
Modelling Non Deterministic Queries and

Updates In Deductive Databases?
Chrktophe de Maindreville and Eric Simon

INBIA Rocquencourt - BP 105
78153 Le Chesnay Cedex, France

Abstract

In this paper, we propose a new formalism to model and hnplement
general, rule-based languages for querying or updating deductive
databases. We consider as a target language a production rule
language for. databases that we introduced in previous papers,
namely RDLl. This language can be seen as an extension of a
logic-based language for databases to support updates in the head of
rules. The model we introduce, named Production Compilation
Network (FCN), is derived from Petri-Net based models. A PCN
models the two aspects of a rule program: the static aspect which
consists of the relationships between the rules and the database
predicates and the dynamic aspect which describes the semantics of
a rule program. The PCN are shown to have the following features:
(i) to provide a formal framework to describe general computation
strategies and query optimization algorithms in a clear and concise
manner and (ii) to model in a unified way queries and updates in a
deductive database context.

1. INTRODUCTION

A deductive database consists of a set of base relations called
extensional durubase (EDB), and a set of virtual relations
defined using rules, called intentional databare (IDB). In a
deductive database. the query language generally consists of a
rule based language, named DATALOG, where rules are
function-free defmite horn clauses. Several researchers studied
extensions of DATALOG in order to increase the power of the
rule language. The introduction of negative literals in the body
of a clause leads to DATALOGneg. Another extension is
DATALOGset which augments the terms with sets.

In previous papers [Simon87, Maindreville881, we
proposed an original approach to deductive databases based on
a production rule language, named RDLl. A production rule, in

tResearch is supported in part by the ESPRIT Project ISIDE (under
contract P1133)

Permission to copy without fee all or part of this material is granted
provided that the copies are not ma& or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and& date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish. requires a fee and/or special permission
from the Endowment.

our language, consists of a conditional part which is a relational
calculus expression and a consequent part which is a sequence
of insertions and deletions of tuples in database derived or base
relations. The main features of this language are the following.
First, it captures the operational (or declarative) semantics of
stratifled DATALOGneg programs but offers more generality
and more computational power than a DATALOGneg language
since a sequence of database updates can be expressed within a
single rule. In fact, RDLl can be seen as an extension of
DATALOGneg to support updates in the head of rules. The
second feature is that the operational semantics of the language
provides a uniform and clean compromise between declarativity
and procedurality. Indeed, the procedural aspects of RDLl
stand upon (i) the use of updates and (ii) the use of an implicit
ordering of rules (stratification-like) combined with an explicit
(user given) partial ordering of rules. Notice that stratification
in logic programs already introduces procedural control in the
language. Asa consequence of the previous points, RDLl is
not only a query language but is also an update language that
can be used to specify complex triggers.

One of the main problems encountered in deductive
databases is how to evaluate a rule program, that is a query.
Most query processing algorithms for deductive databases
strongly use graph models. Many such models have been
proposed in the litteratute. Predicate Connection Graphs (PCG)
and Active Connection Graphs (ACG) [McKay811 are used to
model DATALOG programs. The PCG connects the literals
that can be unified, i.e., predicate occurrences in the rule body
are camected to their occurrences in the heads of the rules. The
PCG is static and displays only the structure aspect of the logic
program. It allows to retrieve all the formulae that unify with a
given formula. ACG provide the dynamic aspect and display
the binding propagations through the flow of control. ACGs
detect recursion through predicates that have the same bindings.
However, both PCG and ACG are not suitable in a database
context because they do not make a distinction between base

Proceedin s of the 14th VLDB Conference
Los Ange es, California 1988 P 395

(i.e., EDB) and derived relations (i.e., IDB). System Graphs
(SG) [Lozinskii86] have been proposed as an extension of
ACG to compensate for these limitations and to support
function symbols. RuMGoal Graphs (RGG) [Ullman85] are
used to statically represent DATALGG programs with function
symbols. An RGG is an adorned AND/OR graph where each
derived predicate is represented by a number of relation-nodes
corresponding to the different possible binding patterns for this
predicate. Thus, an RGG can display the propagation of
constants but its size can grow exponentially in the maximum
number of arguments of a derived predicate. Capture rules
[Ullman85] ln RGG seem limited to a semi-naive evaluation
strategy. Extensions of RGG have been shown to be well
suited for studying recursive query optimixation algorithms
[Bancilhon86b, Beeri and they have been enhanced by so
called information passing graphs [VanGelder86] in order to
restrict the computation process to relevant facts. Nevertheless,
both SG and RGG suffer from several limitations. First, they
are highly dependent on the query processing algorithms for
which they have been designed. They can hardly be used to
model general query evaluation strategies (e.g., bottom-up,
top-down, . . .) as well as the flow of control of several
different query optimixation algorithms (e.g., different constant
move up algorithms, . ..). The second limitation is that no
execution model has been developed to model more general
query languages such as DATALOGneg or updates and
triggers’ languages, as well as their associated optimization
strategies in a deductive database context. For instance, the
above models are bound to deal only with query languages
such as DATALOG.

Recently, a Petri-Net based model (colored nets) was
proposed in [Aly871 to alleviate the first limitation and to model
the behavior of DATALOG programs using different strategies
and algorithms. In this paper, we propose another Petri-Net
based model, called Production Compilation Network (PCN).
This model is derived from Predicate Transition Nets (PrTN)
defied in [Genrich86]. PCN can model the behavior of any
RDLl program, (and a fortiori any DATALOGneg program),
and thus provide a generalization of the approach presented in
[Aly87]. In particular, PCN provide a uniform execution model
for implementing updates and triggers in a deductive database.
Another imptant feature is that. through a particular language
of control over the PCN, it is possible to manage explicit
ordering between rules. Therefore, PCN may capture
procedural control over the rules.

