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ABSTRACT 

We consider the poblean of performin efficient seer& in a 
large database system. We wt a novel data slructurhig 
technique and show how a branch and bound search algorithm 
canusethepmposeddataorganktiontopnmetheseaxch 
space. Simulation results confirm that, using these techniquq 
a search can be expedited signikantly without incuring a 
large storage penalty. As a side benefik it is possible to 
organize the search to obtain suwessiveappro~tothe 
desired solution with considerable reduction in total search 

1. INTRODUCTION 

Thec~~tyu,proceserecursivequaiesislikelytobecm 
essential feature in the next generation of database sysm 
and considerable research has recently been devoted to 
devising techniques for processing recursion. Extranal path 
problems [9] constitute a large snd useful subclsss of recursive 
queries and arise in seversl practical applications [3,8,16]. 
An extremal path problem on a graph involves the 
identification of a path between a pair of nodes in the graph 
that has an exlmme vahte (bigheat or lowest on some 
precedence ordering) for its labe& or the calculation of the 
value of such an extremal label. The label for a path is 
computed by applying a specified concatenatkm hmction to 
the labels of the arcs (or sub-paths) constituting the path. In 
addition,theremaybeconstraintsonnodesand/orsrcsrhat 
may or may not be inchxied in the desired path. Examples of 
such problems include the problem of 8nding the cheapest 
flight between two cities, the problem of 8nding the uitical 
path in a project network, the problem of finding the most 
reliable path in a communication network, etc. other 
examples of such problems appesr in [3,5.8,9.14.161. 

The nature of extremal path problems is such that their 
solution often mquires a search over a sixable data space. In 
this paper, we investigate how such a search can be performed 
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efhiently over a very large database. We discuss the issues 
of both data organization and how the search can use this data 
organixation effectively. To keep the discussion concrete, we 
shall use the shortest path problem as the running paradigm. 
However, later in the paper, we shall show how our approach 
extends naturally to other path problems. 

Our overall apprnsch is to partially precompute some 
informationandthentouseitatruntimetoprunethesearch 
space. We must hasten to add that we are considering reslly 
large databases, such as those with topographical map data. 
By an analysis similar to [13], one csn estimate that simply to 
store a small 100 mile by 100 mile map discretired at 100 
foot intervals, one mquires about 24 Giga bytes of storage. 
Prom this, one can get an idea of the size of data involved 
when kU@% maps are considered. The size of path 
informadon in a transitive closure is considerably larger than 
the original relation. When data is of this magnitude, 
pnxomputing and storing path information, even after using 
the encoding and compression techniques that are proposed in 
[l. 121, would be infeasible. We are, therefore, proposing a 
new data organixation technique in this paper, and we show 
how this data organimtkm allows us to derive successively 
ti%tefbo~thatmustbesatisfiedbyapointthatistobe 
opened during the search process. These bounds can cut 
down tremendously the mmher of data points explored by a 
search algorithm, such as Dijkstra’s algorithm [lo] for finding 
the shortest path between two points. 

The organization of the rest of the paper is as follows. In 
Section 2, we present our data organixation s&me based on 
the concept of domains, and show how it can be used for 
pruning the search without a large storage overhead. We also 
discuss how domains can be created in the first place. This 
basic two-level structure is extended to a multi-level structure 
in Se&m 3. In Section 4, we present simulation results that 
support our analysis developed in the pevious sections 
regarding the effectiVeneSS Of out te&&les. some 
gemrahtions and related issues have been discussed in 
Section 5. We present our conclusions in Section 6. 



2. DOMAIN ENCODING 

In the state-space search paradigm [7], in order to find the 
solution of a problem, a search algorithm starts kom one or 
more initial states and finds paths to the goal states. In 
absence of any criteria for de&mining whether an 
inmate node should be explored (opened), the number of 
nodes explored before arriving at a solution is likely to be 
prohibitively large. We provide a bounding pro&ure to cut 
down on the numk of inmediate nodes that are explored 
before the lid solution is obtained. New algorithms can be 
designed using this bounding procedure. or it can be 
incorporated in any branch and bound search algorithm to 
improve its performance. 

Our botmding pxwedure is based on pamally 
precomputing some information, and then using it for 
developing successively tighter bounds for opening an 
intermediate node. If a node does not satisfy the bounds, it 
need not be opened. In this se&on, we describe what 
infonnationispncompltedandhowitisusadtoobtainthe 
bounds. We also analyze the storage ovahead due to this 
pnxomputed inftmnation and the extent to which the search 
space may be pnmed by our botmding pmcedlxe. 

2.1 Data Organization 

Given a graph consisting of nodes, ~IU between the nodes, 
and labels on these atcs (vesenting distance or some other 
approphte quantity), divide the noded into sets called 
dotnuh, such that there exists a path from each node in a 
domain D to every other node in D. Each domain has a 
distinguished point called the center of domain or simply 
center. The rodivr of a domain D is the shortest distance 
betweenthecenterandanodeinDthatisfarthest~the 
center. (If the distances to and from the center are diffenznt, 
the larger of the two gives the radius). We discuss how to 
form domains in Section 26. For now let us assume that such 
domains have somehow been created. 

The shortest distance between all domain centers is 
precomputed and compressed using the techniquea described 
in [l, 121. Efficient techniques. such as those described in 
[4,5], may be used for computing the shortest distances. In 
addition, the shortest distance between each node and its 
domain center (and vice versa, if different) is pmcomputed 
and stored. 

2.2 A Lower Bound 

Given the data organization described above, we will 6rst 
derive a lower bound on the distance between two points that 
belong to different domains. This lower bound will be used in 
deriving the upper bound on the distance through a point 
which is being considered to be opened. If the distance 
through a candidate point is larga than the uppa bound, this 
point is not opened. 

Lemma 2.1. Let D1 and D2 be two distinct domains with 
centers cl and c2. Let p1 E D1 ond p2 E D2. Then, the 
shortest distance from p 1 to p 2 

PlP2 2 ClC2 - ClPl - P2C2 

where clc2 is the shortest distoncejiom cl to c2, clp, is the 

shorteat distance from c 1 to p 1, and p2c2 is the shorteti 
distance from p2 to c2? 

