
An Analysis of Three Transaction Processing Architectures

Anupam Bhide
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720.

Abstract
In this paper, we investigate the issues involved in

using multiprocessors for high performance transaction
processing applications. We use a simulation model to
compare the performance of three different architectures,
namely, Shared Everything, Shared Nothing and Shared
Disks. In Shared Everything, any processor can access
any disk and all memory is shared. In Shared Nothing,
neither disks nor memory is shared. In Shared Disks,
any processor can access any disk, but each has its own
private main memory. We first study four different vari-
ations of the Shared Disks architecture which attempt to
minimize lock request messages. We will then compare
the best Shared Disks variation with Shared Nothing and
Shared Everything. In addition, we study how intra-
query parallelism affects the performance of the archi-
tectures.

1. Introduction
Applying multiple processors to database prob-

lems has been an active arca of rcscarch. In the database
machine area, several rcscarch prototypes as well as a
few commercial products have been built. However,
most of these systems have attcmptcd to accelerate long
running queries such as joins. Less attention has been
directed by researchers to efticicnt transaction processing
on multiprocessors. The design of multiprocessors for
high speed transaction processing is the main focus of
our research. There has been a lot of debate in the tran-
saction processing industry about the suitabaility of

This research was sponsored by the Defense Advanced Research
Projects Agency under contract NOOO39-84-C-0089. the Army
Research Office under contract DAAM3-87-G-0041, and the National
Science Foundation under contract MIP-8715235.

Permission to copy without fee all or part of this mataial is
granted provided that the copies arc not made or distributed for
direct commacial advantage, the VLDB copyright notice UKI
the title of the publication and its date appear, rmd notice is giver
that copying is by permission of the Very Large Data Base
Endowment. To copy othawise. or to republish. requires a fee
and/or special permission from the Endowment.

Pmxedings of the 14th VLDB Conference
Los Angeles, California 1988

various architectures for transaction processing. This
debate has focussed on issues such as reliability and per-
formance. We attempt to provide answers about the per-
formance of these architectures by comparing them with
uniform assumptions.

In this paper, we will concentrate on three issues:
(1) The main aim of this paper is to compare the per-

formance of three different architectures,
namely, Shared Everything(Shared
Nothing and Shared Disks(SD) with uni-
form assumptions. In a SE system, all disks are
directly accessible from all processors with the
same access times and all memory is shared.
Examples of this architecture include the
Sequent Symmetry systcm[SEQU 861, the
Firefly, the IBM 3090 series of machines and
SPUR[HILL 863. In an SN architecture, each
disk is connected to a single processor and each
processor has its own private memory. A collec-
tion of SUNS on an Ethcmct exemplities this
architecture. Additionally, a TANDEM TXP sys-
tem is essentially an SN architecture[BART 811
with extra hardware for high availability. In a
SD architecture any processor can access any
disk but each processor has its own private
memory. IBM provides the “multi-system data
sharing facility” [STRI 821 as a feature of its
IMS database system which is the ability to cou-
ple different systems running IMS in a SD
contiguration.

(2) In a brute force implementation of a SD architcc-
turc almost every lock request needs two mes-
sages. Since messages are expensive, the SD
architecture is unattractive unless this can be
avoided. We will study different variations of
SD which try to reduce the number of messages
and compare their performance. We will then
compare the best SD architecture with SN and
SE.

(3) We also study the effect of inua-query parallel-
ism for SE, SN and SD. In a SN system parallel-
ism in a query is structural in nature. Each pro-
ccssor must run the portion of the query plan
relevant to the database on its disks. Therefore,

339

the degree of parallelism in a query plan is deter-
mined by the distribution of data. The optimal
distribution of data is a very hard problem since
one needs to balance the load on all the proces-
sors and yet not cause too many messages.
However, in a SE system, a query can be split
into n pieces, for any n > 1 and any processor
can run each of the n pieces. There is no cost for
switching jobs between processors and the only
cost paid for parallelism is the cost of starting up
a new process. However, the extensibility of the
SE architecture is limited by the bandwidth
offered by the latest bus and memory technol-
ogy. The SD architecture offers an intermediate
range of flexibility between SE and SN. Unlike
SN, any portion of the query plan can be exe-
cuted by any processor. However, once a portion
of the query plan is assigned to a processor, reas-
signing it for load balancing reasons involves
sending messages. Therefore, we will not con-
sider reassignment for SD. Also, like SN,
transmission of query pieces to processors
involves sending messages. One of the most
interesting design decisions in each of the archi-
tcctures is the degree of intra-query parallelism
one should aim for. For SE and SD, this decision
can be made at query optimization time. For SN,
the decision must be made at data distribution
time.