Apart from this introduction, the paper is organized as
follows. Section 2 presents the structural and the dynamic
aspect of the PCN formalism. Section 3 introduces a basic
language over the PCN which describes in a clear and concise
way the different computation strategies of a rule program. This
leads to the notion of annotated PCN. Section 4 discusses the
problem of generating an efficient annotated PCN and presents
a general overview of our query processing strategy as it is
currently being implemented. Finally, section 5 is the
conclusion.

2 .THE PRODUCTION COMPILATION NETWORK
MODEL

2.1 Preliminaries
We first recall basic database notions. A relational schema R

is a finite set of attributes (Al, A,). Let dom (Ai) be the
domain of values of attribute Ai. A constant tuple t = (cl,
c,) over a relational schema R is a mapping from R into dom
(Al) u dom (A2) u.... u dom (An) such that for each i in (1,
. . . . n) q E dom (Ai). An instance of a relational schema R,
(sometimes called a relation), is a finite set of constant tuples
ovw R. A databare schema is a ftite set of relational schemas.
Finally, an instance I (also called a database) over a database
schema S is a total function from S such that for each R in S,
I(R) is an instance over R.

An RDLl production system (or an RDLl program) is
composed of a set of if-then rules called productions that make
up the rule base, and a relational database called the fact

darabase.

The left-hand side of a production, (corresponding to the if
part of the rule), is a range restricted expression of the tuple
relational calculus [Codd7 1, Ullman821 which consists of the
conjunction of a range formula and a sub-formula. A range
formula is a conjunction of positive (resp. negative) range
predicates which indicate that a tuple variable ranges (resp.
does not range) over a relation. A positive range predicate is
denoted R(x) while a negative range predicate is denoted 7 R
(x) where x is a tuple variable and R is a relation name. A
sub-formula is a condition over the variables that appear in the
range formula part.

The right-hand side of a production, (corresponding to the
then part of the rule), is a set of actions. There are two
&mmtaty actions, denoted “+” and I’-“. The update action “+”

396

takes a ground fact (i.e., a constant mple) and maps a database
state into another state which contains this fact. Thus, the action
‘I+” inserts a tuple into a derived relation. For instance, +
Parent (sam, jeremie) inserts the tuple (sam, jeremie) into the
Parent relation. On the contrary. the action “-” takes a fact and
delete it from a relation. In aparamewized action. variables are
allowed in the argument of the action (e.g., + Parent (Father =
x, Child = y)). For safety reasons, all the variables that appear
in the action part of a rule also appear positively in the
condition part.

Tmditionally,a production system interpreter ~rownston85]
is the underlying mechanism that determines the set of satisfied

productions and controls the execution of the production rule
program. The interpreter executes a production rule program by
performing the following recognize-act cycle :
- Match : in this first phase, the left hand side of all
productions are matched against the database. As a result, a
conflict set is obtained which consists of instantiations of all
satisfied productions. An instantiation of a production is a rule
where all free variables are substituted to constant tuples.
- Conflict-resolution : In this second phase, one of the
productions in the conflict set is chosen for execution. If the
conflict set is empty, the interpmter halts.
- Act : In this last phase, the actions of the production selected
in the previous phase are executed. These actions may change
the content of the database. At the end of this phase, the first
phase is executed to restart the cycle.

This cyclic interpretation scheme forms the basic control
structure for RDLl production rule programs. In lSimon88.
Simon88b], we provided the formal semantics of RDLl which
is in the spirit of Kripke semantics for modal logic lKripke631.
As a result, we show that this semantics captures the declarative
semantics of a stratified DATALOG”% language but offers
more generality and more computational power than a
DATALOGneg language. Indeed, RDLl can be seen as an
attempt to extend DATALOGneg to support database updates.
A notable feature of the language is that it enables to specify
non-deterministic updates or queries. Recently a very attractive
formal approach has been proposed in [AbiteboulS’la] to study
database update languages. We believe that the basic techniques
developed in this paper can also be used to implement their
languages.

called Production Compilation Network (PCN) to model the

behavior of RDLl programs. This model has two aspects : the
st~cture aspect and the execution aspect.

2.2. The structure of a Production Compilation

Network
The PCN model is a Petri Net based model. More precisely,

it derives from Predicate Transition Nets (PrTN). A formal
definition of PrTN can be found in [Genrich86& It is convenient
to recall that a PrTN consists of [Genrich 861:
(1) a bipartite directed graph (P,T,F) where P and T are called
places and transitions respectively, and F is a set of directed
arcs, each one connecting a place p E P to a transition t E T or
vice versa that is (P x T) u (T x P) 1 F. Places correspond to
predicates with their extensions, and transitions represent
classes of elementary changes of extensions.
(2) a labeling of the arcs with formal sums (noted “+“) of tuples
of variables; the length of each tuple is the arity of the predicate
connected to the am.
(3) A structure C, defining a collection of typed objects together
with some operations and relations applicable to them Formulae
built up in Z can be used as inscriptions inside some transitions.
(4) A function K, from the set of places to the set of nonnegative
integers, assigning to each place an upper bound to the number
of copies of the same token the place can carry at the same time.
K (p) is called the capacity of p.
Atokenr=(al,a2 ,. . .,ar) in a place p E P denotes the fact that
the predicate P (x1,x2 ,Xr) corresponding to that place is true
for that particular instantiation of the tuple of arguments
contained in the token r.

The structural aspect of a PCN represents the relationships
between rules and relational predicates as specified by a rule
program. The following associations can be made between rules
and the PCN structure. We represent each rule by a transition
and each relational predicate involved in the rule by a place. The
relational predicates that occur in the condition part of a rule are
input places to the transition representing the rule and the
relational predicates that occur in the action part of the rule are
the output places of the transition. The condition itself of a rule
is represented in the transition’s inscription. More formally, we
are able to set up an isomorphism between an RDLl program
and a PCN structure which is summarized by the table below.

