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Abstract: 
In this paper, a novel am to ordered retrieval in 
very large files is developed. The method employs a 
B-tree like search algorithm that is independent of key 
type or key length because all keys in index blocks are 
encoded by a lo&f bit surrogate, where M is the 
maximal key length. For example, keys of length less 
than 32 bytes can be represented by a single byte in 
the index. This ensures a maximal possible fan out 
and greatly reduces the storage overhead of mainta.in- 
ing al%ess indiw. 

Initially, retrieval in a binary pie structure is 
developed. With the aid of a fairly complex re- 
currence relation the rather scraggly binary trie is 
transformed into a compact multi-way search tree. 
Then the recurrence relation itself is replaced by an 
unusually simple search algorithm. Finally. a specific 
access scheme, appropriate for secondary indexing; is 
presented. 

1. Introduction 
The principle Sapere aude (get courage to learn) 

potentially favors things whose essence is hidden, imply- 
ing that they are more attractive and more challenging. If 
viewed through the spirit of this principle our paper, which 
introcluces a new method of accessing and maintaining 
large files, would appear to have an aesthetic flaw. It first 
reveals the essence of the access mechanism and only then 
examines its surface appearance and characteristics. In this 
case, the essence of the method will be described in terms 
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ofaspecialO-completebinarytrieinsection2. ‘Ibeirre- 
gularity of these trees should not discourage the reader. in 
section 3, a recurrence tmnsfomution will open the possi- 
bility of a much more compact equivalent. These 
compact CO-trees will support a simple and efficient 
search algorithm described in section 4. Finally, insertion 
and deletion operations on Ce-trees will be discussed in 
section 5. Throughout the paper the structure is contrasted 
to B-trees lBaM721. 

The admitted generality of B-trees [Com79], their 
effectiveness and widespread use, has tended to tie 
further research in the field of data access. The psycholog- 
ical barrier imposed by the question “will anyone care, 
since there is already a generally accepted satisfactory 
solution” must loom over any msearch. But research 
interest is still there. Several schemes 
lFae79, La&l, L&30, LiL87] that provide better access per- 
formance have been published in the last decade. Unfor- 
tunately, all of them lack at least one of the important 
advantages of B-trees. B-trees provide relatively fast, bal- 
anced access, ensure good storage utilization (at least 
50%). support gradual expansion and shrinking, allow 
ordered sequential access to data items, provide insurance 
against the catastrophic behavior, are relatively simple to 
implement, etc. Perhaps more important than any of these, 
at least in comparison to extensible hashing techniques, is 
that B-tree retrieval does not depend upon storage in a par- 
ticular location. Consequently, B-trees can be used to sup 
port secondary access paths. . 

Since B-trees provide both satisfactory primary 
access and good secondary access to data sets, they natur- 
ally tend to bc the method of choice. This is unfortunate 
since, unlike either extensible hashing or our compact O- 
complete trees, every indexed attribute value* must be 
replicated in the index itself. The cumulative effect of 
replicating many secondary index values is to create 
indices which exceed, in many cases, the size of the data- 
base itself. This overhead can force database designers to 
reject potentially useful access paths. And, inclusion of 
search values within blocks of the B-tree significandy 
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decreases the block fan out, and increases tree depth and 
retrieval time. 

Co-trees eliminate search values from secondary 
indices altogether. They are replaced with small surro 
gates whose typical 8 bit length will be adequate for most 
practical key lengths (of less than 32 bytes). Thus actual 
values are confined to the main file containing principal 
records, leaving the secondary indices to be just hierarchi- 
cal collections of (surrogate, pointer) pairs. This organiza- 
tion reduces the size of the secondary indexes (50% - 
80%), and increases branching factor of the trees, thus pro- 
viding a reduction of number of disk accesses per exact 
match query. 

It is important to note that this has been accom- 
plished while still retaining most of the merits of B-trees. 
In contrast to many proposals aimed to improve on fan-out 
of B-trees [BaU77,dTv87,Lom81], the entries in Cc-trees 
have fixed size, are insensitive to types and lengths of 
search values and require no structural difference between 
lower and upper levels of the trees. These three properties 
provide considerable software simplification. In addition, 
while the efficient in-core search, which requires just the 
comparison of small integers, is inherently sequential, it 
does not suffer from presence of variable length index 
entries [BaU77,Lom81], nor does the scheme impose any 
artificial bound on the data set size by requiring that a part 
of the structure be always in-core resident [dTv87,Lit81]. 
What can be considered as a drawback of the scheme, in 
contrast to B-trees, is the failure to guarantee even splitting 
of index blocks, and the presence of an estimated 18% 
dummy index entries in the lower level of the tree. 
Although our experiments do not indicate that these prob- 
lems are significant, a way they can be minimized is dis- 
cussed in the last section of the paper. 