In [BHID 871 and [BHID 881 we have studied SE
and SN under various workload conditions and com-
pared their performance. In [CHID 881, we studied how
SN and SE performed as lock contention was varied. In
[BHID 871, [BHID 881 we studied different types of
workloads and reported that results for both the above
issues were substantially different for two different
classes of workloads:

(4 either high lock contention or strict response con-
straints present

(b) low lock contention and no rcsponsc constraints
The main observation we made was that high lock
contention or strict response constraints magnify
both the performance gap between SE and SN and
the performance gains due to parallelism. In addi-
tion, we comparcd the effect of load imbalances on
both architccturcs and studied alternative tile
organizations. We showed that a sequential file
system creates disk hot spots when intra-query
parallelism is present and a parallel file system is
necessary. In this paper, we will first compare the
performance of different variations of the SD
architecture and then compare the best one with
SN and SE.
We have built discrete event simulators for all the

architectures. In section 2, we will discuss the different

variations of the SD architecture. The simulators and the
input workloads that we have used are discussed in the
section 3. In section 4, we then present a variety of simu-
lation results.

2. The SD Architectures
In this section, we will describe the different varia-

tions of the SD architecture which attempt to minimize
the cost of lock request messages. The SD architecture
bears a distinct resemblance to a fully replicated data-
base system as far as the design of a locking protocol.
Locking schemes for SD architectures may be classified
based on two criteria: (1) centralized or distributed (2)
synchronous or asynchronous.

Another issue for SD architectures is how to keep
buffers consistent. Each processor in an SD system has
its own buffer pool. Consistency must be maintained
between the different buffer pools, and between the
buffer pools and the database version on disk. One easy
solution is to purge the updates of a transaction from the
buffer pool after commit the transaction is committed
when the log is written out, but locks are not released
until all the updated pages are written out on disk. Thus
the database always contains the latest copy. Pages are
always read from disk and there are no buffer hits. We
call this the buffer purge method. Another alternative
would be to design a buffer invalidarion protocol which
marks as invalid all buffer pages on a processor updated
by another processor. The problem is that a buffer invali-
dation protocol can result in a large number of messages,
unless it is well-design&

One method to reduce messages would be to route
transactions to processors such that locality of reference
is maximized. However, a study of IMS traces LBEUT
841 has shown that there is a portion of data (lo-15%)
which is referenced in 80% of all update lock requests.
Updates to such high-traflic data would result in
notifications to almost all the processors. Thus it is not
clear whether an invalidation protocol would do better
than a purge protocol and any such invalidation protocol
must be carefully design&

Buffer invalidation protocols are:
(1) hard to optimize
(2) sensitive to hot spots

Therefore, for the purpose of this paper, we have chosen
to use the simpler buffer purge protocol only. We will
study the design of buffer invalidation protocols and the
tradeoffs between them and buffer purge in a future
paper. In this paper, we have considered a database size
which is fairly large: 8 Gigabytes (2,000,000 pages of
4Kbytes each). Even with a 80-20 access pattern and 160
Mbytes (40,000 buffers of 4 Kbytes each, 4000 on each
processor) of total buffer space the best buffer hit ratio
we can hope for is of the order of 0.08. Therefore, the

340

effect of no buffer hits in the SD architecture variations
should have small performance effects.

