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Abstract 

In this paper, we propose a new formalism to model and hnplement 
general, rule-based languages for querying or updating deductive 
databases. We consider as a target language a production rule 
language for. databases that we introduced in previous papers, 
namely RDLl. This language can be seen as an extension of a 
logic-based language for databases to support updates in the head of 
rules. The model we introduce, named Production Compilation 
Network (FCN), is derived from Petri-Net based models. A PCN 
models the two aspects of a rule program: the static aspect which 
consists of the relationships between the rules and the database 
predicates and the dynamic aspect which describes the semantics of 
a rule program. The PCN are shown to have the following features: 
(i) to provide a formal framework to describe general computation 
strategies and query optimization algorithms in a clear and concise 
manner and (ii) to model in a unified way queries and updates in a 
deductive database context. 

1. INTRODUCTION 

A deductive database consists of a set of base relations called 
extensional durubase (EDB), and a set of virtual relations 
defined using rules, called intentional databare (IDB). In a 
deductive database. the query language generally consists of a 
rule based language, named DATALOG, where rules are 
function-free defmite horn clauses. Several researchers studied 
extensions of DATALOG in order to increase the power of the 
rule language. The introduction of negative literals in the body 
of a clause leads to DATALOGneg. Another extension is 
DATALOGset which augments the terms with sets. 

In previous papers [Simon87, Maindreville881, we 
proposed an original approach to deductive databases based on 
a production rule language, named RDLl. A production rule, in 
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our language, consists of a conditional part which is a relational 
calculus expression and a consequent part which is a sequence 
of insertions and deletions of tuples in database derived or base 
relations. The main features of this language are the following. 
First, it captures the operational (or declarative) semantics of 
stratifled DATALOGneg programs but offers more generality 
and more computational power than a DATALOGneg language 
since a sequence of database updates can be expressed within a 
single rule. In fact, RDLl can be seen as an extension of 
DATALOGneg to support updates in the head of rules. The 
second feature is that the operational semantics of the language 
provides a uniform and clean compromise between declarativity 
and procedurality. Indeed, the procedural aspects of RDLl 
stand upon (i) the use of updates and (ii) the use of an implicit 
ordering of rules (stratification-like) combined with an explicit 
(user given) partial ordering of rules. Notice that stratification 
in logic programs already introduces procedural control in the 
language. Asa consequence of the previous points, RDLl is 
not only a query language but is also an update language that 
can be used to specify complex triggers. 

One of the main problems encountered in deductive 
databases is how to evaluate a rule program, that is a query. 
Most query processing algorithms for deductive databases 
strongly use graph models. Many such models have been 
proposed in the litteratute. Predicate Connection Graphs (PCG) 
and Active Connection Graphs (ACG) [McKay811 are used to 
model DATALOG programs. The PCG connects the literals 
that can be unified, i.e., predicate occurrences in the rule body 
are camected to their occurrences in the heads of the rules. The 
PCG is static and displays only the structure aspect of the logic 
program. It allows to retrieve all the formulae that unify with a 
given formula. ACG provide the dynamic aspect and display 
the binding propagations through the flow of control. ACGs 
detect recursion through predicates that have the same bindings. 
However, both PCG and ACG are not suitable in a database 
context because they do not make a distinction between base 
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(i.e., EDB) and derived relations (i.e., IDB). System Graphs 
(SG) [Lozinskii86] have been proposed as an extension of 
ACG to compensate for these limitations and to support 
function symbols. RuMGoal Graphs (RGG) [Ullman85] are 
used to statically represent DATALGG programs with function 
symbols. An RGG is an adorned AND/OR graph where each 
derived predicate is represented by a number of relation-nodes 
corresponding to the different possible binding patterns for this 
predicate. Thus, an RGG can display the propagation of 
constants but its size can grow exponentially in the maximum 
number of arguments of a derived predicate. Capture rules 
[Ullman85] ln RGG seem limited to a semi-naive evaluation 
strategy. Extensions of RGG have been shown to be well 
suited for studying recursive query optimixation algorithms 
[Bancilhon86b, Beeri and they have been enhanced by so 
called information passing graphs [VanGelder86] in order to 
restrict the computation process to relevant facts. Nevertheless, 
both SG and RGG suffer from several limitations. First, they 
are highly dependent on the query processing algorithms for 
which they have been designed. They can hardly be used to 
model general query evaluation strategies (e.g., bottom-up, 
top-down, . . . ) as well as the flow of control of several 
different query optimixation algorithms (e.g., different constant 
move up algorithms, . ..). The second limitation is that no 
execution model has been developed to model more general 
query languages such as DATALOGneg or updates and 
triggers’ languages, as well as their associated optimization 
strategies in a deductive database context. For instance, the 
above models are bound to deal only with query languages 
such as DATALOG. 

Recently, a Petri-Net based model (colored nets) was 
proposed in [Aly871 to alleviate the first limitation and to model 
the behavior of DATALOG programs using different strategies 
and algorithms. In this paper, we propose another Petri-Net 
based model, called Production Compilation Network (PCN). 
This model is derived from Predicate Transition Nets (PrTN) 
defied in [Genrich86]. PCN can model the behavior of any 
RDLl program, (and a fortiori any DATALOGneg program), 
and thus provide a generalization of the approach presented in 
[Aly87]. In particular, PCN provide a uniform execution model 
for implementing updates and triggers in a deductive database. 
Another imptant feature is that. through a particular language 
of control over the PCN, it is possible to manage explicit 
ordering between rules. Therefore, PCN may capture 
procedural control over the rules. 

Apart from this introduction, the paper is organized as 
follows. Section 2 presents the structural and the dynamic 
aspect of the PCN formalism. Section 3 introduces a basic 
language over the PCN which describes in a clear and concise 
way the different computation strategies of a rule program. This 
leads to the notion of annotated PCN. Section 4 discusses the 
problem of generating an efficient annotated PCN and presents 
a general overview of our query processing strategy as it is 
currently being implemented. Finally, section 5 is the 
conclusion. 

