
COMPACT O-COMPLETE TREES

Ratko Orlandic
John L. Pfaltz

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract:
In this paper, a novel am to ordered retrieval in
very large files is developed. The method employs a
B-tree like search algorithm that is independent of key
type or key length because all keys in index blocks are
encoded by a lo&f bit surrogate, where M is the
maximal key length. For example, keys of length less
than 32 bytes can be represented by a single byte in
the index. This ensures a maximal possible fan out
and greatly reduces the storage overhead of mainta.in-
ing al%ess indiw.

Initially, retrieval in a binary pie structure is
developed. With the aid of a fairly complex re-
currence relation the rather scraggly binary trie is
transformed into a compact multi-way search tree.
Then the recurrence relation itself is replaced by an
unusually simple search algorithm. Finally. a specific
access scheme, appropriate for secondary indexing; is
presented.

1. Introduction
The principle Sapere aude (get courage to learn)

potentially favors things whose essence is hidden, imply-
ing that they are more attractive and more challenging. If
viewed through the spirit of this principle our paper, which
introcluces a new method of accessing and maintaining
large files, would appear to have an aesthetic flaw. It first
reveals the essence of the access mechanism and only then
examines its surface appearance and characteristics. In this
case, the essence of the method will be described in terms

Tllil wo* wa1 supported in pan by JPL cQntncl11957721

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrilxned for
direct commercial advantage, the VLDB co&t mtice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 372

ofaspecialO-completebinarytrieinsection2. ‘Ibeirre-
gularity of these trees should not discourage the reader. in
section 3, a recurrence tmnsfomution will open the possi-
bility of a much more compact equivalent. These
compact CO-trees will support a simple and efficient
search algorithm described in section 4. Finally, insertion
and deletion operations on Ce-trees will be discussed in
section 5. Throughout the paper the structure is contrasted
to B-trees lBaM721.

The admitted generality of B-trees [Com79], their
effectiveness and widespread use, has tended to tie
further research in the field of data access. The psycholog-
ical barrier imposed by the question “will anyone care,
since there is already a generally accepted satisfactory
solution” must loom over any msearch. But research
interest is still there. Several schemes
lFae79, La&l, L&30, LiL87] that provide better access per-
formance have been published in the last decade. Unfor-
tunately, all of them lack at least one of the important
advantages of B-trees. B-trees provide relatively fast, bal-
anced access, ensure good storage utilization (at least
50%). support gradual expansion and shrinking, allow
ordered sequential access to data items, provide insurance
against the catastrophic behavior, are relatively simple to
implement, etc. Perhaps more important than any of these,
at least in comparison to extensible hashing techniques, is
that B-tree retrieval does not depend upon storage in a par-
ticular location. Consequently, B-trees can be used to sup
port secondary access paths. .

Since B-trees provide both satisfactory primary
access and good secondary access to data sets, they natur-
ally tend to bc the method of choice. This is unfortunate
since, unlike either extensible hashing or our compact O-
complete trees, every indexed attribute value* must be
replicated in the index itself. The cumulative effect of
replicating many secondary index values is to create
indices which exceed, in many cases, the size of the data-
base itself. This overhead can force database designers to
reject potentially useful access paths. And, inclusion of
search values within blocks of the B-tree significandy

l Actually every value but one.

decreases the block fan out, and increases tree depth and
retrieval time.

Co-trees eliminate search values from secondary
indices altogether. They are replaced with small surro
gates whose typical 8 bit length will be adequate for most
practical key lengths (of less than 32 bytes). Thus actual
values are confined to the main file containing principal
records, leaving the secondary indices to be just hierarchi-
cal collections of (surrogate, pointer) pairs. This organiza-
tion reduces the size of the secondary indexes (50% -
80%), and increases branching factor of the trees, thus pro-
viding a reduction of number of disk accesses per exact
match query.

It is important to note that this has been accom-
plished while still retaining most of the merits of B-trees.
In contrast to many proposals aimed to improve on fan-out
of B-trees [BaU77,dTv87,Lom81], the entries in Cc-trees
have fixed size, are insensitive to types and lengths of
search values and require no structural difference between
lower and upper levels of the trees. These three properties
provide considerable software simplification. In addition,
while the efficient in-core search, which requires just the
comparison of small integers, is inherently sequential, it
does not suffer from presence of variable length index
entries [BaU77,Lom81], nor does the scheme impose any
artificial bound on the data set size by requiring that a part
of the structure be always in-core resident [dTv87,Lit81].
What can be considered as a drawback of the scheme, in
contrast to B-trees, is the failure to guarantee even splitting
of index blocks, and the presence of an estimated 18%
dummy index entries in the lower level of the tree.
Although our experiments do not indicate that these prob-
lems are significant, a way they can be minimized is dis-
cussed in the last section of the paper.

