
Mixed concurrency control : Dealing with heterogeneity

in distributed database systems

J.F. Pons and J.F. Vilarem
Centre de Recherche en Informatique de Montpellier

(universite de Montpellier II / UA-CNRS)
860, rue de Saint-Priest

34 100 Montpellier, France
EARN address : CRIM@FRMOPl l.BITNET

Abstract
A mixed concurrency control, which allows the two
techniques - two phase locking and certification - to coexist
together in the same distributed dambase system, proves to
be advantageous in a number of situations : interconnected
databases, static or dynamic heterogeneity of transactions
or objects. In this paper we propose a method which seems
well adapted to the majority of the forms of heterogeneity,
by using dynamic calculation of a serialization order and
concurrent control of all types of transactions.

- In the case of dynamic heterogeneity, the strategy used
by each site can vary in the course of time between a
pessimistic technique and an optimistic one. We can
therefore best exploit the dynamism of the system.

1. Introduction
The two classical concurrency control approaches are the
pessimistic approach, based on two phase locking (2PL).
well adapted where conflicts are quite probable, and the
optimistic approach whose efficiency relies upon the
scarcity of conflicts. A more recent approach, mixed or
heterogeneous, enables the use of the benefits of the two
previous approaches. As a result of these two classic
methods being together in the same system, a number of
advantages occur in different situations :

- In the case of interconnected databases with static
heterogeneity, a mixed control gives uniform access to
the different parts of the system which apply distinct
methods.

- When the transactions are typed (long/short,
reading/updating), we increase the parallelism by
allocating an adapted technique to each type of
transaction.
- Finally, when facing the heterogeneity in terms of
objects rather than in terms of transactions, we could
select the right compromise between locking and
rollback. That is, for conflicting objects we would use
2PL, whereas an optimistic technique would be used for
less sensitive objects.

In the literature, mnnerous studies connected to this subject
can be found, but to our knowledge there is no existing
mixed method which is satisfactory in a distributed
environment. The certification solutions proposed come up
against the following difficulties :

- To ensure the compatibility between heterogeneous
local orders, which causes useless rejection.
- The global distributed certification problem which
leads to the lowering of parallelism.

- All possible conflicts between different types of
transactions are locally handled. (These types are either
transmitted by the objects on the site, or inherited from
transactions).

In order to handle these problems more effectively, we
propose in this study a general method of distributed mixed
control, whose characteristics are as follows :

- No local total order is imposed. The local constraints
consistent with conflicts between transactions are taken
into account dynamically.

- Starting from the local orders, the method constructs a
global order in a non centrabxed way.
- In transferring the global order into the local
commitment phases - executed in parallel - the set of

This work was supported in part by the C3 project of the
Centre National de la Recherche Scientifique.

Proc&ings of the 14th VLDB Conference
Los Angeles, California 1988 445

all committed transactions does not have to be
explicitly considered~

This paper is organized as follows : In section 2 we present
the three approaches to concurrency control and the
problems caused by their distribution. Section 3 studies the
different heterogeneous situations and proposes some
adapted solutions. The rules of mixed concurrency control
are stated in section 4 and are then applied in section 5.

2. Background

2.1. Dependency graph
QDerations
The transaction model we are using was taken from
[Bernstein 811. The transaction has a private workspace.
The operations applied to object x are as follows:

- read(x) returns the value of a copy of x, if it
already exists in the workspace; otherwise it returns the
original value retrieved from the database.
- prewrite(x) expresses the intention of writing an
object x and transfers the value from the transaction’s
workspace into secure storage. Once a prewrite is
accepted, the corresponding write must not be rejected.
- write(x) effectively executes the transfer from
secure storage into the database. A transaction which
has finished, after a possible write phase, or commit
phase, is said to be committed.

From these primitive operations, semantically more
complex operations could be constructed.

Two transactions conflict if one tries to read (resp.
prewrite) an object already prewritten (resp. read or
prewritten) by the other. A conflict between two
transactions induces a constraint upon their respective
serialization order (SO), represented by a dependency
relation IPapadimitrioa 791.

Deoendencv era~h

The execution of a set of transactions may be expressed by
a dependency directed graph G, whose vertices are
transactions and arcs are dependencies induced by their
conflicts. This graph is the privileged theoretical tool for
the study of concurrency control. Let G* be the subgraph
of G restricted to all committed transactions with their
dependencies. All methods try to guarantee serializability
by keeping G* acyclic.

2.2. Concurrency control for distributed
databases
Pessimistic- .

Two phase locking [Eswaran 761 [Traiger 821 is widely
used for historical reasons and because it is well suited to a
distributed environment Mohan 841. It is the most typical
pessimistic approach : loss of parallelism is only justified
when conflicts are frequent. The 2PL method tries to
construct a global SO, starting with the local orders (one
per object) induced by the locking policy. When these
orders are inconsistent, 2PL leads to a deadlock the
prevention of which implies the predeclaration of used
objects, and the avoidance of which relies on the existence
of a global timestamp order, and the detection and
resolution of which require a search in G [Elmagarmid
861.

oath (or usine cert’fication) Eung 811
aum 841 [Sinha 85;

These methods exclude any kind of synchronization
involving read and prewrite operations; the control is
delayed until the certification phase, following the access
phase and preceding a possible commit phase. As these
methods only use backup, their efficiency depends on a low
conflict rate, contrary to pessimistic methods. Therefore
they are said to be optimistic: rejection is necessary only
in the worst circumstances. The major drawback of this
approach lies in the difficulty of its distribution. Indeed the
increase of parallelism during the access phase may well be
illusory if, in order to avoid inconsistencies, the method
induces an increased wait by imposing that transaction
certifications either be executed in mutual exclusion or in
the same order on all sites.

“Concurrent certification”, where several transactions are
running their certification/commitment phase on the same
site relies upon:

1) Dividing the certification/commitment phase into
three distinct a priori mutually exclusive phases, namely:
the local certification, related to the control of the
objects located on the site, the global certification,
executing the global control using the local control results,
and the local commitment-reject phase.