WC will now dcscribc the four SD variations that
we intend to study.
(1) Disk Controller Locking (DIS): In this distri-

buted schcmc, each disk controller maintains a
lock table for all the data on the disks connected
to it. An example is the Limited Lock Facility for
the 3830 IBM disk controller. Locking is pcr-
formed with the Lock and Proceed channel com-
mand word. If the lock is available, the I/O pro-
gram can continue to read or write the disk. If the
lock is not available, the I/O program terminates
early. When the lock is relcascd, an interrupt is
generated so that the I/O program can bc issued
again. Other channel command words arc sup-
ported to relcasc a lock and read the lock table.
A spare control unit is nccdcd to rccovcr from a
locking unit failure. In this architccturc no mcs-
sages arc needed for lock rcqucsts. The only
extra price is that of communicating with the
disk controller for a lock even in the cast of a
buffer hit. Howcvcr, specialized h‘ardware in the
form of sophisticated disk controllers is nccdcd.

(2) Central Lock Manager (CLM): In this ccntral-
ized scheme, one processor is dcsignatcd to be
the lock manager. Other processors send all lock
request messages to this processor. In our simu-
lations, WC have used a 10 processor system for
all the architccturcs. In CLM, WC designate one
of these as the lock manager and use the other 9
as transaction processors. This will ensure a fair
comparison with the other architccturcs. Since
sending mcssagcs is expensive in terms of CPU
instructions, we will attempt to oplimizc on the
number of mcssagcs sent by batching many lock
rcqucsts into one message.

(3) Primary Copy Method: (PRI): In this distributed
scheme, the database is divided into partitions
and each processor is given authority over one
partition. This method gels its name from the
analogy with the method of the same name pro-
posed for replicated databases. A lock rcqucst
can be handled locally if it lies in the processor’s
partition. Otherwise, a message must be sent to
the processor which controls the partition. The
choice of database partitions and assignment of
primary authority need not be static and could bc
made by global load balancing software on the
basis of current load and rcfcrcncc pattern. How-
cvcr, our simulation model dots not consider
changes in primary copy authority in order to
maintain simplicity. In this schcmc, one can save
on lock mcssagcs by routing transactions lo pro-
cessors such that most of the lock rcqucsu are

local. In section 4.1, we will study how lock
request locality affects performance.

(4) Asynchronous Primary Copy Method: (APRI):
In the PRI scheme, one cannot batch messages
because the time interval between a processor
sending two messages to another processor is too
large and thus them is a degradation in response
time. In PRI, lock requests are synchronous.
However, if the lock rcqucsts are asynchronous,
batching would be possible. In the APRI scheme,
a processor sends a message containing a lock
request and continues processing assuming that it
will get the lock. If a negative response is
received, then the transaction must be aborted.
At commit time, the transaction waits until it gets
all responses to its lock requests. It commits suc-
cessfully if it gets all its locks, otherwise, it is
aborted. This is similar to optimistic concurrency
control, except that the serializability check is
not postponed till commit time; as soon as any
negative response is received to a lock request
the transaction is abort&

2.1. Previous Work
[YU 85a], [YU 85b] have studied the performance

of SD architectures. [YU 85b] conccntratcs on a distri-
buted pass-the-buck locking protocol that is used by IMS
to synchronize locking in a SD environment. They have
shown that this protocol dots not work beyond 8 proces-
sors, because of increase in contention due to increase in
buck cycle time. Our distributed protocols, PRI and
APRI are limited only by the bus bandwidth and have no
such inherent limitation. [YU 85a] studies a model simi-
lar to our CLM, but there is no study of message batch-
ing to improve performance. [REUT 841 proposes a
range of SD architccturcs, but there is no performance
study. The main contribution of this paper is to compare
SE, SN and SD architectures with uniform assumptions.
We are not aware of any paper in existing literature
which does that.

3. The Simulation Model
In turn, we discuss the architecture, the file system,

the workload, the concurrency control algorithm and the
buffer cache and logging aspects of our simulation
model. In the last sub-s&on, WC will describe the
qucucing model we used.

3.1. The Machine Architectures
To make a fair comparison between SD, SE and

SN, WC have used the same system paramclers in both
cnvironmcnts whcncvcr this assumption is realistic. The
paramctcrs are summarized in Table 1. The default value
shown in the table has been used in the simulation runs,
howcvcr, for particular runs, we have used diffcrcnt

341

values from those in Table 1. These will bc noted wher-
ever they occur.