2. O-complete Trees 
A mrie is a multi-branching edge labeled tree in 

which items to be retrieved (they may be a single item or a 
page of items) are stored at its leaves. Retrieval lFre601 is 
achieved by successively comparing symbols in the search 
key with edge labels and following the indicated path to 
the desired leaf. Every arc in a binary tree can be labeled 
witheitheraOora1. Thusanybinarytreecanbe 
regarded as a binary rrie. A node (interior or leaf) is called 
a O-node ( O-leaf) if its entering arc is labeled 0. Similarly, 
we &fine a l-node ( l-leaf ) to be a node whose. entering 
arc is labeled 1. With arc labels, every node n of a binary 
tree can be uniquely identified by its access path from the 
root; which we &fine to be a binary string obtained by 
concatenating labels of edges traversed from the root down 
to the node. This string we call path(n). The length of 
path(n) is the depth of the node n. 

Paths to the nodes in a binary tree will normally be 
variable length. At the same time, we require search values 
(further called keys) to be strings of binary digits with 
arbitrary length up to some maximum value M in bits. 

Throughout this paper we will enforce numbering of bits 
in the search values from left to right, leftmost bit being at 
position 1. For simplicity, we assume key uniqueness, but 
it is not required by the method itself. The path concept 
can be extended to provide a fixed length node identifier, 
called its discriminuror, as follows. The discriminator, 
D,, of a node n is a binary string of fixed length M (maxi- 
mal key length in bits) whose high order 1 bits are path(n) 
of length 2 and all other bits are 0’s. Thus a node discrimi- 
nator has an integer value ~-2~~) , where x is the integer 
equivalent of path (n) of length 1. Consequently, if the key 
length is 8 bits, a node n with purh (n) = 0101, has discrim- 
inator 01010000. Its integer equivalent is 8Orc. 

A binary tree with N leaves is said to be O-complete 
if (a) the sibling of any O-leaf is present in the tree, and (b) 
there are exactly N-l l-nodes in the tree. 

A binary tree is said to be complete if every node is 
either a leaf or has exactly two nonempty descendants. It 
is not hard to see* that every complete binary tree (as in 
figure 1) satisfies the two conditions for O-completeness. 
By arbitrarily deleting l-leaves whose O-siblings are not 
leaves (e.g. the l-leaves E and G in figure 1 to obtain 
figure 2), we preserve O-completeness. But deletion of any 
O-leaf would violate condition (b) which requires N-l l- 
nodes in a tree with N leaves. 

The nodes of any tree can be topologically ordered 
by a traversal of the tree. We may &fine the pre-order 
traversal of a O-complete tree to start at the root of the 
tree and then iterate the following two steps until the last 
node has been accessed: 
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Figure 1. Complete bii tree. 
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* MS of assaths about O-complete treea can be found in 
[0rPs81. 
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Figure 2. O-complete binary tree. 

(a) if the current node ni is an internal node then the 
next node Pli+i in the order will be its O-son (by O- 
completeness every interior node must have its O- 
son); 

(b) if the current node 4 is a leaf then the next node in 
the pre-order will be the l-son of the node p whose 
0-subtree contains xi and whose depth is maximal. 

The pre-or&r traversal of figure 2 is the sequence a b d H 
I c f J k L M , where the leaf symbols have been capital- 
ized for emphasis. It is not hard to show that this 
definition is equivalent to the more usual recursive 
definition of pm-order traversal. 

Since data items are stored at the leaves, they are of 
special importance in these retrieval trees. In the O- 
complete tree of figure 3 they have been represented as 
rectangles; each contains the key* of a representative item 
and each has been labeled by its path. Successor nodes to 
leaf nodes in the preorder -traversal of a O-complete tree 
are also of special importance; we call the successor of a 
leaf node its bounding node. In figure 3, the bounding 
nodes, which may or may not be leaf nodes, have been 
emphasized with double lines. Since bounding nodes are 
defined in terms of the pre-order traversal it follows that 
each leaf, except the last one, has its own unique bounding 
node. From part (b) of the definition of the preorder 
traversal it follows that every bounding node is a l-node. 
Moreover, it can be shown that in a O-complete tree every 
1 -node is also a bounding node of a unique leaf. 

