
EFFICIRNT SEARCH IN VERY LARGE DATABASES

Rahzsh &and
H. V. Jagadish

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

We consider the poblean of performin efficient seer& in a
large database system. We wt a novel data slructurhig
technique and show how a branch and bound search algorithm
canusethepmposeddataorganktiontopnmetheseaxch
space. Simulation results confirm that, using these techniquq
a search can be expedited signikantly without incuring a
large storage penalty. As a side benefik it is possible to
organize the search to obtain suwessiveappro~tothe
desired solution with considerable reduction in total search

1. INTRODUCTION

Thec~~tyu,proceserecursivequaiesislikelytobecm
essential feature in the next generation of database sysm
and considerable research has recently been devoted to
devising techniques for processing recursion. Extranal path
problems [9] constitute a large snd useful subclsss of recursive
queries and arise in seversl practical applications [3,8,16].
An extremal path problem on a graph involves the
identification of a path between a pair of nodes in the graph
that has an exlmme vahte (bigheat or lowest on some
precedence ordering) for its labe& or the calculation of the
value of such an extremal label. The label for a path is
computed by applying a specified concatenatkm hmction to
the labels of the arcs (or sub-paths) constituting the path. In
addition,theremaybeconstraintsonnodesand/orsrcsrhat
may or may not be inchxied in the desired path. Examples of
such problems include the problem of 8nding the cheapest
flight between two cities, the problem of 8nding the uitical
path in a project network, the problem of finding the most
reliable path in a communication network, etc. other
examples of such problems appesr in [3,5.8,9.14.161.

The nature of extremal path problems is such that their
solution often mquires a search over a sixable data space. In
this paper, we investigate how such a search can be performed

Permission to copy without fee all cr psrt of this mrtairl is
grantedpovidedthattheoopiesarenotmadeordistritUnedfor
direct wmmehal advatage, the VLDB copyr@tt notice md
thetitleoftheplblicrticn~i~~~,adM~irgivar
thatcqyingisbypemGsionoftheVeryL.argeDataBase
Endowment. Tocopyothawise.ortorepublishrquiresafee
and/orspecialpennissionfiumtheBndo~L

Pmceedings of the 14th VLDB Confemce
Los Angeles, California 1988

efhiently over a very large database. We discuss the issues
of both data organization and how the search can use this data
organixation effectively. To keep the discussion concrete, we
shall use the shortest path problem as the running paradigm.
However, later in the paper, we shall show how our approach
extends naturally to other path problems.

Our overall apprnsch is to partially precompute some
informationandthentouseitatruntimetoprunethesearch
space. We must hasten to add that we are considering reslly
large databases, such as those with topographical map data.
By an analysis similar to [13], one csn estimate that simply to
store a small 100 mile by 100 mile map discretired at 100
foot intervals, one mquires about 24 Giga bytes of storage.
Prom this, one can get an idea of the size of data involved
when kU@% maps are considered. The size of path
informadon in a transitive closure is considerably larger than
the original relation. When data is of this magnitude,
pnxomputing and storing path information, even after using
the encoding and compression techniques that are proposed in
[l. 121, would be infeasible. We are, therefore, proposing a
new data organixation technique in this paper, and we show
how this data organimtkm allows us to derive successively
ti%tefbo~thatmustbesatisfiedbyapointthatistobe
opened during the search process. These bounds can cut
down tremendously the mmher of data points explored by a
search algorithm, such as Dijkstra’s algorithm [lo] for finding
the shortest path between two points.

The organization of the rest of the paper is as follows. In
Section 2, we present our data organixation s&me based on
the concept of domains, and show how it can be used for
pruning the search without a large storage overhead. We also
discuss how domains can be created in the first place. This
basic two-level structure is extended to a multi-level structure
in Se&m 3. In Section 4, we present simulation results that
support our analysis developed in the pevious sections
regarding the effectiVeneSS Of out te&&les. some
gemrahtions and related issues have been discussed in
Section 5. We present our conclusions in Section 6.

2. DOMAIN ENCODING

In the state-space search paradigm [7], in order to find the
solution of a problem, a search algorithm starts kom one or
more initial states and finds paths to the goal states. In
absence of any criteria for de&mining whether an
inmate node should be explored (opened), the number of
nodes explored before arriving at a solution is likely to be
prohibitively large. We provide a bounding pro&ure to cut
down on the numk of inmediate nodes that are explored
before the lid solution is obtained. New algorithms can be
designed using this bounding procedure. or it can be
incorporated in any branch and bound search algorithm to
improve its performance.

Our botmding pxwedure is based on pamally
precomputing some information, and then using it for
developing successively tighter bounds for opening an
intermediate node. If a node does not satisfy the bounds, it
need not be opened. In this se&on, we describe what
infonnationispncompltedandhowitisusadtoobtainthe
bounds. We also analyze the storage ovahead due to this
pnxomputed inftmnation and the extent to which the search
space may be pnmed by our botmding pmcedlxe.

2.1 Data Organization

Given a graph consisting of nodes, ~IU between the nodes,
and labels on these atcs (vesenting distance or some other
approphte quantity), divide the noded into sets called
dotnuh, such that there exists a path from each node in a
domain D to every other node in D. Each domain has a
distinguished point called the center of domain or simply
center. The rodivr of a domain D is the shortest distance
betweenthecenterandanodeinDthatisfarthest~the
center. (If the distances to and from the center are diffenznt,
the larger of the two gives the radius). We discuss how to
form domains in Section 26. For now let us assume that such
domains have somehow been created.

The shortest distance between all domain centers is
precomputed and compressed using the techniquea described
in [l, 121. Efficient techniques. such as those described in
[4,5], may be used for computing the shortest distances. In
addition, the shortest distance between each node and its
domain center (and vice versa, if different) is pmcomputed
and stored.

2.2 A Lower Bound

Given the data organization described above, we will 6rst
derive a lower bound on the distance between two points that
belong to different domains. This lower bound will be used in
deriving the upper bound on the distance through a point
which is being considered to be opened. If the distance
through a candidate point is larga than the uppa bound, this
point is not opened.

Lemma 2.1. Let D1 and D2 be two distinct domains with
centers cl and c2. Let p1 E D1 ond p2 E D2. Then, the
shortest distance from p 1 to p 2

PlP2 2 ClC2 - ClPl - P2C2

where clc2 is the shortest distoncejiom cl to c2, clp, is the

shorteat distance from c 1 to p 1, and p2c2 is the shorteti
distance from p2 to c2?

