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assume that 
the cost of optimization is negligible. This assump 
tion does not hold for much larger search spaces (of 
possible execution plans) such as those encountered 
during semantic query optimization. In particular, 
the optimization cost can become comparable to 
the execution cost, and thus a significant fraction of 
the response time for interactive queries[l]. This 
paper discusses the tradeoff between the two costs 
in the context of semantic query optimization, and 
reports a heuristic search algorithm which minim- 
izes a weighted sum of both the costs. A detailed 
analysis of an experiment is presented to strengthen 
the claim. The paper also contributes a practical 
model of semant.ic query optimization, and a discus- 
sion of its search ordering and termination prob- 
lems. 

1. Introduction 

Conventional query optimization is based on syntactic 
rearrangements [2], query decomposition 131, and optimal 
usage of indices, join algorithms and database statistics [4]. 
Several query execution plans are examined to select the 
minimum cost plan. These methods are not flexible enough to 
generalize to new applications, extensible databases, and also 
there is no mechanism to use application specific knowledge 
for optimization. For example, user-defined data-types make 
it difficult for an optimizer to reason about the uoluc range of 
data-items in a relation. Also current optimizers are unable to 
handle user defined types, operators and access methods, as it 
is difficult to estimate the cost of computing operotors in 
different ways, since optimizer doesn’t know the details of the 
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access methods. Similarly, it is difficult to optimize procedure 
valued fields in a tuple using convent,ional techniques. 

Some of these difficulties can be alleviated by Semantic 
Query Optimirotion (SQO). SQO uses semantic information 
about the database, eg. semantic integrity constraints and 
functional dependencies, for optimization. The original query 
is transformed into syntactically different, but semantically 
equivalent t queries, which may possibly yield a more efficient 
execution plan[S]. Semantic query optimization also provides 
the flexibility to add new information and optimization 
methods to an existing optimizer. A modular arrangement of 
optimization methods makes it possible to add, delete and 
modify individual methods, without affecting the rest. This 
provides an extensible system for maintaining and managing 
optimization strategies, as it. is implemented as a rule-based 
system. Semantic query optimization is well motivated in the 
literature[6,5,7], as a new dimension to conventional query 
optimization. 

However, semantic optimization increases the search 
space of possible plans by an order of magnitude, and very 
ellicient searching techniques are needed to keep .the cost’of 
optimization within reasonable limits. Moreover, as the 
semantic information about the database (and thus the 
corresponding space of semantically equivalent queries) 
increases, the optimization cost becomes comparable to the 
cost of query execution plan, and cannot be ignored. The tra- 
deoff between optimization time and the quality of query exe- 
cution plans, becomes a major issue in minimizing the total 
cost of query processing. 

There has been little research in controlling the search- 
ing costs, and trading optimization time with the quality of 
the execution plan. Simple schemes to locate relevant 
integrity constraints have been proposed[g], but those neither 
use good algorithms for searching in the space of possible 
plans, nor consider the tradeoff between optimization and exe- 
cution costs. As far as we know this paper is the first attempt 
towards (i) presenting efficient heuristic algorithms for reduce 
searching during semantic query optimization, and (ii) for- 
malizing the trade-off between the optimization cost incurred 
and the quality of execution plan obtained. 

The total cost of query euoluotion has two parts: (a) 

optimization cost to select the query execution plan, and (b) 

t Semantically equivalent queries produce the same ~)nswer 
for all database instances that satisfy the integrity 
constraints and functional dependencies. 
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ezeculion coet to run the execution plan. Conventional query 
optimizers assume that the first part is negligible compared to 
the second, and they try to minimize only the execution cost 
instead of the total query evaluation cost. Ignoring optimiza- 
tion cost is no longer reasonable if the space of all possible 
execution plans is very large as those encountered in SQO[S] 
as well as in optimization of queries with a large number of 
joins. The optimization cost becomes comparable to query 
execution cost, and minimizing execution cost alone would not 
minimize the total cost of query evaluation, as illustrated in 
Fig 1.1. 

Total 
Evaluation 

Cofft 
,.I 

,:’ 
Optimization 

Cost 

Execution 
.. ‘._-..- . . . . . cost 

Optimization Exhort 

Fig. 1.1 Trading optimization coat with ezecution cost 

Outline of the paper: The problem is formally defined in 
section 2, and the notation for subsequent discussion is intro- 
duced. Section 3 presents a brief survey of heuristic searching 
techniques from Artificial Intelligence. Section 4 describes the 
issues Of generating semantically equivalent queries, selecting 
the best candidate for exploration, and search termination cri- 
teria. The near-optimal searching algorithm for trading the 
optimization cost with the execut,ion cost, is presented in sub- 
section 4.3. In section 5 we present the results of an experi- 
ment to validate the algorithm. 
2. Problem Definition 

This section summarizes the notation used in this paper 
and provides a formal definition of the problem. The notation 
is summarized in Table 2.f. 