Discriminatom and bounding nodes can now be used 
to establish a key interval of the key space that 

Figure 3. A O-complete tree. 

corresponds to each leaf in the O-complete tree. This inter- 
val is formally defined to be the key range between the 
leaf’s discriminator (inclusively) and the discriminator of 
its bounding node (non-inclusively). The exception is 
again the last leaf in the preorder traversal. The upper 
bound of its interval is always known in advance and con- 
sistsof all 1 bits: ll...l = p-1. 

3. Compact Representation of O-complete Trees 
In the figure 4(a) the key intervals of the O-complete 

tree from the figure 3 are listed in lexicographic order. 
(The lexicographic order coincides with the sequencing of 
corresponding leaves as they are accessed in the pre-order 
traversal.) Observe that the (non-inclusive) upper bound 
of any leaf’s key interval is the discriminator of its bound- 
ing node, which is, in turn, the (inclusive) lower bound of 

00000000 - 00100000 00100000 - 3 
00100000 - 10000000 10000000 - 1 
10000000 - 10100000 10100000 - 3 
10100000 - 10110000 10110000 - 4 
10110000 - 11111111 11111111 - 0 

(a) 

Figure 4. 
Key intervals of leaves in the O-complete tree of figure 3. 
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the following key interval. Thus, knowledge of bounding 
node discriminators is sufficient to identify the appropriate 
key interval of any data item with any given key. A B-tree 
like search procedure, which examines the bounding 
discriminators of the tree in their pm-order traversal 
sequence, will find the correct key interval when the first 
discriminator Di greater than the search key K is found. 
Di will be the non-inclusive upper bound of the interval, 
Dim1 is its inclusive lower bound. 

The implicit switch of roles here is important The 
l&s own discriminator is not used to represent either it or 
its key; but rather the discriminator of its bounding node. 
In general, node discriminators need not be unique, but it 
can be shown that in a O-complete tree all bounding node 
discriminators are distinct. 

Figure 4(b) contains the bounding discriminators 
listed in order. Along with each entry there is a number 
denoting the depth of the bounding node with that discrim- 
inator. For the last entry, which has no bounding node, we 
have chosen an imaginary discriminator with assigned 
depth 0. Henceforth we will assume that the bounding 
node of the last leaf always has depth 0. There is one 
apparent regularity in the relationship between the discrim- 
inators of a set of bounding nodes and their depths. If the 
depth of a bounding node is d, then by the definition of a 
discriminator, the d’ bit of the corresponding discrimina- 
tor is set to 1. We will use this to develop a correspon- 
dence between the entire upper bound discriminator and 
the depth of its associated bounding node. 

Let Di denote the discriminator of the i” bounding 
node in the preorder traversal. Let the key length be M, 
let an initial dummy discriminator Do be 0, and let the 
depths of the bounding nodes be the ordered set L = < di >, 
i = 1, N-l, where N denotes the number of leaves in the 
tree. Then Di GUI be obtained from Dim1 by: 

(1) setting the d” bit in Dim1 to 1; and 

(2) setting all subsequent ( lower or&r ) bits to 0. 
The algorithm can be more precisely expressed with a 
recurrence relation: 

0 ifi=O 
Di = 

(I Di-1 /2w*’ 1 +1j.2~-4) ifOci<N (1) 

1’ J 

where 1 x ] denotes the floor of x. For i = N the discrimi- 
nator DN is 2M - 1, as agreed before. Proof that the 
recurrence relation does indeed produce the ordered set of 
bounding discriminators can be found in [GrF%S]. Given 
only the depths of the bounding nodes in a Complete 
tree, in their pre-order sequence, it is possible to mcon- 
struct the corresponding bounding node discriminators, 
and hence the corresponding key intervals. 