PROOF. The lowa bound on the distance from p1 to p2 is
derivedbyconsideringtheboundonthedistancefromc,to
c2. since ClC2 is the shortest distance from c, to c2, any
altemate path from cl to c2 is at least as big. We. therefore,
have (se-e Figure 2.1)

DI - D2

Ngure 2.1. Lowex bound on distance between two points

ClC2 s ClPl + PlP2 + P2C2

or

PlP2 2 ClC2 - ClPl - P2C2

Note that all the thme terms on the right hand side of the
above inequality have been precomputed for any two points.
Therefoxe. with the data organization described above, the
lower bound on distance between any two points in the graph
can be easily detemined. Also note that this lower bound
would be gceatez then the trivial lower bound of 0 if the two
points under consideration are far apart.

23 Pruning the !Search

Lemma 2.1 can now be used to prune the searches. Let D1
and D2 be two distinct domains with centers cl and c2, and
we are interested in finding the shortest distance kom
p1 E D1 to p2 E D2. An initial uppex bound on the shortest
distancefromp, top2canbewrittenas

PIPzU = PlCl + ClC2 + c?P2 (2.1

whereplcl is the shortest distance fiomp, to cl. clc2 is the
shortest distance from cl to c2. and czp2 is the shortest
distance from c2 to ~2. Note that all the temu on the right
hand side of the Eqn. (2.1) have been precomputed, and hence
thiSupperbOUlldC43llbeeaSil~&-.

Now suppose that, during the search process. we want to
determine whether to open a point p3 that belongs to a domain
D,. distinct fmm D2, and whose center is c3 (see Figure 2.2).
The distance plp3 hm pl to p3 would be known at this
stage. The point p, should be opened only if the distance
from p1 to p3. pIp3, togerher with the lower bound on the
distance from p3 to p2, p&. is leas than the current upper
bound on distance from pl to ~2. pIpy. That is, only if

408

03

Figure2.2. Upperbol.mdondistanceforopeJCngapoint

PlP3 + PA‘ < PlP2” 0.2

By Lemma 2.1

P3P2‘ = c3c2 - c2P3 - P2C2 (2.3

Substituting Bqns. (2.1) and (23) in (2.2). we obtain the
condition as

PIP3 < (PlCl + ClC2 + c2P2 I- (c3c2 - c3Ps - P2C2 1

or

PlP3 < (ClC2 - c3c2) + plcl + p2c2 + cti2 + c3p3 (2.4

Our search procedure for detemking the shortest distance
hlp,top,calthusbcsummalizedasfollows. stalt&onI
nodepl andtheupperboundondist8axehmpl top?.
pip;, obtained from Eqn (2.1). Open a pointp, only if the
upperboundonthedistancefbmpl topsspeciWbyEqn.
(2.4) is satisiied. If p, is opened, we obtain
(p1p3 + p3c3 + c3c2 + czp2) as a new bound on distance
hm p1 to p2. If this new bound is lower than the cturent
upperboundonthedistancefrompltop2,thisbound
becomes the new tighter uppa bound Any number of
heuristics, such as breadth first, best tirst, etc. [15], may be
used for determining the next candidate point p,. In the case
of Dijkstra’s algorithm. the next candidate point is the one that
curmntly hat? the sholtest disw fhml the starting point (a
form of “best first”). Search terminates when no new ps
maybeopenedor~only remainingcandidatep:,iSthe
desired destinetionp~ itself.

2.4 Size and Effort Analysis

In this section, we present an approximate analysis to develop
an intuitive understanding for the storage overhead due to the
precomputed infonnation and savings in effort due to OIU
bounding proabe. The rallts of the analysis will be
umfirmed with simulations in Section 4. Storage is measured
in units of tuples. A constant multiplication factor, which
does not affect the order of magnitude analysis, can be used to
convert the measure to byte.6 or pages. The effort. for the
purposes of the analysis, is measured in texms of the number
of nodes ope&. Once again a multiplication by the average
degree will translate it into the number of tuples examined.
and does not affect the order of magnitude analysis.

First consider the extra storage required in our scheme.
We require extra storage for maintaining the lransitive closure
of the domain centers, and also for storing the shortest

distawXbe~eenthedomaincal~sndallother&within
adomain. L.etusassumethattirmdeshavebeendivided
intoddomains. ‘lYms,therewouldbeddomaincentersand
their transitive closure would require O(d’) storage. Since
thereisanarcbehveeneachnodemulitsdomaincenterand
vice versa and domains are mutually disjoins the arcs between
domaincentasmuiothernodesinthedomainrequireO(n)
storage.

Thus, for a given graph, the data organization that we have
pmsented has an O(n) space overhesd and an additional
O(d’) space ovahead that depends on the sizes of the
domains. By choosing domains to be sufficiently large and
hrncereducingthenumberofdomainsd,theO(d2)tezmcan
bemadearbitrarilysmallandthe~ovaheadcanbemade
within a constant lbdon of the storage required for the
original relation. However, ss we will see shortly, increasing
the domain size sdversely affects the savings in effort that
results from using our bounding procedure.

Tmning to the effort analysis, let us define the radius of a
domain to be the longest dktance between a point in the
domain and its center, and let the radius of the domain with
largest radius be 6. Then, in the worst case, we can substitute
in Eqn. (2.4).

p;c1 = p2c2 = cg2 = c3p3 = 6 I

tOObtain

p&J3 + cyc2 < ClC2 + 4 6 (2.5

IfpIp is considered approximakly equal to clc3, Eqn. (2.5)
can be represented as ao ellipse with focii cl and c2 and
paramettxs (see Figure 2.3)

w = c,c2/2 ll=w+2s

sothat

vs=Ys-w2=48(W+b) (2.6

Figure 23. Search space with and without domain encoding

Only points lying inside this ellipse are cdidaW for p 3,
with points lying outside not satisfying Eqn. (2.5). Assuming
that the points are approximately evenly distributed. the area
ofthisellipseisthemeasunoftheseachspace(thenumber
of points that may be explored by the search algorithm), and
is given by

409

7cuv = II (w + 26) (46 (w + S))% = 27cw (6 w)% (27

fssuming w a 8. The implication of this assumption is that
we am interested in hling shortest dism between points
that are far apsrt. Thus, the effort using our bounding
procedure is O(w 2a 8%). This effort increases as the size of
the domains is increase but only as the square root of the
radius of the largest domain Note that this is a worst case
analysis. and a domain choice that has a high 8 but low
average distance from node to domain center may actually
pea-form better for most sourcedestination choices than one
with a somewhat lower 8 but most node to domain center
distance close to 8.