We present below formal definitions of Conventional 
Query Optimization and Semantic Query Optimization, both 
to differentiate between the two precisely and to make the 
discussion of the latter more concrete. 

Conventional Query Optimization (CQO): This is 
the problem of finding the minimum cost query execution 
plan from the set of all possible plans for the query as posed 
6y the u8er. 

Given: Query Q. 
Required: 

Find the least cost plan, qp(O,b), for query o,, such 
that C&O,b) 5 C,(O,j) for j 21. 

SP(i) 

min 
CE 

apace of queries already ezphcd 
upto and including &( 

lcasf eslimated ezecutim coat 

80 far, C.P = i pIjz,,C&) 

)I.) C&i C&(i) + &ii 

Table 2.1. Summary of Notation Used. 

Semantic Query Optimization (SQO): This is the 
problem of finding the minimum cost query execution plan 
from the set of all possible plans for all the queries that are 
eemanticalfy equivalent $ to the we* ‘e query. 

Given: Query &,, 
Required: 

Find least cost plan, qp(a), for query Q. such that 
C,(a) 5 C,(i) for all 41’9. 

Integrated Semantic Query Optimization (ISQO): 
This is the problem of searching the space of all possible 
query execution plans for all the semantically equivalent 
queries, hut stopping the search when the total query evalua- 
tion time (i.e. optimization cost so far + execution cost) is 
minimum. 

Given: Query QO 

Required: 
Find plan qp(a) for query &, such that 

C C&j) + &~(a) < C C,(j) + d,(i) for aII Ql’s* 
QJ-74 Qpsqi) 

t Conventional query optimiaers like R’ 
do not perform any kind of semantic query optimization. 

t A set of queries is defined to be remanfically 
equivotmt w.r.t. to a set of logical constraints. The set of 
constraints we are considering sre the semantic integrity 
constraints of the databe. 

f Query evaluation cost is s weighted sum of the optimizstion cost 
and the execution cost, i.e. Co + aCE. When 
a= 1, query ev alustion wst is the same as the query 
response time (ignoring queuing delays). 
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The problem, as stated above, is extremely di5cult. 
Thus, the approach we take is to reduce the complexity of the 
problem by settling for a near-optimal solution instead of the 
optimal one. This can be done by limiting the search to most 
Q,‘s instead of all &i’s 

3. The Search Space & Searching Techniquw 

This section first describes the nature of the space of 
query execution plans that the semantic query optimizer has 
to search. It then discusses various search algorithms. 

3.1. The Search Space 

Conventional query optimizers select the optimal query 
execution plan by searching through QP(0) only, the space of 
query plans corresponding to the original user query, Q,,. In 
contrast, semantic query optimizers search the much larger 
space of execution plans, &Ptoc, where, 

’ QPtot = QP(O) U QP(l) U . . U QP(n) 

One conceptual way to model the search space is in 
terms of the following two levels: 

[l] ,G~vcl 1: The space of semantically equivalent but syntac- 
tically different queries, QO, Qr, . . . Q,. 

[2] Lcvcl 2: The spaces QP(O), QP(l), . . . . QP(n), which are 
the spaces of the query plans of the queries 
QO, Qr, . . . Q,, respectively. 

These two levels of the search space are illustrated in 
Fig. 9.1. The solid lines represents the edges at level- 1 search 
space, and the dotted triangles together constitute the level-2 
search space. 

,I’ ‘i, 

Fig. 3.1 Conventional Vs. Semantic Query Optimization. 

Such a two level model of the search space is useful as it 
enables easy visualization of the search problem facing the 
semantic optimizer. At level 1, the semantic optimizer 
searches for Q,, the semantically equivalent version of the ori- 
ginal query Q. which leads to the optimal query execution 
plan. 

Research in conventional optimization has developed 
e5cient algorithms for searching in each of the spaces, &J’(i), 
of Level 2. Our aim is to design an algorithm for the search in 
Level 1 which, when at a node Q, of Level 1, calls a standard 
Level 2 search algorithm as a subroutine to search the space 
QP(i). We later indicate improvements to this basic scheme. 

3.2. Searching Techniquea 

Semantic query optimization can be viewed as the search 
for the minimum cost query execution plan in the space of all 
possible execution plans of the various semantically equivalent 
hut syntactically ditferent versions of the original query. The 
need for a suitable search strategy to guide the search 
through the space of semantically equivalent queries was 
addressed earlier. Search techniques have been studied exten- 
sively in the field of artificial intelligence [S,lO] and can be 
divided into two broad classes, as described below. 

