
A Superimposed Coding Scheme Based on Multiple
Block Descriptor Files for Indexing Very Large Data Bases

A. Kent’ R. Sacks-Davis’ K. Ramamohanarao2

’ Deparmmt of Computer Science, Royal Melbourne Institute of Technolo~, Melbourne, Victoria 3000.
2 Departmmt of Computer Science, University of Melbourne, Parkville, Victoria 3052.

Abstract
A new signature file method for accessing information from
large data files containing both formatted and free text data
is presented. The new method, called the multi-
organizational scheme is proposed for indexing very large
data files containing hundreds of thousands or possibly mil-
lions of records.

1. Introduction
For applications such as library systems, medical

records systems and office automation, it is necessary to
have access to large amounts of data. This data is stored in
records (or documents) containing both formatted fields as
well as free text. In order to efficiently retrieve information
from such data bases, efficient access methods are required.
A widely advocated method for indexing both formatted data
and free text is the signature file method [15]. In this paper,
a new method based on signature files, is presented for
indexing large data files.

In the signature file method, a descriptor (or signature)
is associated with each record, the descriptor being an
encoding of the in&x terms used to retrieve the record.
When a query is processed, the file of descriptors, rather
than the data records, is examined for potential matches.
Signature file methods have good retrieval properties and are
storage efficient.[g].

In order to form a signature, the terms used to index a
record are mapped on to bit positions, and the corresponding
bits in the record descriptor are set. Signature file methods
provide the database designer with a good deal of flexibility
in choosing the encoding method used to form the descrip-
tors. Tradeoffs between storage efficiency, query times and
insertion costs can be made by appropriate choices of the
number of bits to be set per indexed term and the width of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base F5ndowtnent. To copy
otbetwise. or to republish, requires a fee and/or special permission
from the Endowment.

the record descriptors [23]. As well as setting bits for indi-
vidual terms, it is possible to set bits using combinations of
terms or substrings of terms. This property makes the signa-
ture file method particularly suitable for applications involv-
ing free text. It is also possible to encode hierarchies of
terms, such as tree structures. As a result, signature file
methods have been proposed for applications for which these
structures occur, such as Prolog databases. Signature file
methods have been proposed for multikey retrieval [2&22],
text retrieval [9,10,13], Prolog systems [8,19,25,26], office
systems [6,11,18], statistical databases [27] and filtering
methods [2,4,16]. Signature file methods are well suited to
hardware implementation [1,3].

In order to efficiently access large files, a number of
strategies can be adopted for signature files. These include

(9

(ii)

(iii)

(iv)

the use of multilevel indexes, so that signatures are
formed for blocks of records as well as single records
[17,21,231,
the incorporation of special storage representations,
referred to as bit slice implementations, to reduce the
amount of storage that has to be processed on query
mwl,
the use of special encoding methods which use the fre-
quency of occurrence of the terms to be indexed in
determining the number of bits to be set per term
[10,231, and
the use of compression techniques on the signatures to
reduce the size of the signature file [111.

A method that uses the first three of these approaches has
been proposed in [23]. Two levels of index are supported:
block descriptors am formed for blocks of records and
record descriptors are maintained for individual records.
The file of block descriptors is stored using the bit slice
technique. In the method proposed in [23], the terms in the
database which occur most frequently (referred to as com-
mon terms) are identified, and bits are set in the block
descriptor file for pairs of common terms as well as for indi-
vidual terms. The method was shown to be effective for
large data files.

In this paper a new signature file method, suitable for
large data files, is proposed. Like the method proposed in
[23], it uses descriptors formed for blocks of records. How-
ever, rather than. using a single block descriptor file, the new

Proceedii s of the 14th VLDB Conference
Los Ange es, California 1988 P 351

method uses multiple block descriptor files. To form one of not match, a different hash function is required per field (in
these block descriptor files, records are logically grouped practice, this can simply involve adding the field number to

into blocks, but the mapping function used to group EXO& the seed used by the hash function).
can differ for each block descriptor file. Hence the method To check if a descriptor matches a query, the query
is based on multiple logical organixations Of the records in terms are also hashed to form a query descriptor using
the data file and is referred to as the multi-organizational
scheme. Both theoretical and experimental results are

exactly the same method used to generate the record descrip-
tors. If every bit set in the query descriptor is also set in the

presented in order to demonstrate that the method is efft- record descriptor, then the record descriptor is a potential
cient. match.

In the following section a brief description of signature
file methods is presented. A description of the multi-
organizational scheme is then provided. Alternative methods
for evaluating a query using the multi-organixational scheme
are presented in Section 4. In order for the proposed method
to be effective, it is necessary to identify the frequently
occurring terms, called common terms, and treat these
terms differently from the other terms. A technique for han-
dling common terms is presented in Section 5.