2. O-complete Trees
A mrie is a multi-branching edge labeled tree in

which items to be retrieved (they may be a single item or a
page of items) are stored at its leaves. Retrieval lFre601 is
achieved by successively comparing symbols in the search
key with edge labels and following the indicated path to
the desired leaf. Every arc in a binary tree can be labeled
witheitheraOora1. Thusanybinarytreecanbe
regarded as a binary rrie. A node (interior or leaf) is called
a O-node (O-leaf) if its entering arc is labeled 0. Similarly,
we &fine a l-node (l-leaf) to be a node whose. entering
arc is labeled 1. With arc labels, every node n of a binary
tree can be uniquely identified by its access path from the
root; which we &fine to be a binary string obtained by
concatenating labels of edges traversed from the root down
to the node. This string we call path(n). The length of
path(n) is the depth of the node n.

Paths to the nodes in a binary tree will normally be
variable length. At the same time, we require search values
(further called keys) to be strings of binary digits with
arbitrary length up to some maximum value M in bits.

Throughout this paper we will enforce numbering of bits
in the search values from left to right, leftmost bit being at
position 1. For simplicity, we assume key uniqueness, but
it is not required by the method itself. The path concept
can be extended to provide a fixed length node identifier,
called its discriminuror, as follows. The discriminator,
D,, of a node n is a binary string of fixed length M (maxi-
mal key length in bits) whose high order 1 bits are path(n)
of length 2 and all other bits are 0’s. Thus a node discrimi-
nator has an integer value ~-2~~) , where x is the integer
equivalent of path (n) of length 1. Consequently, if the key
length is 8 bits, a node n with purh (n) = 0101, has discrim-
inator 01010000. Its integer equivalent is 8Orc.

A binary tree with N leaves is said to be O-complete
if (a) the sibling of any O-leaf is present in the tree, and (b)
there are exactly N-l l-nodes in the tree.

A binary tree is said to be complete if every node is
either a leaf or has exactly two nonempty descendants. It
is not hard to see* that every complete binary tree (as in
figure 1) satisfies the two conditions for O-completeness.
By arbitrarily deleting l-leaves whose O-siblings are not
leaves (e.g. the l-leaves E and G in figure 1 to obtain
figure 2), we preserve O-completeness. But deletion of any
O-leaf would violate condition (b) which requires N-l l-
nodes in a tree with N leaves.

The nodes of any tree can be topologically ordered
by a traversal of the tree. We may &fine the pre-order
traversal of a O-complete tree to start at the root of the
tree and then iterate the following two steps until the last
node has been accessed:

s” +

0

<
1

9”
J

1
‘k

Figure 1. Complete bii tree.

L

M

.

* MS of assaths about O-complete treea can be found in
[0rPs81.

373

Figure 2. O-complete binary tree.

(a) if the current node ni is an internal node then the
next node Pli+i in the order will be its O-son (by O-
completeness every interior node must have its O-
son);

(b) if the current node 4 is a leaf then the next node in
the pre-order will be the l-son of the node p whose
0-subtree contains xi and whose depth is maximal.

The pre-or&r traversal of figure 2 is the sequence a b d H
I c f J k L M , where the leaf symbols have been capital-
ized for emphasis. It is not hard to show that this
definition is equivalent to the more usual recursive
definition of pm-order traversal.

Since data items are stored at the leaves, they are of
special importance in these retrieval trees. In the O-
complete tree of figure 3 they have been represented as
rectangles; each contains the key* of a representative item
and each has been labeled by its path. Successor nodes to
leaf nodes in the preorder -traversal of a O-complete tree
are also of special importance; we call the successor of a
leaf node its bounding node. In figure 3, the bounding
nodes, which may or may not be leaf nodes, have been
emphasized with double lines. Since bounding nodes are
defined in terms of the pre-order traversal it follows that
each leaf, except the last one, has its own unique bounding
node. From part (b) of the definition of the preorder
traversal it follows that every bounding node is a l-node.
Moreover, it can be shown that in a O-complete tree every
1 -node is also a bounding node of a unique leaf.