2 .THE PRODUCTION COMPILATION NETWORK 
MODEL 

2.1 Preliminaries 
We first recall basic database notions. A relational schema R 

is a finite set of attributes (Al, . . . . A,). Let dom (Ai) be the 
domain of values of attribute Ai. A constant tuple t = (cl, . . . . 
c,) over a relational schema R is a mapping from R into dom 
(Al) u dom (A2) u.... u dom (An) such that for each i in (1, 
. . . . n) q E dom (Ai). An instance of a relational schema R, 
(sometimes called a relation), is a finite set of constant tuples 
ovw R. A databare schema is a ftite set of relational schemas. 
Finally, an instance I (also called a database) over a database 
schema S is a total function from S such that for each R in S, 
I(R) is an instance over R. 

An RDLl production system (or an RDLl program) is 
composed of a set of if-then rules called productions that make 
up the rule base, and a relational database called the fact 

darabase. 

The left-hand side of a production, (corresponding to the if 
part of the rule), is a range restricted expression of the tuple 
relational calculus [Codd7 1, Ullman821 which consists of the 
conjunction of a range formula and a sub-formula. A range 
formula is a conjunction of positive (resp. negative) range 
predicates which indicate that a tuple variable ranges (resp. 
does not range) over a relation. A positive range predicate is 
denoted R(x) while a negative range predicate is denoted 7 R 
(x) where x is a tuple variable and R is a relation name. A 
sub-formula is a condition over the variables that appear in the 
range formula part. 

The right-hand side of a production, (corresponding to the 
then part of the rule), is a set of actions. There are two 
&mmtaty actions, denoted “+” and I’-“. The update action “+” 
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takes a ground fact (i.e., a constant mple) and maps a database 
state into another state which contains this fact. Thus, the action 
‘I+” inserts a tuple into a derived relation. For instance, + 
Parent (sam, jeremie) inserts the tuple (sam, jeremie) into the 
Parent relation. On the contrary. the action “-” takes a fact and 
delete it from a relation. In aparamewized action. variables are 
allowed in the argument of the action (e.g., + Parent (Father = 
x, Child = y)). For safety reasons, all the variables that appear 
in the action part of a rule also appear positively in the 
condition part. 

Tmditionally,a production system interpreter ~rownston85] 
is the underlying mechanism that determines the set of satisfied 

productions and controls the execution of the production rule 
program. The interpreter executes a production rule program by 
performing the following recognize-act cycle : 
- Match : in this first phase, the left hand side of all 
productions are matched against the database. As a result, a 
conflict set is obtained which consists of instantiations of all 
satisfied productions. An instantiation of a production is a rule 
where all free variables are substituted to constant tuples. 
- Conflict-resolution : In this second phase, one of the 
productions in the conflict set is chosen for execution. If the 
conflict set is empty, the interpmter halts. 
- Act : In this last phase, the actions of the production selected 
in the previous phase are executed. These actions may change 
the content of the database. At the end of this phase, the first 
phase is executed to restart the cycle. 

This cyclic interpretation scheme forms the basic control 
structure for RDLl production rule programs. In lSimon88. 
Simon88b], we provided the formal semantics of RDLl which 
is in the spirit of Kripke semantics for modal logic lKripke631. 
As a result, we show that this semantics captures the declarative 
semantics of a stratified DATALOG”% language but offers 
more generality and more computational power than a 
DATALOGneg language. Indeed, RDLl can be seen as an 
attempt to extend DATALOGneg to support database updates. 
A notable feature of the language is that it enables to specify 
non-deterministic updates or queries. Recently a very attractive 
formal approach has been proposed in [AbiteboulS’la] to study 
database update languages. We believe that the basic techniques 
developed in this paper can also be used to implement their 
languages. 

called Production Compilation Network (PCN) to model the 

behavior of RDLl programs. This model has two aspects : the 
st~cture aspect and the execution aspect. 

2.2. The structure of a Production Compilation 

Network 
The PCN model is a Petri Net based model. More precisely, 

it derives from Predicate Transition Nets (PrTN). A formal 
definition of PrTN can be found in [Genrich86& It is convenient 
to recall that a PrTN consists of [Genrich 861: 
(1) a bipartite directed graph (P,T,F) where P and T are called 
places and transitions respectively, and F is a set of directed 
arcs, each one connecting a place p E P to a transition t E T or 
vice versa that is (P x T) u (T x P) 1 F. Places correspond to 
predicates with their extensions, and transitions represent 
classes of elementary changes of extensions. 
(2) a labeling of the arcs with formal sums (noted “+“) of tuples 
of variables; the length of each tuple is the arity of the predicate 
connected to the am. 
(3) A structure C, defining a collection of typed objects together 
with some operations and relations applicable to them Formulae 
built up in Z can be used as inscriptions inside some transitions. 
(4) A function K, from the set of places to the set of nonnegative 
integers, assigning to each place an upper bound to the number 
of copies of the same token the place can carry at the same time. 
K (p) is called the capacity of p. 
Atokenr=(al,a2 ,. . .,ar) in a place p E P denotes the fact that 
the predicate P (x1,x2 , . . . .Xr) corresponding to that place is true 
for that particular instantiation of the tuple of arguments 
contained in the token r. 

The structural aspect of a PCN represents the relationships 
between rules and relational predicates as specified by a rule 
program. The following associations can be made between rules 
and the PCN structure. We represent each rule by a transition 
and each relational predicate involved in the rule by a place. The 
relational predicates that occur in the condition part of a rule are 
input places to the transition representing the rule and the 
relational predicates that occur in the action part of the rule are 
the output places of the transition. The condition itself of a rule 
is represented in the transition’s inscription. More formally, we 
are able to set up an isomorphism between an RDLl program 
and a PCN structure which is summarized by the table below. 

In the next sub-section we present the formal graphical tool 
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RDLl PCN 

RUE 

RELATIONAL. PREDICATE P 

Free luple variables Xl.....X, 
rangingover P 
Bound variables ranging over P 
or fm. variables ranging over -9 

ACTION + P (t) 

ACTION - P (t) 

I TRANSITION T 

PLACE P 

ARC (P, T) labelled by : 
+x1 +... +x, 

ARC (P;r) Welled by : (.) 