Superimposed coding can result in cases where the
query and record descriptors match, but the record does not
actually contain the query terms. This is called a false
match. The probability of a false match occurring is a func-
tion of the number of bits set in the query and record
descriptors. False matches place a practical restriction on
the number of terms that a record may contain for a given
descriptor size.

A detailed description and analysis of the method are
presented in an extended version of this paper [14]. The
analysis presented in [14] is based on a mathematical model
that assumes that the data are Zipf distributed. Some sample
results obtained using this model are presented in Section 6.
The conclusions am presented in Section 7.

2. Signature Files

A signature is a bit string formed from term values that
are used to index a record. Indexing using signature files
assigns a signature or descriptor to every record in the data
file. To perform a query, the descriptors are examined to
identify potential matches. For example, to form a descrip-
tor for a record using the method of superimposed coding,
each term in the record to be indexed is identified, and a
descriptor is formed for that term (called a term descriptor).
These term descriptors are formed by using a hash function
to convert the term values into a bit string of length b with
exactly k bits set to 1 and b -k bits set to 0. A record
descriptor, which describes the entire contents of the record,
is formed by superimposing (inclusive ORing) the term
descriptors. To perform a query, the file containing the
record descriptors is examined to determine potential
matches, and then the data file is accessed to retrieve the
data.

Detailed formulas for calculating false match probabili-
ties and values for k and b are presented in [10,20,24]. It
has been shown that the optimal bit density in a descriptor
(to minimize the probability of a false match for a given
number of available bit positions) is 50%. This usually
results in a high number of bits that must be checked in the
descriptors on query. In certain applications it is better to
use a lower than optimal density, particularly when using the
bit sliced descriptor file (described below), to reduce the
number of bit positions that need to be checked.

There are two common ways of storing descriptors in a
file. These are referred to as the bit string and bit slice
methods respectively. The bit string approach [lo,121 stores
the descriptors sequentially in the descriptor file. Pointers to
the corresponding records can be stored with the descriptors.
This approach has the advantage of simplicity, especially for
update and insertion operations. One problem is that for
large files, queries can become slow as the whole descriptor
ffie must be read to retrieve and examine the descriptors.
This method can work well for relatively large files if
queries are batched 151.

Instead of storing the descriptors as a file of N (where
N is the number of records in the file) bit strings each con-
sisting of b bits, the bit slice method [8,20,271 stores the
descriptors as b N bit long bit slices (see below).

An example of superimposed coding is given below,
OOOOOl oo...
001010 00

. . . 01:::

. . . oo...

. . . 01 . . .

. . . 10.. .

Bit String Bit Slice
File Organization File Organization

Because only a subset of the bit positions in the record
descriptors needs to be examined on query, only a fraction

I John 0000 0101
I smith 0100 1000 I

1 Record Descriptor 1 0100 1101 1

This method naturally supports variable numbers of terms
per record as the number of terms does not affect the
descriptor length. Multi-valued fields (fields in a record
which can contain more than one value) and free text are
also handled easily as there is no distinction made between
values belonging to the same field (in contrast with methods
which concatenate rather than superimpose term descriptors).
In fact, to ensure that the same values in different fields do

352

of the descriptor tile needs to be retrieved on query. A sin-
gle seek and an N bit long read operation will retrieve a bit
vector which identifies which record descriptors have a par-
ticular bit position set. The bit slice approach has some
disadvantages - expanding the capacity of the index may
require rebuilding the whole index and interactive insertions
require approximately one disk read and write operation per
bit position to be set. Also, pointers to records can no
longer be stored with the descriptors, Instead a separate
pointer file is needed.

For very large data files, queries using the bit slice
approach can still be expensive as bit slices of length N bits
must be read from disk. For example, for a database con-
taining 2M),ooO records, the slices will be 25,000 bytes long
or approximately 49 x 512 byte pages. One way to reduce
the number of bits that need to be examined is to reduce k,
the number of bits set per term value. The main disadvan-
tage of this approach is the corresponding increase in b
(required to keep the number of false matches constant)
which increases the index file size. In practice this means
the bit slice method is less storage efficient than the bit
string approach.