2) Taking into account the locally certified (or locally
controlled) transactions on the site, during the local
certification phase. In [Boksenbaum 853 it is shown that
assimilating a locally certified transaction with a
committed one is not enough to guarantee consistency
when local certification phases are executed in different
orders on the sites. On the contrary, as emphasized in
[Schlageter 821 and in bai 841, handling local certification
phases in the same global order - used as the SO - ensures
consistency.

446

However traditional mechanisms, based on timestamps or
circulating tokens which ensure such a global order, tend to
reduce parallelism. In practice, the very restrictive “same
order” hypothesis has to be removed. Proposed solutions
ale therefore as follows:

- To forbid concurrent certifications by rejecting a
transaction in its local certification as soon as there is a
conflicting transaction previously certified on the site.
- To act so that concurrent certifications of conflicting
transactions, when executed in different orders, produce
a deadlock [Ceri 823.
- To use a dynamic technique, based on intervals of
timestamps [Bayer 821 in order to translate
dependencies between transactions [Boksenbaum 871.

The aim of this recent idea is to make the previous
approaches coexist in the same system or method. The
different forms of this “cohabitation” are presented in the
next section. Historically, the basic ideas have been defined
for centralized systems in the following ways :

- In [Boral 841 the dependency graph is effectively
maintained in order to obtain a common “2PL-
certification” SO. Each type of conflict (read/write or
write/write) is resolved by one of the two techniques
(2PL or optimistic) either during the read phase, or
during the certification phase.
- In [Lausen 821 locking transactions are integrated into
the basic optimistic method of [Kung 811.

Distributed and integrated methods are rare. The difficulties
when adapting to a distributed environment lie in the
following facts :

- The use of the dependency graph presents a major
drawback : Each site has a local knowledge of the
graph, and a global decision produces a heavy load in
communication between sites.

3. Heterogeneity

447

- The distribution of Lausen’s method first requires that
the concurrent certification problem be correctly
answered. This is attempted in [Sheth 861; however, in
this method, the previous problem does not seem to be
solved : Concurrent certifications of conflicting
transactions lead to inconsistencies when executed on
different sites and in reverse orders.

Integration of locking transactions in a distributed
certification method - based on the acceptance of locking
transactions having reached their maximum locking point -
is covered in the method proposed in [Pans 881.

3.1. Static heterogeneity
We are interested in interconnected databases, which
historically differ by their transaction management [Gligor
853. The aim of a mixed control is therefore to allow a
uniform access to the different sites, which each apply a
distinct method. Within this framework, we regard a
transaction as a collection of local subtransactions - one
per site - scheduled by a coordinating site. The global
control of a transaction, as in the “superdatabases” from
[pu 871, supposes a unique protocol - such as two phase
commit - insuring global atomicity, and an explicit local
SO for each subtransaction.

The question is to guarantee a global serializability of
transactions from these local SOS. The resulting answers
are generally unsatisfactory or even incomplete. Two
examples are given below.
1) Ipu 871 proposes the following certification algorithm:
Firstly, a local phase exhibits a timestamp materializing a
local and total SO for each subtransaction. Secondly, in a
global and centralized certification phase, a global SO is
constructed as the product of all the SOS of the committed
transactions. A transaction is committed jf its tuple of
local SOS can find a place in the global SO, otherwise it is
rejected. The method is correct because - taking into
account all the dependencies between the unique
committing transaction and all the ones already committed
- it can detect any cycle in the global graph. The method’s
drawbacks include a) the difficulty to forget old committed
transactions, b) a bottleneck due to the mutually exclusive
centralized global control and c) useless rejection due to
unnecessary local ordering of non conflicting
subtransactions.

2) PZlmagarmid 87] proposes to enhance concurrency over
the previous algorithm, in releasing the local transactions
from the global centralized control. However, in spite of
this correct improvement, the method, using conflict sets,
takes into account the only direct dependencies between the
committing transaction and the committed ones. Thus it
forgets to control the transitive dependencies; so it forgets
a cycle involving the committing transaction and two or
more committed transactions.

In the general proposal of section 4, we present a new
distributed and mixed concurrency control applying to
static heterogeneity : Instead of a total SO leading to
global useless rejection, the local phase calculates the
strongest local constraints affecting a subtransaction ; then
these are sent to the coordinating site. Globally, but not in
a centralized manner, we construct a global SO from the

local constraints. This common SO is then carried out
upon the sites during local commitment phases.

3.2. Dynamic heterogeneity
In this approach, the concurrency control mechanism
should be a part of the software able to adapt to a changing
environment. Therefore the hypothesis of a static partition
between optimistic and locking sites should be removed.
As an example, in a dynamic hypothesis, if a site gets a
heavy workload during the day then it must use a
pessimistic algorithm ; otherwise, with decreasing activity,
this site may change to an optimistic algorithm during the
night.

In general, in order to best exploit the dynamism of the
system, each site would use a time variant strategy which
is able to switch between pessimistic and optimistic
mechanisms. The transition will occur on a site at a given
instant according to the degree of transaction interference
[Badal 841 [Sheth 861. The problem with this local
transition concerns the non committed subtransactions
living on the site at the switching time, as shown in the
next example :

switching time

i local commitment
; phase: ~WZA

i local control

*
T i

01 :

Some rough solutions consist of local rejection of the
subtransactions concerned (as TL2 or TL3 in the above
example), or waiting until they are committed before
starting new subtransactions on the site (as the ToiS). A
more flexible solution authorizes the concurrent execution
of heterogeneous subtransactions during a transient phase.
In this preferred solution, on the one hand a common SO
is needed on a site in order to globally control the
heterogeneity, on the other hand mixed conflicts have to be
locally managed in order to correctly process the transient
phase. In the above proposed example, in addition to the
conflicts related to committed transactions as TLI, the
mixed conflicts between TL2,Ta,T01 and T,2 have to be

controlled. Such a solution therefore appears as an
extension of the control we defined in 8 3.1. Indeed, when
this solution is applied to dynamic heterogeneity, mixed
conflicts are handled during the local control phase as
follows : Optimistic subtransactions, by using additional
control related to non committed locking subtransactions ;
locking subtransactions, by using additional waiting related
to locally controlled optimistic subtransactions.