Discriminatom and bounding nodes can now be used
to establish a key interval of the key space that

Figure 3. A O-complete tree.

corresponds to each leaf in the O-complete tree. This inter-
val is formally defined to be the key range between the
leaf’s discriminator (inclusively) and the discriminator of
its bounding node (non-inclusively). The exception is
again the last leaf in the preorder traversal. The upper
bound of its interval is always known in advance and con-
sistsof all 1 bits: ll...l = p-1.

3. Compact Representation of O-complete Trees
In the figure 4(a) the key intervals of the O-complete

tree from the figure 3 are listed in lexicographic order.
(The lexicographic order coincides with the sequencing of
corresponding leaves as they are accessed in the pre-order
traversal.) Observe that the (non-inclusive) upper bound
of any leaf’s key interval is the discriminator of its bound-
ing node, which is, in turn, the (inclusive) lower bound of

00000000 - 00100000 00100000 - 3
00100000 - 10000000 10000000 - 1
10000000 - 10100000 10100000 - 3
10100000 - 10110000 10110000 - 4
10110000 - 11111111 11111111 - 0

(a)

Figure 4.
Key intervals of leaves in the O-complete tree of figure 3.

374

the following key interval. Thus, knowledge of bounding
node discriminators is sufficient to identify the appropriate
key interval of any data item with any given key. A B-tree
like search procedure, which examines the bounding
discriminators of the tree in their pm-order traversal
sequence, will find the correct key interval when the first
discriminator Di greater than the search key K is found.
Di will be the non-inclusive upper bound of the interval,
Dim1 is its inclusive lower bound.

The implicit switch of roles here is important The
l&s own discriminator is not used to represent either it or
its key; but rather the discriminator of its bounding node.
In general, node discriminators need not be unique, but it
can be shown that in a O-complete tree all bounding node
discriminators are distinct.

Figure 4(b) contains the bounding discriminators
listed in order. Along with each entry there is a number
denoting the depth of the bounding node with that discrim-
inator. For the last entry, which has no bounding node, we
have chosen an imaginary discriminator with assigned
depth 0. Henceforth we will assume that the bounding
node of the last leaf always has depth 0. There is one
apparent regularity in the relationship between the discrim-
inators of a set of bounding nodes and their depths. If the
depth of a bounding node is d, then by the definition of a
discriminator, the d’ bit of the corresponding discrimina-
tor is set to 1. We will use this to develop a correspon-
dence between the entire upper bound discriminator and
the depth of its associated bounding node.

Let Di denote the discriminator of the i” bounding
node in the preorder traversal. Let the key length be M,
let an initial dummy discriminator Do be 0, and let the
depths of the bounding nodes be the ordered set L = < di >,
i = 1, N-l, where N denotes the number of leaves in the
tree. Then Di GUI be obtained from Dim1 by:

(1) setting the d” bit in Dim1 to 1; and

(2) setting all subsequent (lower or&r) bits to 0.
The algorithm can be more precisely expressed with a
recurrence relation:

0 ifi=O
Di =

(I Di-1 /2w*’ 1 +1j.2~-4) ifOci<N (1)

1’ J

where 1 x] denotes the floor of x. For i = N the discrimi-
nator DN is 2M - 1, as agreed before. Proof that the
recurrence relation does indeed produce the ordered set of
bounding discriminators can be found in [GrF%S]. Given
only the depths of the bounding nodes in a Complete
tree, in their pre-order sequence, it is possible to mcon-
struct the corresponding bounding node discriminators,
and hence the corresponding key intervals.

In a new structure, which we call a compact
representation, or Ce-tree. the depths of the bounding

nodes of each leaf (not the depth of the leaf itself) are
stmed in pre-order sequence, along with pointers to the
leaf pages. Pointeri pOhtS t0 the leaf Li preceding the i”
bounding node in the preorder. only these (depth,
pointer) entries are kept in a Ce-tree (see figure 5). Every
leaf is just an abstraction of a single record, along with its
key. Thus, physically, records may be stored anywhere in
arbitrary order. But they can be accessed in lexicographic
order through the Co-tree. Keeping in mind the use of
Cpees for secondary retrieval this means that both
records and their keys are entirely eliminated from secon-
dary indices. This is the source of real storage savings,
offered by the scheme.