ARC(TT.P)labelledby +t 

ARC(T,P)labekd by -t 

ates Transition’s inscription 

We now give a first example of a PCN built from a set of 
rules. Let us consider the following rule module ANCESTOR 
which defines a derived relation ANCESTOR as the transitive 
closure of the base relation PARENT (Par, Child). 

MODULE : ANCESTOR ; 
target : ANCESTOR {Asci Desc); 
rulea : 
PARENT (x) + + ANCESTOR (x) ; 
PARENT (x) and ANCESTOR (y) and x.Child.- y.Asc 

--f + ANCESTOR (Asc - x.Par, Desc - y.Desc); 
end. 

In this example, x and y denote tuple variables ranging 
respectively over the PARENT and ANCESTOR relations. 

Two relational predicate names appear in the rules. They 
lead to the places PARENT and ANCESTOR (represented by 
the circles P and A on the net). The fmt rule is modelled by the 
transition Tl whose inscription is the formula TRUE. The 
second rule is modelled by the transition T2, whose inscription 
is the formula “x.Child =, y.Asc”. On the net, transitions are 
represented by boxes. The arcs outgoing from PARENT are 
labelled by + (x.Par, x.Child). The arc outgoing from 
ANCESTOR is labelled by + (y.Asc., y.Desc.). Finally, the arc 
going from T2 to ANCESTOR is labelled by + (x.Par, 
y.Desc.). To simplify the graphical representation of the PCN, 
tuples are replaced by tuple variables in the labels of the input 
arcs of the transitions. 

J 

Figure 2.2 : PCNfor the Ancestor rules 

The second example is the PCN (figure 2.3) associated to 
the rule Module WINGS. The base relations are PENGUINS, 
CROWS having for schema (Name, Color, Sex, Country, 
Predator). 

MODULE : WINGS : 
target : FLY (Name} ; 
rule8 : 
PENGUINS (x) + + BIRDS (Name - x.Name) i 
CROWS (x) --t + BIRDS (Name - x.Name) : 
BIRDS (x)4 + FLY (Name = x-Name) ; 
PENGUINS (x) -8 - FLY (Name = x.Name) : 
end. 

Figure 2.3 : the PCN for the WINGS Module 

A query is a production rule represented as a single 
transition, noted T$, several input places and a single output 
place, noted $, representing the result of the query. Thus, a 
query can be represented as the combination of two PCNs. The 
first one represents all the rules needed to define the content of 
the input places of the query. The second net represents the 
query itself. The resulting PCN is called a query PCN. An 
example of a query PCN is given figure 2.4. 

The query expressed in the SQL language is : 
SELECT ASC, Desc FROM ANCESTOR 

WHERE Desc = Georges; 

Figure 2.4 : Quety PCN 

2.3. Semantics of a PCN 
In this section, we define the semantics of a PCN. The 

dynamic aspect consists of the semantics associated to the tiring 
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of the PCN transitions. This semantics corresponds precisely to 
the semantics of RDLl as shown in [Simonll, Maindreville88]. 

A marking is a distribution of tokens over the places of a 
PCN. The token is a basic concept in all Petri Net based models. 
In a PCN, a token represents a database tuple. Traditionally, a 
Petri Net based model executes by firing transitions. A transition 
can be fired if it is enabled. 

A transition T is enabled whenever the three following 
conditions are satisfied. 
(i) Each input place P of T contains at least as many tokens as 
specified by the number of tuples figuring on the label of the am 
(p, T). A tuple of the form (.) counts for zero. 
(ii)The tokens occurring in the input places of T have values 
satisljing the transition inscription. 
(iii)The marking of at least one output place of T is modified by 
the transition firing. 

We impose the capacity of each place, that is the number of 
copies of the same token a place can carry at the same time, to be 
bound to 1. This leads to the notion of a duplication free PCN. 
A duplicationfree PCN is a PCN where : (i) two tokens of equal 
value in the same place are merged into a single token, (ii) a 
transition which would only produce already existing tokens is 
not enabled. This corresponds to assign a fmpoint semantics to 
the “+” symbol in the rule language. 

At a given time, several transitions can be enabled. A 
transition’s occurrence is a couple (I’. L) where T is a transition 
name and where L is a list of variable substitutions of the form 

<xl/al, .,., x,/a,> where the xi are all the free variables 
figuring on the labels of the input arcs of transition T and the ai 
are tokens issued from the input places of transition T. In the 
remainder of this paper L is called a substitution list. The set of 
all transition’s occurrences, for a given marking of the net, is 
called the transition’s conflict set. Note that for a single 
transition T, different substitution lists can be used to fire the 
transition. Each one of these lists leads to an element (T, L$ in 
the transition’s conflict set. We note Rel (T) (for : relevant set of 
tokens for T). the set of all the substitution lists that appear in 
the transition’s conflict set together with the transition T. 

Example : ’ 
Consider the transition Tl of the PCN represented in Figure 

2.2. Assume that the marking of the place A is empty and that 
the marking of P is ((Bill, Paul), (Paul, Sam)). Then the 

transition’s conflict set is the set : ((Tl, <x / (Bill, Paul)>), 
(Tl, a / (Paul, Sam)>)) and Rel (Tl) = (u( / (Bill, Paul)>. 
<x / (Paul, Sam)>). Note that by definition, Rel (Tl) only 
contains tokens that satisfy the inscription of Tl. 

When a transition T is enabled, it can be fired. Firing a 
transition’s occurrence (T, L) produces several actions. First, it 
duplicates from each input place P of T a number of tokens 
equal to the number of positive symbols labeling the arcs (P, 
T). Indeed, we use conservative nets which means that firing a 
transition T will only change the state of the output places of T. 
Then, for each output place P of T, let + tl+ . ..+ tn be the 
positive label of (T, P) and let - sl- . . . - sq be the negative label 
of (T, P). Given the substitution list L in Rel (T), we define 
L(ti) as the result of applying the variable substitutions of L to 
the variables of ti. Two sets of tokens S+ and S- are then 
defined as follows: 

S+=(L(ti))fori=lton; 
S-= {L(si))fori=ltoq; 

Let M(P) be the marking of P; the firing of (T, L) produces a 
new marking in P: 

M(p) = (M(p) u (S+ - SJ) - ( s_ - S+). 