However, this time variant strategy, though dynamic,
implies a unique type for each subtransaction to be
executed on the same site at a given instant. This is not
RiGStiC.

3.3. Per transaction heterogeneity
In a dual approach, the degree of interference is not
measured in terms of conflict rate on the site, but in terms
of probability of transaction conflict. Heterogeneity is then
related to transactions, which are typed either optimistic or
locking, according to the principles of [Lausen 821 and
[Boral84]. For example, a long updating transaction with
a great probability of conflicts will be processed using
2PL, while an optimistic control is better suited for a short
reading transaction. At its beginning, a type is allocated to
a transaction either in a static way by using the type and
the frequency of conflicts predicted by the transaction, or in
a quasi dynamic way by incorporating some run-time
parameters connected to the dynamism of the system
[Boral841.

Dealing with this heterogeneity, a method must ensure
a global distributed control. and must correctly handle
mixed conflicts between subtransactions. Moreover,
sufficient parallelism has to be allowed by concurrently
controlling several transactions on a site. Transaction
heterogeneity in some way generalizes the dynamic site
heterogeneity of 0 3.2 : Whereas in 4 3.2 mixed conflicts
must only be processed in the transient phase,
subtransactions of different types are now present at any
given instant on the site.

The principles of this mixed approach, further detailed
in section 4, are the following : At first, existing
applications which are based on homogeneous control,
must behave in the same way when changing to a mixed
control. Secondly, an optimistic transaction must not wait
during its read phase and may be rejected in its certification
phase. Finally, a locking transaction reaching its
maximum locking point (mlp) must commit. Otherwise
locking and optimism would make no sense.

As in 0 3.2, the overhead caused by mixed conflicts
consists of extra waiting for locking subtransactions, and

448

also of additional - possibly rejecting - control for
optimistic subtransactions. Such a method will be useful
in systems where the predictions of conflicts occurring on
a site are easy, and the choice of each transaction type is
unquestionable.

However, in general distributed systems, such
predictions are not easy, and errors are expensive. Thus,
following the conclusions of [Kung 811, CLausen 821 and
[Herlihy 863, in order to obtain the right compromise
between waiting and rollback, 2PL or optimistic
techniques are most likely to be useful when applied to
individual objects rather than to transactions or entire
systems.

3.4. Heterogeneity of objects
Let us first show, with an example, that efficiency of
locking or optimistic techniques depends on the
distribution of the conflicts in a complex manner.
Let Tl,. . .Tn and Ul,. . .U, be transactions such that :

Vi Ti reads or writes some objects Xik E X, then
sequentially updates the objects y and z :
J’ := y + 2 Xik ; Z := Z + C Xik.

k k

Vj Uj reads objects in X.
It is supposed that all objects in X are “quiet” (with a low
rate of conflicts), and that y and z are “sensitive” (with a
high rate of conflicts). A concurrent execution of
transactions Ti, Uj could be :

-J-l T2 T3 Ul

prewrite(xi)
=ad(x2)
prewrite(x3)
read(x4)

r&t x5 i
preWde(X6)

=W x7 1
r=d(x2 1

.

UpdaH Y >

.

r=d(XI 1
. . . .

UpdaM Y 1

r-N x2 1

449

rt-=-l(x3 1
r=d(x6)
commit

.

UpdaM z 1

- If locking is the policy used by the whole system,
then U1 is prevented from access to objects X~ previously
written by non committed transactions Tl and T2. This
causes useless waiting since Ul (in general Uj) could
commit before the transactions Ti, by preceding all of
them in the SO.

- If an optimistic method is used by the whole system,
the concurrent processing, by the transactions Ti of y and z
updates, leads to rejection which could be prevented
using locks, since y and z updates are processed in the
same order. In this example any of the optimistic
commitment of Tl, T2 or T3 would lead to the rejection of
the other two.

- If locking is used for the transactions Ti, and an
optimistic method is preferred for each Uj, then
parallelism is reduced for the transactions Ti when having
access to the X~ objects. In this example, T3 is blocked
when reading xl, until Tl releases its exclusive lock.

- Finally, if the system uses locking on objects y and z
in order to prevent high risk conflicts, and if it uses an
optimistic method for the objects in X in order to control
low risk conflicts, then it exploits the efficiency of each
technique.

In this last case, the objects are partitioned between
locking - L type - and optimistic - o type - objects. We
again come across the description of static heterogeneity,
but with a smaller granularity : an L type site (resp. an o
type site) is here replaced by the set of objects of the same
type on a site. Thus a subtransaction T, executing on a
site s, is seen as a pair of subtransactions (ToS. T&. As
the local partition is static, no mixed conflicts have to be
handled, so the control of static heterogeneity can be
extended here.

From a more general point of view, objects may
dynamically change their type. In a similar way, the
control used in dynamic heterogeneity of sites could be
extended to this last situation. The switching of an object
from one type to another needs a transient phase in order to
control all the conflicts between different components of
subtransactions.

4. Proposals for a distributed mixed
method

4.1. Transaction model
With respect to atomicity, we model the execution of a
transaction with two phases: During the first one, the
transaction reads objects, announces its write intentions
with prewrites, and controls the correctness of its
operations upon the database. During this read/control
phase a transaction runs using a private workspace, its
prewrites are performed within a secure storage. The second
commitment phase is used to make the effects of the
transaction on the database permanent.

f

Before the commitment
~conuolphase point, the transaction has no

commitment effect on the database.

point . After this point, the

commitment phase
transaction atomicity depends
on the commitment phase
atomicity, which is permitted
by the use of secure storage for
prewn’.tes.

