIt? Selected 8t random. The third 
column in the table shows the average number of expres- 
siws satisfying Thcarem 4.2 when an expression with 
N-4 terms is desired. Similarly, column four shows the 
case when a six-term expression is desired. 

No. of 

8 I 56 18.15 23.02 
10 1 252 46.68 46.68 

15 3003 196.45 124.08 
20 15504 467.88 212.70 

I I I 

25 1 53150 1 865.44 I 310.41 

30 142506 1401.02 41157 
35 324632 2M9.81 503.87 

Table 1. Performance ExpositionfortheHeluistic 

4.4 The General Problem 

The heuristic demibed for the one-level taxonomy 
doesnotimmediatelyextendtotheOPTIMALEXPRES- 
SION problem in general. A simple two-level taxonomy is 
emughtoillustratetbedifEculty. supposethattherearet 
subtrees under the root of a two-level taxonomy, and the 
munberofallowableteImsist(t<k). Ifweknowthat 
the~isnotgoingtobeincludedintheoptimalexpres- 
sion,andweatealsogiventheoptimal~ofthe 
munbcz of terms in each sub-, then we can easily in- 
voke our onelevel heuristic over each subtree and obtain 
the optimal solution. Unfortunakly, it is not obvious at all 
howtodecidetheoptimalnumbaoftennstouseineach 
subhee and exhaustively trying all possibilities quickly be 
comes prohibitive as the complexity grows as 0 03. 

Here we propose an algorithm which is not always 
optimal, but which avoids the combinatokl explosion 
problem and leads to reasom&ly good solutions. The alge 
ritbmcanbeviewedasapostordettfaversalofthetaxono- 
my, obtaining expressions for subtrees and merging them 
as the taxonomy is traversed. 
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First, we describe the data structures used by the al- 
gorithm. For each node N, we construct a table TBN with 
1~ entries, where 1~ is the number of leaves of the subtree 
TNrootedatmdeN. EachentryTBN(A)(A=l;.*,I~)is 
a tuple (up , erp) such that exp is a k-term expression over 
TN and etp is the entropy of cxp weighted by the cardi&- 
ty of N. When the algorithm taminates, a k-term 
optimallnear optimal expression is stored in the table entry 
TBR(R) where R is the root of the taxonomy. Thus, the 
construction of the tables TBN’s constitutes the essence of 
the algorithm. 

For the simple case in which N is a leaf node, TBN 
hasonlyoneentry(tN,H(r,l-r)*INl)andristhefrac- 
tion of qualified individuals within N. Now suppose N is a 
non-leafnodeandNhaspchildrenS1,...,S,. Thetable 
TB~iswnstructedthroughtheusethechihhen’stables 
TBs,,- ,TBs,, as well as the heuristic we developed for 
the one-level taxonomy in the previous section. More pre- 
cisely, we u&e the heuristic in the following function 

(exp , etp) = opt_one_levcl (T,k) 

where ew is an optimal k-term expression over the one- 
level taxonomy T and etp is the entropy of cxp weighted 
by the cardinal@ of the root of T. The table TBN for each 
node N, is filled in two phases. A concise description of 
the algorithm is given, followed by an example. 

1. Initialization 
Define sub-expressions & (i = 1, * * * ,p), one for each 
subtree Ts, . 
Fori=l,***,p, 

a Si = T’s,(~s~)*w* 
Form a onelevel taxonomy TX as follows: 
i. MakeNtherootnodeofTX. 
ii. MakeeachconceptCin&achildofN. (In 

fact, all the leaves of TN become the leaves of 
TX) 

ForA=l,+.. klk 
TBN(k) = opt_onc_lcvcl (lX,k). 

2. Amelioration 
Foreachk(i=l,+**,p)suchthat l&l > 1, 

gaini=TBs‘(IhI-l).eQ-TBg(IbI).etp. 
Pick j SUCh that gaittj = min (gaini) m 

Set kj = TBs,( I & I-l).e+ 

Set 4= it. 

Form a one-l:vel taxonomy TX as follows: 
i. CreateNastherootofTX. 
ii. ForeachconceptCin~suchthatCikC’forall 

C’illk, 
Obtain-t? and i acc+ng to Definition 3.3. 
Make C a child of N. 

For each concept C in TX, 
Remove the ccmrespondingtermrCfrom~. 

Letl~bethenumberofleafnodesofTX. 
Fcrt=l;*~,l~ 

Set r=e. 
(sub-q& , sub-e@) = opt-one-level (TX,k) 
For each concept C in sub w&, 

AddtheteamrCto~‘: 
If H(c’)*INI S TBN(l~I).etp then 

TB~(l&‘l)=(y,H(~‘)+lNl) 

3. Repeat2.until lhl = 1 foralli(i= 1, ---,p). 

We illustrate the algorithm by giving an example of 
one application of the amelioration step. Consider the por- 
tion of a taxonomy shown in Pigure 6. ‘Ihe shaded nodes 
correspond to concepts appearing in the current expression 
5. 

0 
. 

Fig 6. Portion of a Taxonomy 

Let the & expressions at this iteration be 

: 
1 =qC* + *a* 
2=r21c21 +r&2+ ‘-- 

53 = r3lc31 + r32c32 + r&33 + * ' - 

Note that the "..." in these expressions indicate that other 

terms corresponding to concepts deeper in the subtrees 
may be present. Now suppose that expression 53 can be 
reduced by one term with the minimum increase inentropy 
and suppose that the new 53, 5; is: 
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5’3 =r3c3+332c32+ --a 

The situation is illustrated in Figure 7. 