If one assumes that the maximal length of any key is
31 bytes (= 248 bits), then a short 8 bit integer cau be used
to record depth, since depth value cannot exceed the length
of the key field (0 I depth I 2*-l = 255). It saves storage
and increases fan out. And longer key lengths are exceed-
ingly rare. The actual constraint is that the surrogate,
depth, must be coded as an integer of log#) bits, where
M denotes the maximal key length. Let 3 bytes (= 24 bits)
serve as a pointer. Then, for large files (of up to 2% =
16.6M items) the total length of an in&x entry (depth and
pointer) need not be longer than 4 bytes. A Co-tree index
page of 1K bytes will support a branching factor of 256.
Assuming 9 byte keys (e.g. social security numbers), a
corresponding B-tree implementation would have fan-out
of only 85.

4. Access in C,, - trees
The preceding paragraphs, together with the results

of section 3. indicate that an effective search procedure
using Co-indexes is feasible. Given a sequence of depths,
the recurrence relation above could be used to reconstruct

Figure 5. Compact representation of Figure 3.

375

the discriminator that can be used as the bounding value in
the search algorithm. But any procedure implementing the
recurrence (1) must be slow; it requires repeated divisions
and shifting. Surprisingly, the recurrence can be replaced
with the simple search algorithm given in figure 6.

Let br denote the position of the tirst l-bit in a key
K. Let b denote the position of the second, and bk the
position of the k” l-bit. So if K = 10011010, then br = 1.
9 = 4, b = 5, and b,, = 7. Let B denote the sequence of
all bi’S in K, sorted in their ascending order. This
sequence is augmented with a final value equal to M + 1.
Thus, BR = <1.4,5,7,9>. AnysearchkeyKcanthusbe
written as

i2W-W,
k-1

where 1 is the cardinality of B. Notice that the final value
adds the constant fraction 2-l = l/2 to K when it is inter-
preted as an integer. The use of the parameter first will
become clear later. For now we assume that fvst is always
equal to 1.

While we have not yet shown how to create Co-trees
such as figure 5, the reader should use the algorithm to
search for items whose keys are K1 = 1MIOOOOl and K2 =
01010001. Note that although no item with key K2 exists

procedure search
input: [ll An array B = <b[kl> of sorted

l-bit positions in the search
key, appended with the value M+l.
[2] An integer first, denoting
position in array B (usually 1)
at which to begin comparison.
[3] A sequence L = <d[jl> of
depths of the bounding nodes
in a O-complete tree.

output: The index j of the entry whose
interval contains key K.

begin
j t 1;
k c first;
while b[k] S d[jl do

begin
if b[k] = d[jl

then k c k+l;
j t j+l
end

return j
end;

Figure 6. Search algorithm.

in the file, the accessed leaf lies in the correct key interval.
We conceptually subdivide the execution of the

algorithm into s 2 1 iterations. For k < s every k’ itera-
tion ends when the search procedure encounters the entry
ik, such that di, = bk. The next kahOn starts from the
(ik + l)# entry in the index block. The last, i.e. s*, itera-
tion discovers the entry i, such that di, < b‘ and the pro-
cedure stops. Thus, 1Sil<i2<-<i,, where ~21.
The number of iterations s must be less than or equal to I =
IBI.
Lemma 4.1: For every entry ik in a Co-index, such that

1 I A < s, the corresponding discriminator is:

it Di, = x2 W-b,) < K
j--l

Prod Let Di be the discriminator value after j steps of the
recurrence procedure (1). Let K = 1, corresponds
to the tint iteration of the procedure given in
figtt~6. Weknowthatdi,=br andforallj<ir
we have di > br. The ih step of the recurrence

a procedure (1) sets the b, bit of the discriminator
D i,-r to I and erases alI l-bits whose position is
greater than br, to obtain Di,. Therefore, Di, C~II

have only one l-bit since none of the previous
steps could set any bit at position less or equal br .
TtW

Di, =2w-b1) < K.

Letk=n-1 <s-l andlet
‘-l (M-b,) Di., = x 2 *
i-l

Then,fork=nwehavethatdi.=b,andforall
entries i in the Co-index, such that i,-l < j < i,,
we have di > b,. Hence, recurrence procedure
(1) will erase all the changes on the discriminator
recorded between steps iam and i,, and new l-bit
will be set at position b,. Thus, for k = n, the
discriminator at the entry i, becomes

Di. = Die, +2’@“’ = 9’),
i=l

S~IKZ b,, > bi for all i < n. Obviously, Dim is less
thanthesearchkeyKsincen <sSf,wheresand
Iareasabove. Cl

Theorem 4.2: The search procedure of figure 6 stops at
the first entry i, in the Co-index whose
corresponding discriminator Di, is greater
tban the search key K.