In order to distribute this model, the transaction has a
coordinating site, which coordinates parallel executions of
its subtransactions on different sites. The local read/control
phase is divided into a read phase according to the
subtransaction’s type, and a local control phase which
calculates the strongest local constraints bearing on the
subtransaction and which sends this result to the
coordinating site. When all these messages are received a
synchronization point is reached. It is used both to execute
a global control phase on the coordinating site, and to
ensure that a transaction could not appear at the same time
already committed on a site as well as in its read/control
phase on another site. The results of the global control are
broadcasted to the concerned sites which then execute a
local commitment phase. The following figure illustrates
this transaction model:

local control

coordinating remote
site sites

D-w transaction model

Remarks :

450

maximum
i&king point
. commitment
point

- In general a subtransaction T,, running on the site s, has
a single type, either inherited from the transaction or

transmitted by the site S, depending on the concerned
heterogeneity. However, in the case of the heterogeneity of
objects, T, is made of two components (To, , TtJ; the
local controls of To, and TL~ and their integration are
promsed during the same local control phase.
- It is noted that a sequential execution of the read phase,
needed for an interactive transaction, is a particular case for
the parallel model presented here.
- In the case of a local transaction which executes on a
single site, the GC phase merges with the LC phase, thus
releasing this kind of transaction from any global control.

4.2. A method which is independent of the
dependency graph
4.2.1. Sequential control
Definition 1 : A serialization order (SO) is a total order
among committed transactions which is consistent with
the dependencies induced by their conflicts. If we note
TF + T; such a dependency, then SO verifies :

VTf,T$ E G* TF + T; * Ti s<o Tz .

In general, concurrency control methods apply a
serialization criterion, which controls whether or not a
serialization order exists.

Theorem 1 : A serialization order exists iff G* is an
acyclic digraph.

We have seen in section 2.2 that it is not realistic to
manage this graph in a distributed environment. So most
of the traditional methods control the existence of a SO,
which could either be a priori defined (in times-tamp
ordering methods) or attempted to be established during
access (in 2PL methods). In our method, as in
[Boksenbaum 871, the SO is dynamically constructed
without using the dependency graph.

First, we present a sequential construction of the
SO, controlling and possibly committing a single
transaction T at a given time. Let G% be the extension of
G* obtained in adding the vertex T and the set of arcs
meaning Ts conflicts with committed transactions. Let SO
be the total order constructed by the method and related to
the acyclic G*.

Definition 2 : An extension of SO induced by T is a
total order SOT defined on G$ and verifying:

V$,T;E G*:
(restriction) Tf & Tz - Tlsc+ 2 * < T*

(new arcs) Ti+T+Ti &T

T+T;-T&T;.

Proposition 2 : If SOf exists then G$- is an acyclic
digraph.

The aim of this sufficient condition is to allow the SO to
be incrementally consrructed, without searching for any
cycle in G$ while controlling a transaction T. This
construction consists in inserting T in SO, if possible. To
do so, we express the strongest constraints bearing on T.
The resulting serialization criterion comes from the
following theorem:

Theorem 3 : Let T’ = sups0 (Tr I T* + T), and
T+ = infso (T* I T + P).
SOT, extension of SO exists iff T - < T+. s0

Proof : Let SR, extension of SO, exist. Let TF, Tz E
G* such that Tf + T and T + Tz. Suppose TT $, T;.
Then, using definition 2 : TF & T, T $$r Tz and TT &
Tz which leads to a contradiction. Thus V Ti ., T; E G* :
Ti + T and T + Tz 3 Tf & T$ implies T- &
T+. Conversely, suppose SO is a serialization order and
T’ & T+ , then Se constructed by inserting T in SO in
any place between T- and T+ is obviously an extension of
SO induced by T. 0

The advantages of the method arc:
- It memorizes a total order, thus excluding the need of
a global use of G*.
- It may forget old transactions. For example, let x be
an object written by committed transactions such that
Ti +x T$ +x . . . * * 3 x Tn. In SO we have T1 c
. ..c Ti, and, through a further read access from a
transaction T, only T;“; +, T is needed.
- Its natural distribution : when the database is
partitioned, usually in sites, the control, is easily
distributed. Locally, for each site s it calculates :

Tl =supso(T*I P+x T;XE s),and
T~=infso(T*I T+x T*;xE s).

The global control is : supgo(T’;Z ; s E’ sites) c
infso(c ; s E sites). It assumes that each part uses
the same global order SO. This local knowledge is a
result of the local commitment phases of successful
globally controlled transactions.

451

In the next section we study a way of increasing the
parallelism, through permitting many transactions to be
concurrently controlled.
4.2.2. Concurrent control
De case of non conflicting: transactions

Suppose there is a sequential control of two non
conflicting transactions T1 and T2, and suppose T1 is
committed before T2 is controlled. The sequential control
constructs S@l, then, in order to control T2 it calculates
infsoTl(T* I T2 -+ T*) and SUpSOTl(T* I T* 3 Tz).
As S@l is an extension of SO, and T2 has no conflict
with T1 we deduce that : infso(T* I T2 + T*) =
infSoTl(T* I T2 + T*) (same applies to sup).
Hence , a sequential control behaves like a parallel one
when COnStrUCtiIIg S0~1T2. This parallelism applies t0

any number of non conflicting transactions.

The case of conflicting transactim
If conflicting T1 and T2 are controlled in parallel, one may
construct a total order which is incompatible with the
dependencies induced by their conflicts, thus leading to
inconsistency. We show in section 2 that a medium exists
between this inapplicable parallelism and the mutual
exclusion of a sequential control. This medium relies upon
the notion of a locally controlled or a locally certified
transaction, i.e. a transaction which has successfully
checked the local criterion TH c c . Using this notion,
the method must take into account the locally controlled
(not yet committed) transactions. The mutually exclusive
local phases arc executed in parallel on different sites.