A method that uses two levels of index has been pro-
posed in [21] and later refined and analyzed in [22,23].
Rather than using just a single file of record descriptors to
locate matching records, a higher level of index (called the
block descriptor file) is formed. With this approach, records
are allocated to blocks and signatures, referred to as block
descriptors, are formed for each block. As in the one level
schemes, described above, record descriptors are also formed
for individual records. If N, is the number of blocks and N,
is the number of records per block, then N = N, *N, and the
number of terms per block will be N, *s where s is the
number of terms per record. Since the number of terms per
block is much greater than the number of terms per record,
the block descriptors will be much larger than the record
descriptors. Typical parameter values can be found in
[21-231. The block level index is fit examined on query
to identify which blocks of records match, and then the
record descriptors of records from the matching blocks are
examined to identify the individual matching records. The
block descriptor file is stored as a bit sliced file to facilitate
efficient query processing while the record descriptors are
stored in the bit string format. The block size is selected so
that the record descriptors for a block will all fit in a single,
or small multiple of, disk pages.

The two level scheme has been shown to perform well
but does suffer from problems with certain multi-term
queries [7]. When multiple terms are specified in a query,
there may exist blocks that contain all of the terms, but not
within a single record. At query time the existence of such
blocks lead to what we call unsuccessful block matches.
Unsuccessful block matches are more likely when the values
specified in a multi-term query are common, that is they
appear in many records. The problem can be minimized by
reducing the number of records per block, or by using spe-

cial encoding schemes [23].
In [23] an encoding scheme is presented for which bits

are set in the block descriptors for pairs of common terms as
well as for single terms. The extra bits that are set are
referred to as combination bits and do not significantly add
to the storage overhead. This is because the number of com-
bination bits set for a pair of common words will generally
be much less than k. The presence of these combination
bits significantly reduces the number of unsuccessful block
matches and makes the two level scheme efficient for
multi-term queries.

In [23] it is also demonstrated that setting extra bits
can also be used to make the signature file method very
effective for free text retrieval. By setting a small number of
bits for pairs of adjacent words in text, the signature tile
method provides direct support for queries which specify
word phrases as well as single words at low cost.

If combination bits are not used, unsuccessful block
matches occur in the two level scheme since the block
descriptor file only identifies blocks that contain matching
records rather than the individual matching records. If the
first level of index examined could identify individual
records, then unsuccessful block matches would no longer
be a problem. The record descriptor file also could be elim-
inated, although a pointer file to map record numbers to data
file pointers may still be required. In the multi-
organizational approach described in the following section, it
is advocated that instead of forming block descriptors by
setting k bit positions per term, k separate block descriptors
are formed, each having only one bit set per term. These
block descriptors are then stored in k logically separate
block descriptor files. In the two level scheme, records are
assigned to blocks using the mapping function
block# = record# div block-size , In the multi-organization
scheme each record number is mapped to a block number
using a possibly different mapping for each of the k block
descriptor files. Each of the files with a different mapping
function is referred to as an organization. The k sets of
matching blocks from a query can now be used to identify
individual matching records. The method is described in the
next set tion.

3. Multi-Organizational Scheme

In a two level scheme, based on a single block descrip-
tor file, descriptors are formed for blocks of records. A
query is answered by fit determining which blocks contain
all of the terms specified in the query and then for each
matching block, the record descriptors representing records
contained within that block are retrieved and examined for
possible matches.

One way to view the organization of the two level
scheme is to associate a logical record number,
i, i =O,l,... ,N-1, with each record and a mapping

block(i) = i div N,

which determines the block, block(i), containing record i.

If a particular block, j say, matches a query, then a reverse
mapping is performed to determine that records j *N,
through o’+l)-N, - 1 are potential record matches. The
actual record matches are then determined by retrieving the
record descriptors for each of these records.

Rather than having one block descriptor file with a sin-
gle record-to-block mapping function, consider a scheme
with several block descriptor files, each with a possibly dif-
ferent record to block mapping. The way records are allo-
cated to blocks when forming a block descriptor file will be
referred to as an organization of the collection of records.

For the j* block descriptor file, the record to block
mapping function will be written as

blocki (i) = rj (i) diV N,

where rj(i): [O,N-1] + [O,N-11 maps each record number,
i, to a new record number rj(i). In order for a particular j
that the values rj(i) be unique, the following simple map-
ping can be used

rj(i) = (i.Pj) mod N

Pj must be chosen so that the greatest common denominator
of Pi and N is 1. Typically, Pj is chosen to be a prime
number greater than N,. In the case Pj = 1, the mapping
becomes the identity function rj(i) = i . Note that it is
assumed that an estimate, N, of the capacity of the database
is required when the system is initialized. This issue is
further considered in Section 7 where a modified mapping
function is presented. Each of the block descriptor tiles is
formed so that the mCh block descriptor in the jtk file,
m = 0.1,“. ,N,-1, is formed from all the records, i , for
which bhkj<i) = m .