Blind Searching: This class of search techniques does 
not utilize any specific knowledge or properties about the 
search space. It requires the ability to recognize a solution to 
enable the search to be stopped. Traversing the entire search 
space t guarantees the discovery of the optimal solution. This 
generality makes it powerful enough to be applied to a very 

broad class of problems, but at the same time makes it a very 
expensive and ine5cient way of searching since no domain 
knowledge about the problem instance is used. Depth Firat 
Search (DFS) and Breadth First Scorch (BFS) are examples 
of this class. DFS may take very long to execute if it does 
not traverse the search space in the right direction. BFS has 
prohibitive storage requirements for its execution. Recently a 
hybrid scheme Depth Firet Iterative Deepening (DFZD) [ll] 
has been proposed, which avoids the pitfalls of both DFS and 
BFS. 

Heurirtic Marching: These search techniques utilize 
problem specific information as heuristics for guiding the 
traversal of the search space. For general or complex prob 
lem spaces, such heuristic based search techniques are almost 
always more e5cient and certainly more interesting. Best first 
searches are a subset of heuristic search techniques which are 
very popular in artificial intelligence. The A’ algorithm 
[12,13] is a well known example of a best first search tech- 
nique . Best hrst searches involve traversing the most promis- 
ing path at any node in the search space. An appropriate 
heuristic function is used to compute the promise of a path. 
Best first searches combine the advantages of heuristics with 
other blind search techniques like DFS and BFS $. If the goal 

t for finite search spacar 
$ &t first fiche csns.s some depth first search at the most 

promising node and if a solution is not found, thii node soon 
becomes less promising zu compared to 8ome other aa yet 
unexplored node which is then expanded and subsequently explored. 
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(optimal solution) is defined precisely and its distance from 
the current step can be characterized by an appropriate 
heuristic function, A’ guarantees the discovery of the optimal 
solution. 

3.3. Searching Technique for Semantic Query 
Optimisation 

For a semantic query optimizer, each node of the first 
level of the search space(see Fig 3.1) corresponds to a semant 
ically equivalent version of the original query. The promise 
of a node is the cost of the most efficient execution plan 
(obtained from a conventional query optimizer) for the query 
corresponding to that node. At each step, the most promie- 
ing node among those generated so far is selected for expan- 
sion. From the chosen node, various other nodes(semantically 
equivalent queries) are generated by applying the various pos- 
sible semantic transformations on the query corresponding to 
the current node. 

It is important to note that in viewing semantic query 
optimization as a search for the optimal query plan (i.e., the 
plan with the least total execution cost), we do not have a 
priori knowledge about the goal, i.e. the optimal query plan. 
Hence, at any step of the search, the distance to the goal (i.e. 
the estimated cost of reaching the goal) cannot be character- 
ized accurately . This makes it difficult to use heuristic baaed 
search algorithms like A*. Blind search techniques like DFS 
and BFS can still be applied since they are basically exhaus- 
tive enumeration methods. However, the enormously large 
size of the search space of possible query plans makes it 
impractical to do so. 

Having ruled out the possibility of achieving the 
minimum total cost execution plan either by heuristics 
(required information not available) or by blind searching 
(very large size of search space), we focus our attention on 
execution plans that are near-optimal. There can be many 
ways of defining a near-optimal query execution plan. Our 
approach is to maintain a balance between the total cost of 
query optimization and the cost of the best execution plan, at 
any time and to stop the search when certain stopping condi- 
tions hold. This integrated approach, which considers both 
query optimization and query execution costs, is based on the 
following observations. 
[l] The search space is far too large for exhaustive enumera 

tion, and the knowledge required for heuristics that 
guarantee optimality is not present. There needs to be 
some criterion to stop the search after a certain time. 

[2] Currently optimization cost is very small compared to 
execution cost of the query plan obtained. With an order 
of magnitude increase in the size of the space of query 
plans, and thus the enormous potential for further 
optimization, the effort spent in doing so should be a 
fraction of the cost of best execution plan. This is espe- 
cially helpful for compile-and-etorc queries. 

3.4. Termination Criteria 

A search algorithm usually terminates by reaching its 
goal node, which satisfies the objectives. Our goal of semantic 
query optimization is to minimize the total query evaluation 
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coet, Since the goal cannot he characterized in terms of the 
available information from partial search, it is not possible to 
stop the search at the goal node. However, we can character- 
ize a set of nodes which are su5ciently close to the goal node 
and stop the search on reaching one of them. 

It is possible to characterize the goal under some utility 
theoretic assumptions like diminishing marginal return[l4]. 
We can define stopping criteria to minimize the total query 
evaluation cost under these assumptions about the search 
space. However, it seems very di5cult to do so for general 
search spaces. 

4. Trsverring the Search Space 

At any step in the search, the set Boundary-Node8 con- 
tains the nodes from which the next one to be visited is 
selected. Search space traversal has to address three prob- 
lems. The 6rst problem is to compute, at any step of the algo- 
rithm, the promise of all the child+ nodes. The second problem 
is to select the meet promising node, from amongst the boun- 
dary nodes, as the one to be visited next. The third problem 
is of deciding when to terminate the search space traversal. 
This section discusses these problems and some solutions for 
them. 