This result is portrayed in the figure 2.5. The dashed part 
represents the marking M(P). 

Figure 2.5 : result of thejIring of a transition’s occurrence. 

With these definitions, a multi-labelled arc is interpreted as an 
atomic database update. This property has several 
consequences. First, it ensures that the order of insertions and 
deletions in the action part of a rule is irrelevant. Second it 
nullifies an action which inserts and deletes the same constant 
tuple. For instance, the instantiated label of an arc (P. T): 
L(t) = + (a a) - (a, a) - (a. a) = - (h a) + (a, a) - (8, a) is a null 
action over P. However, L (t) = + (a, b) - (a, c) = - (a. c) +(a,b) 
deletes the tuple (a, c) and adds the tuple (a, b). 

Example : 
Consider the following PCN : 
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Q +(x.orig.. y.exL) - y 

pc 1’ I 
Figure 2.6 

Gn this net, the relation G (Ext., origin) stores oriented arcs in 
a graph. The transition T computes the reduction of the graph by 
replacing two serial edges by one resulting edge. The condition 

C is : (V z E G)[(z = y) v ((z.Grigin # x. Ext) A (z.Ext + 

x.Ext))]. It expresses that x.Ext. is a single node in G. 
Let I~Io (G) be the following initial marking in G : 

MO(G) = (tl = (a, b), t2 = (b, c), t3 = (c. d)); 
Then, Rel (T) has two elements : Rel (T) = (Ll = cx / (a, b), 

y/h ch L2= <x / (b. c). y / (c, d>); The sets S+ and S- are 
defined as follows : 

For CC W : S+ = Ita. 41, S- =((a, b). (b, c)) 
For(T.L2):S+= I@, 4). S- = I@, cl. (c, 4) 

The fiig of (T. Ll) produces the following marking : 

Ml(G) = W&3 u (S, - S-N - ( S- - S+) 
= ((a, cl, Cc, 4) 

Then, Rel 0 = IL’1 = UC / (a, c). y / (c. d)>) 
For (T. L’l) : S+ = ((a, 4). S- =((a, 4, (c. d)) 

The firing of (T, L’l) produces the following stable marking : 

M2G) = (Ml@) u (S+ - S-1) - ( S- - S+) = ((a. 4). 

For a given initial marking, a place P has a stable marking iff 
none of its input transitions is enabled. This notion is used to 
define the stability of a transition. A transition T is said to be 
stable for a given initial marking iff all its output places have a 
stable marking. Then, a PCN has a stable marking for an initial 
marking iff all its transitions am stable. 

When the PCN reaches a stable state, no transition can be 
enabled and the PCN evaluation stops. This corresponds to a 
flxpoint for the set of rules modelled by the net. We are now 
able to state the definition of a deterministic PCN. A transition T 
is deterministic iff, for any initial marking Mg, the output places 
of T have a unique stable marking depending on lvlo. A PCN is 
deterministic iff for any initial marking IHo, the net has a unique 
stable marking depending on MO. 

Example : 
In the example of figure 2.2, each transition is clearly 

deterministic and the PCN is also deterministic. Indeed, this 
PCN describes a monotone increasing function (in the sense of 
set inclusion partial order) over the marking of the net. 

In the example of figure 2.6, the transition T does not 
describe a monotone function over the markings of the net. 
However, it is quite easy to demonstrate that such a transition is 
deterministic. 

Finally, it is important to note that the net portrayed on 
figure 2.3 has no stable state. 

A PCN evaluator has to execute the following procedure 
portrayed in figure 2.7. This procedure, starting from an initial 
marking, successively computes each reachable marking. 

arocedutie eP8lu8te (P: PCN, MO: Initial 
marking) 

M e-MO; 
repwt 

compute the conflict set: 
select a transition's occurrence (T, L) 
in the conflict set; 
compute M :- reachable marking from M 
by firing (T, L): 

until a stable marking is reached. 

Figure 2.7 : A PCN evaluator. 

This procedure is not deterministic. The undeterminism 
stands in the choice of a transition occurrence in the conflict set, 
that is, (i) the choice in the conflict set of a transition T and (ii) 
the choice of the tokens used to fue T. In a deductive database 
context, the problem is to determine a sequence of transition’s 
occurrences that leads to a correct and eficient computation. 

Correctness refers to the declarative semantics of the 
corresponding program and to the stable marking associated 
with it. Indeed, the non monotony of the PCN evaluation denies 
the existence of a unique stable marking for all nets. When 
several stable markings are reachable, using a meta-semantics 
similar in essence to the stratification of logic programs [Apt86], 
a deterministic semantics can (under certain conditions) be 
assigned to the PCN. When it does, the meta semantics yields a 
partial ordering over the transitions, and thus constrains the 
choice of the firing of a transition’s occurrence in the conflict 
set. Therefore, a correct computation must return the unique 
stable marking of the net when it exists under the previous 
meta-semantics or one of the possible stable markings when the 
net remains undeterministic. Efficiency refers to both the 
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computation mode of a single transition (remark that evaluating a 
transition leads to evaluate a relational calculus expression) and 
the control of the inherent parallelism between rules. We shall 
see later two different computation modes for a transition (a set 
oriented mode and a tuple at a time mode). 

Theflow of control in a PCN is defined as the description of 
both the sequence of transition’s occurrences firings, and the 
computation mode of each transition. In our framework, this 
comes to say that query optimization techniques are captured 
either by the syntactic transformation of the net or by describing 
a particular flow of control. Therefore, the problems that 
immediately arise are (i) to provide a formal way of describing 
the flow of control in a PCN and (ii) to defme how to generate a 
correct and efficient flow of control. The former is tackled by 
the next section while section 4 discusses some aspects of the 
second problem. 