In the next sub-section we present the formal graphical tool

397

RDLl PCN

RUE

RELATIONAL. PREDICATE P

Free luple variables Xl.....X,
rangingover P
Bound variables ranging over P
or fm. variables ranging over -9

ACTION + P (t)

ACTION - P (t)

I TRANSITION T

PLACE P

ARC (P, T) labelled by :
+x1 +... +x,

ARC (P;r) Welled by : (.)

ARC(TT.P)labelledby +t

ARC(T,P)labekd by -t

ates Transition’s inscription

We now give a first example of a PCN built from a set of
rules. Let us consider the following rule module ANCESTOR
which defines a derived relation ANCESTOR as the transitive
closure of the base relation PARENT (Par, Child).

MODULE : ANCESTOR ;
target : ANCESTOR {Asci Desc);
rulea :
PARENT (x) + + ANCESTOR (x) ;
PARENT (x) and ANCESTOR (y) and x.Child.- y.Asc

--f + ANCESTOR (Asc - x.Par, Desc - y.Desc);
end.

In this example, x and y denote tuple variables ranging
respectively over the PARENT and ANCESTOR relations.

Two relational predicate names appear in the rules. They
lead to the places PARENT and ANCESTOR (represented by
the circles P and A on the net). The fmt rule is modelled by the
transition Tl whose inscription is the formula TRUE. The
second rule is modelled by the transition T2, whose inscription
is the formula “x.Child =, y.Asc”. On the net, transitions are
represented by boxes. The arcs outgoing from PARENT are
labelled by + (x.Par, x.Child). The arc outgoing from
ANCESTOR is labelled by + (y.Asc., y.Desc.). Finally, the arc
going from T2 to ANCESTOR is labelled by + (x.Par,
y.Desc.). To simplify the graphical representation of the PCN,
tuples are replaced by tuple variables in the labels of the input
arcs of the transitions.

J

Figure 2.2 : PCNfor the Ancestor rules

The second example is the PCN (figure 2.3) associated to
the rule Module WINGS. The base relations are PENGUINS,
CROWS having for schema (Name, Color, Sex, Country,
Predator).

MODULE : WINGS :
target : FLY (Name} ;
rule8 :
PENGUINS (x) + + BIRDS (Name - x.Name) i
CROWS (x) --t + BIRDS (Name - x.Name) :
BIRDS (x)4 + FLY (Name = x-Name) ;
PENGUINS (x) -8 - FLY (Name = x.Name) :
end.

Figure 2.3 : the PCN for the WINGS Module

A query is a production rule represented as a single
transition, noted T$, several input places and a single output
place, noted $, representing the result of the query. Thus, a
query can be represented as the combination of two PCNs. The
first one represents all the rules needed to define the content of
the input places of the query. The second net represents the
query itself. The resulting PCN is called a query PCN. An
example of a query PCN is given figure 2.4.

The query expressed in the SQL language is :
SELECT ASC, Desc FROM ANCESTOR

WHERE Desc = Georges;

Figure 2.4 : Quety PCN

2.3. Semantics of a PCN
In this section, we define the semantics of a PCN. The

dynamic aspect consists of the semantics associated to the tiring

398

of the PCN transitions. This semantics corresponds precisely to
the semantics of RDLl as shown in [Simonll, Maindreville88].

A marking is a distribution of tokens over the places of a
PCN. The token is a basic concept in all Petri Net based models.
In a PCN, a token represents a database tuple. Traditionally, a
Petri Net based model executes by firing transitions. A transition
can be fired if it is enabled.

A transition T is enabled whenever the three following
conditions are satisfied.
(i) Each input place P of T contains at least as many tokens as
specified by the number of tuples figuring on the label of the am
(p, T). A tuple of the form (.) counts for zero.
(ii)The tokens occurring in the input places of T have values
satisljing the transition inscription.
(iii)The marking of at least one output place of T is modified by
the transition firing.

We impose the capacity of each place, that is the number of
copies of the same token a place can carry at the same time, to be
bound to 1. This leads to the notion of a duplication free PCN.
A duplicationfree PCN is a PCN where : (i) two tokens of equal
value in the same place are merged into a single token, (ii) a
transition which would only produce already existing tokens is
not enabled. This corresponds to assign a fmpoint semantics to
the “+” symbol in the rule language.

At a given time, several transitions can be enabled. A
transition’s occurrence is a couple (I’. L) where T is a transition
name and where L is a list of variable substitutions of the form

<xl/al, .,., x,/a,> where the xi are all the free variables
figuring on the labels of the input arcs of transition T and the ai
are tokens issued from the input places of transition T. In the
remainder of this paper L is called a substitution list. The set of
all transition’s occurrences, for a given marking of the net, is
called the transition’s conflict set. Note that for a single
transition T, different substitution lists can be used to fire the
transition. Each one of these lists leads to an element (T, L$ in
the transition’s conflict set. We note Rel (T) (for : relevant set of
tokens for T). the set of all the substitution lists that appear in
the transition’s conflict set together with the transition T.

Example : ’
Consider the transition Tl of the PCN represented in Figure

2.2. Assume that the marking of the place A is empty and that
the marking of P is ((Bill, Paul), (Paul, Sam)). Then the

transition’s conflict set is the set : ((Tl, <x / (Bill, Paul)>),
(Tl, a / (Paul, Sam)>)) and Rel (Tl) = (u(/ (Bill, Paul)>.
<x / (Paul, Sam)>). Note that by definition, Rel (Tl) only
contains tokens that satisfy the inscription of Tl.