Considering this parallelism, we define the principles of
concurrent control :

Let T1 be a transaction running its local control on a
site s including an object x concurrently used by a
transaction T2 :
- If T2 has already been committed, the sequential
control is then applied.
- If T2 is locally controlled, we know the results of this
phase, namely : Tcs < T&. If the dependency is
T1 + x T2 then we add the fictitious arc
T1 + T;s ; otherwise we add T& + T 1. Next,
we run the local control with this extra arc.

Theorem 4 : Using the principles of concurrent control,
the method is correct.

Proof :Indeed, a successful concurrent control with two
transactions whose dependency is T1 3x T2, constructs
an order S@lT2 which is consistent firstly with G*,
secondly with the arcs between T1 or T2 and committed
transactions, and finally with either T1 + TFs or
TL + T2 (depending on the order of the local controls
of TI and T2 on the site s). Hence, in S@lT2, either
T1 < TTs < T2 or T1 c TL < T2 stands, which proves
this total order is consistent with T1 -+x T&l

Remarks :
- These principles apply to any number of transactions
having any number of conflicts between them.
- The accuracy of the concurrent method does not depend on
the order of the local controls. This interesting result gives
a solution to the problem of concurrent certifications we
have seen in 8 2.2.
- Where T1 +x T2. T1 has been locally controlled
before T2 on the site s including x, and Tl+s does not
exist, the method will reject T2 . During Tl ‘s local
control, an “improvement” consists of forcing T1 to
precede a committed transaction. This kind of “forward
control”, as defined in [Haerder &t] is obtained by adding a
fictitious arc, at the risk of rejecting T1 during its global
control. Another way to avoid T2’s rejection is to suspend
its local control until T1 be committed or rejected.
4.2.3. Applying the method to the static
heterogeneity of sites or objects
In this case, no mixed conflicts have to be handled.

- Let Ts be a locking subtransaction of T on a locking
site s. It conflicts solely with locking subtransactions.
Since (T* IT*+ T*) = () when2PLisused.thelocal
control is limited in this case to the calculation of T,.

- Let Ts be an optimistic subtransaction of T on an
optimistic site s. It conflicts solely with optimistic
subtransactions. During Ts’s local control phase, the
controued dependencies are:
T,* + Ts or Ts + c (the latter resulting from the
effects of the commitment of To on T,)
Also, with respect to locally controlled P,, Ts + g or

G + Ts are taken into account by adding the
corresponding fictitious arcs Ts + Tis or T& + Ts,
according to the principles of concurrent control.
The local control calculates Ti and q . If Ti < T$
then To is considered as locally controlled on the site s.

452

- In the case of heterogeneity of objects, a
subtransaction Ts is made of two heterogeneous
subtransactions T,, and TL~ . The local control of Ts
merges the local controls of T,, and Tb.

The global control of a transaction T, after having received
the results of the local controls of all its subtransactions
calculates T- = sups& Ti ; s E sites), and e = infSo(
T; ; s E sites). If T’ 2 T+ then T is rejected; otherwise
a global total order is constructed, where T- < T < ?-c.
The effects of this global phase take place during local
commitment-rejection phases.

4.2.4. Extending the method to mixed
conflicts : per transaction heterogeneity
In this case a typed transaction To (resp. TL) is made of
subtransactions of the same type T,, (resp. Tb) running
on different sites s. A principle of the method is to
commit a locking transaction which has reached its mlp,
otherwise locking would make no sense. To do so, we
keep the following sufficient proposition invariant :

Proposition 5 : For each committed transaction T*, and
for each locking transaction TL which has reached its mlp :

(Y is not conflicting with TL or T* + TL)
ea ((T* I TL + T*) = (I).

Consequently, TL may be inserted into the constructed SO,
and can then commit. The additional control, due to
keeping this property invariant, is transferred to optimistic
subtransactions.

. . smistic -T,
The controlled dependencies are similar to those in section
4.2.3 applied to conflicts with committed or locally
controlled transactions. Nevertheless, a special treatment is
needed to keep proposition 5 invariant :

TL+ To or Tt + To implies the rejection of To.

The local control on the site s calculates T,‘,, T& and (TL
e G*ITLjXTo;x~ sites). If T& CT:. and
(TL e G* I TL + x To ; x E site s) = () then To is
considered as locally controlled on the site s.

The global control calculates T,‘, ‘I;: and (TL e G* I TL
+ T,).IfT,‘r ?;:or(TLZ G*ITL+ T,)#()
then To is rejected; otherwise a global total order where
Ti < To < ‘I;: is constructed. The effects of this global
phase take place during local commitment-rejection phases.

ControlllnnTloclunn
If we consider the sequential method, a transaction TL
having reached its mlp is controlled with respect to
committed transactions. Using the concurrent method, we
must enforce additional control in order to consider locally
controlled optimistic transactions. Bearing in mind that a
locally controlled optimistic transaction could not be
rejected, and that a locking transaction TL, which has
reached its mlp, would not be rejected, the dependencies
controlled on the site s are:
- P -+ TL (a consequence of the proposition 5 and of
lockingpropelties)
- With respect to a locally controlled optimistic
subtransaction P, :

- c -+ TL : If To+s exists, as a result of the local
control of To, then Tt -+ TL is changed into

T& + TL according to the principles of the
concurrent method. Otherwise, the local control of TL
is suspended until To is committed or rejected.
- TL + T z cannot occur. Indeed, if TL has used a
conflicting object before the local control of T, then
T,, would have been rejected, otherwise, if To has been
successfully controlled on the site s, it locks each
prewritten object, thus preventing these dependencies.

The local control on site s is the calculation of T,. ’

The global control of T. is limited to the calculation of
T- . and the construction of a SO where T’ < TL. The
effects of TL on the database and the new SO are carried out
during the local commitment phases.
4.2.5. Dynamic heterogeneity of sites
In this case T is made of subtransactions of different
types. If the site s is in its transient phase, then the
subtransaction is controlled according to the policy ruling
the mixed conflicts. Otherwise, the site is in a single type
phase, and we use the policy ruling the static
heterogeneity. Globally we merge the different local
controls.