33 

Fig 7. Expression Reduced by one term 

Now the onelevel taxonmJ cre+ed in this instance of 
step2willcontainconceptJVandCiforeachconceptina 
cut through the tree involving concepts in TN which ate “as 
@&-in th$ taxonomy as possible”. In this case these are 
C1,Czl,C~andC3. ‘I’heideaistofindanoplimaUncar 
optimal altemative expression A fat-this Jorti~n of the 
response set corresponding to Ci, Csi. &, C3 and re- 
place this portion of 5 if a better expression is found. In- 
tuitively, this allows the algorithm on each iteration to 
reevaluate the portion of the expression dealing with the 
higher level concepts. 

We have experimented with taxonomies of two/three 
levels and up to 40 concepts. The czdinahty and the 
number of qualified individuals within each leaf concept 
were generated at random. Of the 50 examples we tried on 
the two-level taxonomy, in 43 cases the heuristic generated 
an optimal expression. Fcr the others, the entropies were 
nomorethanfourpercenthigherthantheoptimalexpres- 
sions. Another study of 35 cases on a &me-level taxono- 
my, shows a little more than half of the heuristic expres- 
sionsareoptimalandtheeIltmpiesofthehemistic~~ 
sionsdonotexceedtheoptimalonesbymorethan.hvo 
percent. 

5. Other Potential Applications 

Aggregate responses, although concise in natute, do 
pvide considerable information to a user. Consider, 
43m the q=ry 

“Who earns more than 3O,ocw)?” 

and suppose the aggregate msponse is 
,900 * -engmeer + +anager”. 

1000 

Since the query has no refmnce to job categories, classi- 
fying employees according to their jobs is an extra piece of 
information. Since job category is probably only one of 
the many possible characterixations of employees, this im- 
mediately raises the question of which characterization 
should be chosen. In fact, under a simple en&y- 
relationship model 1101, each attribute can be used as a 
characterization for the set of entities or individuals. The 
issue of relevance, an active arena of research [ll] in Na- 
tural Language Processing, has also been receiving much 
attention with regard to man-machine interfaces for data- 
base systems. Here we suggest the use of the entropy 
measure discussed in this paper as a criterion to select the 
appqmte chamcterkation. For an extensional answer 
classiIiable by a taxonomy, the lower the entropy is, the 
better it characterixes the set of qualified individuals and, 
hence, the more relevant it is to the answer. 

In our formulation of the om EXPRSSION 
problem, entropy is used as a quantitative measure of the 
preciseness of an aggregate response to a query, but cer- 
tainly it also has its role in infonnation abstraction. Sup 
pose we have a table describiig the male population of 
different age groups in a city (Table 2a). Now instead of a 
Xl-entry table, we want a summary table of five entries. If 
we arbitrarily combine pairs of entries from the original 
table, the result can become quite misleading. Table 2b 
shows the ratio of male to female population of age group 
l-20 is balance; while the truth is that male is dominant in 
age group l-10 and female is dominant in age group ll- 
20. Ifweevaluatethegaininentropyasaresultofcom- 
bining entries, and choose the one with a minimum gain, 
we avoid the above discrepancy and obtain a more infor- 
mative summary table (Table 2c). Once again, we demon- 
stratetheusefuhiessofourentropymeasme. 

6. Conclusions 

We have considered the problem of providing aggre- 
gate responm to database queries. Responses are given in 
terms of expressions of quantified concepts. The collec- 
tion of concepts is not arbitrary; instead, it forms a taxono- 
my. The tradeoff between conciseness and preciseness is 
studied under a formal information-theoretic framework. 
Conciseness is measured by the length of an expression, 
while preciseness ismeasuredbytbeentropyoftheex- 
pression. We call an expression of a certain length optimal 

489 



41-50 160,000 81.000 
51-60 120,000 59,ooo 

, 61-70 74000 33,000 

71-80 30,000 14.000 

I 91- I 500 I 200 I 

Table 2a Male Population of Different Age Groups. 

Age Group Population 
l-20 220.000 

Mak 
110.000 

2140 320,000 162,000 

41-60 280.000 140,OCKl 

61-80 100,000 47,000 

81- 5Joo 2500 

Table 2b. Arbitraty Summary of Table 2a 

Age Group 
l-10 

Population 
100.000 

11-m 120,000 so.~ 
21-50 480,000 ~3#00 

51-60 120,000 59,ooo 
I I 

61- I 105500 I 49.500 I 

Table 2~. Informative Summary of Table 2a. [91 

if its associated enttopy is the lowest for that length. Ob- 
taining an optimal expression efficiently .mrns out to be a 
challenging task. We show that a seemingly plausible 
“greedy” algorithm can have tmbounded dative error. 
Under a one-level taxonomy with the same cardklities 
for all leaf concepts, the problem can be solved efficiently. 
An efficient heuristic is also available for the general one- 
level taxonomy. We also suggest an algorithm for the gen- 
eral OITIMAL EXPRESSION. Although it is does not al- 
ways result in an optimal expression, it avoids the com- 
binatorial explosion problem and appears to lead to rea- 
sonable solutions. 
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