In a new structure, which we call a compact 
representation, or Ce-tree. the depths of the bounding 

nodes of each leaf (not the depth of the leaf itself) are 
stmed in pre-order sequence, along with pointers to the 
leaf pages. Pointeri pOhtS t0 the leaf Li preceding the i” 
bounding node in the preorder. only these (depth, 
pointer) entries are kept in a Ce-tree (see figure 5). Every 
leaf is just an abstraction of a single record, along with its 
key. Thus, physically, records may be stored anywhere in 
arbitrary order. But they can be accessed in lexicographic 
order through the Co-tree. Keeping in mind the use of 
Cpees for secondary retrieval this means that both 
records and their keys are entirely eliminated from secon- 
dary indices. This is the source of real storage savings, 
offered by the scheme. 

If one assumes that the maximal length of any key is 
31 bytes (= 248 bits), then a short 8 bit integer cau be used 
to record depth, since depth value cannot exceed the length 
of the key field (0 I depth I 2*-l = 255). It saves storage 
and increases fan out. And longer key lengths are exceed- 
ingly rare. The actual constraint is that the surrogate, 
depth, must be coded as an integer of log#) bits, where 
M denotes the maximal key length. Let 3 bytes (= 24 bits) 
serve as a pointer. Then, for large files (of up to 2% = 
16.6M items) the total length of an in&x entry (depth and 
pointer) need not be longer than 4 bytes. A Co-tree index 
page of 1K bytes will support a branching factor of 256. 
Assuming 9 byte keys (e.g. social security numbers), a 
corresponding B-tree implementation would have fan-out 
of only 85. 

4. Access in C,, - trees 
The preceding paragraphs, together with the results 

of section 3. indicate that an effective search procedure 
using Co-indexes is feasible. Given a sequence of depths, 
the recurrence relation above could be used to reconstruct 

Figure 5. Compact representation of Figure 3. 
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the discriminator that can be used as the bounding value in 
the search algorithm. But any procedure implementing the 
recurrence (1) must be slow; it requires repeated divisions 
and shifting. Surprisingly, the recurrence can be replaced 
with the simple search algorithm given in figure 6. 

Let br denote the position of the tirst l-bit in a key 
K. Let b denote the position of the second, and bk the 
position of the k” l-bit. So if K = 10011010, then br = 1. 
9 = 4, b = 5, and b,, = 7. Let B denote the sequence of 
all bi’S in K, sorted in their ascending order. This 
sequence is augmented with a final value equal to M + 1. 
Thus, BR = <1.4,5,7,9>. AnysearchkeyKcanthusbe 
written as 

i2W-W, 
k-1 

where 1 is the cardinality of B. Notice that the final value 
adds the constant fraction 2-l = l/2 to K when it is inter- 
preted as an integer. The use of the parameter first will 
become clear later. For now we assume that fvst is always 
equal to 1. 

While we have not yet shown how to create Co-trees 
such as figure 5, the reader should use the algorithm to 
search for items whose keys are K1 = 1MIOOOOl and K2 = 
01010001. Note that although no item with key K2 exists 

procedure search 
input: [ll An array B = <b[kl> of sorted 

l-bit positions in the search 
key, appended with the value M+l. 
[2] An integer first, denoting 
position in array B (usually 1) 
at which to begin comparison. 
[3] A sequence L = <d[jl> of 
depths of the bounding nodes 
in a O-complete tree. 

output: The index j of the entry whose 
interval contains key K. 

begin 
j t 1; 
k c first; 
while b[k] S d[jl do 

begin 
if b[k] = d[jl 

then k c k+l; 
j t j+l 
end 

return j 
end; 

Figure 6. Search algorithm. 

in the file, the accessed leaf lies in the correct key interval. 
We conceptually subdivide the execution of the 

algorithm into s 2 1 iterations. For k < s every k’ itera- 
tion ends when the search procedure encounters the entry 
ik, such that di, = bk. The next kahOn starts from the 
(ik + l)# entry in the index block. The last, i.e. s*, itera- 
tion discovers the entry i, such that di, < b‘ and the pro- 
cedure stops. Thus, 1Sil<i2<-<i,, where ~21. 
The number of iterations s must be less than or equal to I = 
IBI. 
Lemma 4.1: For every entry ik in a Co-index, such that 

1 I A < s, the corresponding discriminator is: 

it Di, = x2 W-b,) < K 
j--l 

Prod Let Di be the discriminator value after j steps of the 
recurrence procedure (1). Let K = 1, corresponds 
to the tint iteration of the procedure given in 
figtt~6. Weknowthatdi,=br andforallj<ir 
we have di > br. The ih step of the recurrence 

a procedure (1) sets the b, bit of the discriminator 
D i,-r to I and erases alI l-bits whose position is 
greater than br, to obtain Di,. Therefore, Di, C~II 

have only one l-bit since none of the previous 
steps could set any bit at position less or equal br . 
TtW 

Di, =2w-b1) < K. 