In the case of dynamic heterogeneity of objects, each
subtransaction Ts is made of two heterogeneous
subtransactions Tos, TL~ . First the local control of Ts
merges the usual local controls of T,, and Tb. then the
global control merges the different local controls.

Conclusion : Applying the sufficient serializability
criterion from theorem 3, we construct a total order of
committed transactions consistent with their conflicts, thus
guaranteeing the accuracy of the method.

It is noted that the treatment of mixed conflicts balances
the overload of the method between an additional waiting
for the locking subtransactions and more rejection for the
optimistic ones. In a previous paper [Pons 881, we
proposed another strategy in which the additional burden
was only born by optimistic subtransactions, which
execute a forward control during their local phase. Locking
transactions gained an advantage from this strategy, but a
major drawback of this proposal was the useless rejection
of optimistic transactions.

5. Implementation of the method

5.1. Timestamps and intervals
In order to forget graph G* and its partial or&r, a global
and total order of committed transactions which is
consistent with G* is computed. The rank of a committed

transaction T* materializes through a positive numerical
timestamp t(r*), computed during the global phase. As the
timestamp order is a SO, it verifies :

Vfl,T$ TF3Tz * t(Ti) < t(T$).

The serialization criterion obtained by checking the
theorem 3 is as follows :
sup (t (T*) I T* + T) < inf (t (T*) 1 T + T*).

This criterion is naturally implemented by means of the
timestamp interval technique. The global interval IG(T)
associated with a transaction T is of the form [lower(T) ;
upper(T)], where lower(T) = sup(t(T*) I T* + T) and
upper(T) = inf(t(T*) I T + T*) represent the strongest
constraints between T and already committed or
concurrently controlled transactions. The serialization
criterion then changes as follows : IG(T) must neither be
empty nor reduced to one element, i.e. 1 IG(T) 1 > 1. Any
timestamp in IG(T) can express T’s rank in the constructed
SO. The distribution of the method is expressed by the
local intervals I(T,S), each of them representing the
strongest local constraints affecting the subtransaction of
T on site S. The calculation of the global interval is then :

IG(T) : = n I(T,S)
SE sites used by T

Local interval maintenance relies upon the principles of the
concurrent control. Let us call “living” a not yet locally
controlled subtransaction. Let T1 be living, Tl be locally
controlled and Tg be committed, all of them in conflict on
site S of x.

-A dependency of the form T1 +x Tz
(resp. T; +x Tt) must be translated into :
upper(ICrl 9 S)) g t(T;)
(rem lower(I(Tl , S)) 2 t(6 1).

-A dependency of the form Tt +x a
(resp. T$ +x T1) must be translated into :
upper(Ui , S) 1 s lowe.@ Q . S) 1
(req. lower(I(T1 , S)) 2 upper(I(TT . S) 1).

Therefore, the local interval I(Tl ,S), initialized to 10 ;+ 4
(no conflict), will have to be truncated to the left (resp. to
the right) during the different phases of T1 on site S.
Contrary to most optimistic methods this technique
permits the presence of “old readers” such as Tt ; this is
achieved by the handling of Tt + T; or Tt --) Ti
dependencies. During the local commitment phase, the
global order is carried out on the objects used, by means of
the timestamps W(x) and R(x), from the most “recent” - in
the SO - transactions that have written or read x. We notice
that, in the case of a locking transaction TL having reached

453

its mlp. the proposition 4 stated in 9 4.2.5 implies :
lG(TL)andVS l(TL,S)areoftheform[a,+-[.

5.2. Detailed model
5.2.1. Objects and transactions
In order to simplify the notations, our model assumes that
only one object is managed on a site, but it easily applies
to the most general case : The set of objects managed by
the site replaces the single x.

Therefore, we have lG(T) = n l(T,x)
XE objects used by T ’

The “object-site” model is composed of :
- A global name x.
- A type - locking or optimistic - which is transmitted,
in the case of the heterogeneity of objects, to the .
subtransaction when it first had access to the “object-
site”. In the case of the heterogeneity of transactions,
the subtransaction’s type is inherited from the
transaction.
- Data structures related to the accesses : The value of
x, the timestamps W(x) and R(x), the shared and
exclusive locks with their queues.
- Data structures required by the local control phase :
The name T, the type, the status - living or locally
controlled -, the access type - read or write -, and its
local interval l(T,x) are managed for each non-
committed subtransaction which had access to the
object.

The transaction model we use has a coordinating site and
several remote object-sites ; it corresponds to the integrated
figure of 8 4.1, and is composed of the following phases :
the local read phases LR(T,x), the local control phases
LC(T,x), the global control phase GC(T,x), and the local
commitment or rejection phases LM(T,x).

LRfl.x> Dhases : The control of locking subtransactions
is limited to the acquisition of the locks ; management of
their intervals is not required. Concerning optimistic
subtransactions, we will see later on that only read access
requires an update of the local intervals.

LC(T.x) Dhm Each phase includes :
- Controls connected with committed transactions :
Strongest constraints between T and committed
transactions are handled by truncating l(T,x) to the left
with respect to W(x) or R(x) according to T’s access.
- Controls connected with living or locally controlled
subtransactions :

If optimistic T sees a locking and non committed TL
(or Tt) such that TL + T or Tt + T, then T must

be rejected by setting l(T,x) to the empty interval; other
conflicts with locally controlled subtransactions are
taken into account by truncating l(T,x).
If locking T sees an optimistic locally controlled c
such that p, + T, then :

If l(l$, x) is bounded then l(T,x) is truncated to the
left according to upper(l(rO , x)) ; otherwise -
upper(KC , x)1 = += - LC(T,x) is suspended until
To is rejected or committed . Then l(T,x) may be
truncated to the left according to t(Ta).

At the end of this phase, if 1 l(T,x) 1 > 1 then T is
considered as locally controlled (let us recall that x is
locked when prewrltten by an optimistic locally controlled
transaction).