4.1. Estimating the Promire of Child Nodes 

The promise of a node is the potential reduction in the 
estimated query processing cost achievable by considering the 
semantically equivalent query corresponding to it. At any 
time during the search there exists a set of nodes that have 
been visited and a set of nodes that haven’t been. Let Q, be 
the node currently being visited, as shown in Fig. /.I, and 

Qt,s Qi, . ’ * QC be its children. These semantically equivalent 
queries are created by using the rules applicable to Qi, each 
being generated by applying exactly one rule. 

4.1.1. Coat Estimation by Running Conventional 
Optimiser 

Assume the search has reached node Qi, as shown in Fig. 
1.1. The promise of child nodes, Qc,, 1 5 j < k, is obtained 
by generating each one using the relevant rule to Q,, and then 
running the conventional query optimizer on it. The costs for 
doing so are, 

Co(i,) = C&(i,) + C&(i,) 1 5 j 5 k 

This approach gives very accurate estimates of 
CE(if), 1 5 j 5 k, since the conventional optimizer has a very 
good cost model of the database, and explores all possible exe- 
cution plans. However, the actual cost of running the 
optimizer k times may be quite high. 

4.1.2. Algebraic Estimation of Cz(ij) from C,(i) 

Instead of running the conventional query optimizer on 
each child node, a simpler version of the cost model of a con- 
ventional query optimizer (eg. R*) may be used directly to 
obtain rough estimates for guiding the search. Each child 
node, QV 1 5 j Sk, is compared with the Q,. The nature of 

+ l-he unv&ted nodes that have edges connecting them k~ the 
,,ode currently being visited me child m&@. 



Improvement I CE(8eled ) - Cp 

\ 

Old Bouodsry~Nodn 

-._- New Bounduy-Nodes 

Fig. 4.1 Selecting the Most fiomiaing Node. 

the transformation required to obtain each from Qi yields an 
estimate of the former’s execution cost, which can be quite 
accurate in certain cases. This strategy is ill&rated by an 
example. 

Ezample: 
Assume, 

l EMP = (id#, name, rank, age, salary) be an 
employee relation. 
. (EMP..rank = ‘manager’) => (EMP.age >- 
45) be an 

integrity constraint satisfied by this relation. 
l the attribute age have a clustered index of depth 
3. 
l the relation have P data pages. 
l tuples are uniformly distributed over age between 
20 and 60. 
l retrieve (EMP.name, EMP.age, EMP.aalary) 

where (EMP.rank = ‘manager ‘) 
is a query, say QW 

Assuming a single disk I/O to be the unit of cost, it costs 
P to execute QW However, ,Q,, can be transformed into 
another semantically equivalent version, say Q,, by 
applying the integrity constraint shown above. 
Now, 

l retrieve (EMP.name, EMP.age, EMP.aalary) 
where (EMP,rank = ‘manager ‘) and (EMP.age 
>= 45) 

is &*. 
Q,, and Q1 are semantically equivalent since they produce 
the same result under all instances of the relation that 
satisfy the integrity constraint. The clustered index on 
age can be used to execute Q, efficiently, the cost of 

which would be ( g+J+3 P&P+3 

Such an analysis is limited in its applicability, since it 
often requires knowledge about the details of the database 
organization. However, we include it here since it, is a very 

Powerful tooi when applicable, especially since estimating the 
promise of child nodes costs less since the optimizer does not 
have to be run on each of the child nodes (queries). This 
approach provides a rough-and-ready rule of thumb. 

4.1.3. Simultsneoua Query Optimiration 

A third approach for estimating the promise of the vari- 
ous child nodes of Qc is to use simultaneous query optimira- 
Con. This requires enhancing the query optimizer to handle 
the simultaneous optimication of a set of similar queries. The 
set of queries, Qije 1 5 j 5 k, which are child queries reach- 
able from Q;, are all input to the optimizer at the same time 
and optimized together. Since these queries resemble each 
other very closely, in fact differ from Qi by exactly one clause 
each, their simultaneous optimization will lead to substantial 
savings. As was observed in our experiments, many semanti- 
cally equivalent queries that differed only slightly produced 
many execution plans that were the identical, and had to be 
produced once for each query since each was optimized 
separately. The approach of simultaneous query optimization 
will lead to each such plan being generated exactly once for 
all the queries optimized together. The existing optimizers, 
eg. 8yEtem-R 141, ZNGRES [:<I, R’ 1151, etc. need to be 
enhanced to allow this. Research in the areas of global query 
optimization [M, 171, and common EUbezpre88iOn analfleie 
(181 can be use.d for this purpose. 

4.3. Choice of the Most Promiring Candidate Node 

Once the promise of each candidate node has been 
obtained, by one of the methods described above or some 

= 0.375P + 3 units. 
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other method, they are compared to select the meet promia- 
ing one. There can be many ways of doing this, depending on 
how the promises are compared. Described below is a we)) 
known strategy. 