Proofi By lemma 4.1 after the (s - lr’ iteration of the
search procedure, the encountered entry i,-l has
discriminator Di,, :

376

Di,, = 8-9 ifs= 1

z2w-“’ ifs> 1
k=l

In both cases DC, < K. After the s* iteration we
know that di, < b, and that every entry k, such
that is-1 < k c i,, has depth dk > b,. Tha’efORi,
none of the discriminators. Di,,+l through Di, _ 1
can be greater than K, since even if all bit posi-
tions greater than b‘ are set to 1 we have that

K 2 DC, + 2w-“’ > DC, + $ 2w-k)a
w+1

However, at entry i, the value di, is at most b, - 1
and hence:

D. >D. +2”++l) 1. b-1 > Di,-, + ~2(M-” *K.

With the observation that the entry i,, such that
di, < 4, must be present in a Co-index (recall that
the last entry has depth 0 which is less than any
bit position bi), we conclude the proof. Cl

It should be apparent why M+l was appended to the
sequence c bk >. Let the search key K be 01010800. So
that, B = < 2,4 >. Suppose that some entry i has discrimi-
nator Di = 01010000. Entry i+ 1 has corresponding
discriminator greater than K. But, the search procedure
will be confused since both bi = 2 and b = 4 have already
been recognized and there is no b. Appending the value
M + 1 (= 8 + 1 = 9) to the sequence resolves the problem
by creating a search key K which is effectively
01010000.1~.

The search procedure reduces to comparisons of
small integers, no matter what the key length or type is.
Thus, the key comparison time for any access is
significantly reduced.

5. Operations on Co-bees
The preceding section described a retrieval algo-

rithm for Co-trees without indicating how they might be
grown. In this section, we show how the operations of
item insertion, item deletion, index block splitting, and
index block merging take place. Throughout, we will
enforce a concept of consistency, where a Ce-tree struc-
ture will be called consistent if it faithfully represents a
corresponding O-complete binary tree.

Conceptually, data items are stored in the leaves of a
O-complete tree and the retrieval process involves follow-
ing a path of labeled edges to the desired data item. In
practice, actual retrieval, based on the depths of bounding
nodes in the conceptual tree, is quite different Similarly,
item insertion and deletion can be viewed as the addition,
or deletion, of leaves to a O-complete binary tree in such a

manner that the path to the leaf is a prefix of the item’s
key-while at the same time preserving the O-complete
property. Again, the actual procedures defined on a com-
pact Co-tree representation are quite different. But at all
times we require the results of any such insertion or dele-
tion operation to be consistent, The idea of consistency
then is a kind of mirror, reflecting the compact Co-
representation onto its conceptual O-complete model,
which we use as a criterion of correctness and for an
explanation of the procedures. In this section we will use
the cormsponding conceptual O-complete tree only to
explain the behavior of the processes. Proofs of con-
sistency can be found in [OrF’883.

In the following let Ri denote a data item, or record,
with key Ki. Let K be my search key, and let bit&)
denote the b” bit in the key K. Let ei = (di, pi) denote the
i* entry in an in&x block, in which 4 denotes the depth
of a bounding node in a conceptual O-complete tree and pi
is a pointer to either a leaf (data item, Ri, in storage) or an
in&x block (O-complete subtree). Then
ci-1 = (di-1, pi-1) and ei+t = (di+l 9 pi+1) will denote
respectively the immediate predecessor and successor of ei
in the Cc-index, and hence predecessor and successor (in
the preorder traversal) of the bounding node in the con-
ceptual O-complete tree.

5.1. Insertion
A record R with key K has been stored in location p.

An entry, (d, p), is to be inserted in the Cc-index; R is to
become a leaf L of the O-complete tree. Using the key K a
search is performd to locate a leaf Lip such that K belongs
to its key interval. Let ei = (di, pi) be the last index entry
encountered in this search, with pi pointing to Li.

We will see below that it is possible to create
dummy leaves whose index pointerp is NIL. If ei is such a
dummy entry (pi = NIL), then set pi to p. The insertion is
completed.