This method is illustrated by the example in Figure 1.

blockz(i) h(i)
0 0

1
2
3

1 4
5
6
7

2 8
9

10
11

3 12
13
14
15

Orga

il
13
10
7

block,(i) h(i)

4
1
14
11
8
5
2
15
12
9
6
3

:ation 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

%a

4
5
6
7
8
9
10
11
12
13
14
15

eation 1 mi:
Pz=S PI = 1

Figure 1: Example of multi-organizational scheme
with two organizations

In Figure 1 there are two block descriptor files with
two different organizations for a database of 16 records (N
= 16). In each file, block descriptors are formed for groups
of 4 records (N, = 4) and there are 4 block descriptors in
each file (N, = 4). In the fit organization, the block con-
taining record i is computed using the record mapping func-
tion

rl(i) = i

and in the second file

rp(i) = (i 5) mod N

Now consider a query which specifies a single term
that is contained only in record 10. Assuming there are no
false block matches, it can be determined that block 2 of
organization 1 and block 0 of organization 2 are the only
blocks which satisfy the query. Observe that the only record
in both block 2 of organization 1 and block 0 of organiza-
tion 2 is record 10. ‘Ihus it can be determined, in this case,
which records satisfy the query using only information about
the block matches. A very important property of the multi-
organization method is that no record descriptors need be
maintained and only block descriptors are stored.

Now suppose that another query is specified and that
records 10 and 14 contain the query terms. In this case
blocks 2 and 3 of organization 1 and blocks 0 and 1 of
organization 2 am matching blocks. By using information
about the matching blocks, it can be deduced that records

10, 11, 13 and 14 are potential record matches since these
records belong to both matching blocks in each organization.
Records 10 and 14 are true matches and records 11 and 13
are referred to as false matches. Obviously it is desirable to
eliminate the occurrence of false record matches. Several
strategies can be used to restrict the number of false matches
that can occur. The number of false matches will tend to be
large for those queries for which there am a large number of
matching blocks in each organization. In our example, the
query term occurred in 50% of the blocks in each organiza-
tion. Terms that occur in a large number of blocks will be
referred to as common words. In order to restrict false
matches, common words will be treated specially by the
indexing method and only terms that am not common
(referred to as regular words) will be indexed in the way
described above.

False matches can also occur due to collision errors
generated by the underlying hashing methods. The number
of these false matches can be restricted by an appropriate
choice of the descriptor size b.

A problem with using a two level scheme with just a
single organization is that unsuccessful block matches will
occur. For a query which specifies two terms, an unsuccess-
ful block match will occur if a block contains the two terms
in different records, rx and ry, and the block contains no
records with both terms. For a method with multiple organi-
zations and multiple block descriptor files, unsuccessful
block matches will diminish because although two records

354

rx and ry may appear together in a single block of one
organization, they will almost certainly belong to different
blocks in one of the other organizations. It can be shown
that provided the frequency of indexed terms is limited (i.e.,
only non-common terms are indexed), unsuccessful block
matches can be virtually eliminated using multiple organiza-
tions.

The file structure for indexing regular words is illus-
trated in Figure 2.

< > c l

w organizations 0 organizations
use the identity each with a different

mapping function mapping function

Figure 2: Multi-Organizational Scheme File Organization

There will be k block descriptor files where k = CII + 8.
Each block descriptor file contains N, descriptors of length
b bits. The first o organizations use the identity mapping
function

rj(i) = i, j = 1,2, . . . ,W.

It will be seen that query evaluation is more efficient if
there are a number of organizations with the identity map-
ping function. The hashing function used to map the terms
into a bit position between 0 and b-l will be different for
each of the o files that correspond to the identity organiza-
tion. The processing of these files will simply involve the
retrieval of the appropriate bit slices from each of the files
and the ANDing of the resultant vectors. The remaining 8
organizations each have a unique mapping function not
equal to the identity function. These organizations are pro-
vided to eliminate unsuccessful block matches and identify
actual record matches, thereby ensuring that queries which
contain more than one term can be evaluated as efficiently
as queries with a single term. For these organizations

rj(i) = (i-Pi) nwd N, j = ~-1, . . . ,k.

In order to reduce the possibility that two blocks in different
organizations contain more than one record in common, the
values of pi, j = ~1,. . . , k are chosen so that the
minimum difference between any pair of distinct values pj
andPI is N,.

The indexing structure provided by the descriptor files
displayed in Figure 2 will provide the logical record
numbers of matching records as a result of a query. The data
records will be stored in a separate file that must then be
accessed. If the data records are of fixed length, then the

physical address of a matching record may be computed
from the logical record number. If, however, the data
records are of variable length, then a separate file of pointers
to the data records must be maintained. For large databases,
this file of pointers must reside on disk. If this is the case,
two disk accesses are required to retrieve a matching record
once its logical address is determined.