Moving from query Q, to Q, change the estimated best 
query execution cost, as shown is Fig. 4.1. The change can be 
an increase or decrease, leading to a more efficient semanti- 
cally equivalent query or a less efficient one. The next node 
to visit, QIcbcl, is determined as follows, 

Qaskd-Qj such that CE(j) = -*x-w 1) 

This approach is called the First-order Be82 Fir8t 
Search strategy, in which the most promising node is the one 
that has the potential of maximum cost reduction. The node 
QIQel is removed from Boundary_Nodcs and its child nodes, 
Q,,, Q,# . . + Q,, are added to it. 

Thus, 
Boundary_Nodcs:== 

Boundary-Nodes - {Q&t) (J {O,,, Q,, . * . Q,k} 

This is a First-Order strat.egy because in evaluating the 
promise of a direction to move in, only the first node in that 
path is examined. A generalized method may look at some k 
nodes on a path before taking a step. In our case the first- 
order strategy yielded quite satisfactory results. 

4.3. Terminating the Search 

Searching theory in Artificial Intelligence (Al) usually 
ignores the cost of searching and concentrates only on the 
quality of the solution, i.e. how it compares with the optimal 
one. For SQO, we have to consider the trade-off between the 
cost of optimization and solution quality (i.e. query execution 
time). There are two reasons for this: (i) the time required for 
exhaustive search of the space of query plans for the entire set 
of semantically equivalent queries can be prohibitively large, 
and (ii) the response time for interactive queries depends on 
both the query execution time and the query optimization 
time.t 

As stated earlier there does not exist an 4 priori charac- 
terization of the query, in the set of semantically equivalent 
queries, that leads to the optimal (i.e. minimum cost) query 
plan. Thus we have to use some stopping criteria to ter- 
minate the search after a reasonable amount of effort has 
been spent. 

4.3.1. Criterion Cl: Balancing Optimisstion Coat 
with Execution Coat 

An intuitively appealing stopping rule is based on 
balancing the total optimization cost incurred at any step of 
the search, with the estimated execution cost of the best 
query plan found so far. Searching stops after the step in 
which the total optimization cost incurred so far reaches a 
certain fraction of execution cost of the best query plan yet 
discovered. Surprisingly enough, this simple rule gives us a 
good bound on the response time of the query, as shown by 
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t In reality, Rerponre_Time - Optimtotirm-Time + 
~e~tiwl’he + Queuing Deloy~. We do not consider the last component here. 

Theorem 1. A point to note is that parameter for optimiza- 
tion (minimization in our case) is the rceponec time (7 + t ) 
and not czccution time (t) alone. It is entirely possible that 
the point at which the response time is minimized may be 
different from the one that minimizes the execution time. This 

fact is illustrated in Fig. 1.1. We introduce some notation in 
Tdc 4.1 which is used in the proof below. 

II 
a compile-and-store query 

is executed 
II 

Table 4.1 Searching Related Notation. 

Theorem 1: If the following search terminating cri- 
terion (CI) is used, 

i.e. 7(i) 2 +$, 

the following upper bound on m(i) is obtained. 

Proof: Supposing the search terminates after examining 
&c. There are following two cases, 

[a] Qopt E SP(i) i.e. Qwt has been visited. 

[b] Qopc 4 SP(i) i.e. Q,t hasn’t been visited. 

C48C IO/: 

r(i) + t(i) m(ij - - 
Wept) _, \ +Jpt) + t(opt 

w x +t(i)+6 

= dopt) + tlootl 
t(i) 

since 44 = T + 6 

A positive quantity b is adhdd’to the numerator.to make the 
equality hold. It satisfies the condition 0 5 6 -< Opt cost in 

current step. 
* 

=, RT(i) < X + t(i)+6 
J%w) - t (opt ) 

since r(opt ) 1 0 

(i+ l)t(opt) + 6 

I x 
t(oPt) 

because Qqt E WI) => t(i) 5 t(opt) 1 

t Note that t (opt ) is the estimated query execution cost 
corresponding to the query that gives RT( opt ), and not the 
least estimated query execution cost. See Fig. f A. 



w1+$ Opt cost in current step 

Case /It) 
RTi 

+ Rlyopt = 
i +ti ~#&+ 

qip+ h7(: 
0 t) + t(opt) 

ji pi) QM 

r(i) 1 F 

t(oPt) 2 0 

I+ SW) => +Pt) 1 6) 

Combining the results of the cases above we have, 

5 maz(1 + x, 1 + +, 

The bound provided by the above theorem is not very 
tight, and the termination criterion performs much better in 
practice. This was observed when we ran an experiment, 
details of which are discussed in section 5. 