The choice of parameter values has been
influenced by the fact that the ultimate goal of our pro-
ject is to study the viability of using the SPUR architcc-
ture (a SE type architecture) being dcvelopcd here at
Berkelcy[HILL 861 as a transaction processor. We
assume that page-size is 4 Kbytcs. @u-speed has been
set to 4 MIPS for every processor. We use a uniform dis-
tribution for disk-random-access-time with a mean of 20
ms. Log pages are written onto the log disks in a
sequential manner. The parameters for sequcnlial log
writes are disk-rot-time, the rotation time for a disk,
diskgage-access-time, the time rcquircd to read/write a

Table 1: Svsi
Machine

Parameters
page-size
cpu-speed

disk~random~access~time

disk-rot-time

diskgage-access-time
network-speed

instger-message
number of cpus
number-of-disks

number of buffers
System I

Parameters
jile-system type

batch-s;e
lock-request-locality

par degree
Workload

Paramctcrs
accessJlattern
no-ofgages

write access ratio
no if terminals - -

think time

Dbase-Size
inst per page

Concufrcncy Cc
Paramctcrs

timeout-interval
delay

mult degree

I Parameters
rametcrs

Default Value
4 Kbytes
4 MIPS

20 ms mean,
uniform distribution

16 ms mean,
uniform distribution

1.333 ms
10 Mb/see / 30 Mbytc/sec
5000 inst/mcssage (mean)

10
80

40000
.amcters

Default Value
random/sensibly split

1
0.1

Kamctcrs
Default Value

random, 80-20 rule
10 (mean)

0.5
4000

20 see mean,
cxp distribution

2,000,OOO granules
12,500 (mean)

uol Paramelcrs
Dcfaul t Value

10 set
0 see
400

page.
For the SN system, we have used 10 Mb/set as the

speed of the local area network. For the SD system, we
have used 30 Mbyte/set as the speed of the network
which connects all the disks and all the processors. The
higher speed is necessary, since all the pages accessed by
transactions must be read across the network. We
assume that messages are cxponcntially distributed with
a mean size of 1000 bits. Hence, the time each message
requires for transmission on the network will be distri-
buted exponentially with mean lOOO/network speed. In
our simulations, we have observed network &lizations
of only 5 - 30% with these parameters. Therefore, the
network related parameters am not critical in determin-
ing system performance. The number of CPU instruc-
tions required to process a message is assumed to be
exponentially distributed with mean instger-message,
and this parameter has been set to 5000
instructions/message. Our simulation results are sensi-
tive to this parameter and it is one of the main factors
which determines the difference in performance between
the SN/SD architectures and SE. We will study the sensi-
tivity to message cost of SD results in section 4.3. We
have already studied this for SN and SE in [BHID 881.
We have used a 10 processor system for each of the
architccturcs as the basic configuration in which to run
our experiments because SPUR[HILL 861 currently runs
out of memory bandwidth with 10 four MIP processors.
By limiting the size of the SE system, we avoid having to
explicitly model memory and bus contention. For the
CLM variation of the SD architecture, we designate one
processor out of 10 as the lock manager and use the other
9 to process transactions. Also, we have used a total of
80 database disks. In both the SE and SD architectures
these are all attached to the bus and can be accessed
from any processor. In SN, 8 are attached to each of the
10 processors. In addition to the database disks, we use
4 to 6 dcdicatcd disks for the SE and SD logs, and one
disk per processor for the SN log. The number of SE/SD
log disks is chosen based on workload paramctcrs, so
that the log disks will not become a bottlcncck.

3.2. The Software System Model
For both the SD and SE architcclure we used a

random file model, in which consecutive disk blocks of a
file are distributed randomly over all the disks. This
choice is motivated by our desire to explore intra-query
parallelism. We wish to maximize the probability that
multiple sub-plans can be processed in parallel without
bottlenecking on accessing a single disk drive. For the
SN architecture we have a “sensibly split” file model
whcrc a file is split bctwccn the disks of some number of
processors (this number would dcpcnd on how many
files a query acccsscs, the pattern of access etc.) such
that the degree of parallelism achieved for a query is n.
It should be noted that achieving a parallelism of exactly

342

n depends on knowing a lot about the application and the
set of pages accessed by a query. The portion of a file on
one single processor has disk blocks allocated randomly
on all disks attached to it. Note, that if the random file
model were to be used for SN a single file would be dis-
tributed over all the nodes. Thus a single query would
very likely be executed on all nodes and would result in
poor performance. For CLM and APRI, the default mes-
sage batch size used is 1. For PRI and APRI, the default
lock request locality used is 0.1. This value represents
the case where lock requests are randomly scattered over
the entire database. Par degree is the degree of parallel-
ism which is to be used i?r executing each query and indi-
cates the number of parallel sub-queries into which each
query is dccomposcd. We have varied Par-degree in
section 4.4, elsewhere we use a value of 1.