GCX’I? phase ; The control is processed on the coordinating
site, after receiving all the l(T.x) from the concerned sites.
The global decision leads to a rejection or a calculation of a
timestamp in lG(T). This result is then broadcasted to all
sites concerned.

LMrT.xl Dhases ; During this phase the following actions
take place : In case of commitment, the timestamps W(x)
and R(x) are updated and write operations are performed, the
intervals of old optimistic readers - T, such that
To + T* - are truncated to the right. In any case,
commitment or rejection, locks are released and local data
structures related to T are deleted.

Parallelism on the site
Each of the LC or LM phases, as well as each read or
prewrite operation of the LR phase is considered a priori as
atomic. Since critical data structures are involved, each
phase or operation of a transaction must be executed in
mutual exclusion of any other phase or operation of a
different transaction. We notice that a more precise study
would allow increased parallelism on the site by dividing
LC and LM phases. For example, a site may execute in
parallel the LM phase of a writing transaction and the
prewrites - in LR phases - of another one ; on the contrary,
read operations must not interfere with an LM phase. The
global GC phase, which only depends on a fixed set of
intervals, and does not modify any of the critical data
structures, may be processed in parallel with any other
phase or operation.
5.2.2. Conflicts and control
In the following, each dependency is labelled with the
related conflict.
Write conflicts (PP or WP\ The processing of these
conflicts is taken from pans 863 : When timestamps are
used to express the SO, it is possible to constrain the

454

timestamped write operations, and thus the transactions, to
conform to the SO. This is done .by forgetting a “late”
write operation : If t(T1) c t(T2). and if Tt writes after
T2, then Tl’s write is ignored, providing that the concerned
read operations are involved (Thomas’ rule).Using a
common SO for all the transactions, this permits the
existence of “old writers” whose serialization order is
different from their writing order in the local commitment
phase. This application includes the conflicts between
locking transactions.

Implementation : The PP conflicts between living or
locally controlled transactions are not considered. Thus.
write locks only conflict with read locks, and no deadlock
can result from PP conflicts. During the local certification
of T which has prewritten x, the method considers the
dependencies Tg wP, x T related to all the committed
transactions which have written x, using the truncation to
the left : I(T,x) := I(T,x) n [W(x) ; + = [. During the
LM(T,x) phase, if t(T) > W(x) then T effectively writes
x and W(x) := t(T) ; otherwise, the writing is ignored.

Remark : This is not a strict application of Thomas’
rule. Using the strict application, the method would ignore
the WP conflicts too. Thus it would put old transactions
at an advantage, nevertheless it would lead to
systematically ignoring acceptable write operations.

Read-write conflicts IRP or WR or RWl
- Between living transactions : The only executed control
uses locks. It takes place during the LR phase for locking
transactions.
- Between a living transaction T and a committed
transaction Tg : If T has prewritten x, Tg R_P, x T is
considered using a truncation to the left (as in WP
conflicts) during the LC phase; otherwise, if T has read x
then :

- When T is optimistic, Ti “4 x T is controlled
using a truncation to the left during the LR phase.
Furthermore, when a writing transaction Tk is
committed after T has read x, the dependency
T R*x Tg is carried back to T using the truncation to
the right I(T,x) := I(T,x) n [0 ; t(Tc)] during the
LM(&,X) phase. This technique controls old optimistic
readers, without necessarily rejecting them.
- When T is locking, the control prevents T sP,x Tc
dependencies. If Tk is a locking transaction, such a
conflict is prevented by the locking policy ; otherwise,
if Tk is optimistic, this conflict CannOt occur, either
because Tk has been rejected during its LC phase, or Tk

has been successfully controlled, and T is blocked until
Tk is committed or rejected (5 4.2.5).

- Between certifying transactions : During its LC phase, a
transaction T (noted TL or T,), which has ended its LR
phase, sees that a transaction p (noted TL@ or Tt) is
already locally controlled, but not yet committed.

- TL~!!!$ G cannot occur.
- TL “-, Tt and Tf %!$ TL are prevented using locking
policy.
- Ti w+ To causes To to be rejected
- Y0 RP, TL and ‘I;: RP, T, are controlled through a
truncation to the left of the local interval of TL or T,
referring to the upper boundary of I(p, , x) :

I(T.x) := I(T,x)n[uppert I(G,x));+=[.
The particular case where I(V, , x) is unbounded
leads to the rejection of T, or to the delay of the
local control of TL until Tg is committed or
re’ected,

BP -To 3Tf andT, RAc are controlled through a
truncation to the right of T,‘s local interval referring to
the lower boundary of I(T@ , x) :

I(T(J ,x) := I&,x)n[0; lower(I(T’,x))].

6. Conclusions
In a distributed system, when a mixed concurrency control
is applied, this poses a difficult problem : How to
guarantee global serializability from a set of
subtransactions controlled by different techniques. The
practical solutions proposed in the literature are often
limited :

- On a site there is only one type of technique. This
permits interconnection of existing databases to be
dealt with, but this is not sufficient to manage a more
dynamic heterogeneity.
- Each site uses a total SO, thus leading to useless
rejection.
- The compatibility of the local SOS is realized during a
global centralized control phase, thus limiting the
parallelism.

In order to rectify these limitations, we have proposed a
new approach, relying on the following ideas :

- Principles dealing with distributed concurrent
certification.
- Extending these principles to the local management of
mixed conflicts, and defining a general distributed
mixed method.

The most significant features of the method are :
- The global transactions do not need centralized
control. A global - multisite - transaction certification

involves only the concerned sites. The set of all
committed transactions does not have to be explicitly
considered. Therefore, the monosite transactions are
only controlled locally.
- An increase in parallelism obtained from the
processing of local certification with several
subtransactions being controlled on the same site.
- A decrease in rejection rate obtained by replacing the
local total order by weaker constraints.

Finally this method supports the dynamism needed in
general purpose distributed systems :

- A “per transaction” heterogeneity allowing the
applications to select, in an adaptive way, the type
allocated to their transactions.
- A “per site” heterogeneity, which could even be “per
objects”, permitting either pessimistic or optimistic
techniques to be applied, in a time variant strategy,
depending on both when and where they will be most
effective.