The choice of X depends on the size of the search space, 
and the time of query optimization. For a small search space, 
we would usually expect Case [a] to occur when the search 
terminates, i.e. Qqc E SP(i). Thus, 

Small Space m> Case [a] 
=> choose large X for tight bound 
=> less optimization is good for response time 

For a large search space, we would usually expect Caee //to 
occur when the search terminates, i.e. Q,t 4 V(i). Thus, 

Large Space my> Case [b] 
=> choose small X for tight bound 
=> more optimization is good for response time 

Rule of Thumb for choosing X:.Above analysis shows 
that the thumb-rule is to choose a large X if the search space 
is small and vice veraa. It is not a certain rule because of the 
approximate implications (M>) shown above. 

Corollary 1: If the query Q. is the compile-and-&ore 
type, and is expected to be executed a times, the above bound 
changes to, - . 

RT(i) 
mopt 1 

5 moz(1 + ox, 1 + $1 t 

Proof: Identical to that of Theorem 1. 

4.3.2. Criterion C2: Diminishing Marginal Returns 

Searching strategies like bccrt-firet usually have diminish- 
ing marginal returns as the search progresses. This is illus- 
trated in the example discussed in Section 5. Database access 
paths are tailored to suit the frequently occurring queries, and 
semantic transformation based on integrity constraints can 
not keep improving the execution cost for a long time. The 
optimal query Qh f has a finite positive cost, and as we 
approach it during the search, the chances of substantial 
improvement in query execution cost keep diminishing. At the 
same time the optimization cost remains approximately the 

t RT() = 7(i) + at(i), and represents za integrated cost. 
$ this assumption ia justikd by most conventional query 
optimizers, and is thus not unrea@tic. 

fQ* P QIauch that C,(i) 5 C,(j), j # i, j = 0, 1, . . u 
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same for every step of searching in the space of queries. Thus, 
net improvement in query execution cost keeps diminishing. 

A termination criterion based on diminishing marginal 
returns considers t,he net benefit obtained from the last step. 
The space of semantically equivalent queries is explored till no 
transformation causes a decrease in total cost, i.e. m(i). 
Search stops when the optimization cost in last step dom- 
inates the improvement in query execution cost. Thus the ter- 
mination criterion C2 is, 

I ees~~Ho.,CE(d~ - cE(i) 5 &ii) 

This termination criterion leads to the optimal solution 
only if the law of diminishing marginal utility holds. However, 
even if this is not true, the criterion is still useful for small 
search spaces characteristic of most queries posed to the data- 
base. The searching process may be terminated at a local 
minima of the query execution cost, C,(i). This can be par- 
tially overcome by using probabilistic search guiding stra- 
tegies, eg. eimulated anncahg(19,20]. 

6. A Detailed Example 

This section discusses an experiment to test our search 
algorithm. Semantic query optimization of a rather elaborate 
query was carried out. The query optimizer of R’[15], was 
used for estimating the promise of queries. 

6.1. Parameters of the Experiment 

A shipping database of six relations reported in[B] was 
used. The database schema, the relation sizes, and the various 
indexes available are shown in Table 5.1. 

Fig. 5.1 gives the rules that define a subset of the seman- 
tic integrity constraints satisfied by the database, applicable 
to the example query Q,,. 

The unique logical access paths among the relations are 
specified. The implicit joins that underlie the logical access 
paths are listed in Fig. 5.L 

~1 
CARGOESInsurance - pDLICIES.Policy 

Fig. 5.2 Unique Join fiedicatee. 

Finally, the query, expressed in a Prolog like syntax, is, 
Qo: (DeadWt > 400) and (DollarValue > @oo): 

(?Decltination) 

In running our experiment on R* we did not create the 
entire database. Instead we simulated its presence by inserting 
appropriate parameters in the sycltem catalog, which is the 
source of information for the optimizer. 

5.2. Space of Semantically Equivalent Queries 

The first step in our experiment was to generate the 
entire space of semantically equivalent queries. This was done 
manually by applying rules R1 through Rs to Q,,. Actually 



Attribute for -Attributes for kelation Size 
Relation Attributes 

“~~~~+~ex s”c~~f:~~~~” (in tuples) 

ShipName, Owner, ShipType, ShipType, Owner, 
SHIPS Draft, DesdWt, Capacity, ShipName DeadWt 20,000 

Registry 

PORTS 
PortName, Country, Depth 

PortName ___ 
FacilitvTv- I,(@0 

Ship, Destination, Shipper 
XRGOES Car&oType, Quantity, Ship kstination, Insurance 25,000 

DollarValue. Insurance 

OWNERS 
OwnerName, Location, 

kssets. Business 
OwnerName Business 1,000 

Policy, Issuer. 
Coverage Policy ISSUW 25,000 

NSURERS 
Insurer, InsCountry, 

. . . Insurer 

Table 6.1 The Shipping Databaee. 

Fig. 6.1 Semantic Integrity Constraints. 