Otherwise, pi ill Ci pOilltS t0 illl XXMl leaf (or
record) Li with key Kis The two leaver L and Li both
belong in the same key interval. To determine their
correct placement relative to each other we need to know
the depth li Of Li in the conceptual O-complete tree. This is
not recorded in the compact Co-representation. Only the
depths of bounding nodes are recorded. But the depths of
leaves can be determined by the following rule:

00 If ei is the first entry in an index block then Li
isa@leafandZi=di.

:;
If di > di-1 then Li is a O-leaf and Zi = dis
If di < dim1 then Li is a l-leaf and li = dim1.

Let li denote the conceptual depth of Lis NOW, com-
pare the two keys, K and Ki. to determine the tlrst bit posi-
tion, b’, at which they differ (i.e. where big(b’) = 0 and
bitG(b’) = 1, or vice versa). If b’ < Zi, then L will always
follow Li in the pm-order sequence. Change ei to (di, p)
and insert (b’. pi) in the Co-tree immediately before ei.

377

If li C b’ then both L and Li must be moved deeper
in the conceptual tree in order to preserve a distinction
between their access paths. To ensure that the conceptual
tree is still Ocomplete, it may be necessary to add dummy
O-leaves. For every l-bit position bi, if any, in K such that
li < bj < b’ inject a dummy entry (bi, NIL) immediately
befOE t?i. These dummy entries are inserted in the
inClEX4IIg order of their bi V~U~S. NOW, if K < Ki tha L
should precede Li in the preorder traversal, insert the
entry (b’, p) immediately before ei. If K > Ki, insert
(b’, pi) before ei and change ei to (di, p).

Since the index blocks of a C&ee am of fixed size.
an index block can eventually overfill. They are split in a
manner similar to that of B-trees, except that they ate not
necessarily split exactly in half. A minimal partition of the
index is generated by finding that entry (other than the last)
in the block which has minimal depth, d,,,+ Let db
denote the depth of the last entry in the block. The index
block, I, is split immediately following the minimal entry
into two blocks I,, and Ii.

If the split index block was the root block in the
Co-index, then a new root block must be created with just
two entries. The tirst entry will be (dk, lo), the second
entry willbe (d krrl, I1). If the split index block I was not
the root of the Co-hierarchy, then it was referenced by an
enuy(&,,f). Thisentryischangedto(d~r.II)andan
entry t&h, IO) is insert4 immediately before it. This
may, of course, force an additional index splitting. Notice,
this way of splitting enforces a stronger consistency
interpretation in which every index block corresponds to a
different O-complete tree. However, special care must be
taken when II will have only one entry, since it invalidates
the rule (a) for determining the true depth of the concep-
tual leaf, Keeping a trailing variable, while descending the
tree from the root down, will resolve the problem.

Let us illustrate these three insertion steps with a
running example in which we will assume at most 5 entries
per index block. Begin with the conceptual O-complete
tree shown in figure 3 and its corresponding Co-
representation in figure 5. An item with key 01000110 is
to be inserted. The resulting conceptual O-complete tree
will be that shown in figure 7.

Application of the search algorithm establishes that
01000110 falls in the key interval of the second entry, e2 =
(l,L,-,,-,,). Inthiscase,b’= 2 < 3 = 12. Hence the single
entry e2 is replaced by the sequence (2, LooI) (1, LoI).
The block will have to be split after the entry which has
minimal depth, dh = 1. Following splitting, we get the
hierarchical structure shown in figure 8.

At this point the reader should verify that the search
algorithm given in figure 6 still works on a hierarchical
Co-structure. Let the search key K be 10101010, so that B
= cl, 3,5,7,9>. Begin searching the root index with&St
= 1. It will exit with k = 2 and j = 2. Follow pointerp2 to
its index block and continue scanning withJifst = 2.

I I

Figure 7.
The O-complete tree of figure 3 after inserting 01000110

&Xl

LOO1

Lo1

Figure 8.
The hierarchical Co-representation of figure 7.

Entry of a new item with key, K = 1OlOllCQ will
lead to a different growth pattern. After entry, the concep-
tual tree must look like figure 9. Notice that there is an
empty leaf (indicated by the dashed lines) corresponding
to Lloloo. The long path 10101 must be present in this tree

378

Figure 9.
The O-complete tree after entry of 10101100

JhO

kN31

Lo1

Figure 10.
The Co-representation after entry of 10101100.

complete.
The search algorithm determines that 10101100

belongs in the key interval of the second entry e2 =
(4, L 1o1o) of the second index block. Since 4 > 3 = di , 1 2
= 4 and b’ = 6 > 4. Since l2 = 4 < b = 5 < b’ = 6. a
dummy entry (5, NIL) is entered. Then since K > K2, e2
is changed to (4.L 101011) ad (6 LIOIOIO 1 k in-
immediately before it to obtain figure 10.