PROOF. The lowa bound on the distance from p1 to p2 is 
derivedbyconsideringtheboundonthedistancefromc,to 
c2. since ClC2 is the shortest distance from c, to c2, any 
altemate path from cl to c2 is at least as big. We. therefore, 
have (se-e Figure 2.1) 

DI - D2 

Ngure 2.1. Lowex bound on distance between two points 

ClC2 s ClPl + PlP2 + P2C2 

or 

PlP2 2 ClC2 - ClPl - P2C2 

Note that all the thme terms on the right hand side of the 
above inequality have been precomputed for any two points. 
Therefoxe. with the data organization described above, the 
lower bound on distance between any two points in the graph 
can be easily detemined. Also note that this lower bound 
would be gceatez then the trivial lower bound of 0 if the two 
points under consideration are far apart. 

23 Pruning the !Search 

Lemma 2.1 can now be used to prune the searches. Let D1 
and D2 be two distinct domains with centers cl and c2, and 
we are interested in finding the shortest distance kom 
p1 E D1 to p2 E D2. An initial uppex bound on the shortest 
distancefromp, top2canbewrittenas 

PIPzU = PlCl + ClC2 + c?P2 (2.1 

whereplcl is the shortest distance fiomp, to cl. clc2 is the 
shortest distance from cl to c2. and czp2 is the shortest 
distance from c2 to ~2. Note that all the temu on the right 
hand side of the Eqn. (2.1) have been precomputed, and hence 
thiSupperbOUlldC43llbeeaSil~&-. 

Now suppose that, during the search process. we want to 
determine whether to open a point p3 that belongs to a domain 
D,. distinct fmm D2, and whose center is c3 (see Figure 2.2). 
The distance plp3 hm pl to p3 would be known at this 
stage. The point p, should be opened only if the distance 
from p1 to p3. pIp3, togerher with the lower bound on the 
distance from p3 to p2, p&. is leas than the current upper 
bound on distance from pl to ~2. pIpy. That is, only if 
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Figure2.2. Upperbol.mdondistanceforopeJCngapoint 

PlP3 + PA‘ < PlP2” 0.2 

By Lemma 2.1 

P3P2‘ = c3c2 - c2P3 - P2C2 (2.3 

Substituting Bqns. (2.1) and (23) in (2.2). we obtain the 
condition as 

PIP3 < (PlCl + ClC2 + c2P2 I- ( c3c2 - c3Ps - P2C2 1 

or 

PlP3 < (ClC2 - c3c2 ) + plcl + p2c2 + cti2 + c3p3 (2.4 

Our search procedure for detemking the shortest distance 
hlp,top,calthusbcsummalizedasfollows. stalt&onI 
nodepl andtheupperboundondist8axehmpl top?. 
pip;, obtained from Eqn (2.1). Open a pointp, only if the 
upperboundonthedistancefbmpl topsspeciWbyEqn. 
(2.4) is satisiied. If p, is opened, we obtain 
( p1p3 + p3c3 + c3c2 + czp2 ) as a new bound on distance 
hm p1 to p2. If this new bound is lower than the cturent 
upperboundonthedistancefrompltop2,thisbound 
becomes the new tighter uppa bound Any number of 
heuristics, such as breadth first, best tirst, etc. [15], may be 
used for determining the next candidate point p,. In the case 
of Dijkstra’s algorithm. the next candidate point is the one that 
curmntly hat? the sholtest disw fhml the starting point (a 
form of “best first”). Search terminates when no new ps 
maybeopenedor~only remainingcandidatep:,iSthe 
desired destinetionp~ itself. 

2.4 Size and Effort Analysis 

In this section, we present an approximate analysis to develop 
an intuitive understanding for the storage overhead due to the 
precomputed infonnation and savings in effort due to OIU 
bounding proabe. The rallts of the analysis will be 
umfirmed with simulations in Section 4. Storage is measured 
in units of tuples. A constant multiplication factor, which 
does not affect the order of magnitude analysis, can be used to 
convert the measure to byte.6 or pages. The effort. for the 
purposes of the analysis, is measured in texms of the number 
of nodes ope&. Once again a multiplication by the average 
degree will translate it into the number of tuples examined. 
and does not affect the order of magnitude analysis. 

First consider the extra storage required in our scheme. 
We require extra storage for maintaining the lransitive closure 
of the domain centers, and also for storing the shortest 

distawXbe~eenthedomaincal~sndallother&within 
adomain. L.etusassumethattirmdeshavebeendivided 
intoddomains. ‘lYms,therewouldbeddomaincentersand 
their transitive closure would require O(d’) storage. Since 
thereisanarcbehveeneachnodemulitsdomaincenterand 
vice versa and domains are mutually disjoins the arcs between 
domaincentasmuiothernodesinthedomainrequireO(n) 
storage. 

Thus, for a given graph, the data organization that we have 
pmsented has an O(n) space overhesd and an additional 
O(d’) space ovahead that depends on the sizes of the 
domains. By choosing domains to be sufficiently large and 
hrncereducingthenumberofdomainsd,theO(d2)tezmcan 
bemadearbitrarilysmallandthe~ovaheadcanbemade 
within a constant lbdon of the storage required for the 
original relation. However, ss we will see shortly, increasing 
the domain size sdversely affects the savings in effort that 
results from using our bounding procedure. 

Tmning to the effort analysis, let us define the radius of a 
domain to be the longest dktance between a point in the 
domain and its center, and let the radius of the domain with 
largest radius be 6. Then, in the worst case, we can substitute 
in Eqn. (2.4). 

p;c1 = p2c2 = cg2 = c3p3 = 6 I 

tOObtain 

p&J3 + cyc2 < ClC2 + 4 6 (2.5 

IfpIp is considered approximakly equal to clc3, Eqn. (2.5) 
can be represented as ao ellipse with focii cl and c2 and 
paramettxs (see Figure 2.3) 

w = c,c2/2 ll=w+2s 

sothat 

vs=Ys-w2=48(W+b) (2.6 

Figure 23. Search space with and without domain encoding 

Only points lying inside this ellipse are cdidaW for p 3, 
with points lying outside not satisfying Eqn. (2.5). Assuming 
that the points are approximately evenly distributed. the area 
ofthisellipseisthemeasunoftheseachspace(thenumber 
of points that may be explored by the search algorithm), and 
is given by 
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7cuv = II (w + 26) (46 (w + S))% = 27cw (6 w)% (27 

fssuming w a 8. The implication of this assumption is that 
we am interested in hling shortest dism between points 
that are far apsrt. Thus, the effort using our bounding 
procedure is O(w 2a 8%). This effort increases as the size of 
the domains is increase but only as the square root of the 
radius of the largest domain Note that this is a worst case 
analysis. and a domain choice that has a high 8 but low 
average distance from node to domain center may actually 
pea-form better for most sourcedestination choices than one 
with a somewhat lower 8 but most node to domain center 
distance close to 8. 