\15?.6 
---J ---__ 

I --IN 

,’ RZ 

. ..-- 

/Ri / 

- / \ 
\ \ 

\Rl \ 

Fig. 6.3 Space of Semantically Eguivaknt Queries. 

only rules R,, RP, Re and R, were applicable, giving rise to 
queries Qt through Q,s, which were all semantically 

The transitions between nodes in Fig. 5.8 represent the 

equivalent to Qc, 
transformations carried out, by rule applications. TWO basic 
inference rules, called clause introduction (CI) and clauec 

Fig. 5.8 shows the entire space generated, in which each elimination (CE) are used to carry out the transformations. 
node represents a semantically equivalent but syntactically 
distinct query. The clauses CI through Cs are as follows, Let, 

C,: (DeadWt > 400) A,B be distinct clauses, 

Cp: (ShipType = ‘SuperTanker ‘) and, (A -> B) be a rule. 

CI: (DollarValue > 4000) Now, 
C,: (FacilityType = ‘OffShore ‘) (cI): (A) and (A -> B) E (A) and (B) and (A -> B) 

C,: (Busineee = ‘Leaeing ‘) (CE): (A) and (B) and (A -> B) = (A) and (A -> B) 

Ca: (Zneurer = ‘Lloyde’) 
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powduro Semantic,Seorch; 
begia ‘/ initialization /’ 

loop l / termlnrk H Boundary,Nodcr is empty /’ 
adt 11 Bmmdary,Nodes = 0; 

‘/ choose most promising node from Boundary,Nodes /’ 
0d.d = {Qj I (Cd < 0.4))) j # I, Qj, Qt e BoundawJode8; 
*/ if better plan found then update Cp /’ 
if Cp > CE(seled ) then 
Cp:= C,(eelect); 

Boundary-N&n /’ 
y: Boundary_Nodes:=- Bowsdary_Nodea U {Qo,t Qrg ’ ’ . Qe,); 

l / estimate the promise of the newly added nodes /’ 
for i:= u,, ds, * . . sc do 

2: Run s conventional optimizer to evaluate C,(i); 
-*Pi 

end; 

Fig. 6.4 The Scorch Algorithm /or SQO. 

Rules like (A --> B) are integrity constraints of the system 
are all always true. Thus we are only interested in the clauses 
A, B, A and B, etc. 

6.3. Data Collection 

Each of the queries Qs through QIs was entered into the 
system in an interactive manner using SQL, and optimized by 
the I?* optimizer. The optimizer generates a number of query 
execution strategies (called query plans) and then attaches an 
estimated cost with each by using a cost model based on the 
the expected number of CPU instructions and page fetches. A 
detailed discussion of the cost model is given in[15]. The exe- 
cution cost estimates provided by the optimizer are dependent 
on the system configuration and thus we do not give any 
units. An elaborate description of the configuration and 
parameters assumed can be found in[15]. However, for our 
present purpose only their relative values are important. The 
data collected is shown in Table 5.2. 

Table 6.2 Stotieticcr from the Query Optimizer. 

6.4. Description of the Search Algorithm 

A description of our search algorithm is given below. 
9,‘s are used interchangeably for queries/ nodes. 

A further optimization is possible at statement 2 of Fig. 
5.4 above. All the different possible semantic transforms possi- 
ble from a given node will not necessarily lead to query plans 
with lower execution costs. It is often possible to identify with 

the help of a few heuristics, those semantic transformations 
which may lead to reductions in query execution time. By 
only utilizing the uecful semantic transforms at a given node, 
the computational efficiency of procedure ecmnntic search 
can be improved. This process of pruning the search space is 
termed as semantic pruning. 

6.6. Execution of the Search Algorithm 

The search algorithm described previously was hand- 
simulated on the graph shown in Fig. 5.8. The execution trace 
is shown in Table 5.3. An iteration of the algorithm is com- 
pleted when the condition in statement X of Fig. 5.1 is tested. 
Row i of the table corresponds to the state of the search algo- 
rithm after iteration i has just been completed. The costs 
included in Table 5.3 are only of the statements Y and 2 of 
Fig. 5.4, since other steps of the algorithm have negligible 
cost. 

All costs shown are in the same units, say milliseconds. 
The parameters p and r are defined as follows. 

p: Average cost of a single plan evaluation by the 
optimizer. 
r: Average cost of traversing an arc in Fig. 5.3, via an 
application of rule CA or CE. 

The values assigned to these parameters were p = 1 ma 
and r P 5 ma, assuming a 10 MIPS machine. A simple calcu- 
lation shows that this corresponds to 10,000 m/c instructions 
for evaluation of an average‘ plan, and 50,000 m/c instructions 
for an average arc traversal (logical inference). The derivation 
of the value of r also assumes that there are 100 rules in the 
database, which corresponds to 500 instructions on the aver- 
age for checking each rule, which involves patterns matching 
and some other work. These assumptions are quite reasonable 
according to current technology. 

Two criteria for stopping the search algorithm were dis- 
cussed above. We illustrate those in the context of the exam- 
ple, in following subsections. 
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Table 6.6. Execution o/Search Algorithm. 