When a transition T is enabled, it can be fired. Firing a
transition’s occurrence (T, L) produces several actions. First, it
duplicates from each input place P of T a number of tokens
equal to the number of positive symbols labeling the arcs (P,
T). Indeed, we use conservative nets which means that firing a
transition T will only change the state of the output places of T.
Then, for each output place P of T, let + tl+ . ..+ tn be the
positive label of (T, P) and let - sl- . . . - sq be the negative label
of (T, P). Given the substitution list L in Rel (T), we define
L(ti) as the result of applying the variable substitutions of L to
the variables of ti. Two sets of tokens S+ and S- are then
defined as follows:

S+=(L(ti))fori=lton;
S-= {L(si))fori=ltoq;

Let M(P) be the marking of P; the firing of (T, L) produces a
new marking in P:

M(p) = (M(p) u (S+ - SJ) - (s_ - S+).

This result is portrayed in the figure 2.5. The dashed part
represents the marking M(P).

Figure 2.5 : result of thejIring of a transition’s occurrence.

With these definitions, a multi-labelled arc is interpreted as an
atomic database update. This property has several
consequences. First, it ensures that the order of insertions and
deletions in the action part of a rule is irrelevant. Second it
nullifies an action which inserts and deletes the same constant
tuple. For instance, the instantiated label of an arc (P. T):
L(t) = + (a a) - (a, a) - (a. a) = - (h a) + (a, a) - (8, a) is a null
action over P. However, L (t) = + (a, b) - (a, c) = - (a. c) +(a,b)
deletes the tuple (a, c) and adds the tuple (a, b).

Example :
Consider the following PCN :

399

Q +(x.orig.. y.exL) - y

pc 1’ I
Figure 2.6

Gn this net, the relation G (Ext., origin) stores oriented arcs in
a graph. The transition T computes the reduction of the graph by
replacing two serial edges by one resulting edge. The condition

C is : (V z E G)[(z = y) v ((z.Grigin # x. Ext) A (z.Ext +

x.Ext))]. It expresses that x.Ext. is a single node in G.
Let I~Io (G) be the following initial marking in G :

MO(G) = (tl = (a, b), t2 = (b, c), t3 = (c. d));
Then, Rel (T) has two elements : Rel (T) = (Ll = cx / (a, b),

y/h ch L2= <x / (b. c). y / (c, d>); The sets S+ and S- are
defined as follows :

For CC W : S+ = Ita. 41, S- =((a, b). (b, c))
For(T.L2):S+= I@, 4). S- = I@, cl. (c, 4)

The fiig of (T. Ll) produces the following marking :

Ml(G) = W&3 u (S, - S-N - (S- - S+)
= ((a, cl, Cc, 4)

Then, Rel 0 = IL’1 = UC / (a, c). y / (c. d)>)
For (T. L’l) : S+ = ((a, 4). S- =((a, 4, (c. d))

The firing of (T, L’l) produces the following stable marking :

M2G) = (Ml@) u (S+ - S-1) - (S- - S+) = ((a. 4).

For a given initial marking, a place P has a stable marking iff
none of its input transitions is enabled. This notion is used to
define the stability of a transition. A transition T is said to be
stable for a given initial marking iff all its output places have a
stable marking. Then, a PCN has a stable marking for an initial
marking iff all its transitions am stable.

When the PCN reaches a stable state, no transition can be
enabled and the PCN evaluation stops. This corresponds to a
flxpoint for the set of rules modelled by the net. We are now
able to state the definition of a deterministic PCN. A transition T
is deterministic iff, for any initial marking Mg, the output places
of T have a unique stable marking depending on lvlo. A PCN is
deterministic iff for any initial marking IHo, the net has a unique
stable marking depending on MO.

Example :
In the example of figure 2.2, each transition is clearly

deterministic and the PCN is also deterministic. Indeed, this
PCN describes a monotone increasing function (in the sense of
set inclusion partial order) over the marking of the net.

In the example of figure 2.6, the transition T does not
describe a monotone function over the markings of the net.
However, it is quite easy to demonstrate that such a transition is
deterministic.

Finally, it is important to note that the net portrayed on
figure 2.3 has no stable state.

A PCN evaluator has to execute the following procedure
portrayed in figure 2.7. This procedure, starting from an initial
marking, successively computes each reachable marking.

arocedutie eP8lu8te (P: PCN, MO: Initial
marking)

M e-MO;
repwt

compute the conflict set:
select a transition's occurrence (T, L)
in the conflict set;
compute M :- reachable marking from M
by firing (T, L):

until a stable marking is reached.

Figure 2.7 : A PCN evaluator.

This procedure is not deterministic. The undeterminism
stands in the choice of a transition occurrence in the conflict set,
that is, (i) the choice in the conflict set of a transition T and (ii)
the choice of the tokens used to fue T. In a deductive database
context, the problem is to determine a sequence of transition’s
occurrences that leads to a correct and eficient computation.

Correctness refers to the declarative semantics of the
corresponding program and to the stable marking associated
with it. Indeed, the non monotony of the PCN evaluation denies
the existence of a unique stable marking for all nets. When
several stable markings are reachable, using a meta-semantics
similar in essence to the stratification of logic programs [Apt86],
a deterministic semantics can (under certain conditions) be
assigned to the PCN. When it does, the meta semantics yields a
partial ordering over the transitions, and thus constrains the
choice of the firing of a transition’s occurrence in the conflict
set. Therefore, a correct computation must return the unique
stable marking of the net when it exists under the previous
meta-semantics or one of the possible stable markings when the
net remains undeterministic. Efficiency refers to both the

400

computation mode of a single transition (remark that evaluating a
transition leads to evaluate a relational calculus expression) and
the control of the inherent parallelism between rules. We shall
see later two different computation modes for a transition (a set
oriented mode and a tuple at a time mode).

Theflow of control in a PCN is defined as the description of
both the sequence of transition’s occurrences firings, and the
computation mode of each transition. In our framework, this
comes to say that query optimization techniques are captured
either by the syntactic transformation of the net or by describing
a particular flow of control. Therefore, the problems that
immediately arise are (i) to provide a formal way of describing
the flow of control in a PCN and (ii) to defme how to generate a
correct and efficient flow of control. The former is tackled by
the next section while section 4 discusses some aspects of the
second problem.