By way of comparison. observe that the Di~kstra's 
algorithm pmceeds in an expanding circle mound the soutce 
until it finds the d&nation. All points inside the circle 
shown in Fig. 2.3 would be examined by the Dijkstra’s 
algorithm, whereas Dijkstra augmented by our pruning scheme 
would only consider nodes that he within the intersection of 
the circle and the ellipse. Thus, the number of points explored 
by plain JXjltstra can be approximated by 

x (c,c$ = 4 II: w2 (2.8 

From Eqns. 2.7 and 2.8, the ratio of the numbef of points 
explaed with and without domain encoding is given by 

tgbrt ratio = (6/4wy = (6/2c& = (6/2&p2)~ (2.9 

If 6c 2p1p2, that is. if we are linding shortest distance 
between points that are farther apgt the effort ratio will be 
considerably less than 1 and there would be substantial speed 
UP- 

Thus, the ratio of effort in tinding shortest distance 
between two points p r and p ?, using our procedme compared 
to Dijkstra, is O(S% p&Q). This ratio in- (and hence 
~speedupnducsll)~thesquarerootoftheradiusofthe 
largest domain, and hence our earlier observation that the 
benefit of our scheme decreases as the domains am made 
bigger by decreasing the total manber of domains. Notice, 
however, that while the storage overhead increasea as the 
square of the total numbQ of domains, the effort ratio 
increases only as the square mot of the radius of domains. In 
Section 4, we will further explore this speed up and the size 
penalty trade-off as the domain sizes are varied, when we 
report on the results of experimental evaluation of our 
bounding procedure. 

2.5 Domain Transitive Closures - A Possible 
Embellishment 

Whereas it is not feasible to maintain the entire transitive 
closure of a large graph, it may be possible to precompute and 
store the transitive closurea of individual domains, particularly 
ifthedomainsmsmall. Inasmse,thatiswhatwehave 
doe at the top level of the data orgauixation presented in 
Section 21 by precomputing the transitive closure of the 
domain centers (rather then specifying a single center node for 
the e&e graph and maintaining distances between it and the 
domain centers). The natural question that arises is whethex 
there is any advantage in embelhhing the data organktion 
described in Section 2.1 by maintaining transitive closures in 
the lower level domains as well. We will pursue this 

embellishment in this section. Note that if the entire domain 
closure has been computed, distances between points in a 
domain and their domain center required in the structure 
described in Section 21 are automatically included in the 
closme, and Q not have to be separately stored. However, 
we will still require the toplevel closure of patha between 
domain centers. 

First consider the extra storage requirement of this new 
data organization. If there are d domains and each domain 
consists of no more than Q points, each domain transitive 
closure is O(q2), and the storage required for the domain 
transitive closurea would be O(d g2). In addition to the 
domain transitive closures, O(d2) storage would be required 
for the top level trausitive closure. Note that we no longer 
requiredistancesfromthedomaincentertoeveryothernode 
within a domain. Thus. the total extra storage required is 
0 (d q2) + 0 (d2). 

Since the number of points in a domain Q is 0 (n/d). the 
expression for the total extra storage required can be written 
as 0 (n2/‘) + 0 (d’). This expression is minimixed when d is 
O(n”). giving a total extra storage requirement of O(nUJ). 
This size is considerably smaller than the sire required for 
storing the closure of entire graph, which is O(n2). However, 
O(n@) could be considerably larger than O(E) storage 
quired for the original graph (E is the number of edges in 
the imw. 

Considering the effort estimates, unfortunately, domain 
transitive closures do not irnpmve any bounds on the worst- 
case performance. One can only subjectively state that 
maintaining local transitive closures may reduce the number of 
points that need be opened within a domain and thus benefit 
average pedonnancc Experkntal work is required to 
detumine whether the effort savings is substantial enough to 
offset the extra storage penalty. We will report our 
experimental mnllts on this couot in section 4. 

2.6 Domain Creation 

~nthisti~weaddresstheissueofhowtocreatedcnnaih9. 
In many pactical situations, there may be information 
available that automatically suggests how the domains should 
be structured. For example, on a road map, one would expect 
to have major intersections and freeway exits as centers of 
domains that surround them for a certain radius. However, 
given an arbitrary graph, it is not immediately clear how to 
form domains. CkIe can think of w that may be 
subjectively considered de&able, such as the domains should 
be roughly equal in radiw should have roughly the same 
manber of rmdea, and so on. Let us, therefore, fkst establish 
the objective function of interest 

We care about how the domains are formed because they 
detemhebwgoodthebomdingprocdoreis. Inparticular 
weobtainanuppaboundbetweentwonodesurthesumof 
thedistancebehveenthesoutceanditadomaincenter,the 
distancebetweenthedomaincenterofthedeatinationamdthe 
destination, and the distance between the centms of two 
domains (Eqn. 2.1). We would like this quantity to be as 
small as possible (see Eqn. 2.2). On the other hand, we obtain 
the lower bound between two mdea as the distance between 
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thecentcrsofthetwonodesmin~thedistancetothesource 
f&nitsdomaincenterminusthedistanceComthedestination 
to its domain center (Lemma 2.1). We would like this 
quantity to be as large as possible (see Eqn. 2.2). Thus, there 
isaconflictingrequirementinthecaseofdomaincenterto 
domainculterdistance.s. ontheaverage,thisdistancemaybe 
a second order effe~ and can be ignored. However. the 
distancebetwecnanodeanditsdomain~termustalwaysbe 

. . . mmnmz& and reducing this distmtce on average would 
improve both bounds. 