3.3. The Workload Model
We have assumed that transactions access pages

according to Zipf’s Law with 80% of the acccsscs going
to 20% of the database. The 20% frequently accessed
pages are distributed uniformly over all the disks and
also over all the processors for SN. Table 1 also
describes the other workload paramctcrs. No-ofgages
is the total no of pages that each transaction accesses
which we assume to have an exponential distribution
with mean 10. This makes our transactions about the
same size as the TPl benchmark[GRAY &4] which does
5 to 10 I/OS. The number of instructions spent in pro-
cessing a page is cxponcntially disuibutcd with a mean
of instgergage, which is set to 12,500. Write/access
ratio is the ratio of number of pages updated to total
number of pages accessed. Conscqucntly, each page is
updated with this probability. No of terminals is the
number of terminals which are a&chid to the system
from which users enter queries. Think-Time is the time a
user thinks before submitting a new query after he gets a
reply to his previous query. This is assumed to have an
exponential distribution with mean 20 sec. Dbase-Size is
the size of the database in terms of the number of lock-
able objects. WC have set Dbase-Size to 2,000,OOO
granules. This leads to a low lock contention probability.
Elsewhere ([BHID 881, [BHID 87]), we have studied
workloads with high lock contention. Our results indicate
that in high lock contention environments, performance
is similar to environments where response constraints are
present.

If response time constraints are spccihcd for a par-
ticular workload, then the No of terminals parameter is - -
varied until the maximum number of terminals that can
bc supported with the given response time constraints is
found. Thus getting one data point for a given workload
with response time constraints can involve a number of
simulation runs.

3.4. The Concurrency Control Model
We use dynamic 2-phase locking as the con-

currency control method. We chose to implement
timeouts instead of deadlock dctcction since global
deadlock detection is diflicult to model in SN. The
timeout mechanism seemed to work very well and the
number of restarts was negligible. If timeout occurs, all
locks are released and the transaction is restarted after a
time equal to delay. In APRI we use asynchronous lock-
ing. This means that transactions do not wait for lock
requests to complete and continue processing. If the lock
is busy, the transaction must be aborted.

MuIt-degree is the number of active transactions
in the system at any time.

3.5. The Buffer Cache and Logging Model
For SD, we have used the buffer purge scheme

described in section 2. For SN and SE, we have imple-
mented a database cache scheme[ELHA 841. We have
assumed a database cache large enough to contain all the
updated pages of a transaction. This cache is used to
hold all pages that are (1)currentIy “pinned” for reading
by an active transaction (2)“dirty” pages that have been
updated by an active transaction and (3) frequently
accessed pages which are not in categories (1) and (2).
When a transaction commits, its updates are not written
to the database. Instead, the buffers are marked as
“updated” and the actual database update is deferred
until the buffer replacement policy needs to reclaim an
“updated” buffer. A list of available buffers (those not in
categories (1) and (2) above) is maintained as a FIFO
queue. Every time a buffer is accessed it goes to the tail
of the FIFO queue. At commit time updated pages are
written to the log. This use of page level logging
corresponds to the tactic used by some commercial sys-
tems, and we plan to experiment with record level log-
ging in the future. In our model of SE/SD we have to
multiplex the log among 4 to 6 dcdicatcd disks to prevent
the log from becoming a bottleneck. In SN, we keep one
log disk per processor. In case of a timeout, the transac-
tion is aborted. In this scheme, aborting a transaction is
simple; all its updates are discarded. WC have not
modellcd the recovery from system or media failure. The
default cache size is 40000 buffers.