Letk=n-1 <s-l andlet 
‘-l (M-b,) Di., = x 2 * 
i-l 

Then,fork=nwehavethatdi.=b,andforall 
entries i in the Co-index, such that i,-l < j < i,, 
we have di > b,. Hence, recurrence procedure 
(1) will erase all the changes on the discriminator 
recorded between steps iam and i,, and new l-bit 
will be set at position b,. Thus, for k = n, the 
discriminator at the entry i, becomes 

Di. = Die, +2’@“’ = 9’), 
i=l 

S~IKZ b,, > bi for all i < n. Obviously, Dim is less 
thanthesearchkeyKsincen <sSf,wheresand 
Iareasabove. Cl 

Theorem 4.2: The search procedure of figure 6 stops at 
the first entry i, in the Co-index whose 
corresponding discriminator Di, is greater 
tban the search key K. 

Proofi By lemma 4.1 after the (s - lr’ iteration of the 
search procedure, the encountered entry i,-l has 
discriminator Di,, : 
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Di,, = 8-9 ifs= 1 

z2w-“’ ifs> 1 
k=l 

In both cases DC, < K. After the s* iteration we 
know that di, < b, and that every entry k, such 
that is-1 < k c i,, has depth dk > b,. Tha’efORi, 
none of the discriminators. Di,,+l through Di, _ 1 
can be greater than K, since even if all bit posi- 
tions greater than b‘ are set to 1 we have that 

K 2 DC, + 2w-“’ > DC, + $ 2w-k)a 
w+1 

However, at entry i, the value di, is at most b, - 1 
and hence: 

D. >D. +2”++l) 1. b-1 > Di,-, + ~2(M-” *K. 

With the observation that the entry i,, such that 
di, < 4, must be present in a Co-index (recall that 
the last entry has depth 0 which is less than any 
bit position bi), we conclude the proof. Cl 

It should be apparent why M+l was appended to the 
sequence c bk >. Let the search key K be 01010800. So 
that, B = < 2,4 >. Suppose that some entry i has discrimi- 
nator Di = 01010000. Entry i+ 1 has corresponding 
discriminator greater than K. But, the search procedure 
will be confused since both bi = 2 and b = 4 have already 
been recognized and there is no b. Appending the value 
M + 1 (= 8 + 1 = 9) to the sequence resolves the problem 
by creating a search key K which is effectively 
01010000.1~. 

The search procedure reduces to comparisons of 
small integers, no matter what the key length or type is. 
Thus, the key comparison time for any access is 
significantly reduced. 

5. Operations on Co-bees 
The preceding section described a retrieval algo- 

rithm for Co-trees without indicating how they might be 
grown. In this section, we show how the operations of 
item insertion, item deletion, index block splitting, and 
index block merging take place. Throughout, we will 
enforce a concept of consistency, where a Ce-tree struc- 
ture will be called consistent if it faithfully represents a 
corresponding O-complete binary tree. 

Conceptually, data items are stored in the leaves of a 
O-complete tree and the retrieval process involves follow- 
ing a path of labeled edges to the desired data item. In 
practice, actual retrieval, based on the depths of bounding 
nodes in the conceptual tree, is quite different Similarly, 
item insertion and deletion can be viewed as the addition, 
or deletion, of leaves to a O-complete binary tree in such a 

manner that the path to the leaf is a prefix of the item’s 
key-while at the same time preserving the O-complete 
property. Again, the actual procedures defined on a com- 
pact Co-tree representation are quite different. But at all 
times we require the results of any such insertion or dele- 
tion operation to be consistent, The idea of consistency 
then is a kind of mirror, reflecting the compact Co- 
representation onto its conceptual O-complete model, 
which we use as a criterion of correctness and for an 
explanation of the procedures. In this section we will use 
the cormsponding conceptual O-complete tree only to 
explain the behavior of the processes. Proofs of con- 
sistency can be found in [OrF’883. 