We can then formally state our problem as one of 
choosing a spaif& munber of &main centas such that the 
average distance to @om) a node h (to) its domain center, 
weighted by the pobability of the node occuning in the 
branchandboundprocess,isminh&ed. 

For simplicity, let us assume that each node is equally 
likely to be picked and that the connection to its domain 
centerise4pallylikelytoberequiredineitkdirdon. If 
so. our task is to minimize the average distance between the 
nodesandtheirdomaincenters,withthedistanceinboth 
directions being considered if different. In other words, we 
WirhtoselectCdomaincenternodesinagraphwithnnodes 
such as to minimize thesumoverallnnodesofthedistance 
from the node to the nearest domain center node. This 
problem can be shown to be np-hard, since a special case of 
it,f~anundirecudgraphwithullitdis~onallclrcs,and 
the desired minimum distance being n-k is the well-known 
~-complete vertex-cover problem’. 

We, therefore, developed several heuristics to solve this 
problem, three of which clre desaii below: 

Heuristic I 
Pick a node at random, mt yet member of any domain, 
andassignittobethecenterofanewdomain. 

Assign every node within an empirically selected 
distancefxomthisdomaincentt&.notalreadypartof 
8tlOthtXdORU3i&tObelangtOtheCUlIeIltdOtlUtitl. 

Repeatsteps1and2untilthen?quisitenumbezof 
domainshavebeencteatd 

For each node not part of any domain at this point, 
assign it to the domsin whose center is nearest to this 
node. 

For graphs with asymmetric distances between nodu, we 
average the di&nce in the two directions. 

We tried several variations on this heuristic, none of which 
improved the perf- (in teams of the average distance to 
center measure), and some of which actually worsened it. 
Most of these variations were in the nature of rendering the 

choice of domain centers less random. For example, one 
could insist upon a certain minimum distance between two 
nodes selected to be domain centers. Or, for example, one 
couldpickonlythoseMdestobeQmaincentersthathavea 
low average distance to other nodea. 

Heuristic II 

Pickanodeatrandom,notyetmemberofsnydomain, 
andassignittobethecenterofanewdanain. 

Start hm the node closest to this domain center and 
successively consider nodet~ farther and farther away (in 
terms of their distance in the transitive clobuxe) until the 
domain has included its fair share of nodes (empirically 
v&d from the quotient of the total number of nodes in 
the graph divided by the number of domains speci6ed). 
or until a node considered is farther away from the 
domain center thm some empirically specified maximum 
limit. Nodea already assigned to another domain are 
passed over. 

Repeat steps 1 and 2 until the requisite number of 
domains have been created. 

For each node not part of any domain at this point, 
assign it to the domain whose center is nearest to this 

Heuristic III 
Both Heuristics I and lI require that a complete transitive 
closure, or at least a large fraction of the closure consisting of 
themxlesnearesttoeachmxie,hasbeencomputedpriorto 
domain creation. The following simpler heuristic pezmits 
nodes to be assigned to domains without any consideration of 
the distance labels on the arcs: 

1. 

2. 

3. 

4. 

Pick a node at random, not yet member of any domain, 
andassignittobethecenterofanewdomain. 

Start from nodes that have direct edges (from and) to 
his domain center snd assign them to the current 
domain if not already assigned. Then consider nodes 
that are two traversals away, that is, nodes that can 
reach the domain center through no more than two edge 
traversals. Then consider the nodes that are three 
traversals away, and so forth. Between nodes all of 
which are a certain number of traversals away, consider 
them in random order. Contimte assigning nodes to the 
cnmnt domain one by one tmtil the domain has 
inch&d its fair share of nodes. 

Repeat step3 1 and 2 until the requisite number of 
domainshavebeenmated. 

For each node not pert of any domain at this point, 
consider its immediate neighbors in arbitrary order, then 
its neighbors two traversals away and so forth, until a 
node is found that has been assigned a domain. Assign 
thecurrentnodetothesamedomain. 

3, A MULTI-LEVEL STRUCTURE 

TJw &main ending conkbed in the peviotts se&on can 
be thought of as dividing the nodes into two “levels”. At the’ 
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base level (or level 0) there are all the nodes is the graph At 
the next level (level 1X sets of these nodes have been 
aggregated into domains and there is one center node for each 
domain The next logical question is whether this idea can be 
extended to have multiple levels of domains and whether there 
is any advautage in having a multi-level structure. We will 
first show how the two-level structure can be extended to 
multiple levels, and then analyxe the effectiveness of such a 
structure. 

3.1 Data Organization 

As in the case of two-level structure, divide the data points 
into domains and identity a center fm each domain. However, 
insteed of computing and storing the closure of all paths 
between centers, divide these centers also into level 2 domains 
andidentifyacenterforeachsuchdomain. Thesecentersare 
again divided into domains, and so on. At the top level, we 
have one domain, and we compute and store the closure of all 
paths between points in that domain. As before, we also 
maintain distance fmm a node to its domain center, and vice 
vasa, for domains at all levels. Figure 3.1 pictorially shows 
the data organization. 

Level 3 Domain 

Level 2 Domains 

Level 1 Domains 

Figure 3.1. Multi-Level Structum. (Boxes repesent domains 
and bullets represent centers) 

3.2 Search Procedure 

We will now present the bounding procedure that uses the 
multi-level structure described above to obtain bounds on the 
point which is being considered to be opened. This bounding 
procedure can then be incorporated in a branch and bound 
search algorithm. 

We tirst derive an analog of Lemma 2.1 for the multilevel 
case that gives a lower bound on the distance between two 
points that belong to two different domains. 

Lemma 3.1. LetpI andp, be the twopoints of interest, and 
let there be a total of A levek Let the centers for the dot&m 
corresponding to p1 be ci (for the level 1 domain), 12: (for the 
level 2 domain), -, c:, and the centers for the domains 

corresponding to p2 be ch, cf. ***, ct. Then, 

PlP2 2 44 - ( #-’ + $:-‘cf-2 + a.* + ctc: + c:p, ) 
- ( p2c; + cicf + ... + c;-%;-ti-l + &lc’: ) 

PROOF. Similar to the proof for Lemma 2.1. 