By way of comparison. observe that the Di~kstra's
algorithm pmceeds in an expanding circle mound the soutce
until it finds the d&nation. All points inside the circle
shown in Fig. 2.3 would be examined by the Dijkstra’s
algorithm, whereas Dijkstra augmented by our pruning scheme
would only consider nodes that he within the intersection of
the circle and the ellipse. Thus, the number of points explored
by plain JXjltstra can be approximated by

x (c,c$ = 4 II: w2 (2.8

From Eqns. 2.7 and 2.8, the ratio of the numbef of points
explaed with and without domain encoding is given by

tgbrt ratio = (6/4wy = (6/2c& = (6/2&p2)~ (2.9

If 6c 2p1p2, that is. if we are linding shortest distance
between points that are farther apgt the effort ratio will be
considerably less than 1 and there would be substantial speed
UP-

Thus, the ratio of effort in tinding shortest distance
between two points p r and p ?, using our procedme compared
to Dijkstra, is O(S% p&Q). This ratio in- (and hence
~speedupnducsll)~thesquarerootoftheradiusofthe
largest domain, and hence our earlier observation that the
benefit of our scheme decreases as the domains am made
bigger by decreasing the total manber of domains. Notice,
however, that while the storage overhead increasea as the
square of the total numbQ of domains, the effort ratio
increases only as the square mot of the radius of domains. In
Section 4, we will further explore this speed up and the size
penalty trade-off as the domain sizes are varied, when we
report on the results of experimental evaluation of our
bounding procedure.

2.5 Domain Transitive Closures - A Possible
Embellishment

Whereas it is not feasible to maintain the entire transitive
closure of a large graph, it may be possible to precompute and
store the transitive closurea of individual domains, particularly
ifthedomainsmsmall. Inasmse,thatiswhatwehave
doe at the top level of the data orgauixation presented in
Section 21 by precomputing the transitive closure of the
domain centers (rather then specifying a single center node for
the e&e graph and maintaining distances between it and the
domain centers). The natural question that arises is whethex
there is any advantage in embelhhing the data organktion
described in Section 2.1 by maintaining transitive closures in
the lower level domains as well. We will pursue this

embellishment in this section. Note that if the entire domain
closure has been computed, distances between points in a
domain and their domain center required in the structure
described in Section 21 are automatically included in the
closme, and Q not have to be separately stored. However,
we will still require the toplevel closure of patha between
domain centers.

First consider the extra storage requirement of this new
data organization. If there are d domains and each domain
consists of no more than Q points, each domain transitive
closure is O(q2), and the storage required for the domain
transitive closurea would be O(d g2). In addition to the
domain transitive closures, O(d2) storage would be required
for the top level trausitive closure. Note that we no longer
requiredistancesfromthedomaincentertoeveryothernode
within a domain. Thus. the total extra storage required is
0 (d q2) + 0 (d2).

Since the number of points in a domain Q is 0 (n/d). the
expression for the total extra storage required can be written
as 0 (n2/‘) + 0 (d’). This expression is minimixed when d is
O(n”). giving a total extra storage requirement of O(nUJ).
This size is considerably smaller than the sire required for
storing the closure of entire graph, which is O(n2). However,
O(n@) could be considerably larger than O(E) storage
quired for the original graph (E is the number of edges in
the imw.

Considering the effort estimates, unfortunately, domain
transitive closures do not irnpmve any bounds on the worst-
case performance. One can only subjectively state that
maintaining local transitive closures may reduce the number of
points that need be opened within a domain and thus benefit
average pedonnancc Experkntal work is required to
detumine whether the effort savings is substantial enough to
offset the extra storage penalty. We will report our
experimental mnllts on this couot in section 4.

2.6 Domain Creation

~nthisti~weaddresstheissueofhowtocreatedcnnaih9.
In many pactical situations, there may be information
available that automatically suggests how the domains should
be structured. For example, on a road map, one would expect
to have major intersections and freeway exits as centers of
domains that surround them for a certain radius. However,
given an arbitrary graph, it is not immediately clear how to
form domains. CkIe can think of w that may be
subjectively considered de&able, such as the domains should
be roughly equal in radiw should have roughly the same
manber of rmdea, and so on. Let us, therefore, fkst establish
the objective function of interest

We care about how the domains are formed because they
detemhebwgoodthebomdingprocdoreis. Inparticular
weobtainanuppaboundbetweentwonodesurthesumof
thedistancebehveenthesoutceanditadomaincenter,the
distancebetweenthedomaincenterofthedeatinationamdthe
destination, and the distance between the centms of two
domains (Eqn. 2.1). We would like this quantity to be as
small as possible (see Eqn. 2.2). On the other hand, we obtain
the lower bound between two mdea as the distance between

410

thecentcrsofthetwonodesmin~thedistancetothesource
f&nitsdomaincenterminusthedistanceComthedestination
to its domain center (Lemma 2.1). We would like this
quantity to be as large as possible (see Eqn. 2.2). Thus, there
isaconflictingrequirementinthecaseofdomaincenterto
domainculterdistance.s. ontheaverage,thisdistancemaybe
a second order effe~ and can be ignored. However. the
distancebetwecnanodeanditsdomain~termustalwaysbe

. . . mmnmz& and reducing this distmtce on average would
improve both bounds.

We can then formally state our problem as one of
choosing a spaif& munber of &main centas such that the
average distance to @om) a node h (to) its domain center,
weighted by the pobability of the node occuning in the
branchandboundprocess,isminh&ed.

For simplicity, let us assume that each node is equally
likely to be picked and that the connection to its domain
centerise4pallylikelytoberequiredineitkdirdon. If
so. our task is to minimize the average distance between the
nodesandtheirdomaincenters,withthedistanceinboth
directions being considered if different. In other words, we
WirhtoselectCdomaincenternodesinagraphwithnnodes
such as to minimize thesumoverallnnodesofthedistance
from the node to the nearest domain center node. This
problem can be shown to be np-hard, since a special case of
it,f~anundirecudgraphwithullitdis~onallclrcs,and
the desired minimum distance being n-k is the well-known
~-complete vertex-cover problem’.

We, therefore, developed several heuristics to solve this
problem, three of which clre desaii below:

Heuristic I
Pick a node at random, mt yet member of any domain,
andassignittobethecenterofanewdomain.

Assign every node within an empirically selected
distancefxomthisdomaincentt&.notalreadypartof
8tlOthtXdORU3i&tObelangtOtheCUlIeIltdOtlUtitl.