3. FLOW OF CONTROL IN A PCN 

3.1. A control language over the PCN 

The previous section described the PCN structure and its 
semantics. In this section, we present a language used to 
describe the computation of a PCN. 

As we have seen in section 2, a PCN is a non deterministic 
machine that describes sets of sequences over states of a 
database, and thus determines a relation on these states. This 
scheme was illustrated by the PCN evaluator procedure 
portrayed on figure 2.7. The implementation of such a 
procedure on a deterministic machine necessitates specifying the 
order in which enabled transitions are selected for fling (the 
conflict resolution srruregy ) and the order in which states of the 
database are expanded (the backtracking strategy). For instance, 
a possible conflict resolution strategy can be the stratified 
execution of a program. All these strategies are called the 
evaluation scheme of the PCN. 

Remark that if backtracking is eliminated, for non 
deterministic PCN only one solution path can be generated for 
any given initial marking and query. In such cases, the solution 
set depends not only on the transitions and the marking of the 
net but also on the particular evaluation scheme used. 
Nevertheless, we do not consider any backtracking strategy in 
the evaluation scheme presented in this paper. 

Our objective here is to defme an explicit control component 
that is specified independently of the PCN evaluation scheme. 
Informally, this control can be represented by the set of all 
allowable sequences of transition firings; that is by specifying a 
language over the set of transitions. We will call such a language 
a control language . At each step of execution, the control 
language restricts the set of transitions that may be considered 
for firing and only a subset of the transitions in the transition’s 
conflict set is acrive. We call a PCN together with a control 
language an annotated PCN. 

All the procedural control is thus contained in the control 
language and is quite independent of the specification of the 
evaluation scheme. Note that when the control language places 
no constraint on transition’s tirings, (i.e., when the control 
language allows all possible transition sequences), an annotated 
PCN reduces to a non deterministic system whose execution is 
completely governed by the evaluation scheme. At the other 
extreme, where the control language makes the PCN 
deterministic, the evaluation scheme is inhibited. 

We now define formally what is a control language over a 
PCN. First, recall that a PCN is defined as a triple (P, T, F). 
We define C as the set of all transition names of T. A control 
language over a PCN is any subset of Z* where Z* is the set of 
all strings over I;. A word in I;* is called an annotation. 

We are now able to define the execution of an annotated 
PCN = (P, T, F. A) where A is a set of annotations (or a control 
language over Z). We first define a stare of execution to be a 
pair cu. M> where u is a prefix of some word in A and M is a 
marking over the net. Now, let u and UT be prefixes for some 
word in A where u E Z* and T E G Then, we say a state of 
execution <UT, M2> is directly reachable from a state <u. Ml> 
(noted cu. Ml> + <UT, M2>), if and only if one of the two 
following conditions holds : 
(i) The transition T is enabled in Ml and M2 is reachable from 

Ml by executing T. 
(ii) the transition T is not enabled in Ml and M2 = Ml. 

The last condition means that if a transition in the annotation 
is not enabled in the current marking, then we move on to the 
next symbol in the annotation. 

Let +* denote the reflexive transitive closure of + Then 
the reachability relation computed by an annotated PCN. (P. T. 
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F, A), is a subset of M x M where M is the set of all possible 
markings over the net : 

(<Ml. M2> : <h, Ml> +* <u, M2> for some u in A) 

The set A of annotations, (or the control language), can be 
specified using a context-free language. We give below the 

context-free grammar associated with the language that describes 
all the possible annotations over a PCN. 

The terminal alphabet is composed of Z, +, (, ), *, cr. The 
non terminal alphabet is: T, Q and the start symbol is S. Now, 
the productions are : 

S +(T+Q)ITQIT 
T-,(T+t)ITtItI(T)*IQo 
Q+(Q+t)IQtItI(Q)*I(Q)Q 

In this grammar, the symbol + denotes a disjunction (i.e., (T 
+ Q) means that T or Q can be fired); the symbol Q stands for 
saturation and means that a sequence is repeated up to saturation; 
the symbol * means that a sequence is repeated 0 or more times. 
Finally, TQ means composition of T and Q. 

Example : 
Suppose one wants to express that Tl is always tried to be 

fiied before T2 which in turn must always be tried before T3. 
The sequence ((Tl)On)O expresses the precedence between Tl 
and T2. Now, the sequence (((Tl)oT2)oT3)Q is the desired 
result. Thus, Tl is always evaluated fist. If Tl is not enabled 
then T2 is evaluated. If T2 is fired using a given transition’s 
occurrence then Tl is again evaluated. When a stable state is 
reached for Tl and T2 then‘T3 can be evaluated and so on. 0 

Remark that due to the presence of parenthesis, the above 
grammar is of the type anbn and is not a regular grammar. 
Another point is that due to the disjunction “+“, the set of 
annotations can be described by only one word in the above 
context-free language. 

We are now able to present the modified evaluator pm~ed~re 

that executes an annotated PCN = (P. T, F, A). Initially, the 
state of execution is 4, MO> for some initial marking M@ 
Suppose that a state of execution <u, MB has been reached. If u 
is an element of A and M is a stable state (i.e., answers the 
query), then execution may terminate in absence of backaacking 
strategy. Otherwise, we consider all transitions T in the conflict 
set such that UT is a prefix of some word in A. If this set (called 

active set) is empty then execution terminates unsuccessfully; 

this means that the annotation is erroneous. Otherwise, a 
transition T is selected from the active set and T is executed 
giving raise to a new state of execution <UT, I@>. This is 
illustrated by the following procedure. 

procedure evalute l nnot8ted (P:annotatet 
PCN, 

t-lo: Initial marking) 
M 4-q); 
u 4-I; 
repeat 

w active set:= set of all transition: 
T in the conflict set such that UT is i 
prefix of some word in A; 

if active set = 0and UT is not a word in A 
then return error: 

salect a transition's occurrence (T, L) ix 
the active set: 
w M :- reachable marking from M by 
firing (T, L): 
utuT; 

if u is a word in A and M is not a stable 
marking then return error; 

until a state <u, M> is reached where M is a 
stable marking and u E A. 