Observe that it is possible for the points p 1 and p2 have a 
common domain center at level i (i < k), and in that case the 
only realizable lower bound on plp2 would be zero. 

The search procedure is similar to the search procedure for 
two-level structure. An initial upper bound on the distance 
fromp, top2 is given by 

plpz” = <p&c:c: + --- + &‘cf-’ + cpc: ) + cg’z 
+ ( 44-:-I +4-‘c~-2 + *** + cg + cb2 ) 

Ifp, andp2haveacommancenteratleveli,thentheinitial 
upper bound would be 

plp2u = (p&&t + *** + &2cf-’ + c;-‘c; ) 
+ ( c~c;-1+c~-1c~-2 + -** + c;c; + CL2 ) 

Apointps ED, shouldbeopenedonlyif 

PlP3 < PIPZU - P3PsL 

Thelowerboundondistancefromp3 t~p~.pjp~~,canbe 
determhed using Lemma 3.1. 

If a point p3 is opened, it may result in tightening the 
upper bound on distance from pl to ~3, and the new upper 
bound may become 

p1p2” =p1p3 + (p34+&f + *-* + c~-2c:-1 + c;-‘c: ) 
+ 44 + ( c”zc’z-‘&2-14-2 + *-* + cgc3 + CL2 ) 

if this new bound is lower than the current upper bound. If 
p, and p2 have a common center at j. then the potential new 
upper bound would be 

PlJ.9” =p1p3 + (p34+4c3 + --- + c(-2cj-1 + cj-lcj ) 
+ ( cL4-‘+c4-,-‘c4-’ + --* + ctc; + cb2 ) 

3.3 Size and Effort Analysis 

We will first informally and then formally argue that the 
multi-level structure just presented is not a viable alternative 
to the two-level structure presented in Section 2. The problem 
with the multi-level structure is that it considerably weakens 
the bounding procedure. If the source and destination points 
are nearby, then the lower bounds generated by Lemma 3.1 
would ahnost always be zero. On the other hand, if the 
source and de&nation points are far aparf then the upper 
bounds become very loose as the effective radius increases. 
There is some reduction in storage overhead since the number 
of points at the top level would be smaller than the number of 
points in the two-level structure, and hence the top level 
closure would be smaller. However, we will now have to 
additionally keep distances from points in the intermediate 
levels to their domain centers at the higher levels. 

To see this formally, let us treat the entire graph as a 
single domain at level L Let there be dkml domains at level 
k-l, each of which contains die2 domains at level k-2, giving 
a total of dkdldke2 domains at level k-2. Similarly, let there 

be d,-ldh-2--dk-1 = fi4, domains at level k-j. For 
i=l 
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simplicity of notation consider each node of the original 
graph to be in a level 0 domain by itself, with the node itself 
being the domain center. Now since level 0 domains are the 
individual nodes themselves, the total number of nodes in the 

graph n = dh-,dk-2**.dkA = fidk+ = fidi. Note that in the 
i=l 

case of two-level structure. we had onliz do. which we called 
q, andad wecalledd. 

Let us first compute the extra storage requirement For 
simplicity, let d, = d, = -a- = d,-, = d. We maintain closure 
only for the level k-l domain centers, and need O(d2) 
storage for it, since there are d level t-l domain centers. In 
addition, for each domain we keep distance from the points in 
the domain to the domain center and vice versa Provided 
d 3 1, we need only consider this storage at the lowest level. 
At all higher levels, there are significantly fewer nodes. So 
we need 0 (n) storage for distance between nodea and domain 
Centers. Thus, the total extra storage required is 
O(n) + O(d’). This expression is similar to the two-level 
case, the only difference being d is likely to be significantly 
smaller now, since d = n” for the multi-level case whereas 
d = nH for the two-level structure. The storage goes down as 
k increases, but only very slowly. 

Let us now examine the effect on effort. Let 6r through 
Sk-, be the maximum y of the level 1 through level A-l 

domains, and let A, = f”. Then, the effective maximum 

“radius” of a level k-l domain which is the upper bound on 
the path we generate through our storage structure from a 
node to its k-l level domain center, is 4-r. In the worst 
case, the nodes between which bounds are sought, belong to 
different domains except at the top level. Therefore, the effort 
computation can be made in the same fashion as for a two- 
level data organization, with 4-1 used as the radius. Thus, 
the effort required is bounded solely by the radius of the top 
level domains. Since, 4-r is large, we get very poor 
bounding with the multi-level structure, 

We indeed performed several simulations (experimental 
results not reported in this paper) and the multi-level structure 
just described was found to consistently perform worse than 
the two-level structure. As rmch, this form of multi-level 
encoding will not bc discussed any further. 

3.4 An Embellishment 

We saw that the multi-level structure has better storage 
characteristics than the two-level structure, but has poor 
bounding characteristics. We will now describe an 
embellishment of the above multi-level structure that incurs 
slightly higher storage penalty but has the potential of 
exhibiting better bounding characteristics. The basic idea is to 
keep the domain closures at every level instead of only at the 
top level, as was done in embellishing the two-level structure 
in section 2 

With this embellishment, the lower bound on distance 
between two points p1 and p2 is given by 

p1p2 2 4c: - ( c{c’,l + ci;-‘cf” f a*. + c:c: + cfp, ) 
- (p4 + c# + *.* + c&-2&’ + c$-‘c$ ) 

where i (i S A) is the level at which there exists a domain such 
that the shortest distance between cl and ci has been stored 

PlP2” = (Plc:*:c: + a** + c(-‘cf-’ + ci-‘ci ) + cici 
+ ( &~-‘+&‘c~-~ + *-- + cg + c&p2 ) 

where j is the smallest level at which the shortest distance 
betmen C{ and c4 has been stored for some j. 

Finally, if a point p3 is opened, it may potentially tighten 
theupperbotmdondistancefromp, tops.andthenewupper 
bound may become 

PlP2” = PlP3 + (P34+# + *** + c;-2&l + c:-q ) 
+ c:c; + ( 4&‘+&~&2 + . . . +c;c: +cjp2) 

where 1 is the smallest level at which the shortest distance 
been C& and ~4 has been stored for some 1. 

Let us now analyze the effect of this embellishment. 