Repeatsteps1and2untilthen?quisitenumbezof
domainshavebeencteatd

For each node not part of any domain at this point,
assign it to the domsin whose center is nearest to this
node.

For graphs with asymmetric distances between nodu, we
average the di&nce in the two directions.

We tried several variations on this heuristic, none of which
improved the perf- (in teams of the average distance to
center measure), and some of which actually worsened it.
Most of these variations were in the nature of rendering the

choice of domain centers less random. For example, one
could insist upon a certain minimum distance between two
nodes selected to be domain centers. Or, for example, one
couldpickonlythoseMdestobeQmaincentersthathavea
low average distance to other nodea.

Heuristic II

Pickanodeatrandom,notyetmemberofsnydomain,
andassignittobethecenterofanewdanain.

Start hm the node closest to this domain center and
successively consider nodet~ farther and farther away (in
terms of their distance in the transitive clobuxe) until the
domain has included its fair share of nodes (empirically
v&d from the quotient of the total number of nodes in
the graph divided by the number of domains speci6ed).
or until a node considered is farther away from the
domain center thm some empirically specified maximum
limit. Nodea already assigned to another domain are
passed over.

Repeat steps 1 and 2 until the requisite number of
domains have been created.

For each node not part of any domain at this point,
assign it to the domain whose center is nearest to this

Heuristic III
Both Heuristics I and lI require that a complete transitive
closure, or at least a large fraction of the closure consisting of
themxlesnearesttoeachmxie,hasbeencomputedpriorto
domain creation. The following simpler heuristic pezmits
nodes to be assigned to domains without any consideration of
the distance labels on the arcs:

1.

2.

3.

4.

Pick a node at random, not yet member of any domain,
andassignittobethecenterofanewdomain.

Start from nodes that have direct edges (from and) to
his domain center snd assign them to the current
domain if not already assigned. Then consider nodes
that are two traversals away, that is, nodes that can
reach the domain center through no more than two edge
traversals. Then consider the nodes that are three
traversals away, and so forth. Between nodes all of
which are a certain number of traversals away, consider
them in random order. Contimte assigning nodes to the
cnmnt domain one by one tmtil the domain has
inch&d its fair share of nodes.

Repeat step3 1 and 2 until the requisite number of
domainshavebeenmated.

For each node not pert of any domain at this point,
consider its immediate neighbors in arbitrary order, then
its neighbors two traversals away and so forth, until a
node is found that has been assigned a domain. Assign
thecurrentnodetothesamedomain.

3, A MULTI-LEVEL STRUCTURE

TJw &main ending conkbed in the peviotts se&on can
be thought of as dividing the nodes into two “levels”. At the’

411

base level (or level 0) there are all the nodes is the graph At
the next level (level 1X sets of these nodes have been
aggregated into domains and there is one center node for each
domain The next logical question is whether this idea can be
extended to have multiple levels of domains and whether there
is any advautage in having a multi-level structure. We will
first show how the two-level structure can be extended to
multiple levels, and then analyxe the effectiveness of such a
structure.

3.1 Data Organization

As in the case of two-level structure, divide the data points
into domains and identity a center fm each domain. However,
insteed of computing and storing the closure of all paths
between centers, divide these centers also into level 2 domains
andidentifyacenterforeachsuchdomain. Thesecentersare
again divided into domains, and so on. At the top level, we
have one domain, and we compute and store the closure of all
paths between points in that domain. As before, we also
maintain distance fmm a node to its domain center, and vice
vasa, for domains at all levels. Figure 3.1 pictorially shows
the data organization.

Level 3 Domain

Level 2 Domains

Level 1 Domains

Figure 3.1. Multi-Level Structum. (Boxes repesent domains
and bullets represent centers)

3.2 Search Procedure

We will now present the bounding procedure that uses the
multi-level structure described above to obtain bounds on the
point which is being considered to be opened. This bounding
procedure can then be incorporated in a branch and bound
search algorithm.

We tirst derive an analog of Lemma 2.1 for the multilevel
case that gives a lower bound on the distance between two
points that belong to two different domains.

Lemma 3.1. LetpI andp, be the twopoints of interest, and
let there be a total of A levek Let the centers for the dot&m
corresponding to p1 be ci (for the level 1 domain), 12: (for the
level 2 domain), -, c:, and the centers for the domains

corresponding to p2 be ch, cf. ***, ct. Then,

PlP2 2 44 - (#-’ + $:-‘cf-2 + a.* + ctc: + c:p,)
- (p2c; + cicf + ... + c;-%;-ti-l + &lc’:)

PROOF. Similar to the proof for Lemma 2.1.

Observe that it is possible for the points p 1 and p2 have a
common domain center at level i (i < k), and in that case the
only realizable lower bound on plp2 would be zero.

The search procedure is similar to the search procedure for
two-level structure. An initial upper bound on the distance
fromp, top2 is given by

plpz” = <p&c:c: + --- + &‘cf-’ + cpc:) + cg’z
+ (44-:-I +4-‘c~-2 + *** + cg + cb2)

Ifp, andp2haveacommancenteratleveli,thentheinitial
upper bound would be

plp2u = (p&&t + *** + &2cf-’ + c;-‘c;)
+ (c~c;-1+c~-1c~-2 + -** + c;c; + CL2)

Apointps ED, shouldbeopenedonlyif

PlP3 < PIPZU - P3PsL

Thelowerboundondistancefromp3 t~p~.pjp~~,canbe
determhed using Lemma 3.1.

If a point p3 is opened, it may result in tightening the
upper bound on distance from pl to ~3, and the new upper
bound may become

p1p2” =p1p3 + (p34+&f + *-* + c~-2c:-1 + c;-‘c:)
+ 44 + (c”zc’z-‘&2-14-2 + *-* + cgc3 + CL2)

if this new bound is lower than the current upper bound. If
p, and p2 have a common center at j. then the potential new
upper bound would be

PlJ.9” =p1p3 + (p34+4c3 + --- + c(-2cj-1 + cj-lcj)
+ (cL4-‘+c4-,-‘c4-’ + --* + ctc; + cb2)

3.3 Size and Effort Analysis

We will first informally and then formally argue that the
multi-level structure just presented is not a viable alternative
to the two-level structure presented in Section 2. The problem
with the multi-level structure is that it considerably weakens
the bounding procedure. If the source and destination points
are nearby, then the lower bounds generated by Lemma 3.1
would ahnost always be zero. On the other hand, if the
source and de&nation points are far aparf then the upper
bounds become very loose as the effective radius increases.
There is some reduction in storage overhead since the number
of points at the top level would be smaller than the number of
points in the two-level structure, and hence the top level
closure would be smaller. However, we will now have to
additionally keep distances from points in the intermediate
levels to their domain centers at the higher levels.