3.2 Extended annotations 

In the previous section we described a control language 
without indicating the computation mode of each transition. The 
purpose of the present section is to give a detailed description of 
these modes. Each of them yields a new basic symbol associated 
with a transition. The previous language is then extended to deal 
with these symbols instead of the transition names. We call 
extended annotations the words recognized by this new control 
language. 

The first basic symbol is FT, L . It means that a transition’s 
occurrence (T, I,‘) is fired, where L’ belongs to the relevant set 
of T and L’ matches the pattern list L. A pattern list is a list of 
the form “1 /pl, . . . . x, / pn> where the xi are all the free 
variables figuring on the labels of the input arcs of transition T 
and the pi are pattern tokens. A pattern-token is simply a 
partially instantiated tuple. A non instantiated attribute value in 
such a token is represented by “?“. A substitution of the form xi 

/ pi where pi only contains “?” values is named an empty 
subsrinuion. A substitution list L’ matches a pattern list L if each 
pattern token of L respectively matches each token of L’. A non 
instantiated value ‘I?” matches any constant value. The procedure 
associated with this symbol is : 
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procedure compute-tram . (T : t rans . , L:pattlist, 
M:marking, C: boolean); 

begin 
if C = false then compute Rel (T); 
Choose a list L' that matches pattern list L 
(if any) in Rel (T); 
compute the sets S+ and S- : 
fat each place P such that 

there exists an arc (T, P) do 
compute M :- (M v (S+ - S-)) - (S, - S+); 

end. 

A particular case arises when L is such that all the variable 
substitutions are empty substitutions as defined above. In this 
case the symbol FT, L is abbreviated as FT and its meaning is 
to fire a transition’s occurrence of T chosen at random in the 
transition’s conflict set. 

The’ second basic symbol does not really belong to the 
semantics of a PCN. Rather, this symbol, noted RT, L, 
defines a particular computation mode of a transition. The 
meaning of RT, L is first to compute rel (‘I’) and then to fue T 
with all the occurrences of rel (T) without observing the 
intermediate modifications of T on the conflict set. Roughly 
speaking, it means that T is fired in a set oriented way. More 
formally, let T be a transition and (T, P) be an output arc of T. 
Let + tl...+ tn be the positive label of (T, P) and - sl...- sq be 
the negative label of (T, P). Two sets SR+ and SR- are now 
defined as follows : 

sR+= U (IL ($)I) = u S+ 
LE Rel(T) LE Relu) 

SR-= u (IL(Sj))) = u s- 
LE RelQ LE Rel(T) 

The procedure associated with the symbol RT, L is then : 

cocedure compute-rel-ttan8 (T:trans., 
L:patternlist, M:marking); 

sgin 
xnpute Rel(T); 
BX each place P such that there 

exists an arc (T, P) do 
begin 
compute SR+ and SR- for all lists 
that satisfy pattern L; 
compute 
M (P) :- (M (P) U (SR+ - SR-)) - (SR- - sR+); 
compute Rel(T); 
end 

ad. 

The following remarks can be made : (i) such a procedure is 
deterministic, and (ii) the “for each” statement of the procedure 
exactly corresponds to compute t as a Relational Algebra 
Program (RAP) where the relations are the marking of the 
input places of T and the result of the program is the marking of 
the output places of T. Rel (I’) is computed only once: thus, the 
procedure is equivalent to a usual relational algebra query. This 
is why such a transition ftig is interesting in a DBMS context. 

An extended annotation is then any word computed by the 
previous context-free grammar where Z is now the set of 
symbols built from the two above basic symbols. the set of 
transition names in T, and the set of all pattern lists. 

A particular case is the annotation (FT, L) o. It means that 
the transition T is tired up to saturation using the pattern list L 
as a filtering pattern for tokens. In a similar way as above, 

WT) o means that T is fired up to saturation without any 
pattern. The associated procedure is : 

arocedure compute-ttansition-sat (T:trans., 
L:patternlist, M:marking); 
begin 

compute Rel (T); 
C :- false: 
while Rel (T) # 0 do %until a stable 

marking M is reached% 
begin 

compute-trans. (T , L, M, C); 
compute Rel (Tl; 
C :- true; 

end 
end. 

Example : 
On the net portrayed on figure 2.2, the extended annotation 

(FTl,Ll)o (FT~, L2)o where : Ll = a / (?, sam)> and L2 = 
<(x / (?, ?), y / (2, Sam)> computes in the ANCESTOR place 
all Sam’s ascendants. Indeed, (FTl,Ll)o successively copies 
all the PARENT’s tokens that satisfy the pattern of Ll into 
ANCESTOR. Then (FT~, L2)o computes the ascendants of 
sam. Equivalent annotations are either (FTl,Ll* FT~, L2*) o 

~~((FT~,L~)OFT~,L~*)~.BU~FT~,L~*F~,L~*~S~O~~ 

correct annotation for the PCN. Remark that all these 
annotations have not the same computation Cost. 

An interesting problem is to detect the cases where the 
symbol (FT, i> o can be rewritten into (RT, L)o and yields the 
same result. When this is possible, the transition T is said to be 
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relutionul. Note that, when the language is DATALOGneg, all 
the rules are relational computable. A complete discussion of 
this problem can be found in [Simon88]. In the following, we 
only give some examples to illustrate the notion of relational 
computable transition. 

Examples : 
(i) Consider the PCN portrayed in Figure 2.2. The 

transitions Tl and T2 are relational. This means that the firing 
of Tl corresponds to a usual query in relational algebra, and 
that the repeated firing of T2 can be computed by a relational 
algebra program which is precisely a loop of joins onto the 
relation PARENT and ANCESTOR. In this particular example 
the word (FT~) Q (F-r,$ a can be rewriten into (RTl)o (RT2>o 
which is a more efficient annotation. 