In the following let Ri denote a data item, or record, 
with key Ki. Let K be my search key, and let bit&) 
denote the b” bit in the key K. Let ei = (di, pi ) denote the 
i* entry in an in&x block, in which 4 denotes the depth 
of a bounding node in a conceptual O-complete tree and pi 
is a pointer to either a leaf (data item, Ri, in storage) or an 
in&x block (O-complete subtree). Then 
ci-1 = (di-1, pi-1 ) and ei+t = (di+l 9 pi+1 ) will denote 
respectively the immediate predecessor and successor of ei 
in the Cc-index, and hence predecessor and successor (in 
the preorder traversal) of the bounding node in the con- 
ceptual O-complete tree. 

5.1. Insertion 
A record R with key K has been stored in location p. 

An entry, (d, p ), is to be inserted in the Cc-index; R is to 
become a leaf L of the O-complete tree. Using the key K a 
search is performd to locate a leaf Lip such that K belongs 
to its key interval. Let ei = (di, pi ) be the last index entry 
encountered in this search, with pi pointing to Li. 

We will see below that it is possible to create 
dummy leaves whose index pointerp is NIL. If ei is such a 
dummy entry (pi = NIL), then set pi to p. The insertion is 
completed. 

Otherwise, pi ill Ci pOilltS t0 illl XXMl leaf (or 
record) Li with key Kis The two leaver L and Li both 
belong in the same key interval. To determine their 
correct placement relative to each other we need to know 
the depth li Of Li in the conceptual O-complete tree. This is 
not recorded in the compact Co-representation. Only the 
depths of bounding nodes are recorded. But the depths of 
leaves can be determined by the following rule: 

00 If ei is the first entry in an index block then Li 
isa@leafandZi=di. 

:; 
If di > di-1 then Li is a O-leaf and Zi = dis 
If di < dim1 then Li is a l-leaf and li = dim1. 

Let li denote the conceptual depth of Lis NOW, com- 
pare the two keys, K and Ki. to determine the tlrst bit posi- 
tion, b’, at which they differ (i.e. where big(b’) = 0 and 
bitG(b’) = 1, or vice versa). If b’ < Zi, then L will always 
follow Li in the pm-order sequence. Change ei to (di, p ) 
and insert (b’. pi) in the Co-tree immediately before ei. 
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If li C b’ then both L and Li must be moved deeper 
in the conceptual tree in order to preserve a distinction 
between their access paths. To ensure that the conceptual 
tree is still Ocomplete, it may be necessary to add dummy 
O-leaves. For every l-bit position bi, if any, in K such that 
li < bj < b’ inject a dummy entry (bi, NIL ) immediately 
befOE t?i. These dummy entries are inserted in the 
inClEX4IIg order of their bi V~U~S. NOW, if K < Ki tha L 
should precede Li in the preorder traversal, insert the 
entry (b’, p ) immediately before ei. If K > Ki, insert 
( b’, pi ) before ei and change ei to ( di, p ). 

Since the index blocks of a C&ee am of fixed size. 
an index block can eventually overfill. They are split in a 
manner similar to that of B-trees, except that they ate not 
necessarily split exactly in half. A minimal partition of the 
index is generated by finding that entry (other than the last) 
in the block which has minimal depth, d,,,+ Let db 
denote the depth of the last entry in the block. The index 
block, I, is split immediately following the minimal entry 
into two blocks I,, and Ii. 

If the split index block was the root block in the 
Co-index, then a new root block must be created with just 
two entries. The tirst entry will be (dk, lo), the second 
entry willbe (d krrl, I1 ). If the split index block I was not 
the root of the Co-hierarchy, then it was referenced by an 
enuy(&,,f). Thisentryischangedto(d~r.II)andan 
entry t&h, IO ) is insert4 immediately before it. This 
may, of course, force an additional index splitting. Notice, 
this way of splitting enforces a stronger consistency 
interpretation in which every index block corresponds to a 
different O-complete tree. However, special care must be 
taken when II will have only one entry, since it invalidates 
the rule (a) for determining the true depth of the concep- 
tual leaf, Keeping a trailing variable, while descending the 
tree from the root down, will resolve the problem. 

Let us illustrate these three insertion steps with a 
running example in which we will assume at most 5 entries 
per index block. Begin with the conceptual O-complete 
tree shown in figure 3 and its corresponding Co- 
representation in figure 5. An item with key 01000110 is 
to be inserted. The resulting conceptual O-complete tree 
will be that shown in figure 7. 