4. Query Evaluation

In order to answer a query, a query descriptor is
formed for each of the block descriptor files. For simplicity,
it will be assumed that a single regular word has been sup-
plied in the query. Queries which specify common words or
multiple terms will be considered later. In the case of single
term queries, there will be exactly one bit set in each of the
query descriptors. The corresponding slices are retrieved
from the block descriptor files and stored in memory. Since
the first o slices correspond to the identity organization,
these slices can be ANDed together to form a single slice.
At this stage, there are 8 + 1 slices of length N, bits stored
in memory. Each of these slices corresponds to a different
organization. It is now required to determine the record
matches using the information about the block matches for
the 8 + 1 organizations. Two methods for determining the
record matches are described below.

4.1. Expanding the Bit Slices

One approach is to transform each of the bit slices of
length N, into bit vectors of length N containing potential
record matches. For the bit slice corresponding to the iden-
tity mapping, it is obvious that a bit set in the i” position
implies that records i.N, through (i+l).N, - 1 are potential
record matches. Hence, when expanding the bit slice to a
bit vector of length N containing the potential record
matches for the identity organization, a bit set in the ith
position of the bit slice will set the bits i*N, through
(i+l)*N, - 1 in the bit vector. If the potential record
matches a~ determined for each of the different organiza-
tions, then 0 + 1 bit vectors of length N containing potential
record matches will be formed. The actual record matches
can then be obtained by ANDing these bit vectpfs together
to form a single vector of length N.

Unfortunately, for the 8 organizations that use map-
pings other than the identity function, it is more difficult to
obtain the potential record matches. Recall that the record to
block mapping function is

blOCki (i) = rj (i) div N,

where

rj(i) = (i.Pj) mod N.

In order to expand the bit slice to a vector containing poten-
tial record matches a reverse mapping is needed. The fol-
lowing algorithm maps a record number rj (i) in the jth
organization to the original record number i .

355

for ??Z = 0 to Pj - 1
if(rj(i)+m.N)?ttodPj=Othen

i = (rj(i) + m*N) div Pj
done

endif
endfor

The problem with this algorithm is that it is not partic-
ularly efficient (due to the loop). The algorithm can be made
more efficient if some values are precalculated and stored in
a table. Initialization of the table is shown below.

for i = 0 to Pj - 1

trrble,[([i*N lPjl.Pj)mOd N]=i.N

endfor ’
,

The reverse mapping function then becomes simply

i = (rj(i) + tabkj[rj(i) mod Pj]) div Pj

Unfortunately the implementation based on expanding
the bit slices suffers a number of problems. Firstly, the inter-
nal buffers for storing the potential records matches are N
bits in length. For large N, this will impose very heavy
memory requirements. Also the cost of expanding the bit
slices is large, even if the above procedure is used. For
every matching block in each organization, the reverse map-
ping function must be invoked N, times, once for every
record in the block. The corresponding bit in the bit vector
of length N must then be set. An implementation that does
not require a reverse mapping is proposed in the next sec-
tion.

4.2. A Non-Expanding Implementation
Rather than expand the retrieved bit slices of length N,

into vectors of length N, it is possible to locate matching
records using the 8 + 1 bit slice buffers of length N,. A
search for matching records then involves an iteration
through every possible record number from 0 to N-l. To
test if a particular record matches the query terms, the block
number of the record is calculated for each of the different
organizations. Each of the 8 + 1 buffers is then tested to
determine whether each of these blocks have matched the
query. This may seem to require more calculations than the
previous method. However, if the buffers are examined in a
certain order, the computation time can be minimized.

First of all, it is not always necessary to calculate all
9 + 1 block numbers for a record. The calculation for a par-
ticular organization need only proceed if all the previous
organizations matched the query for the particular record
under examination. Since the first organization uses the
identity mapping function, the mapping function does not
need to be evaluated. If the average density of a bit slice is
p and since the fist bit slice stored in memory is a result of
ANDing together o slices retrieved from the block descrip-
tor files formed using the identity mapping function, the
expected density of the fiit bit slice in memory will be l.t”.
This significantly reduces the total number of calculations.

Note that for true matches, all 8 block numbers must be cal-
culated. For false matches however, on average only ~.L@*N
calculations need to be performed for the first non-identity
organization and only lr*‘*N for the second non-identity
organization. The total number of times the mapping func-
tion, rj(i) = i ‘Pi mod N , is computed is then approximately

(pm+p+‘+pm+2+ **- + p-’).N + true matches 3

= B~.N
1-P

+ true matches43

Of course, a bit set to zero in any of the bit slices
implies that all the records in the corresponding block can
not satisfy the query. Since the fit organization is based
on the identity mapping, a bit set to zero in this organization
implies that all the records in the corresponding block can
be skipped by simply adding N, to the current record
number being tested. Similarly, if a complete word is found
to be zero, then 32 blocks of records can be skipped (assum-
ing a word size of 32 bits). Comparing a word to zero can
significantly reduce the total CPU time required as a single
word comparison is much faster than checking the 32 bits
individually. It is therefore advantageous to choose w suffi-
ciently large so that the numbers of zero words will be high.