5.2. Deletion
Assume that an item with key K has been deleted

from storage. Its reference must be deleted from the
index. The deletion procedure begins with the search for
the in&x entry ei corresponding to the given key. The
easiest and fastest way to perform deletion in the Co-tree
is to set its pointer pi in f?i to NIL. This will be sufficient
in an environment where deletions are rare or at least less
frequent than insertions.

We present in figure 11 a full deletion algorithm
whose effect is precisely the opposite of insertion. With it,
for example, the removal of the record with K = 10101100
from the tree in the figure 10 would yield the structure of
figure 8 once again. In this case, di-1~ 6 > 4 = die Con-
sequently, di-i becomes 4 and the entry pointing to the
deleted record is removed. Subsequently, the preceding
dummy entry, whose depth is greater than 4, is also
removed from the index block.

If many blocks are undertilled it may be possible to
increase storage utilization by merging two partially filled
nodes in a manner that is nearly the inverse of node split-
ting. The complete algorithm for merging is given in

if d[i-11 > d[il
then begin

else

d[i-11 + d[i];
Remove entry e[i];
Remove all dummy entries j
immediately preceding e[i-l]
such that new d[i-1] < d[jl;
end
if d[i] > d[i+l]

then begin

else

Remove entry e[il;
Remove all dummy entries
j immediately preceding
the new entry e[il such
that d[il < d[jl;
end
set p[il to NIL;

Figure 11. Deletion Algorithm

to differentiate between the keys 10101010 and 10101100.
So if there were no leaf Lloloo, the tree would not be O-

379

figure 12. Its pattern is similar to that of deletion of indivi-
dual index entries. Notice, the procedure will be invoked
after deleting one or more entries from an index page Ii
which leaves the page with a number of entries below
some threshold. Then the higher level entry ei pointing to
Ii, is COllSUlttXi

Merging can contract the root page to the point
when it contains just one entry (with pointer pt). In that
case, the root page is deallocated and the new mot
becomes the page whose address is pl. For example, this
will happen if we delete the record with key 01OC0110
from the structure in figure 8. The entry es, pointing to the
deleted record, will be removed which results in an
underfilled index page. Consulting the root page we can
see that the second merging condition is satisfied and the
two lower level index blocks are combined together. An
appropriate entry from the root page is deleted and the root
is left with just one entry. This will force deallocation of
the root page yielding figure 5.

flag + false;
if d[i-11

then if

if d[il >

> d[il
entries of I[i] and I[i-l]
can be combined together
then begin

Replace all entries
from I[i] into I[i-11;
Release page I[il;
dIi-11 c d[il;
Remove entry e[i] from
the index block I[j];
flag c true
end ;

d[i+l] and flag = false
then begin

if entries of I[il and I[i+ll
can be combined together
then begin

Replace all entries
from I[i+l] into I[i];
Release page I[i+ll;
d[il t d[i+ll;
Remove entry e[i+l] from
the index block I[jl
end

end
else no merging is possible

or it has already been done;

Figure 12. Merging Algorithm.

6. Results
Key compression obtained by replacing bounding

search values with small, fixed size surrogates yields
significant efficiencies in terms of storage overhead, total
blocks accessed, and software simplification. The larger
branching factors obtained ensure that the depths of Co-
trees will almost never exceed three levels. The storage
overhead of Ca-tree indices can be expected to be 50%-
80% less than the overhead of equivalent B-trees. Software
simplification is equally important For all keys, of any
length or type, the layout of an index block and the search
procedure are fixed. Precisely the same steps are per-
formed regardless of whether the keys are character
strings, dates, integers, reals or some combination of these.

The expected storage utilization of Co-trees is
ln2 = 0.693, as in the case of B-trees [Yao78]. However,
due to the presence of dummy entries, the number of index
entries L at the lowest level of the ttee exceeds the actual
number of records N. For random keys, this value asymp-
totically tends to

L = N(logze + 1)/2 = 1.221.N.

The number of dummy entries is

D = N*(Zoge - I)/2 = 0.221-N.

so that (loge - l)/(Zoge+l) = 0.181 of entries at the lowest
tree level will be nil, just to ensure consistency with an
underlying O-complete tree. Subsequently, counting only
“useful” entries, the effective storage utilization at this
level of a C&ee drops to about 0.567. Upper levels have
no nil entries. Measurements in many large experimental
databases cot&m all of these “expected” values.