To see this formally, let us treat the entire graph as a
single domain at level L Let there be dkml domains at level
k-l, each of which contains die2 domains at level k-2, giving
a total of dkdldke2 domains at level k-2. Similarly, let there

be d,-ldh-2--dk-1 = fi4, domains at level k-j. For
i=l

412

simplicity of notation consider each node of the original
graph to be in a level 0 domain by itself, with the node itself
being the domain center. Now since level 0 domains are the
individual nodes themselves, the total number of nodes in the

graph n = dh-,dk-2**.dkA = fidk+ = fidi. Note that in the
i=l

case of two-level structure. we had onliz do. which we called
q, andad wecalledd.

Let us first compute the extra storage requirement For
simplicity, let d, = d, = -a- = d,-, = d. We maintain closure
only for the level k-l domain centers, and need O(d2)
storage for it, since there are d level t-l domain centers. In
addition, for each domain we keep distance from the points in
the domain to the domain center and vice versa Provided
d 3 1, we need only consider this storage at the lowest level.
At all higher levels, there are significantly fewer nodes. So
we need 0 (n) storage for distance between nodea and domain
Centers. Thus, the total extra storage required is
O(n) + O(d’). This expression is similar to the two-level
case, the only difference being d is likely to be significantly
smaller now, since d = n” for the multi-level case whereas
d = nH for the two-level structure. The storage goes down as
k increases, but only very slowly.

Let us now examine the effect on effort. Let 6r through
Sk-, be the maximum y of the level 1 through level A-l

domains, and let A, = f”. Then, the effective maximum

“radius” of a level k-l domain which is the upper bound on
the path we generate through our storage structure from a
node to its k-l level domain center, is 4-r. In the worst
case, the nodes between which bounds are sought, belong to
different domains except at the top level. Therefore, the effort
computation can be made in the same fashion as for a two-
level data organization, with 4-1 used as the radius. Thus,
the effort required is bounded solely by the radius of the top
level domains. Since, 4-r is large, we get very poor
bounding with the multi-level structure,

We indeed performed several simulations (experimental
results not reported in this paper) and the multi-level structure
just described was found to consistently perform worse than
the two-level structure. As rmch, this form of multi-level
encoding will not bc discussed any further.

3.4 An Embellishment

We saw that the multi-level structure has better storage
characteristics than the two-level structure, but has poor
bounding characteristics. We will now describe an
embellishment of the above multi-level structure that incurs
slightly higher storage penalty but has the potential of
exhibiting better bounding characteristics. The basic idea is to
keep the domain closures at every level instead of only at the
top level, as was done in embellishing the two-level structure
in section 2

With this embellishment, the lower bound on distance
between two points p1 and p2 is given by

p1p2 2 4c: - (c{c’,l + ci;-‘cf” f a*. + c:c: + cfp,)
- (p4 + c# + *.* + c&-2&’ + c$-‘c$)

where i (i S A) is the level at which there exists a domain such
that the shortest distance between cl and ci has been stored

PlP2” = (Plc:*:c: + a** + c(-‘cf-’ + ci-‘ci) + cici
+ (&~-‘+&‘c~-~ + *-- + cg + c&p2)

where j is the smallest level at which the shortest distance
betmen C{ and c4 has been stored for some j.

Finally, if a point p3 is opened, it may potentially tighten
theupperbotmdondistancefromp, tops.andthenewupper
bound may become

PlP2” = PlP3 + (P34+# + *** + c;-2&l + c:-q)
+ c:c; + (4&‘+&~&2 + . . . +c;c: +cjp2)

where 1 is the smallest level at which the shortest distance
been C& and ~4 has been stored for some 1.

Let us now analyze the effect of this embellishment.

First note that each domain has d points, and hence the
size of transitive closure local to each domain is O(d2). The
total number of domains is dominated by the number of
domains at the lowest level, which is O(d). Therefore, the
edditional storage mquired for domain closures is 0 (nd). We
do not require distances firorn center to nodes within domain,
as these distances are already included in the closure of the
domains. By choosing A to be sufficiently large, d and hence
the factor nd can be made arbitrarily small. Thus, the
additional storage overhead can be reduced to no more than a
constant factor of the storage required for the original relation.

The domain closures do not reduce the radius of the top
level domain, and hence the worst case effort continues to be
as bad as for the multi-level structure without domain
closures. However, it is now possible that whenever the nodes
in question lie within the same domain well below the top
level, much tighter bounds may be obtained Only
experimealtal study can tell whether this trade-off is
masonable. We will present these experimental results in
Section 4.

Before leaving the topic of the multi-level structures, we
would like to make a few points in their favor. The reason
the multi-level structure did so badly in our analysis is that for
large A, the top level domains are very large and hence
provide very weak bounds. The effectiveness of multi-level
struct,uvas would be enhanced if the size of the A-l level
domains is kept considerably smaller than the size of the
graph. These k-l size domains could then be split into lower
level domains that may or may not be considerably smaller.
Moreovcx, in a situation in which most queries concun points
that are not far apars a multi-level sttuctum may be a good
choii. Finally, an attractive use of multi-level structure is in
obtainiq appximate solutions with great savings in effort as
disfzussed in [2].

4. PERFORMANCE EVALUATION

In this section, we present the results of several simulation
experiments that we performed to study the effectiveness of
the data organization techniques presented in this paper. We

413

first make a few observations on the performance evahution
methodology, and descrii the data&s used in the study.

4.1 Methodology

We use two performance metrics. One is the size ratio which
isdefinedtobetheratioofthesizeoftotalinformationstored
with our domain encoding technique atxl the size of original
database. One would like this metric to be as close to 1 ss
possible. The other metric is the t#wt ratio which is de6ned
to be the ratio of the I@ by the DQkstra algorithm with end
without domain encoding. The effort with domain encoding
includes the I/O for fetching the bounding information The
efforthssbeencomputedbyconsideringsearchforshortest
distanccbetween several points withvaxying distance between
them, and averaging over all searches. Care was taken to
ensurethatdomaincenterswerenotchosentobethesouz&
ordestinationforanysearch. Ifadomaincenterwerethe
source or destinatioa our fzaKdng s- wouldresultin
considerably tightez bounding and consequently in much less
effort, The Di~btra algorithm has been used as the
bet&mark since it is genemlly regarded to be the best
algorithm for fmding shortest path between two points [I 11.
OnewouldliketomaketheeffortratioascIosetozeroas
possible.