References

[Badal 841 Badal D.Z. and McElyea W..“A robust adaptive
concurrency control for distributed databases”, in Proc.
IEEE INFOCOM 84, April 1984, pp. 382-391.

[Bayer 821 Bayer R., Elhardt K.. Heigert J. and Reiser A. ,
“Dynamic timestamp allocation for transactions in database
systems”, in Proc. 2nd Int. Symp. Distributed Databases,
1982. pp. 9-20.

[Bernstein 811 Bernstein P. and Goodman N.
“Concurrency control in distributed database systems”:
ACM Comput. Surveys, vol. 13, no. 2. pp. 185221, June
1981.

[Boksenbaum 841 Boksenbaum C.. Cart M., Fen% J. and
Pons J.F., “Certifications by intervals of timestamps in
distributed database systems”, in Proc. 10th Int. Conf.
Very Large Data Bases, 1984. pp. 377-387.

[Boksenbaum 851 Boksenbaum C., Cart M., Ferric J. and
Pons J.F., “Concurrent certifications in distributed database
systems”, in Proc. 8th Int. Comput. Symp., 1985, pp. ll-
19.

[Boksenbaum 871 Boksenbaum C.. Cart M.. Ferrid J. and
Pons J.F., “Concurrent certifications by intervals of
timestamps in distributed database systems”, IEEE Trans.
on Soft. Eng., vol 13. no. 4. April 1987.

[Boral 841 Boral H. and Gold I., “Towards a self-adapting
centralized concurrency control algorithm”, ACM Sigmod
Rec., vol. 14, no. 2, pp. 18-32. June 1984.

[Carey 831 Carey M.J.. “An abstract model of database
concurrency control algorithms”, in Proc. ACM-SIGMOD
Int. Co& Management of Data, 1983. pp. 97-107.

[Ceri 82J Ceri S. and Owicki S.. “On the use of optimistic
methods for concurrency control in distributed database
systems”, in Proc. 6th Berkeley Workshop Distributed Data
Management and Computers Networks. 1982. pp. 117-129.

[Elmagarmid 861 Elmagarmid A.K., “A survey of distributed
deadlock detection algorithms”, SIGMOD RECORD, vol.
15, no. 3. pp. 37-45. Sep. 1986.

[Elmagarmid 871 Elmagarmid A.K. and Leu Y., “An
optimistic concurrency control algorithm for heterogeneous
distributed database systems”, Data Engineering, IEEE
bulletin, vol. 10, no.’ 3. pp. 26-32, Sept. 1987.

[Eswaran 761 Eswaran K.P.. Gray J.N., Lorie R.A. and
Traiger I.L., “The notions of consistency and predicate
locks in a database system”, Commun. ACM, vol. 19, no.
11. pp: 624-633, Nov. 1976.

[Gligor 851 Gligor V.D. and Popescu-Zeletin R.,
“Concurrency control issues in distributed heterogeneous
database management systems”, Distributed Data Sharing
Systems, Elsevier science Publishers (North-Holland), pp.
43-56, 1985.

[Haerder 841 Haerder T., “Observations on optimistic
concurrency control schemes”, Inform. Syst., vol. 9, no.
2, pp. 11-120, 1984.

[Herlihy 871 Herlihy M., “Optimistic concurrency control
for abstract data types”. ACM Operating Systems Review,
vol. 21, no. 2. April 1987.

[Kung 811 Kung H.T. and Robinson J.T.,“On optimistic
methods for concurrency control”, ACM Trans. Database
Syst., ~01.6, no. 2, pp. 213-226, June 1981.

[Lai 841 Lai M.Y. and Wilkinson W.K., “Distributed
transaction management in Jasmin”, in Proc. IOth Int.
Conf. Very Large Data Bases, 1984, pp. 466-470.

[Lausen 821 Lausen G., “Concurrency control in database
systems: a step towards the integration of optimistic
methods and locking”, in Proc. ACM Conf., Oct. 1982,
pp. 64-68.

[Mohan 841 Mohan C., “Recent and future trends in
distributed data base management”, in Proc. of NYU Symp.
on New Directions in Data Base Systems, 1984.

[Papadimitriou 791 Papadimitriou C.H., “Serializability of
concurrent updates”, J. ACM, vol. 26, no. 4, pp. 631-653.
Oct. 1979.

[Pons 861 Pons J.F., “Contile de la cohkrence des acds
aux objets dans les systemes r6partis: Application des
rbgles d’bcriture recouverte.“. These de Doctorat,
Montpellier 1986.

[Pons 881 Pons J.F., Vilarem J.F., “A dynamic and
integrated concurrency control for distributed databases”, in
Proc. 3rd Int. Co@. on Data and Knowledge Bases, 1988.

[Pu 871 Pu C., “Superdatabases : transactions across
database boundqry”. Data Engineering, IEEE bulletin, vol.
10, no. 3. pp. 19-25. Sept. 1987.

[Schlageter 821 Schlageter G.,“Problems of optimistic
concurrency control in distributed database systems”, ACM
SIGMOD Rec., vol. 12, no. 3, pp. 62-66. Apr. 1982.

[Sheth 861 Sheth A.P. and Liu MT.. “Integrating locking
and optimistic concurrency control in distributed database
systems”, in Proc. 6th Int. Conf. on Distributed
Computing Systems, 1986, pp. 89-99.

[Sinha 851 Sinha M.K., Nanadikar P.D. and Mehndiratta
S.L.. “Timestamp based certification scheme for
transactions in distributed database systems”, in Proc.
ACM SIGMOD Int. Co@ on Management of Data, 1985,
pp. 402-411.

[Traiger 821 Traiger I., Gray I., Galtieri C. and Lindsay
B., “Transactions and consistency in distributed database
systems”, ACM Trans. Database Syst., vol. 7. no. 3, pp.
323-342, Sept. 1982.

456