5. Common Words
As described previously, it is necessary to identify

common words and treat them differently from the other
terms that are used to index records in the database. Com-
mon words will be formally identified as follows. If there
are N records in the database, each containing s terms, then
there will be N*s terms in the database. Suppose that the
number of distinct terms in the database is ND. If these
terms are. labelled vr, va, . . . , vNo so that the subscript i
refers to the rank of the terms, then vt will be the most
commonly occurring term in the database, v2 the second
most commonly occurring term and so on. The C most
commonly occurring terms, vt, v2, . . . , vc will be referred
to as common words. The value C will be a parameter of
the indexing scheme. The other terms, v,,,, . . . , vND, will
be formally referred to as regular words.

One approach for creating an index to the data file for
the common words would be to store a dedicated bit slice of
length N bits for each common word. Then, for any particu-
lar common word, a bit set in the i* position of the
corresponding slice would indicate that the ith record in the
database contains that common word. Unfortunately, this
approach becomes very expensive of storage for large data
files for even a moderate number of common words. The
approach taken to reduce storage costs is similar to the
scheme used for indexing regular words.

For each common term, Vi, Oi slices of length Ns,i will

be formed Both 8i and Ns,i Call Vary from COllltl’lOn word to
co-on word. Each of the Bi slices corresponds to a dif-
ferent organization of the database. Each organization con-

356

tains N,,i blocks of Nr ,i records where
I- -I

N f- s,i =
I I r,i

A bit set in the jth position, j = O,l, . . . , N,,i-1 of a slice
indicates that the jth block in the corresponding organization
contains Vi.

There is one implementation consideration when the
value of N, varies per common term. To identify matching
records, buffers must be allocated to hold slices retrieved
from disk. Slices formed with the same mapping function
and the same value of Ns can be ANDed together into a sin-
gle buffer resulting in a sparser slice. ANDing several slices
into a single buffer is advantageous as sparse vectors make
processing faster (false matches are identified more quickly)
and less buffers need to be examined. This cannot be done
however when different values of N, are used. It is there-
fore advantageous to restrict the number of distinct Ns,i
values used for common words in order to efficiently answer
a query which specifies a number of different common
words.

It is possible to AND together slices formed using dif-
ferent values of N, if the mapping function is changed to
blocki = rj(i) mod N,. If values of N, am restricted
such that all values are 2” times the smallest N, value used,
then shorter slices can be ANDed with longer slices by
appending multiple copies of the shorter slices to form a sin-
gle longer slice (see Figure 3).

vi 0 1 2 3 1 N,=4

V.
I 0.2 1.3 092 193 N, = 2

I t

vk OAZ3 OAZ3 w,53 O,L2,3 N, = 1

I ? -? t

Figure 3: Example showing how short slices can be
ANDed with longer slices (N=4)

6. Results
An analysis of the method is presented [14]. The

analysis is based on a model for which it is assumed that the
data is Zipf distributed [28], namely, pi, the probability of
occurrence of the ith ranked term in the data file is u/i for
some constant CL. Some results obtained using this model are
given in Table 1. Figure 4 contains a list of variables used
in this table.

storage storage overhead in bits per indexed term
(total overhead in bits is storage ‘s ‘N)

N, number of records per block
NS number of blocks
w number of identity organizations
8 number of non-identity organizations
C number of common terms
P average bit density in a block descriptor file
fmr number of false matches per true record

match for a query specifying the C+lrh
ranked term.

Figure 4: List of symbols

Table 1 shows the effect of varying both the block size
and the storage allocated per term value for a 2 million
record database with 25 terms per record. The limit on the
number of organizations, k, was constrained to be less than
or equal to 12. For a system with 4K byte disk pages
(32,768 bits), the N, values presented all require one or
more pages per slice. If the desired length of slices is to be
2 disk pages (N, = 65,536) then an overhead of 40 bits per
term occurrence is needed to keep the number of false
matches to approximately 1 for every 25 true matches for
the C+lth term. For single term queries, the C +lth term
will provide the most false matches.

These results demonstrate the good perfomance can be
obtained with this method at low storage overheads. An
overhead of 40 bits per term occurrence compares favour-
ably with the inverted file method which requires for each
term occurrence a pointer, a (possibly shared) entry in a dic-
tionary file where the texm itself is stored and free space
overheads in both the pointer and dictionary files, the size of
which depend on the storage management algorithms used.