Following the lead in [4], synthetic graphs were used as
datasets. nedistancebetweentwo&wasassumedtobe
a uniform random variable over a specified positive interval.
The number of nodes were varied to obtain databsses of
different sixes, and for a given database, the number of
domains were varied to get domains of different sixes.
Heuristic IlI given in Section 2.6 was used to divide the nodes
into various domains. We chose Heuristic III for its
wm@atkmal simplicity. The other two heuristics should
resultinevenbetterpednmme of our scheme. Most of the
experiments wae performed with a graph of 2500 noda3. with
average outdegree of 8 and the aversge distance vahte of 5.
We couldn? use larger databam in the simulations as that
would have n&e simulations prohibitively expensive to run.
However, our analysis kkates that the larger the database
the mere effective our techniques should be.

4.2 Experiment 1: Two-Level Structure without
Domain closures

In the first set of experiments. the effort and size ratios wae
measured as a function of domain size for the two-level
structure without domain closures. The domain sizes have
becnspecifiedinnumberofnodesinadomain. Figuxe4.1
showstheresultforthe25oonodedatabase.

For very small domain siza~. there is sign&ant size
overhad. Small domain sizes result in a lerge number of
domains. and hence the storage required to maintain distance
between every pair of domain centers become large. As the
domainsizeisincr~thesizeove&addecreeses,sndfor
large domains, the size overhead becomes a constant fractkm
of the size of the original relation. The effort ratio, on the
otherhand.inaeasesasthesq~rootoftheQmainsize~
the domain size is increased. One could then choose an
operating point that gives a large speed-up at the expense of
large storage overhd or altemately, if the storage is at

FlgUR Al. Effolt and Size ratios for two-level structure
(2500 node databae)

premium, one could pay a small storage overhead and still get
-espadup.

A good choice for the domain size, which achieves good
speed up and incurs only moderate storage ovffhepd, seems to
bethesquarerootofdtetotaln~~ofnodesinthegraph.
Figme 4.2 shows, for this choice of domain size, the effort
and size ratios for graphs of differmt sixes. Database size hss
beanexpreesedinmnnberofnodesinthe~ponding

graph.

2.0

Size

Ratio 1.5
@l-d
as A)

1.0.
500 loo0 1500 2ooo 2500

Database Siiz.

0.7

Oe6 Effort
Ratio

(plotted

0.5 @O)

0.4

Figure 4.2. Effort and Size ratios for two-level structure
(diffe?ent databws)

This graph is very encouraging as it shows that by paying
about 409b storage overhead nearly 1009b speed up may be
ObthKl.

4.3 Experiment 2: Two-Level Structure with Domain
Closure8

The second set of experiments examined the usefulness of
pmmnputing the transitive closure within each domain as
suggested in Section 2.5. The effort and size ratios have been
plotted in Figure 4.3 as a function of domain size for the same
25OOnode~.

When the domain sixes are small. very little storage is
required to store the domain closures. However, there Ire a
large number of domain centers, and the total storage
xeq~isdominatedbytheclosurebetweentheaedomain
centers. For large domain sizes, thae are very few domain

414

(plotted
asA) *‘-

06 Effort
’ Ratio

O4 @lo=d
as a

10 - - 0.2 l”iu to-*
19 I I I I II O

5 10 2550100250500
Domain Sire

Ngure 43. Effort and Sire ratios for two-level structure with
domain closurea (2500 mde database)

l-0
5 10 2550100250500

Domain Sire

Ngure 43. Effort and Sire ratios for two-level structure with
domain closurea (2500 mde database)

ceders, and the closure between them would be small
However, the domain closures now become very large. As
discussed in Section 2.5, the optimum domain sire is of the
orderofthecuberootofthenumberofnodea. Theshapeof
theeffortratiocurveisdre~asinFigure4.1forthetwo-
level stllwure without domain closums. This is not very
surprising, given our observation in Section 2.5 that no
sign&ant improvement in bounding is obtained by keeping
the domain closures.

Figure 4.4 presents a comparison of the two-level structure
with and without domain closure. In this figure, we have
plotted the effort ratio against the sire ratio for two schemes.
The various data points in this figure have been obtained by
extracting effort ratio and size ratio numbers for different
domain values from Figures 4.1 and 4.3. Note from Figure
4.3 that two different effort ratios are ou one higher
thantheotha,forthcMmesizeratio.duetothecancavityof
theslxeratiocurve. This accountsfortheratheroddshqeof
the curve for the structure with domain closures in Figure 4.4.

A without domain closures 0 with domain closurea

1.0

0.8
1 f

Effort O-6 41

0 t
I I II I I 1

1 2 3 4 5 10 20 50
Size Ratio

Figure 4.4. Effort vs. Sire for two-level structure with and
without domain closures (2500 mxle database)

It is apparent from Figure 4.4 that performance-wise the
scheme without domain closures totally dominates the scheme
with domain closures. For any acceptable storage overhead,
better speed up may be obtained using the structure without
domain closures. Similarly, for any desimd speed up. the

without domain closures structure incurs less storage overhead.
Although not premued here, similar results were also obtained
with database8 of different sires. We can thus conclude that
the effort saving remlting from a nxhtction in number of
pointsthatneedbeopenedinadomaindoesnotjustifythe
large storage overhead incmred by domain closures.

4.4 Experiment 3: Multi-Level Structure

The thid set of experiments examined the effectiveness of the
multi-level structure with domain closures presented in Section
3. The experiments were performed for the 2500 node
dahbase and 4 nodes per domain (except the top level), and
by vaqing the number of levels in the structure. The smsll
domain sixes were chosen to obtain sufficient number of
levels. Figure 4.5 slrows the effort and sire ratios for different
munber of levels in the multi-level structure.

r 1.0

m

II di-, 1:

2 3
L.evelb4

5

Ffgure 4.!L Effort and Sire ratios for multi-level structure
with domain closures (2500 node database)

For two levels, the multi-level structure reduces to a two-
level stmcture with domain closures such as the one discussed
in the previous experiment. This data point is plotted simply
to provide a reference. For other levels, as predicted in
Section 3, the size overhead is considerably reduced. but at the
same time, the effort ratio also increases.