3. FLOW OF CONTROL IN A PCN

3.1. A control language over the PCN

The previous section described the PCN structure and its
semantics. In this section, we present a language used to
describe the computation of a PCN.

As we have seen in section 2, a PCN is a non deterministic
machine that describes sets of sequences over states of a
database, and thus determines a relation on these states. This
scheme was illustrated by the PCN evaluator procedure
portrayed on figure 2.7. The implementation of such a
procedure on a deterministic machine necessitates specifying the
order in which enabled transitions are selected for fling (the
conflict resolution srruregy) and the order in which states of the
database are expanded (the backtracking strategy). For instance,
a possible conflict resolution strategy can be the stratified
execution of a program. All these strategies are called the
evaluation scheme of the PCN.

Remark that if backtracking is eliminated, for non
deterministic PCN only one solution path can be generated for
any given initial marking and query. In such cases, the solution
set depends not only on the transitions and the marking of the
net but also on the particular evaluation scheme used.
Nevertheless, we do not consider any backtracking strategy in
the evaluation scheme presented in this paper.

Our objective here is to defme an explicit control component
that is specified independently of the PCN evaluation scheme.
Informally, this control can be represented by the set of all
allowable sequences of transition firings; that is by specifying a
language over the set of transitions. We will call such a language
a control language . At each step of execution, the control
language restricts the set of transitions that may be considered
for firing and only a subset of the transitions in the transition’s
conflict set is acrive. We call a PCN together with a control
language an annotated PCN.

All the procedural control is thus contained in the control
language and is quite independent of the specification of the
evaluation scheme. Note that when the control language places
no constraint on transition’s tirings, (i.e., when the control
language allows all possible transition sequences), an annotated
PCN reduces to a non deterministic system whose execution is
completely governed by the evaluation scheme. At the other
extreme, where the control language makes the PCN
deterministic, the evaluation scheme is inhibited.

We now define formally what is a control language over a
PCN. First, recall that a PCN is defined as a triple (P, T, F).
We define C as the set of all transition names of T. A control
language over a PCN is any subset of Z* where Z* is the set of
all strings over I;. A word in I;* is called an annotation.

We are now able to define the execution of an annotated
PCN = (P, T, F. A) where A is a set of annotations (or a control
language over Z). We first define a stare of execution to be a
pair cu. M> where u is a prefix of some word in A and M is a
marking over the net. Now, let u and UT be prefixes for some
word in A where u E Z* and T E G Then, we say a state of
execution <UT, M2> is directly reachable from a state <u. Ml>
(noted cu. Ml> + <UT, M2>), if and only if one of the two
following conditions holds :
(i) The transition T is enabled in Ml and M2 is reachable from

Ml by executing T.
(ii) the transition T is not enabled in Ml and M2 = Ml.

The last condition means that if a transition in the annotation
is not enabled in the current marking, then we move on to the
next symbol in the annotation.

Let +* denote the reflexive transitive closure of + Then
the reachability relation computed by an annotated PCN. (P. T.

401

F, A), is a subset of M x M where M is the set of all possible
markings over the net :

(<Ml. M2> : <h, Ml> +* <u, M2> for some u in A)

The set A of annotations, (or the control language), can be
specified using a context-free language. We give below the

context-free grammar associated with the language that describes
all the possible annotations over a PCN.

The terminal alphabet is composed of Z, +, (,), *, cr. The
non terminal alphabet is: T, Q and the start symbol is S. Now,
the productions are :

S +(T+Q)ITQIT
T-,(T+t)ITtItI(T)*IQo
Q+(Q+t)IQtItI(Q)*I(Q)Q

In this grammar, the symbol + denotes a disjunction (i.e., (T
+ Q) means that T or Q can be fired); the symbol Q stands for
saturation and means that a sequence is repeated up to saturation;
the symbol * means that a sequence is repeated 0 or more times.
Finally, TQ means composition of T and Q.

Example :
Suppose one wants to express that Tl is always tried to be

fiied before T2 which in turn must always be tried before T3.
The sequence ((Tl)On)O expresses the precedence between Tl
and T2. Now, the sequence (((Tl)oT2)oT3)Q is the desired
result. Thus, Tl is always evaluated fist. If Tl is not enabled
then T2 is evaluated. If T2 is fired using a given transition’s
occurrence then Tl is again evaluated. When a stable state is
reached for Tl and T2 then‘T3 can be evaluated and so on. 0

Remark that due to the presence of parenthesis, the above
grammar is of the type anbn and is not a regular grammar.
Another point is that due to the disjunction “+“, the set of
annotations can be described by only one word in the above
context-free language.

We are now able to present the modified evaluator pm~ed~re

that executes an annotated PCN = (P. T, F, A). Initially, the
state of execution is 4, MO> for some initial marking M@
Suppose that a state of execution <u, MB has been reached. If u
is an element of A and M is a stable state (i.e., answers the
query), then execution may terminate in absence of backaacking
strategy. Otherwise, we consider all transitions T in the conflict
set such that UT is a prefix of some word in A. If this set (called

active set) is empty then execution terminates unsuccessfully;

this means that the annotation is erroneous. Otherwise, a
transition T is selected from the active set and T is executed
giving raise to a new state of execution <UT, I@>. This is
illustrated by the following procedure.

procedure evalute l nnot8ted (P:annotatet
PCN,

t-lo: Initial marking)
M 4-q);
u 4-I;
repeat

w active set:= set of all transition:
T in the conflict set such that UT is i
prefix of some word in A;

if active set = 0and UT is not a word in A
then return error:

salect a transition's occurrence (T, L) ix
the active set:
w M :- reachable marking from M by
firing (T, L):
utuT;

if u is a word in A and M is not a stable
marking then return error;

until a state <u, M> is reached where M is a
stable marking and u E A.