3.6. The Simulation Queueing Model
In this section, we describe the queueing simula-

tion model for both the SE, SN and SD architectures.
Figure 1 shows the qucueing model for the SE architec-
ture. A transaction waits at the Ready Queue until the
number of active transactions in the system falls below
the dcgrce of multiprogramming that has been chosen.
Then it enters the system and is split into a number of
sub-queries equal to the degree of parallelism. Each
sub-query is modclled as a list of pages to be processed.

343

Disk Qucucl

P-k

I

I

4

Fig. 1

Shared Everything Qucucing Model

The number of pages assigned to each sub-query is
exponentially distributed with a mean equal to the avcr-
age number of pages read by the transaction divided by
the degree of parallelism. Each sub-query is an indepen-
dent job in the qucucing network and cycles bctwccn the
disk queue, using the disk, the CPU queue, using the
CPU and the blocked qucucs until all its pages have been
processed. There is a single queue for all CPUs since the
scheduler assigns a job to the next available CPU. CC is
the node where a sub-query generates concurrency con-
trol requests. The blocked queue holds sub-queries
which are waiting for locks. For each page in its mad or
write set, a sub-query first goes to CC node to get a lock
and then to the BUF node to get a buffer. If the particular
page is already in the cache, the sub-query goes dircetly
to the CPU queue. Othcrwisc, it goes to the disk queue
for a particular disk, then it goes to the CPU qucuc to
process that page. After all its pages have been pro-
cesscd a sub-query job goes to the Join node and waits
until all its sibling sub-queries arrive. Then all locks are
released, the log record containing all the updated pages
is written, and the transaction job goes back to the termi-
nal queue. If a sub-query times out while waiting for a
lock, it goes to the Join and Release Locks node where it
waits for its sibling sub-qucrics. Each sibling is located
and forced to this node. Then, they rclcasc all locks and
the transaction is restarted after a time delay. However,
the read and write lists of the transaction are prescrvcd
so that the same access pattern is repeated on restart.

L------------~----_-__J

Fig. 2 a
Shared NothinQucueing Model

Figure 2a shows the queucing model for the SN
architccturc and a detailed view is shown for one of the
10 identical processors in Figure 2b. The Ready Queue
and the SPLIT node have the same functions as in SE. In
this case, however, there are 10 separate processors
which communicate over a network. Each transaction
has a home node which is the node at which it entered
the system and the splitting of a transaction into sub-
queries takes place at the home node. For each sub-
query, a message is sent to its execution site to start up
the sub-query. This cormsponds to a model of the filc-
system where files are split such that each query is exe-
cutcd on n processors, where n is the dcgrce of parallel-
ism for that simulation run. Each sub-query joins the
CPU queue at the Net Out node and consumes the CPU
time nccdcd to send a message. On arriving at its dcsti-
nation, the sub-query joins the CPU qucuc at the Net In
node and consumes the CPU time spent in processing the
arriving message. For each page, the order of access is
CC, BUF, disk and CPU as in the previous arehitceture.
When all its pages have been processed, a sub-query
moves to the Join and Commit node, when: it waits for
all its siblings to complete. The log record for the query
is then written and all locks are released. There are a
total of 3 rounds of messages exchanged: (1) a message
is sent from the home node to each exceution site con-
taining the subquery to be executed (2) a message is sent
from each execution site to the home node indicating that
subqucry processing is done and it is ready to commit (3)
after the home node gets a “done” mcssagcs from all
sites a “commit” mcssagc is sent to each of them. Thus,
if degree of parallelism is n, the number of messages

344

From

To Join & Commit

To Join & Rcleam

Fig. 2b
A Shared Nothifi’gocesssor

exchanged is 3*n. This protocol is appropriate when
only one query is performed at each site. If multiple
queries were simulated, we would riced a general 2-
phase commit protocol with additional messages. In
case a timeout occurs at any of the execution sites while
waiting for locks, an “abort” message is sent to the home
node, which in turn sends an “abort” message to each of
the other execution sites. Jobs which timeout go to the
Join and Release Locks node, where they wait for their
siblings, and once all their siblings have been forced to
this node, their locks are released and they are restarted
after time d&y.