By way of comparison, we have plotted the effort vs. sire
curves for the two-level structure and the multi-level structure
in figure 4.6 It csn be seen that performance-wise, for most of
the opera&g mgion. the two-level stmcture dominatfs the
multi-level structure. However, it is possible to reduce the
storage overhead at a level which is not possible with the
two-level structum at considerable loss in speed ups. Note
that the two-level structure requires at least two times the
number of nodea units of additional storage (to store distance
from each node to its domain center and vice versa), whereas
with the multi-level structure one could go below this bound
on storage overhead.

In order to ensure that the trmds thst we got for multi-
level structme have not been biased by our choice of domain
size, we obtained the effort and size ratios for three-level
structure for different domain sires and have compared it with
the two-level stmcture in Figure 4.7.

It is clear fmm Figure 4.7 that the two-level structure
completely don&&s the three-level structure. The odd shape

415

A two-level structure 0 multi-level stmcture

0.8
A

Effort
0.6

Ratio OA

0.2

01
1 2 345 10 20 30

Size Ratio
Figure 4.6. Effort vs. Sixe for two-level stxuctore without

domain closures and multi-level structure with
domainclo~(5ox5odatabase)

A two-level suucture 0 three-level structure

Effort
0.6

Ratio
0.4

0.2
-1

01
1 2 345 10 20 30

Size Ratio

Figure 4.7. Effort vs. Sire for two-level structure without
domain closutes and three-level structure with
domain closures (2500 node dat&ase)

of the curve for the three-level strocture in Figure 4.7 is due
totheconcavityofthesizeratio~Sthedomain~Vvcuied.
The storage requirsd for the top level closure dominates the
storage overhead for small sired domains. For large domain
sizes, the closuree at lower levels dominate the storage
ovehad.

We CM thus conclude that the justiktion for the multi-
level structure stems not kun speed up consideration but the
storage ovdead consideration. Only if tlm storage is at a
premium does a multi-level structure become attractive. with
very small domains and a large number of levels.

4.5 SummaryofRxperimentalResults
Ftomthesimulationre8ultslxesentedinthissaction.thctwo-
level iihucme without domain cloeuree emerges as the data
organization technique of choice. It offers a wide range of
operatingpointstochoosehmdepdinguponthespeedup
desired and the storage overkad one is willing to incur. A
good choice for the domain sire, which achieves significant
speedupandimmcnlymoderatestorageovahes&seemsto

be the square root of the database sire. For this choice, we
were. able to obtain nearly 1009b reduction in I/O by paying
about 4096 dish storage overhead. Note that the effort
cdlculation with our domain encoding scheme included extra
I/Otofetchthe xuxessary boudng information. Considering
the fact that the large dptnbases are gemrally ID bound, the
signiftcantreductionin~duetotheseerchspacepnming
makes our scheme very attractive.

There doesn’t seem to be any adventage in keeping the
domain closutes with the two-level slmctme. The small
additional savings in I/O resulting hm a mduction in number
ofpointsthatneedbeopmedinadomaindoesnotjustifythe
large storage overhead incured by domain closures.

If one is pinwily interested in speed up, the multi-level
strocture also is not a viable altunative. However, if the
storageisatapemiumandoneisinterestedinobtaining
some speed up by paying vuy little s&rage overhead, a
multi-level structure may be used. Note that the two-level
structure requires at least two times the number of nodes units
of titional storage (to store distance from each node to its
domain center and vice versa), whereas with the multi-level
structure one could go below this bound on storage overhead,

5. GRNRRALIZATIONS

In rhis section, we present some geaeralixations of the
b$&niques pxEse!nted in the pfevious sections. In patticulsr,
we show in Section 5.1 how our techniques apply to problems
other than shortest path ptoblems and e algorithms other
than Dijkstra's algorithm. In Section 5.2, we consider the
case when the domains am not mutually disjoint. Finally, in
Section 5.3, we suggest how to handle gracefully changes to
the base relation that could invalidate precomlxned shortest
pathsstoredaspartofourdatasuucture.

5.1 Other Applications

So far in this paper, all the discussion has been centered
around the problem of determming the shortest path between
two points and how Dijkstra’s algorithm can be speeded up
using our bounding pmcedure. However, as stated in Section
1, the techniques peeented in this paper apply equally well to
all extreanal path problems, and our bounding procedure can
be incorporated in any search algorithm based on the state-
space search paradigm. In this section, we illustrate how these
generalixations are possible.

An extmnsl path problem on a graph involves the
idartific~ofapathbetwsenapairofnoderinthegraph
that has an extmne value (higheat or lowest on some
predence ordering) for its labeh or the calculstion of the
vale of such an extremal label. If one is interested in
smallest or lowest value, the bounding ptocedum developed

‘for the shortest path ptoblun directly applies with distance
being replaced by the appmpdc quantity. For largest or
highest value the bounding pro&we can easily be modified
by switching the roles of upper and lower bounds. We
illustrats using the problem of detennking the longest path
between two points as the paradigm for deriving the bounding
pmcedw and then we will incorporate this bounding
pswedwe in a breadth-grst search algorithm.

416

The databaw will again have to be divided into domains.
However, we will now maintain largest distance between
domain centers, and between the domain center and all other
points and vice versa within a domain. We discuss only the
two-level structure.

With this data organization, 6rst of all. an initial lower
bound on the largest distance between the points of interest,
pl andp2, is obtained as:

PIPZL = PlCl + ClC2 + =2fJ2

where ~f is the domain center of the domain Di to which
belongs the point pi. During the search process, a point pa
shouklheopenedonlyif

PlP3 +P3P2” > PlP2L (5.1

By a r easoning similar to Lemma 2.1. an upper bound on
distancebet~eenp~ audpzcanbeobtainedas:

P3P2” = c3c2 - c3P3 - P2C2

We will now incorporate the above bounding procedure in
a breadth-first search [15] procedure. Note that the semi-naive
algorithm [6] also pehrms a breadth-first search for
determin& reachability from a speciiied node. In the
following algorithm, OPEN is a queue, each element of which
is a tuple of the form cnode, distance> where the distance
field contains the best (largest) known distance from source to
the corraponding node.

r
+ Breadth-first Search with bounding for determining
* largest distance between points p and q

*I

detexmk the initial lower bound on largest distance, pqL

OPEN := <p, o>

while q is not the only element in OPEN do
{

xzmove the first element 4, di> from OPEN (other than 4);
for every j E Succ(i) do