(ii) Consider now the PCN portrayed in Figure 2.6. As 
presented in section 2, the computation of the word (FT) Q 
leads G to the following stable marking : M2 (G) = [(a, d)). 
We show in the following that a relational computation of this 
PCN does not provide the same marking in G. 
The initial marking in G is MO (G) = (tl = (a, b), t2 = (b, c), t.3 
= (c. d)); Then, we have : 

SR+= u S+ = ((a.~)) U ((b, 4) 
LE Rel(T) 

s& = u S- = ((a, b)) U ((b, c)) u I@, cl) u ((cd)) 
LE RelQ 

= ((a. b), 0-x cl, k 4) 
The computation of the procedure compute-rel-trans 

leads to : 

M2 (G) := (MO (G) U (sR+ - SR-)) - (SR. - sR+) 

= ((a, cl, (b, 4). 

Hence, the transition T is not relational, i.e., (FT) o + (RT) o. 

4. GENERATION AND USE OF AN ANNOTATED 
PCN 

In this section we present a general query processing 
overview of the system we are being implementing using PCN. 
We first discuss the evaluation scheme. Then, we present how 
the previous model is used to implement the production rule 
language RDLl. 

4.1. The evaluation scheme 

The evaluation scheme presented here only incorporates a 
conflict resolution strategy and proceeds in a bottom-up 
evaluation. The two basic techniques used for conflict 
resolution are : firing by stepwise saturation and implicit 
ordering of rules. 

Implicit ordering corresponds to what is called stratifcation 
for logic programs as described in [Apt86]. A detailed 
discussion of what this concept becomes in our framework 
where we not only deal with negation but also with updates is 
given in [Simon88b]. Roughly speaking, it corresponds to 
travcrsc the net in the order specified by the oriented arcs of the 
net. This is called the chaining property. 

We now discuss the choice of computation of a transition 
using a saturation mode (o mode). Several cases arise 
according to the nature of the program. Fit, assume that the 
PCN is deterministic. Therefore the Q computation mode for all 
the transitions defines one correct computation among others. 
Is it an efficient one ?. In fact, two basic optimizations are made 
possible: (i) If a given transition is relational computable then 
(FT) o can be replaced by (RT)o in the annotation, (ii) it avoids 
the PCN evaluator to maintain a main memory environment for 
several rules at the same time; in particular, a transition that has 
already been fired and that does not appear in a repetitive 
sequence in the annotation is eliminated from the evaluator’s 
environment. 

Now, consider an a priori non deterministic PCN, two 
sub-cases are distinguished. First, the net has an underlying 
deterministic semantics that can be assigned using the implicit 
partial ordering mentioned above, or because an explicit meta- 
semantics was provided by the user (for instance, an 
annotation can be given using a patticular grammar). If explicit 
information is given then the choice of the computation mode is 
also explicitly derived, Furthermore, if the net is only 
composed of deterministic transitions, then the explicit 
annotation may only concern the ordering between transitions. 
Thus, in this case, a d computation mode can be assigned to all 
transitions and we get a correct computation. 

The second sub-case that remains is the case of a non 
deterministic PCN for which a deterministic semantics cannot 
be infered. Here, there is no notion of correct computation and 
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any mode (excepted to the relational one) can be a priori 
chosen. 

Thus, in summary, a cs computation mode can be used when 
the PCN is assigned a deterministic canonical semantics. We 
call such a mode a firing by stepwise saturation mode. 
Obviously, a different mode arises when explicit annotations 
are provided by the user. 

Example : 
Consider the PCN represented Figure 4.1. This PCN admits 

a unique fixpoint on the contrary to the PCN portayed on 
Figure 2.3 which loops for ever. 

Figure 4.1 

Thus, this PCN is deterministic and a correct extended 
annotation is for example : w = (RTI)~(RT~F(RT~)~ 
(RT4)o. Remark that in this case, this annotation can be 
generated by the system itself. 

4.2 A general query processing overview. 

In this sectiljn, we briefly present the different steps of the 
evaluation of a query by generation of an extended annotated 
PCN. 

When IA query enters the system, the fist step consists of 
retrieving the pertinent PCN, i.e., the minimal PCN which is 
able to produce the desired marking in the result place. Then, 
this m%imal Query PCN is build in main memory. The second 
step consists of an optimization and translation phase. The 
optimization techniques being currently implemented in our 
system are : the rewriting of the (FT) 0 words into (RT) o , a 
generalization of query modification in order to minimize the 
number of transitions appearing in the query PCN, the 
transformation of a set of database updates into an optimized 
one as [SellisgS] does, and the “push-up” of the selections. 
These algorithms are described in @kiindxville87]. 

Let us review the different uses of annotations. First, the 
control language enables to model a procedural control over the 
rule language that is not hidden in the rules [GeorgeftXZ]. 
Whatever the meta-language is for expressing this procedural 
control, annotations provide some means to capture it in a 
compiled form. A second point is the use of annotations for 
capturing evaluation algorithms. For instance, the “push-up” of 
constants can be expressed in the extended control language in 
the same spirit as [Aly87]. If an annotation was already 
specified by the user, query optimization techniques correspond 
to transform the specified annotation into an optimized and an 
extended one. 

The last step is the evaluation of the annotated PCN. As a result 
of this step, a sequential (i.e., without use of disjunction) 
extended annotation is produced. It is then transformed into an 
access plan composed of relational algebra programs. including 
specialized operators in order to compute efficiently the non 
relational rules. The different steps of the query processing are 
summarized on the following figure: 

Query 
Access Plan 

Optimization Translation Generation 

Ic 

run time code 

Production 
Compilation 
Networks 

Annotated 
PCN 

r Rule Base =i 

Figure 7.1 : query processing overview 

5. CONCLUSION 

This paper presented a new execution model called a 
Production Compilation Network (PCN). This model is an 
extension of a Petri-Net based model, namely Predicate 
Transition Nets. We showed how to model the static aspect and 
the dynamic aspect of RDLl, a production rule language for 
databases. RDLl can be seen as an extension towards the 
support of updates for DATALGGneg. Hence, the PCN model 
provides a uniform framework to model the evaluation of 
queries and updates in a deductive database context. 
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We introduced a control language over the PCN to describe 
different evaluation schemes and algorithms in a clear and 
concise manner. In particular, we showed how to describe the 
relational computation of a production rule. The set of basic 
symbols of the PCN language as presented in this paper 
permits only to capture a bottom-up evaluation strategy. We 
defined elsewhere Flaindreville88b] other symbols that capture 
pure top-down evaluation strategies or mixed strategies (as in 
the query/subquery approach). Using the full PCN language, 
we are able to describe the Prolog evaluation strategy for 
DATALOG-like rules. Finally, the structure aspect of a PCN 
enables to capture a partial ordering over the set of transitions. 
This ordering can be considered as an extension of the notion 
of stratification for a production rule language, [Simon88b]. 