First note that each domain has d points, and hence the 
size of transitive closure local to each domain is O(d2). The 
total number of domains is dominated by the number of 
domains at the lowest level, which is O(d). Therefore, the 
edditional storage mquired for domain closures is 0 (nd). We 
do not require distances firorn center to nodes within domain, 
as these distances are already included in the closure of the 
domains. By choosing A to be sufficiently large, d and hence 
the factor nd can be made arbitrarily small. Thus, the 
additional storage overhead can be reduced to no more than a 
constant factor of the storage required for the original relation. 

The domain closures do not reduce the radius of the top 
level domain, and hence the worst case effort continues to be 
as bad as for the multi-level structure without domain 
closures. However, it is now possible that whenever the nodes 
in question lie within the same domain well below the top 
level, much tighter bounds may be obtained Only 
experimealtal study can tell whether this trade-off is 
masonable. We will present these experimental results in 
Section 4. 

Before leaving the topic of the multi-level structures, we 
would like to make a few points in their favor. The reason 
the multi-level structure did so badly in our analysis is that for 
large A, the top level domains are very large and hence 
provide very weak bounds. The effectiveness of multi-level 
struct,uvas would be enhanced if the size of the A-l level 
domains is kept considerably smaller than the size of the 
graph. These k-l size domains could then be split into lower 
level domains that may or may not be considerably smaller. 
Moreovcx, in a situation in which most queries concun points 
that are not far apars a multi-level sttuctum may be a good 
choii. Finally, an attractive use of multi-level structure is in 
obtainiq appximate solutions with great savings in effort as 
disfzussed in [2]. 

4. PERFORMANCE EVALUATION 

In this section, we present the results of several simulation 
experiments that we performed to study the effectiveness of 
the data organization techniques presented in this paper. We 
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first make a few observations on the performance evahution 
methodology, and descrii the data&s used in the study. 

4.1 Methodology 

We use two performance metrics. One is the size ratio which 
isdefinedtobetheratioofthesizeoftotalinformationstored 
with our domain encoding technique atxl the size of original 
database. One would like this metric to be as close to 1 ss 
possible. The other metric is the t#wt ratio which is de6ned 
to be the ratio of the I@ by the DQkstra algorithm with end 
without domain encoding. The effort with domain encoding 
includes the I/O for fetching the bounding information The 
efforthssbeencomputedbyconsideringsearchforshortest 
distanccbetween several points withvaxying distance between 
them, and averaging over all searches. Care was taken to 
ensurethatdomaincenterswerenotchosentobethesouz& 
ordestinationforanysearch. Ifadomaincenterwerethe 
source or destinatioa our fzaKdng s- wouldresultin 
considerably tightez bounding and consequently in much less 
effort, The Di~btra algorithm has been used as the 
bet&mark since it is genemlly regarded to be the best 
algorithm for fmding shortest path between two points [I 11. 
OnewouldliketomaketheeffortratioascIosetozeroas 
possible. 

Following the lead in [4], synthetic graphs were used as 
datasets. nedistancebetweentwo&wasassumedtobe 
a uniform random variable over a specified positive interval. 
The number of nodes were varied to obtain databsses of 
different sixes, and for a given database, the number of 
domains were varied to get domains of different sixes. 
Heuristic IlI given in Section 2.6 was used to divide the nodes 
into various domains. We chose Heuristic III for its 
wm@atkmal simplicity. The other two heuristics should 
resultinevenbetterpednmme of our scheme. Most of the 
experiments wae performed with a graph of 2500 noda3. with 
average outdegree of 8 and the aversge distance vahte of 5. 
We couldn? use larger databam in the simulations as that 
would have n&e simulations prohibitively expensive to run. 
However, our analysis kkates that the larger the database 
the mere effective our techniques should be. 

4.2 Experiment 1: Two-Level Structure without 
Domain closures 

In the first set of experiments. the effort and size ratios wae 
measured as a function of domain size for the two-level 
structure without domain closures. The domain sizes have 
becnspecifiedinnumberofnodesinadomain. Figuxe4.1 
showstheresultforthe25oonodedatabase. 

For very small domain siza~. there is sign&ant size 
overhad. Small domain sizes result in a lerge number of 
domains. and hence the storage required to maintain distance 
between every pair of domain centers become large. As the 
domainsizeisincr~thesizeove&addecreeses,sndfor 
large domains, the size overhead becomes a constant fractkm 
of the size of the original relation. The effort ratio, on the 
otherhand.inaeasesasthesq~rootoftheQmainsize~ 
the domain size is increased. One could then choose an 
operating point that gives a large speed-up at the expense of 
large storage overhd or altemately, if the storage is at 

FlgUR Al. Effolt and Size ratios for two-level structure 
(2500 node databae) 

premium, one could pay a small storage overhead and still get 
-espadup. 

A good choice for the domain size, which achieves good 
speed up and incurs only moderate storage ovffhepd, seems to 
bethesquarerootofdtetotaln~~ofnodesinthegraph. 
Figme 4.2 shows, for this choice of domain size, the effort 
and size ratios for graphs of differmt sixes. Database size hss 
beanexpreesedinmnnberofnodesinthe~ponding 

graph. 
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Figure 4.2. Effort and Size ratios for two-level structure 
(diffe?ent databws) 

This graph is very encouraging as it shows that by paying 
about 409b storage overhead nearly 1009b speed up may be 
ObthKl. 

4.3 Experiment 2: Two-Level Structure with Domain 
Closure8 

The second set of experiments examined the usefulness of 
pmmnputing the transitive closure within each domain as 
suggested in Section 2.5. The effort and size ratios have been 
plotted in Figure 4.3 as a function of domain size for the same 
25OOnode~. 

When the domain sixes are small. very little storage is 
required to store the domain closures. However, there Ire a 
large number of domain centers, and the total storage 
xeq~isdominatedbytheclosurebetweentheaedomain 
centers. For large domain sizes, thae are very few domain 
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Ngure 43. Effort and Sire ratios for two-level structure with 
domain closurea (2500 mde database) 

ceders, and the closure between them would be small 
However, the domain closures now become very large. As 
discussed in Section 2.5, the optimum domain sire is of the 
orderofthecuberootofthenumberofnodea. Theshapeof 
theeffortratiocurveisdre~asinFigure4.1forthetwo- 
level stllwure without domain closums. This is not very 
surprising, given our observation in Section 2.5 that no 
sign&ant improvement in bounding is obtained by keeping 
the domain closures. 