{
ifjisinOPENthen

4 dp := <j, maX(d,, d&j)>
else do

{
deuzmmeifjshouldbeopened -useEqn.(5.1)
ifjneedstobeopenedthem

{
append <j, di+dy> to OPEN,
wd- wL

1
I

3

5.2 Multiple Domain Membership

We have thus far assumed that the rmdes have been divided
intonon-intersectingQmains,sothateachnodehasaunique
domain center. If a node is allowed to belong to more than
one domains, there will be multiple domain centers that can be

reached from a node. For each pair of domain centers
selected (one for the so- one for the destination no&) a
bound is obtained on the path that we wish to bound Several
such pairs are considered and the one that produces the
tightest bound is the one that is selected. The advantage is
that considerably tighter bounds can be obtained. The
disadvantage is that if each node has c domain centers, c2
bounds have to be considered, and unless c is kept small, the
effort involved in simply bounding the search could become
signiticanL

53 Incremental Changes

Whenever some derived information is materializ.ed, a change
in the base information needs to be reflected in a change in
the derived information. We require pecomputed shortest
distances between domain centers. and between each domain
center and its constituent nodes. Whenever a modification is
madetotheoriginalgraph,thispmcomputedinformationhas
to be updated. Obviously. a complete recomptation would be
extremely expensive. One possibility is to use the incremental
techniques suggested in [l]. However, given the extremely
large sizes of graphs that we rww have in mind, even these
inmmental techniquea may be too expensive to use
hquently. Fortmately, a simple solution exists.

The basic observation to make is that the precomputed
shortest distances are needed to derive bounds that are used to
pnme the search. Even if we did not have exact values of
these shortest distauces, but rather only upper and lower
bounds on tha these bounds can appropriately be used in
place of exact values, while deriving bounds for pruning the
search Thus, instead of maintaining precomputed shortest
distances between domain centers and between each domain
center and its constituent nodes. we will maintain the upper
and lower bounds on these distances. To begin with, the
upper and lower bounds would be same (and equal to exact
distances). As the bnse relation is updaM instead of
xecomping the mat&&d shortest distances, we will
appropriately update the upper or the lower bound. Of course,
we will get somewhat less pruning since we now have weaker
bounds than we would if we knew the exact distances. After
several modifications to the database, the upper and lower
hounds on precomputed distances would) diverge quite a bit.
mtd the exact shortest distances required by the data structure
may be recomputed. In a quasi-static situation, this approach
can become very attractive.

6. CONCLUSIONS

In this paps, we considered the problem of performing
efficient search over large databases. To this end, we
presented a data organixation technique that relies on partially
precomputing some information, and a bounding procedure
that uses this data organization to prune the search space. Our
data organization technique and the bounding procedure may
be in-ted in a branch and bound search algorithm, or
new algorithms can be designed using our bounding
pmcedm. These techniques can be used to solve a large
number of useful and practical path problems such as the
shortest path, critical path, largest capacity path. path of
maximum reliability. etc. [3,5.8,9,14,16]. and can also be

417

gainfully employed in large expat databme systems in which
the search compommt of the expt systems has been
integrated with the data mmagemmt capbility of databam
management systems. simulation msults amhn that. using
these techniques, a search can be expditml significantly
without imxuring a large storage pm&y.

[131

u41

REFERENCES WI

111

PI

131

t41

PI

161

[71

181

191

WI

[111

WI

R. Agrawal cmd H. V. Jagadish, “An Efficient Method
for Emoding Path Infoxmatkm in the Transitive Closure
of a Database Relation”. Technical Memom&u~
AT&T Bell Laboratories, Mmay Hill, New Jersey, Nov.
1987.

WI

R. Agrawal and H. V. Jagadish, “Efficient Search in
Expert Database Systems”, T&&al Memorandm,
AT&T Bell Laboramiut. Mmay Hill, New Jemey, Nov.
1987.

R. Agrawal, “Al#m An Extension of Relational
Algebra to Express a Class of Recursive Queries”,
Proc. IEEE 3rd Int’l CM. Data Engineering, Los
Angeles, California, Feb. 1987, 580-590. Also in IEEE
Tram Software Eng. 14.7 (July 1988).

R. Agrawal and H. V. Jagadish, “Direct Algorithms for
Computing the Transitive Closure of Database
Relations”, Pruc. 13th Int’l Co@ Very L.wge Data
Bases, Brighton, England, Sept. 1987.255-266.

R. Agrawal. S. Dar and H. V. Jagadish, “Transitive
Closure Algorithms Revisited: The Case of Path
computations”, Technical Memorandum, AT&T Bell
Laboratories, Murray Hill, New Jersey, Jan. 1988.

F. Bsncilhon, “Naive Evaluation of Recursively Defkd
Relations”, Tech Repr. DB-oo4-85, MCC. Austin,
Texas, 1985.

A. Barr and E. A. Feigenbaum, The Handbook qf
Arti@cti Intelligence, William Kaufman. Los Altos,
California, 1981.

J. Biskup, U. Raesch and H. Stiefeling. “An Extended
Relational Query Lsnguags for Knowledg&ase
Suppart”. Institut flier It&mat& Hildeew west
clamany, 1987.

B. Camz, Graphs and Network Clmndcm Fbss.
oxford 1978.

E. W. Dijlrstra, “A Note on Two Problems in
Cormcction with Graphs”, Nwner. Math. 1. (1959).
269-271.

s. E Dreyfu& “An Appraisal of Some Shortest Path
Algorithms”. Operatioa Rts. 17.3 (1969). 395412.

H. V. Jagadish, “A Composed Transitive Closure
Technique for Efficim Fixed-Point Query F’messing”,
Proc. 2nd Int’l Cot$ Expert Database Systetw ‘QSUIS
cm, virgini& April 1988.

R. KUIQ, E. Hanson, Y. Iomnidis, T. Sellis, I.,. Shapiro
and M. Sunbaker, “Heuristic Search in Data Base
Systems”. Pm-z. 1st Int’l Workvhq.~ Expert Databme
systum, Kiawah Islam& south Carom Oct. 1984. %-
107.

T. H. Mexmt, Rekztioml It#bmmbn System, Reston
Publishing, Reston, Virginia, 1984.

J. Pearl, Heuri.stics: Intelligeni Search Strategies for
Canputer Pmblem Solving. Addison. Wesley, Reading,
Massachusetts, 1984.

A. Rosmtbal, S. Heik, U. Dayal snd F. Msnola,
“Traversal Recmion: A Practical ‘Approach to
Support& Rsclnaive A@kations”, Prm. ACM-
SIGMOD 1986 Ml Conf. on Management of Data,
Washington D.C.. May 1986.166-176.

418