3.2 Extended annotations

In the previous section we described a control language
without indicating the computation mode of each transition. The
purpose of the present section is to give a detailed description of
these modes. Each of them yields a new basic symbol associated
with a transition. The previous language is then extended to deal
with these symbols instead of the transition names. We call
extended annotations the words recognized by this new control
language.

The first basic symbol is FT, L . It means that a transition’s
occurrence (T, I,‘) is fired, where L’ belongs to the relevant set
of T and L’ matches the pattern list L. A pattern list is a list of
the form “1 /pl, x, / pn> where the xi are all the free
variables figuring on the labels of the input arcs of transition T
and the pi are pattern tokens. A pattern-token is simply a
partially instantiated tuple. A non instantiated attribute value in
such a token is represented by “?“. A substitution of the form xi

/ pi where pi only contains “?” values is named an empty
subsrinuion. A substitution list L’ matches a pattern list L if each
pattern token of L respectively matches each token of L’. A non
instantiated value ‘I?” matches any constant value. The procedure
associated with this symbol is :

402

procedure compute-tram . (T : t rans . , L:pattlist,
M:marking, C: boolean);

begin
if C = false then compute Rel (T);
Choose a list L' that matches pattern list L
(if any) in Rel (T);
compute the sets S+ and S- :
fat each place P such that

there exists an arc (T, P) do
compute M :- (M v (S+ - S-)) - (S, - S+);

end.

A particular case arises when L is such that all the variable
substitutions are empty substitutions as defined above. In this
case the symbol FT, L is abbreviated as FT and its meaning is
to fire a transition’s occurrence of T chosen at random in the
transition’s conflict set.

The’ second basic symbol does not really belong to the
semantics of a PCN. Rather, this symbol, noted RT, L,
defines a particular computation mode of a transition. The
meaning of RT, L is first to compute rel (‘I’) and then to fue T
with all the occurrences of rel (T) without observing the
intermediate modifications of T on the conflict set. Roughly
speaking, it means that T is fired in a set oriented way. More
formally, let T be a transition and (T, P) be an output arc of T.
Let + tl...+ tn be the positive label of (T, P) and - sl...- sq be
the negative label of (T, P). Two sets SR+ and SR- are now
defined as follows :

sR+= U (IL ($)I) = u S+
LE Rel(T) LE Relu)

SR-= u (IL(Sj))) = u s-
LE RelQ LE Rel(T)

The procedure associated with the symbol RT, L is then :

cocedure compute-rel-ttan8 (T:trans.,
L:patternlist, M:marking);

sgin
xnpute Rel(T);
BX each place P such that there

exists an arc (T, P) do
begin
compute SR+ and SR- for all lists
that satisfy pattern L;
compute
M (P) :- (M (P) U (SR+ - SR-)) - (SR- - sR+);
compute Rel(T);
end

ad.

The following remarks can be made : (i) such a procedure is
deterministic, and (ii) the “for each” statement of the procedure
exactly corresponds to compute t as a Relational Algebra
Program (RAP) where the relations are the marking of the
input places of T and the result of the program is the marking of
the output places of T. Rel (I’) is computed only once: thus, the
procedure is equivalent to a usual relational algebra query. This
is why such a transition ftig is interesting in a DBMS context.

An extended annotation is then any word computed by the
previous context-free grammar where Z is now the set of
symbols built from the two above basic symbols. the set of
transition names in T, and the set of all pattern lists.

A particular case is the annotation (FT, L) o. It means that
the transition T is tired up to saturation using the pattern list L
as a filtering pattern for tokens. In a similar way as above,

WT) o means that T is fired up to saturation without any
pattern. The associated procedure is :

arocedure compute-ttansition-sat (T:trans.,
L:patternlist, M:marking);
begin

compute Rel (T);
C :- false:
while Rel (T) # 0 do %until a stable

marking M is reached%
begin

compute-trans. (T , L, M, C);
compute Rel (Tl;
C :- true;

end
end.

Example :
On the net portrayed on figure 2.2, the extended annotation

(FTl,Ll)o (FT~, L2)o where : Ll = a / (?, sam)> and L2 =
<(x / (?, ?), y / (2, Sam)> computes in the ANCESTOR place
all Sam’s ascendants. Indeed, (FTl,Ll)o successively copies
all the PARENT’s tokens that satisfy the pattern of Ll into
ANCESTOR. Then (FT~, L2)o computes the ascendants of
sam. Equivalent annotations are either (FTl,Ll* FT~, L2*) o

~~((FT~,L~)OFT~,L~*)~.BU~FT~,L~*F~,L~*~S~O~~

correct annotation for the PCN. Remark that all these
annotations have not the same computation Cost.

An interesting problem is to detect the cases where the
symbol (FT, i> o can be rewritten into (RT, L)o and yields the
same result. When this is possible, the transition T is said to be

403

relutionul. Note that, when the language is DATALOGneg, all
the rules are relational computable. A complete discussion of
this problem can be found in [Simon88]. In the following, we
only give some examples to illustrate the notion of relational
computable transition.

Examples :
(i) Consider the PCN portrayed in Figure 2.2. The

transitions Tl and T2 are relational. This means that the firing
of Tl corresponds to a usual query in relational algebra, and
that the repeated firing of T2 can be computed by a relational
algebra program which is precisely a loop of joins onto the
relation PARENT and ANCESTOR. In this particular example
the word (FT~) Q (F-r,$ a can be rewriten into (RTl)o (RT2>o
which is a more efficient annotation.