6.6.1. Termination Critarion Cl 

The 6rst stopping rule terminates the search when the 
following condition becomes true. 

I(i) > y 

The stopping rule was examined for the values X = 2, 1, and 

f. The results are presented in Z’abIc 5.1. 

II Iteration x=2 X=1 
1 I ,i)=Cp 

# i)+t(i), i)+t i , 
A=+ 

III== 
i)+l(i 

1 10 605.7 615.7 AIS’I RIS 7 

II 3 i--i 
__. ._ 

188 127.0 I 

---.. V.“.. 

---- 224.8 224.8 
It I i & i __. 127 ._ n , 315.0 816.0 315.0 

1 486.0 486.0 4.3&o --_ .- 
127.0 

Table 6.4 Perjormancc of Criterion Cl. 

X = 2: The search stops after iteration 2 as shown in 

Table 5.1, since Cl evaluates to (76)(l) + (3)(s) > T => 

91 > 63.9, which is true. The optimization cost and best exe- 
cution cost estimate are, 

r(i) = 91 md; t(i) = 127.8 ms 

The bound of Theorem 1 is satisfied since, 
i +ti ’ =$+3 

+Pt) + +Pt) . 
- max(1 + 2,1+ $) 

X = 1: The search stops after iteration 3, since Cl evalu- 
ates to (163)(l) + (S)(5) > 127.0 => 188 > 127.0, which is 
true. The optimization cost and best execution cost estimate 
we, 

r(i) = 188 ma; t(i) = 127.0 mu 

The bound of Theorem 1 is satisfied since, 

X = +: The search stops after iteration 4, since Cl 

evaluates to (324)(l) + (7)(5) > s => 359 > 254.0, which 

is true. The optimization cost and best execution cost esti- 
mate are, 

I(i) = 359 ms; t(i) = 127.0 md 

The bound of Theorem 1 is satisfied since, 
i +li ) z&3C 

r(opt) + t(oPf) 
l1+ I) 

. 
max(1 + T 

G 
Thus we can see that stopping rule 1 is quite effective. 

Especially notable is the fact that even though we attempt to 
minimize a weighted sum of r(i) and t(i), and not t(i) alone, 

the value of t(i) obtained is actually quite close to the 
minimum. We believe a more careful analysis of the algorithm 
is required to explain this. 

6.62. Termination Criterion CB 

The second stopping rule terminates the search when the 
following condition is satisfied at any step, 

Reduction in t(i) < Optimization Coet 
At step 1 we have, 

Reduction in t(i) in step 1 

= 00 - 605.7 = 00 m.3 
Optimization Coat in step 1 
= (10)(l) = 10 md 

At step 2, 
Reduction in t(i) in etep 2 
= 605.7 - 127.8 = 477.9 md 
Optimization Cost in step .8 
= (66)(l) + (3)(S) = 81 ma 

At step 3, 
Reduction in t(i) in etep 3 
= 127.8 - 127.0 = 0.8 ms 
Optimization Coet in step 8 
= (87)(l) + (2)(5) = 97 ma 

Thus, the search stops after step 3, having incurred a 
total optimization cost of 188 me, and having generated a 
query execution plan with an estimated cost of 127.0 ma. The 
above analysis shows that stopping rule 2 is effective, since 
even for an interactive query (i.e. execute only once) the sav- 
ings obtained are 605.7 - (188.0 + 127.0) = 605.7 - 315.0 
~290.7 ma. If the query is to be executed many times the 
saving are even greater. 
6. Conclusiona 

The search space of execution plans for queries involving 
a many relations becomes large enough to make the optimiza- 
tion cost comparable to the execution cost. This problem is 
exacerbated during semantic query optimization, an approach 
to query optimization which is gaining popularity due to its 
potential for improvements beyond conventional methods. For 
interactive queries especially, the objective function to minim- 
ize is no more the execution time, but rather the response 
time, i.e. the sum of optimization and execution times. Since 
there exists no characterization for the optimal solution, clas- 
sical heuristic search techniques are inapplicable. We have 
presented a best-first heuristic search algorithm with termina- 
tion criteria based on utility theory, and derived an upper 
bound on the quality of solution it produces. Experimental 
evidence shows that in reality the algorithm does quite well. 
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Many issues and problems need to be resolved. Our 
bound for near-optimality of the tradeoff between semantic 
optimization quality of execution plan is not tight. In practice 
our stopping criteria seem to perform much better, and we 
believe that the bound can be improved. It is non-trivial to 
design an optimal search algorithm to minimize total query 
evaluation cost, without exploring the entire search space. It 
would be interesting to characterize special cases of the search 
space, for which optimal search algorithms are possible. 
Finally, performance of heuristic search based semantic query 
optimization needs to be evaluated in a real database environ- 
ment. 

There are other ways of improving performance of query 
optimizers, and research efforts also need to be directed 
towards better modeling of random events, underlying data- 
base organization and compile time events[ll]. 
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