In order to understand the query perfomance consider,
again, the entry for which the overhead per term is 40 bits
and the block size is 32. Since false matches are rare, the
cost of answering a query will be 11 disk seeks (~8 = 11)
plus approximately 2 seeks for every matching record. One
of these seeks is required to retrieve the data itself, and the
other seek is required to retrieve a pointer to the data. If the
file of 2 million records can be kept resident in memory, or
if the data records are of fixed length, one seek can be
avoided and the cost of answering a query reduces to
approximately 11 + n seeks for n matching records.

The Table also demonstrates that the number of com-
mon words typically required will be small.

357

N = 2.097.152 s - 25
storage

40.0
40.0
40.0
40.0
40.0

48.0 64 32768 5 7 1864 0.257 0.012s
48.0 32 65536 5 7 998 0.247 0.0046
48.0 16 131072 5 7 530 0.238 0.0016
48.0 a 262144 5 7 277 0.229 0.0006
48.0 4 524288 5 7 140 0.220 0.0002

56.0 64 32768 5 7 2308 0.220 0.0042
56.0 32 65536 4 7 705 0.185 0.0014
56.0 16 131072 4 7 513 0.185 0.0004
56.0 a 262144 4 8 142 0.185 0.0001
56.0 4 524288 4 8 104 0.184 o.oooo

64.0 64 32768 4 8 2134 0.185 0.0004
64.0 32 65536 4 8 1028 0.179 0.0002
64.0 16 131072 4 8 454 0.172 0.0001

N, Ns co 8
64 32768 6 6
32 65536 5 6
16 131072 5 6
a 262144 5 7
4 524288 5 7

c CI fmr
1449 0.309 0.1244
448 0.258 0.0424
374 0.258 0.0117
140 0.258 0.0021
113 0.258 0.0005

‘able 1: Example parameters for a 2 million record database

In order to experimentally confirm the results pmdiced
by the mathematical model, a practical system using a
library database was implemented. The results are presented
in [14] and arc consistent with those predicted by the
mathematical model.

7. Conclusions
The multi-organizational scheme has many properties

which make it suitable for indexing very large data files.
Query performance is good and storage overheads are low.
Like other signature file methods based on superimposed
coding schemes, indexing on word parts and word phrases
can be supported at low cost, making the method suitable
for indexing free text as well as formatted data.

Like the inverted file method, the cost of interactive
insertions is high since a number of disk accesses must be
performed per term per record. However, a fast batch inser-
tion algorithm is proposed in [14] for which the cost of
insertion is typically 2-4 disk accesses per record, irrcspec-
tive of the number of terms per record.

The multi-organizational scheme is similar in many
respects to the two level scheme presented in [23] but does
have a number of advantages:

(i) The multi-organizational scheme performs better for
multi-term queries as unsuccessful block matches are
virtually eliminated.

(ii) The multi-organizational scheme performs better for
large values of s as combination bits do not riced to be
set for pairs of common words, the number of which
increases quadratically with the number of common

tams per record.
(iii) The two level scheme requires the identification of far

greater numbers of common words. This means a more
detailed analysis of the record contents needs to be per-
formed when a database is created and filters to idcn-
tify the common words need to be designed.

(iv) No record descriptors are required and if fixed length
records are used or if the pointer file can be stored in
memory, a disk access per record retrieved can be
saved with the multi-organizational scheme.

The multi-organizational scheme does require more
CPU time to perform queries than the two level scheme due
to the mapping functions. The additional cost can be con-
trolled, however, by using a number (0) of initial slices
using the identity mapping function (r(i) = i) to reduce the
number of times the mapping function needs to be
evaluated.

8. References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

M. W. Allen, Jayasooriay and R. M. Colomb,
“Attached Index Machine: A New Form of Processor
and its Application to Partial Match Data Retrieval”,
Proceedings of the Ninth Australian Computer Science
Conference, Canberra, A.C.T. 2061, Australia, 29-31
January 1986,347-355.