Figure 4.4 presents a comparison of the two-level structure 
with and without domain closure. In this figure, we have 
plotted the effort ratio against the sire ratio for two schemes. 
The various data points in this figure have been obtained by 
extracting effort ratio and size ratio numbers for different 
domain values from Figures 4.1 and 4.3. Note from Figure 
4.3 that two different effort ratios are ou one higher 
thantheotha,forthcMmesizeratio.duetothecancavityof 
theslxeratiocurve. This accountsfortheratheroddshqeof 
the curve for the structure with domain closures in Figure 4.4. 

A without domain closures 0 with domain closurea 

1.0 

0.8 
1 f 

Effort O-6 41 

0 t 
I I II I I 1 

1 2 3 4 5 10 20 50 
Size Ratio 

Figure 4.4. Effort vs. Sire for two-level structure with and 
without domain closures (2500 mxle database) 

It is apparent from Figure 4.4 that performance-wise the 
scheme without domain closures totally dominates the scheme 
with domain closures. For any acceptable storage overhead, 
better speed up may be obtained using the structure without 
domain closures. Similarly, for any desimd speed up. the 

without domain closures structure incurs less storage overhead. 
Although not premued here, similar results were also obtained 
with database8 of different sires. We can thus conclude that 
the effort saving remlting from a nxhtction in number of 
pointsthatneedbeopenedinadomaindoesnotjustifythe 
large storage overhead incmred by domain closures. 

4.4 Experiment 3: Multi-Level Structure 

The thid set of experiments examined the effectiveness of the 
multi-level structure with domain closures presented in Section 
3. The experiments were performed for the 2500 node 
dahbase and 4 nodes per domain (except the top level), and 
by vaqing the number of levels in the structure. The smsll 
domain sixes were chosen to obtain sufficient number of 
levels. Figure 4.5 slrows the effort and sire ratios for different 
munber of levels in the multi-level structure. 

r 1.0 

m 

II di-, 1: 

2 3 
L.evelb4 

5 

Ffgure 4.!L Effort and Sire ratios for multi-level structure 
with domain closures (2500 node database) 

For two levels, the multi-level structure reduces to a two- 
level stmcture with domain closures such as the one discussed 
in the previous experiment. This data point is plotted simply 
to provide a reference. For other levels, as predicted in 
Section 3, the size overhead is considerably reduced. but at the 
same time, the effort ratio also increases. 

By way of comparison, we have plotted the effort vs. sire 
curves for the two-level structure and the multi-level structure 
in figure 4.6 It csn be seen that performance-wise, for most of 
the opera&g mgion. the two-level stmcture dominatfs the 
multi-level structure. However, it is possible to reduce the 
storage overhead at a level which is not possible with the 
two-level structum at considerable loss in speed ups. Note 
that the two-level structure requires at least two times the 
number of nodea units of additional storage (to store distance 
from each node to its domain center and vice versa), whereas 
with the multi-level structure one could go below this bound 
on storage overhead. 

In order to ensure that the trmds thst we got for multi- 
level structme have not been biased by our choice of domain 
size, we obtained the effort and size ratios for three-level 
structure for different domain sires and have compared it with 
the two-level stmcture in Figure 4.7. 

It is clear fmm Figure 4.7 that the two-level structure 
completely don&&s the three-level structure. The odd shape 
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Figure 4.7. Effort vs. Sire for two-level structure without 
domain closutes and three-level structure with 
domain closures (2500 node dat&ase) 

of the curve for the three-level strocture in Figure 4.7 is due 
totheconcavityofthesizeratio~Sthedomain~Vvcuied. 
The storage requirsd for the top level closure dominates the 
storage overhead for small sired domains. For large domain 
sizes, the closuree at lower levels dominate the storage 
ovehad. 

We CM thus conclude that the justiktion for the multi- 
level structure stems not kun speed up consideration but the 
storage ovdead consideration. Only if tlm storage is at a 
premium does a multi-level structure become attractive. with 
very small domains and a large number of levels. 

4.5 SummaryofRxperimentalResults 
Ftomthesimulationre8ultslxesentedinthissaction.thctwo- 
level iihucme without domain cloeuree emerges as the data 
organization technique of choice. It offers a wide range of 
operatingpointstochoosehmdepdinguponthespeedup 
desired and the storage overkad one is willing to incur. A 
good choice for the domain sire, which achieves significant 
speedupandimmcnlymoderatestorageovahes&seemsto 

be the square root of the database sire. For this choice, we 
were. able to obtain nearly 1009b reduction in I/O by paying 
about 4096 dish storage overhead. Note that the effort 
cdlculation with our domain encoding scheme included extra 
I/Otofetchthe xuxessary boudng information. Considering 
the fact that the large dptnbases are gemrally ID bound, the 
signiftcantreductionin~duetotheseerchspacepnming 
makes our scheme very attractive. 

There doesn’t seem to be any adventage in keeping the 
domain closutes with the two-level slmctme. The small 
additional savings in I/O resulting hm a mduction in number 
ofpointsthatneedbeopmedinadomaindoesnotjustifythe 
large storage overhead incured by domain closures. 

If one is pinwily interested in speed up, the multi-level 
strocture also is not a viable altunative. However, if the 
storageisatapemiumandoneisinterestedinobtaining 
some speed up by paying vuy little s&rage overhead, a 
multi-level structure may be used. Note that the two-level 
structure requires at least two times the number of nodes units 
of titional storage (to store distance from each node to its 
domain center and vice versa), whereas with the multi-level 
structure one could go below this bound on storage overhead, 

5. GRNRRALIZATIONS 

In rhis section, we present some geaeralixations of the 
b$&niques pxEse!nted in the pfevious sections. In patticulsr, 
we show in Section 5.1 how our techniques apply to problems 
other than shortest path ptoblems and e algorithms other 
than Dijkstra's algorithm. In Section 5.2, we consider the 
case when the domains am not mutually disjoint. Finally, in 
Section 5.3, we suggest how to handle gracefully changes to 
the base relation that could invalidate precomlxned shortest 
pathsstoredaspartofourdatasuucture. 