With these figures we can continue our comparative
example from section 3. With parameters as before, a 3-
level B-tree secondary in&x can be expected to support up
to 295,885 records, while a 3 level Co-tree index would
normally support 6,570,240 records. Thus, despite a drop
in effective utilization, the number of items accessible with
the same retrieval cost (number of disk accesses per exact
match query) is dramatically increased.

We have suspected that the storage utilization could
deteriorate when non-uniformly distributed keys are main-
tained. In several experiments we have simulated skewed
distributions of integer keys, as well as numbers coded as
character strings, based on the Central Limit Theorem. In
these experiments 20,000 keys have a tendency of group-
ing on specific submnges of the key space. The obtained
results show relative insensitivity of Co-trees to the distri-
bution. After 20,000 insertions storage utilization was
about 0.69 in all experiments. However, load factor was
low (about 0.3) at the very beginning of these experiments
when a small number of records were present (see figure
13). As the structure grew, the storage utilization showed a
steady growth with small variations observed, and quickly
attained its theoretical behavior. Surprisingly, in all experi-
ments with skewed distribution the number of dummy

380

References

0.2

0.1,

0.0. Number of records

4000 8000 12000 16000 20000
Parameters:
Maximal number of entries per index block - 124
Block size - 512 bytes

Figure 13.
Storage Utilization with Non-uniform Distribution

entries decreased when compared to the simulations with
perfectly random keys. Recall that nil entries are less
likely to appear when keys contain more O’s than 1’s. Our
non-uniform distributions were accidently biased towards
such keys. Random keys tend to have approximately the
same number of O’s and 1’s.

A simple heuristic can increase storage utilization,
although it will not prevent underfilling altogether.
Without altering the algorithms given in this paper, an
index block can be split immediately after the entry ei.
provided that depths of all preceding entries in the block
are greater than the depth value of ei. If we chose the ei
closest to the middle of the block we can obtain much
closer approximation of even splitting of blocks in a tree.
Another simple heuristic passes all keys through a filter
that eliminates “unnecessary” l-bits, as in the higher order
bits of ASCII codes. This will minimize dummy entries.

[BaM72]

@au771

[Corn791

[dTv871

lFae791

iFre603

[Lar801

&it801

bit8 11

IUmW

[Yao78]

R. Bayer and E. McCreight, Organization and
Maintenance of Large Crdered Indexes, Am
Injkrmatica, ,1972,173-189.
R. Bayer and K. Unterauer, Prefix B-trees,
Trans. Database Systems 2, 1 (Mar. 1977),
1 l-26.
D. Comer, The Ubiquitous B-Tree, Computing
Surveys I1 ,2 (June 1979). 121-137.
W. de Jonge, A. S. Tanenbaum and R. P.
van de Riet, Two Access Methods Using
Compact Binary Trees, IEEE Trans. on
Sqfiware Eng. SE-13,7 (July 1987). 799-809.
R. Fagin and etal., Extendible Hashing---A
Fast Access Method for Dynamic Files ,
Trans. Database Systems 4, 3 (Sep. 1979),
315-344.
E. Fredkin, Many-way Information Retrieval,
Comm. of the ACM 3. (1960), 490-500.
P. Larson, Linear Hashing with Partial
Expansions, Proc. 6th Con& on VLDB,
Montreal, Canada, Oct. 1980,224-232.
W. Litwin, Linear Virtual Hashing: A New
Tool For Files and Tables Implementation.
Proc. 6th Conf on VLDB, Montreal, Canada,
Oct. 1980.212-223.
W. Lihvin, Trie Hashing, Proc. ACM-
SIGMOD Conf. on Management of Data, Ann
Arbor, USA, 1981,19-29.
W. Litwin and D. B. Lomet, A New Method
for Fast Data Searches with Keys, IEEE
Software,, Mar. 1987,16-24.
D. B. Lomet, Digital B-trees. Proc. 7th Con&
on VLDB, Cannes, France, Oct. 1981, 333-
344.
R. Orlandic and J. L. Pfaltz, Compact O-
Complete Trees: A New Method for
Searching Large Files, IPC Tech. Rep.-88-
001, Institute for Parallel Computation, Univ.
of Virginia, Jan. 1988.
A. C. Yao, Random 3-2 Trees, Acta
Informatica, , 1978.159-170.

381