E. Babb, “Implementing a Relational Database by
Means of Specialized Hardware”, ACM Transactions
on Database Systems 4, 1 (March, 1979), l-29.
P. B. Berm, S. M. Chung and N. Hachem, “Computer
Architecture for a Surrogate File to a Very Large
Data/Knowledge Base”, IEEE Computer 20, 3 (March
1987), 25-32.
B. H. Bloom, “Space/Time Tradeoffs in Hash Coding
with Allowable Errors”, Comm. ACM 13, 7 (July
1970), 422-426.

s. christodoulakis, “Access Files for Batching
Queries in L+arge Information Systems”, Proceedings
of ICOD II, Aug. 1983.
S. Christodoulalcis, “Framework for the Development
of an Experimental Mixed-Mode Message System”, in
Research and development in information retrieval
(ACM), C. J. Van-Rijsbergen (editor), Cambridge
University Press, Cambridge, July 2-6, 1984, l-20.
R. M. Colomb, “Use of Superimposed Code Words
for Partial Match Data Retrieval”, Australian
Computer Journal 17,4 (November 1985), 181-188.
R. M. Colomb and Jayasooriah, “A Clause Indexing
System for PROLOG Based on Superimposed
Coding’ ‘, Australian Computer Journal 18, 1
(February ‘986). 18-25.
C. Falouts~s, “Access Methods for Text”, ACM
Computing Surveys 17, I (March 1985), 49-74.
C. Faloutsos and S. Christodoulakis, “Design of a
Signature File Method that Accounts for Non-Uniform

358

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Occurrence and Query Frequencies”, Proceedings of
11th Conference on Very Large DataBases,
Stockholm, August 21-23, 1985, 165170.
C. Faloutsos and S. Christodoulakis, “Description and
Performance Analysis of Signature File Methods for
Office Filing’ ’ , ACM Transactions on Office
Information Systems 5, 3 (July 1987), 237-257.

J. R. Files and H. D. Huskey, “An Information
Retrieval System Based on Superimposed Coding”,
Proceedings AF’IPS, Fall Joint Computer Conference
35 (1969), 423-432, AFIPS Press.
M. C. Harrison, “Implementation of Substring Test by
Hashing”, Comm. ACM 14 (1971), 777-779.

A. J. Kent, R. Sacks-Davis and K. Ramamohanarao,
“A Signature File Scheme Based on Multiple
Qrganisations for Indexing Very Large Databases”,
Tech. Rep. 87/5, Dept. of Comp. Sci., RMIT
(submitted for publication), 1987.
D. E. Knuth, The Art of Computer Programming, vol.
3: Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.
M. D. McIlroy, “Development of a Spelling List”,
IEEE Transactions on Communications COM30, 1
(January 1982), 91-99.
J. L. Pfaltz, W. J. Berman and E. M. Cagley,
“Partial-Match Retrieval Using Indexed Descriptor
Files”, Comm. ACM 23, 9 (September 1980), 522-528.
F. Rabitti and J. Zizka, “Evaluation of Access
Methods to Text Documents in Office Systems”,
Proceedings of the 3rd Joint ACM-BCS Symposium on
Research and Development in Information Retrieval,
Cambridge, Mass., July 2-6, 1984, 21-40.
K. Ramamohanarao and J. Shepherd, “A
Superimposed Codeword Indexing Scheme for Very
Large Prolog Databases”, Proceedings of the Third
International Conference on Lagic Programming,
London, 1986, 569-576.
C. S. Roberts, “Partial-Match Retrieval via the
Method of Superimposed Codes”, Proceedings of the
IEEE 67, 12 (December 1979). 1624-1642.
R. Sacks-Davis and K. Ramamohanarao, “A Two
Level Superimposed Coding Scheme for Partial Match
Retrieval”, Information Systems 8, 4 (1983), 273-280.
R. Sacks-Davis, “Performance of a Multi-Key Access
Method Based on Descriptors and Superimposed
Coding Techniques”, Information Systems 10, 4
(1985), 391-403.
R. Sacks-Davis, K. Ramamohanarao and A. J. Kent,
“Multi-Key Access Methods Based on Superimposed
Coding Techniques”. Technical Report 87/4,
Department of Computer Science, Royal Melbourne
Institute of Technology (to appear ACM Trans.
Database Systems, Dec. 1987), 1987.

24.

25.

26.

27.

28.

S. Stiassny, “Mathematical Analysis of Various
Superimposed Coding Schemes”, American
Documentation II, 2 (February 1960), 155-169.
M. Wada, Y. Morita, H. Yamazaki, S. Yamashita, N.
Miyazaki and H. Itoh, “A Superimposed Code
Scheme for Deductive Databases”, ICOT Technical
Report, 1987.
M. J. Wise and D. Powers, “Indexing Prolog Clauses
via Superimposed Code Words and Field Encoded
Words”, 1984 Int. Symp. Logic Programming, Feb.
1984, 203-210.
H. K. T. Wong, H. Liu, F. Olken, D. Rotem and L.
Wang, “Bit Transposed Files”, Proceedings of 11th
Conference on Very Large DataBases, Stockholm,
August 21-23, 1985, 448-457.
G. Zipf, Human Behaviour and the Principle of Least
Effort: An Introduction to Human Ecology, Hafner
Publications, 1949.

359