Our main contribution is to provide a good intermediate 
model that can be used as a control structure for implementing 
rule based languages for deductive databases. For instance, it is 
possible to describe the computation of a rule program using 
either a tuple at a time computation mode or an extended 
relational algebra program or both. Moreover, our claim is that 
the implementation of DATALOGneg programs can benefit 
from using PCN because (i) the efficient evaluation of a 
DATALOGneg program requires implementing a variety of 
strategies and algorithms, and (ii) procedural control enables to 
describe more meaningful programs. Thus, we need to describe 
control over rules. To illustrate the first reason, consider the 
recursive query evaluation problem. No universal optimization 
algorithm is available and different algorithms need to be 
supported according to the structure of the data in the database 
relations (cyclic or acyclic, tree, cylinder, . . . ). the structure of 
the rules (chain rules, linear rules, . ..). and the operators 
supported by the system (e.g., transitive closure). PCN offer a 
uniform way to describe these algorithms with their application 
area. 

A first implementation of the method has shown the 
adequacy of the execution model. It also pointed out some 
research perspectives : 
*to extend the model to support : (i) integrity constraints over 
the derived relations, (ii) access methods information in order 
to include physical optimization in the query processing 
process, 
,to map parallelism onto the model, 
*to use annotations for parameterizing various evaluation 
schemes 

Acknowledgments : 
The authors would like to thank Serge Abiteboul for the 
numerous fruitful discussions, Nathalie Lefebvre for her 
comments on a previous version of this paper and Marie Aude 
Portier for her participation in the implementation. 

References : 
[Abiteboul87a] S. Abiteboul. V. Vianu : “A Transaction 
Language Complete for Database Update and Specification.” , 
in ACM PODS. 1987. 
[Aly87] H. Al; , Z. M. Ozsoyoglu : “Non-deterministic 
ModeRing of Logical Queries in Deductive Databases ” hoc of 
ACM-SIGMOD, Los Angeles, 1987. 
[Apt861 K.R. Apt, H. Blair, A.Walker : ” Towards a Theory of 
DeclarativeKnowledge”. IBM Report RC 11681, April 1986. 
[Bancilhon86] F. Bancilhon, R. Ramakrishnan : “An 
amateurs’s introduction to recursive query processing 
strategy”, Pmc of ACM SIGMOD, 1986. 
[Bancilhon86b] F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman : 
“Magic sets and other strange ways to implement logic 
programs”, 5th ACM Symp. of Print. on Database Systems. 
[Beeri87] C. Beeri et al., :“Sets and Negation in a Logic 
Database Language (LDLl)“, MCC Tech. Report, Nov. 1986. 
[Brownston L. Brownston. R. Farrell, E. Kant, N. Martin 
*“Programming Expert Systems in ‘OPSS : An Introduction to 
Rule-Based Programming”. Ed Addison-Wesley. 
[Codd71] E.F. Codd : ” A Data Base Sublanguage founded on 
the relational calculus.” Proc of ACM SIGFIDET 7 1. 
[Gardarin85] G. Gardarin, C. de Maindreville, D. Mermet, E. 
Simon : “Extending a Relational DBMS towards a KBMS : A 
First Approach .” Springer Verlag, Ed Schmidt, Thanos, 88. 
[&uich86] H. J. Genrich : “Predicate I Transition Nets ” , in 
Advances in Petri Nets’ 86. Springer Verlag. 1987. 
[Georgeff82] M. P. Georgeff : “Procedural Control in 
Production Systems”, Artificial Intelligence 18 (1982). 
[Giordana85] A. Giordana, L. Saitta : “Modeling Production 
Rules by Means of PredicateTransition Networks.” Inform. 
Sciences Journal, North Holland Ed. Vol.35 Nol. 
[Kripke63] S. Kripke : “Semantical consideration on Modal 
Logic” , Acta Philiosophica Fennica, Helsinki, 1963. 
[Lozin&ii86] E.L. Lozinskii : “‘A Problem-Oriented Inferential 
Database System.” ACM TODS , Vol. 11, No 3, Sept. 1986. 
[McKay811 D.P. McKay, S.C. Shapiro : “Using Active 
Connection Graphs for reasoning with recursive rules”. Proc of 
7th IJCAI, 198i. - 
[Maindreville87] C. de Maindreville, E. Simon :“A Predicate 
Transition Net for Evaluating Queries against Rules tn a 
DBMS.” INRIA Research Report, No 604. Feb. 1987. 
abstract in Proc of 3m JBDA, PortCamargue, France, 1987. 
[Maindreville88] C. de Maindreville, E. Simon : “A Production 
Rule Based Approach To Deductive Databases”, Proc of 4th 
Int. Conference on Data Engineering, Los Angeles, Feb. 88. 
[Sellis85] T.K. Sellis, L. Shapiro : “Optimization of extended 
database query languages.” ACM SIGMOD, Austin, 1985. 
[Simon883 E. Simon, C. de Maindreville : “Deciding whether a 
production rule is relational computable” Proc. of Intemanonal 
Conference on Database Theory, Bruges, Belgium, Sept. 88. 
[Ullman82] J.D. Ulhnan : “Principles of Databases Systems”, 
Computer Science Press, 1982. 
[Ullman85] J.D. Ullman : “Implementation of Logical Query 
languages for Databases”, ACM TODS, Vol. 10, No3.1985. 
[VanGelder86] A. Van Gelder : “A Message Passing 
Framework for Logical Query Evaluation”, ACM SIGMOD 86. 

406 