Application of the search algorithm establishes that 
01000110 falls in the key interval of the second entry, e2 = 
(l,L,-,,-,,). Inthiscase,b’= 2 < 3 = 12. Hence the single 
entry e2 is replaced by the sequence (2, LooI ) ( 1, LoI ). 
The block will have to be split after the entry which has 
minimal depth, dh = 1. Following splitting, we get the 
hierarchical structure shown in figure 8. 

At this point the reader should verify that the search 
algorithm given in figure 6 still works on a hierarchical 
Co-structure. Let the search key K be 10101010, so that B 
= cl, 3,5,7,9>. Begin searching the root index with&St 
= 1. It will exit with k = 2 and j = 2. Follow pointerp2 to 
its index block and continue scanning withJifst = 2. 

I I 

Figure 7. 
The O-complete tree of figure 3 after inserting 01000110 

&Xl 

LOO1 

Lo1 

Figure 8. 
The hierarchical Co-representation of figure 7. 

Entry of a new item with key, K = 1OlOllCQ will 
lead to a different growth pattern. After entry, the concep- 
tual tree must look like figure 9. Notice that there is an 
empty leaf (indicated by the dashed lines) corresponding 
to Lloloo. The long path 10101 must be present in this tree 
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Figure 9. 
The O-complete tree after entry of 10101100 

JhO 

kN31 

Lo1 

Figure 10. 
The Co-representation after entry of 10101100. 

complete. 
The search algorithm determines that 10101100 

belongs in the key interval of the second entry e2 = 
(4, L 1o1o ) of the second index block. Since 4 > 3 = di , 1 2 
= 4 and b’ = 6 > 4. Since l2 = 4 < b = 5 < b’ = 6. a 
dummy entry (5, NIL) is entered. Then since K > K2, e2 
is changed to (4.L 101011) ad (6 LIOIOIO 1 k in- 
immediately before it to obtain figure 10. 

5.2. Deletion 
Assume that an item with key K has been deleted 

from storage. Its reference must be deleted from the 
index. The deletion procedure begins with the search for 
the in&x entry ei corresponding to the given key. The 
easiest and fastest way to perform deletion in the Co-tree 
is to set its pointer pi in f?i to NIL. This will be sufficient 
in an environment where deletions are rare or at least less 
frequent than insertions. 

We present in figure 11 a full deletion algorithm 
whose effect is precisely the opposite of insertion. With it, 
for example, the removal of the record with K = 10101100 
from the tree in the figure 10 would yield the structure of 
figure 8 once again. In this case, di-1~ 6 > 4 = die Con- 
sequently, di-i becomes 4 and the entry pointing to the 
deleted record is removed. Subsequently, the preceding 
dummy entry, whose depth is greater than 4, is also 
removed from the index block. 

If many blocks are undertilled it may be possible to 
increase storage utilization by merging two partially filled 
nodes in a manner that is nearly the inverse of node split- 
ting. The complete algorithm for merging is given in 

if d[i-11 > d[il 
then begin 

else 

d[i-11 + d[i]; 
Remove entry e[i]; 
Remove all dummy entries j 
immediately preceding e[i-l] 
such that new d[i-1] < d[jl; 
end 
if d[i] > d[i+l] 

then begin 

else 

Remove entry e[il; 
Remove all dummy entries 
j immediately preceding 
the new entry e[il such 
that d[il < d[jl; 
end 
set p[il to NIL; 

Figure 11. Deletion Algorithm 

to differentiate between the keys 10101010 and 10101100. 
So if there were no leaf Lloloo, the tree would not be O- 
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figure 12. Its pattern is similar to that of deletion of indivi- 
dual index entries. Notice, the procedure will be invoked 
after deleting one or more entries from an index page Ii 
which leaves the page with a number of entries below 
some threshold. Then the higher level entry ei pointing to 
Ii, is COllSUlttXi 

Merging can contract the root page to the point 
when it contains just one entry (with pointer pt). In that 
case, the root page is deallocated and the new mot 
becomes the page whose address is pl. For example, this 
will happen if we delete the record with key 01OC0110 
from the structure in figure 8. The entry es, pointing to the 
deleted record, will be removed which results in an 
underfilled index page. Consulting the root page we can 
see that the second merging condition is satisfied and the 
two lower level index blocks are combined together. An 
appropriate entry from the root page is deleted and the root 
is left with just one entry. This will force deallocation of 
the root page yielding figure 5. 