5.1 Other Applications 

So far in this paper, all the discussion has been centered 
around the problem of determming the shortest path between 
two points and how Dijkstra’s algorithm can be speeded up 
using our bounding pmcedure. However, as stated in Section 
1, the techniques peeented in this paper apply equally well to 
all extreanal path problems, and our bounding procedure can 
be incorporated in any search algorithm based on the state- 
space search paradigm. In this section, we illustrate how these 
generalixations are possible. 

An extmnsl path problem on a graph involves the 
idartific~ofapathbetwsenapairofnoderinthegraph 
that has an extmne value (higheat or lowest on some 
predence ordering) for its labeh or the calculstion of the 
vale of such an extremal label. If one is interested in 
smallest or lowest value, the bounding ptocedum developed 

‘for the shortest path ptoblun directly applies with distance 
being replaced by the appmpdc quantity. For largest or 
highest value the bounding pro&we can easily be modified 
by switching the roles of upper and lower bounds. We 
illustrats using the problem of detennking the longest path 
between two points as the paradigm for deriving the bounding 
pmcedw and then we will incorporate this bounding 
pswedwe in a breadth-grst search algorithm. 
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The databaw will again have to be divided into domains. 
However, we will now maintain largest distance between 
domain centers, and between the domain center and all other 
points and vice versa within a domain. We discuss only the 
two-level structure. 

With this data organization, 6rst of all. an initial lower 
bound on the largest distance between the points of interest, 
pl andp2, is obtained as: 

PIPZL = PlCl + ClC2 + =2fJ2 

where ~f is the domain center of the domain Di to which 
belongs the point pi. During the search process, a point pa 
shouklheopenedonlyif 

PlP3 +P3P2” > PlP2L (5.1 

By a r easoning similar to Lemma 2.1. an upper bound on 
distancebet~eenp~ audpzcanbeobtainedas: 

P3P2” = c3c2 - c3P3 - P2C2 

We will now incorporate the above bounding procedure in 
a breadth-first search [15] procedure. Note that the semi-naive 
algorithm [6] also pehrms a breadth-first search for 
determin& reachability from a speciiied node. In the 
following algorithm, OPEN is a queue, each element of which 
is a tuple of the form cnode, distance> where the distance 
field contains the best (largest) known distance from source to 
the corraponding node. 

r 
+ Breadth-first Search with bounding for determining 
* largest distance between points p and q 

*I 

detexmk the initial lower bound on largest distance, pqL 

OPEN := <p, o> 

while q is not the only element in OPEN do 
{ 

xzmove the first element 4, di> from OPEN (other than 4); 
for every j E Succ(i) do 

{ 
ifjisinOPENthen 

4 dp := <j, maX(d,, d&j)> 
else do 

{ 
deuzmmeifjshouldbeopened -useEqn.(5.1) 
ifjneedstobeopenedthem 

{ 
append <j, di+dy> to OPEN, 
wd- wL 

1 
I 

3 

5.2 Multiple Domain Membership 

We have thus far assumed that the rmdes have been divided 
intonon-intersectingQmains,sothateachnodehasaunique 
domain center. If a node is allowed to belong to more than 
one domains, there will be multiple domain centers that can be 

reached from a node. For each pair of domain centers 
selected (one for the so- one for the destination no&) a 
bound is obtained on the path that we wish to bound Several 
such pairs are considered and the one that produces the 
tightest bound is the one that is selected. The advantage is 
that considerably tighter bounds can be obtained. The 
disadvantage is that if each node has c domain centers, c2 
bounds have to be considered, and unless c is kept small, the 
effort involved in simply bounding the search could become 
signiticanL 

53 Incremental Changes 

Whenever some derived information is materializ.ed, a change 
in the base information needs to be reflected in a change in 
the derived information. We require pecomputed shortest 
distances between domain centers. and between each domain 
center and its constituent nodes. Whenever a modification is 
madetotheoriginalgraph,thispmcomputedinformationhas 
to be updated. Obviously. a complete recomptation would be 
extremely expensive. One possibility is to use the incremental 
techniques suggested in [l]. However, given the extremely 
large sizes of graphs that we rww have in mind, even these 
inmmental techniquea may be too expensive to use 
hquently. Fortmately, a simple solution exists. 

The basic observation to make is that the precomputed 
shortest distances are needed to derive bounds that are used to 
pnme the search. Even if we did not have exact values of 
these shortest distauces, but rather only upper and lower 
bounds on tha these bounds can appropriately be used in 
place of exact values, while deriving bounds for pruning the 
search Thus, instead of maintaining precomputed shortest 
distances between domain centers and between each domain 
center and its constituent nodes. we will maintain the upper 
and lower bounds on these distances. To begin with, the 
upper and lower bounds would be same (and equal to exact 
distances). As the bnse relation is updaM instead of 
xecomping the mat&&d shortest distances, we will 
appropriately update the upper or the lower bound. Of course, 
we will get somewhat less pruning since we now have weaker 
bounds than we would if we knew the exact distances. After 
several modifications to the database, the upper and lower 
hounds on precomputed distances would) diverge quite a bit. 
mtd the exact shortest distances required by the data structure 
may be recomputed. In a quasi-static situation, this approach 
can become very attractive. 

6. CONCLUSIONS 

In this paps, we considered the problem of performing 
efficient search over large databases. To this end, we 
presented a data organixation technique that relies on partially 
precomputing some information, and a bounding procedure 
that uses this data organization to prune the search space. Our 
data organization technique and the bounding procedure may 
be in-ted in a branch and bound search algorithm, or 
new algorithms can be designed using our bounding 
pmcedm. These techniques can be used to solve a large 
number of useful and practical path problems such as the 
shortest path, critical path, largest capacity path. path of 
maximum reliability. etc. [3,5.8,9,14,16]. and can also be 
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gainfully employed in large expat databme systems in which 
the search compommt of the expt systems has been 
integrated with the data mmagemmt capbility of databam 
management systems. simulation msults amhn that. using 
these techniques, a search can be expditml significantly 
without imxuring a large storage pm&y. 
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