(ii) Consider now the PCN portrayed in Figure 2.6. As
presented in section 2, the computation of the word (FT) Q
leads G to the following stable marking : M2 (G) = [(a, d)).
We show in the following that a relational computation of this
PCN does not provide the same marking in G.
The initial marking in G is MO (G) = (tl = (a, b), t2 = (b, c), t.3
= (c. d)); Then, we have :

SR+= u S+ = ((a.~)) U ((b, 4)
LE Rel(T)

s& = u S- = ((a, b)) U ((b, c)) u I@, cl) u ((cd))
LE RelQ

= ((a. b), 0-x cl, k 4)
The computation of the procedure compute-rel-trans

leads to :

M2 (G) := (MO (G) U (sR+ - SR-)) - (SR. - sR+)

= ((a, cl, (b, 4).

Hence, the transition T is not relational, i.e., (FT) o + (RT) o.

4. GENERATION AND USE OF AN ANNOTATED
PCN

In this section we present a general query processing
overview of the system we are being implementing using PCN.
We first discuss the evaluation scheme. Then, we present how
the previous model is used to implement the production rule
language RDLl.

4.1. The evaluation scheme

The evaluation scheme presented here only incorporates a
conflict resolution strategy and proceeds in a bottom-up
evaluation. The two basic techniques used for conflict
resolution are : firing by stepwise saturation and implicit
ordering of rules.

Implicit ordering corresponds to what is called stratifcation
for logic programs as described in [Apt86]. A detailed
discussion of what this concept becomes in our framework
where we not only deal with negation but also with updates is
given in [Simon88b]. Roughly speaking, it corresponds to
travcrsc the net in the order specified by the oriented arcs of the
net. This is called the chaining property.

We now discuss the choice of computation of a transition
using a saturation mode (o mode). Several cases arise
according to the nature of the program. Fit, assume that the
PCN is deterministic. Therefore the Q computation mode for all
the transitions defines one correct computation among others.
Is it an efficient one ?. In fact, two basic optimizations are made
possible: (i) If a given transition is relational computable then
(FT) o can be replaced by (RT)o in the annotation, (ii) it avoids
the PCN evaluator to maintain a main memory environment for
several rules at the same time; in particular, a transition that has
already been fired and that does not appear in a repetitive
sequence in the annotation is eliminated from the evaluator’s
environment.

Now, consider an a priori non deterministic PCN, two
sub-cases are distinguished. First, the net has an underlying
deterministic semantics that can be assigned using the implicit
partial ordering mentioned above, or because an explicit meta-
semantics was provided by the user (for instance, an
annotation can be given using a patticular grammar). If explicit
information is given then the choice of the computation mode is
also explicitly derived, Furthermore, if the net is only
composed of deterministic transitions, then the explicit
annotation may only concern the ordering between transitions.
Thus, in this case, a d computation mode can be assigned to all
transitions and we get a correct computation.

The second sub-case that remains is the case of a non
deterministic PCN for which a deterministic semantics cannot
be infered. Here, there is no notion of correct computation and

404

any mode (excepted to the relational one) can be a priori
chosen.

Thus, in summary, a cs computation mode can be used when
the PCN is assigned a deterministic canonical semantics. We
call such a mode a firing by stepwise saturation mode.
Obviously, a different mode arises when explicit annotations
are provided by the user.

Example :
Consider the PCN represented Figure 4.1. This PCN admits

a unique fixpoint on the contrary to the PCN portayed on
Figure 2.3 which loops for ever.

Figure 4.1

Thus, this PCN is deterministic and a correct extended
annotation is for example : w = (RTI)~(RT~F(RT~)~
(RT4)o. Remark that in this case, this annotation can be
generated by the system itself.

4.2 A general query processing overview.

In this sectiljn, we briefly present the different steps of the
evaluation of a query by generation of an extended annotated
PCN.

When IA query enters the system, the fist step consists of
retrieving the pertinent PCN, i.e., the minimal PCN which is
able to produce the desired marking in the result place. Then,
this m%imal Query PCN is build in main memory. The second
step consists of an optimization and translation phase. The
optimization techniques being currently implemented in our
system are : the rewriting of the (FT) 0 words into (RT) o , a
generalization of query modification in order to minimize the
number of transitions appearing in the query PCN, the
transformation of a set of database updates into an optimized
one as [SellisgS] does, and the “push-up” of the selections.
These algorithms are described in @kiindxville87].

Let us review the different uses of annotations. First, the
control language enables to model a procedural control over the
rule language that is not hidden in the rules [GeorgeftXZ].
Whatever the meta-language is for expressing this procedural
control, annotations provide some means to capture it in a
compiled form. A second point is the use of annotations for
capturing evaluation algorithms. For instance, the “push-up” of
constants can be expressed in the extended control language in
the same spirit as [Aly87]. If an annotation was already
specified by the user, query optimization techniques correspond
to transform the specified annotation into an optimized and an
extended one.

The last step is the evaluation of the annotated PCN. As a result
of this step, a sequential (i.e., without use of disjunction)
extended annotation is produced. It is then transformed into an
access plan composed of relational algebra programs. including
specialized operators in order to compute efficiently the non
relational rules. The different steps of the query processing are
summarized on the following figure:

Query
Access Plan

Optimization Translation Generation

Ic

run time code

Production
Compilation
Networks

Annotated
PCN

r Rule Base =i

Figure 7.1 : query processing overview

5. CONCLUSION

This paper presented a new execution model called a
Production Compilation Network (PCN). This model is an
extension of a Petri-Net based model, namely Predicate
Transition Nets. We showed how to model the static aspect and
the dynamic aspect of RDLl, a production rule language for
databases. RDLl can be seen as an extension towards the
support of updates for DATALGGneg. Hence, the PCN model
provides a uniform framework to model the evaluation of
queries and updates in a deductive database context.