flag + false; 
if d[i-11 

then if 

if d[il > 

> d[il 
entries of I[i] and I[i-l] 
can be combined together 
then begin 

Replace all entries 
from I[i] into I[i-11; 
Release page I[il; 
dIi-11 c d[il; 
Remove entry e[i] from 
the index block I[j]; 
flag c true 
end ; 

d[i+l] and flag = false 
then begin 

if entries of I[il and I[i+ll 
can be combined together 
then begin 

Replace all entries 
from I[i+l] into I[i]; 
Release page I[i+ll; 
d[il t d[i+ll; 
Remove entry e[i+l] from 
the index block I[jl 
end 

end 
else no merging is possible 

or it has already been done; 

Figure 12. Merging Algorithm. 

6. Results 
Key compression obtained by replacing bounding 

search values with small, fixed size surrogates yields 
significant efficiencies in terms of storage overhead, total 
blocks accessed, and software simplification. The larger 
branching factors obtained ensure that the depths of Co- 
trees will almost never exceed three levels. The storage 
overhead of Ca-tree indices can be expected to be 50%- 
80% less than the overhead of equivalent B-trees. Software 
simplification is equally important For all keys, of any 
length or type, the layout of an index block and the search 
procedure are fixed. Precisely the same steps are per- 
formed regardless of whether the keys are character 
strings, dates, integers, reals or some combination of these. 

The expected storage utilization of Co-trees is 
ln2 = 0.693, as in the case of B-trees [Yao78]. However, 
due to the presence of dummy entries, the number of index 
entries L at the lowest level of the ttee exceeds the actual 
number of records N. For random keys, this value asymp- 
totically tends to 

L = N(logze + 1)/2 = 1.221.N. 

The number of dummy entries is 

D = N*(Zoge - I)/2 = 0.221-N. 

so that (loge - l)/(Zoge+l) = 0.181 of entries at the lowest 
tree level will be nil, just to ensure consistency with an 
underlying O-complete tree. Subsequently, counting only 
“useful” entries, the effective storage utilization at this 
level of a C&ee drops to about 0.567. Upper levels have 
no nil entries. Measurements in many large experimental 
databases cot&m all of these “expected” values. 

With these figures we can continue our comparative 
example from section 3. With parameters as before, a 3- 
level B-tree secondary in&x can be expected to support up 
to 295,885 records, while a 3 level Co-tree index would 
normally support 6,570,240 records. Thus, despite a drop 
in effective utilization, the number of items accessible with 
the same retrieval cost (number of disk accesses per exact 
match query) is dramatically increased. 

We have suspected that the storage utilization could 
deteriorate when non-uniformly distributed keys are main- 
tained. In several experiments we have simulated skewed 
distributions of integer keys, as well as numbers coded as 
character strings, based on the Central Limit Theorem. In 
these experiments 20,000 keys have a tendency of group- 
ing on specific submnges of the key space. The obtained 
results show relative insensitivity of Co-trees to the distri- 
bution. After 20,000 insertions storage utilization was 
about 0.69 in all experiments. However, load factor was 
low (about 0.3) at the very beginning of these experiments 
when a small number of records were present (see figure 
13). As the structure grew, the storage utilization showed a 
steady growth with small variations observed, and quickly 
attained its theoretical behavior. Surprisingly, in all experi- 
ments with skewed distribution the number of dummy 
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Figure 13. 
Storage Utilization with Non-uniform Distribution 

entries decreased when compared to the simulations with 
perfectly random keys. Recall that nil entries are less 
likely to appear when keys contain more O’s than 1’s. Our 
non-uniform distributions were accidently biased towards 
such keys. Random keys tend to have approximately the 
same number of O’s and 1’s. 

A simple heuristic can increase storage utilization, 
although it will not prevent underfilling altogether. 
Without altering the algorithms given in this paper, an 
index block can be split immediately after the entry ei. 
provided that depths of all preceding entries in the block 
are greater than the depth value of ei. If we chose the ei 
closest to the middle of the block we can obtain much 
closer approximation of even splitting of blocks in a tree. 
Another simple heuristic passes all keys through a filter 
that eliminates “unnecessary” l-bits, as in the higher order 
bits of ASCII codes. This will minimize dummy entries. 
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