405

IL

We introduced a control language over the PCN to describe
different evaluation schemes and algorithms in a clear and
concise manner. In particular, we showed how to describe the
relational computation of a production rule. The set of basic
symbols of the PCN language as presented in this paper
permits only to capture a bottom-up evaluation strategy. We
defined elsewhere Flaindreville88b] other symbols that capture
pure top-down evaluation strategies or mixed strategies (as in
the query/subquery approach). Using the full PCN language,
we are able to describe the Prolog evaluation strategy for
DATALOG-like rules. Finally, the structure aspect of a PCN
enables to capture a partial ordering over the set of transitions.
This ordering can be considered as an extension of the notion
of stratification for a production rule language, [Simon88b].

Our main contribution is to provide a good intermediate
model that can be used as a control structure for implementing
rule based languages for deductive databases. For instance, it is
possible to describe the computation of a rule program using
either a tuple at a time computation mode or an extended
relational algebra program or both. Moreover, our claim is that
the implementation of DATALOGneg programs can benefit
from using PCN because (i) the efficient evaluation of a
DATALOGneg program requires implementing a variety of
strategies and algorithms, and (ii) procedural control enables to
describe more meaningful programs. Thus, we need to describe
control over rules. To illustrate the first reason, consider the
recursive query evaluation problem. No universal optimization
algorithm is available and different algorithms need to be
supported according to the structure of the data in the database
relations (cyclic or acyclic, tree, cylinder, . . .). the structure of
the rules (chain rules, linear rules, . ..). and the operators
supported by the system (e.g., transitive closure). PCN offer a
uniform way to describe these algorithms with their application
area.

A first implementation of the method has shown the
adequacy of the execution model. It also pointed out some
research perspectives :
*to extend the model to support : (i) integrity constraints over
the derived relations, (ii) access methods information in order
to include physical optimization in the query processing
process,
,to map parallelism onto the model,
*to use annotations for parameterizing various evaluation
schemes

Acknowledgments :
The authors would like to thank Serge Abiteboul for the
numerous fruitful discussions, Nathalie Lefebvre for her
comments on a previous version of this paper and Marie Aude
Portier for her participation in the implementation.

References :
[Abiteboul87a] S. Abiteboul. V. Vianu : “A Transaction
Language Complete for Database Update and Specification.” ,
in ACM PODS. 1987.
[Aly87] H. Al; , Z. M. Ozsoyoglu : “Non-deterministic
ModeRing of Logical Queries in Deductive Databases ” hoc of
ACM-SIGMOD, Los Angeles, 1987.
[Apt861 K.R. Apt, H. Blair, A.Walker : ” Towards a Theory of
DeclarativeKnowledge”. IBM Report RC 11681, April 1986.
[Bancilhon86] F. Bancilhon, R. Ramakrishnan : “An
amateurs’s introduction to recursive query processing
strategy”, Pmc of ACM SIGMOD, 1986.
[Bancilhon86b] F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman :
“Magic sets and other strange ways to implement logic
programs”, 5th ACM Symp. of Print. on Database Systems.
[Beeri87] C. Beeri et al., :“Sets and Negation in a Logic
Database Language (LDLl)“, MCC Tech. Report, Nov. 1986.
[Brownston L. Brownston. R. Farrell, E. Kant, N. Martin
*“Programming Expert Systems in ‘OPSS : An Introduction to
Rule-Based Programming”. Ed Addison-Wesley.
[Codd71] E.F. Codd : ” A Data Base Sublanguage founded on
the relational calculus.” Proc of ACM SIGFIDET 7 1.
[Gardarin85] G. Gardarin, C. de Maindreville, D. Mermet, E.
Simon : “Extending a Relational DBMS towards a KBMS : A
First Approach .” Springer Verlag, Ed Schmidt, Thanos, 88.
[&uich86] H. J. Genrich : “Predicate I Transition Nets ” , in
Advances in Petri Nets’ 86. Springer Verlag. 1987.
[Georgeff82] M. P. Georgeff : “Procedural Control in
Production Systems”, Artificial Intelligence 18 (1982).
[Giordana85] A. Giordana, L. Saitta : “Modeling Production
Rules by Means of PredicateTransition Networks.” Inform.
Sciences Journal, North Holland Ed. Vol.35 Nol.
[Kripke63] S. Kripke : “Semantical consideration on Modal
Logic” , Acta Philiosophica Fennica, Helsinki, 1963.
[Lozin&ii86] E.L. Lozinskii : “‘A Problem-Oriented Inferential
Database System.” ACM TODS , Vol. 11, No 3, Sept. 1986.
[McKay811 D.P. McKay, S.C. Shapiro : “Using Active
Connection Graphs for reasoning with recursive rules”. Proc of
7th IJCAI, 198i. -
[Maindreville87] C. de Maindreville, E. Simon :“A Predicate
Transition Net for Evaluating Queries against Rules tn a
DBMS.” INRIA Research Report, No 604. Feb. 1987.
abstract in Proc of 3m JBDA, PortCamargue, France, 1987.
[Maindreville88] C. de Maindreville, E. Simon : “A Production
Rule Based Approach To Deductive Databases”, Proc of 4th
Int. Conference on Data Engineering, Los Angeles, Feb. 88.
[Sellis85] T.K. Sellis, L. Shapiro : “Optimization of extended
database query languages.” ACM SIGMOD, Austin, 1985.
[Simon883 E. Simon, C. de Maindreville : “Deciding whether a
production rule is relational computable” Proc. of Intemanonal
Conference on Database Theory, Bruges, Belgium, Sept. 88.
[Ullman82] J.D. Ulhnan : “Principles of Databases Systems”,
Computer Science Press, 1982.
[Ullman85] J.D. Ullman : “Implementation of Logical Query
languages for Databases”, ACM TODS, Vol. 10, No3.1985.
[VanGelder86] A. Van Gelder : “A Message Passing
Framework for Logical Query Evaluation”, ACM SIGMOD 86.

406