The SD simulation model resembles tbc SN model
except for lock requests and the fact that disks are
shared. In CLM, a job wanting to make a lock request
waits at a batch node until batch_size other jobs collect.
Then these jobs are bundled up and the CPU message
cost for sending the mcssagc is paid. The message goes
out over the network and is rcceivcd by the lock manager
processor. The cost of rccciving the message is paid and
each lock request is proccsscd. The lock manager pro-
cessor maintains 9 separate ba& nodes, one for each
transaction processor. After waiting at the right bufch
node for batch-size other responses, they arc packed into
a message, the CPU cost of sending is paid and the mes-
sage goes to the network queue. The lock response is
received by the requesting processor after paying the
CPU cost of receiving a mcssagc. After a transaction
commits, a lock release message is sent to the lock
manager. PRI and APRI have similar simulation models
except that the lock requests go to appropriate transac-
tion processors, instead of a lock manager processor. In
APRI, another difference is that a job spins off a lock
request and continues processing. If the response
received is negative, the transaction gets aborted. Each
job waits for all its lock responses to come back after it
has linishcd all its processing and just before it gets to
the Join and Commil node. After a transaction commits a
lock release message is sent to the all processors from

which locks were requested. These release messages are
batched along with the lock request messages. In DIS,
the lock requests go to the disk controller. In all the SD
architectures, we route transactions to the processor with
the least number of active transactions. This helps in
balancing processor loads.

The simulator is written is C and is about 10,000
lines of code. Each data point is obtained by a simula-
tion run lasting for l,OOO,OOO events. A transition from
one queue to another is counted as an event. Results
were observed to very stable at this point. Each run lasts
90 minutes on a Sequent Balance machine and simulates
60 - 75 minutes of system time.

4. Simulation Results
Our main emphasis is on transaction throughput in

the three architectures. As mentioned in section 2, the
two main techniques we will study for improving SD
performance are batching of messages and increasing
lock request locality. In section 4.1 we will study the
effect of lock request locality on PRI and APRI. In scc-
tion 4.2 we will show the effects of batching lock request
messages for CLM and APRI. In section 4.3 we will
compare the four SD variations, namely, DIS, CLM, PRI
and APRI for different message costs. We will choose
the best SD architecture from section 4.3 and compare it
with SN and SE for different degrees of intra-query
parallelism in section 4.4. The simulations in sections
4.1, 4.2 and 4.3 were performed without response time
constraints. In section 4.4, we will use response time
constraints to compare SE, SN and SD.

4.1. Effect of Locality
In a SD architecture, a transaction can be executed

on any processor unlike SN. An optimal processor allo-
cation policy for transactions must reconcile two somc-
times conflicting objectives: (1)In both PRI and APRI,
efforts can be made to route transactions to that proces-
sor which holds the lock authority for most of the
granules accessed by the transaction (assuming that
accesses can be predicted with some degree of accu-
racy). This saves two messages for each local lock
request. (2)The second objective is to try to balance the
load on all the processors.

In this experiment, we will try to estimate the pay-
off from trying to maximize lock request locality. This
will help a designer in making the correct trade-off
between balancing processor loads and maximizing lock
locality. Also, if a designer knows roughly how much
locality can be obtained from his workload, he can judge
whether APRI/PRI is better than CLM which has no con-
cept of locality. Changing the access pattern enables us
to change the locality ratio.

Figures 3 and 4 show the throughput and response
time respectively against the locality ratio (fraction of

345

Locality Ratio

Figure 5
Effecg.of Message Batching ___-__________ __**e-v---m-s-- !

38
1.0 6.0 11.0 16.0 21.0

Message Batching Degmc

Figure 7

1.0 6.0 1.0 6.0 11.0 11.0 16.0 16.0 21.0 21.0

Figure 4

Lncality Ratio

Hgure 6

&plz Effect of Messagd@d!jng,
1 r---

-‘---:;-------‘-“-----

m
e

04 4 _<^ ” 9 1.0 6.0 11.0 16.0 CA.,

Message Batching Degree

1.0 6.0 1.0 6.0 11.0 11.0 16.0 16.0 21.0 21.0

Message Batching Dcgrcc
Message Batching Dcgrce

346

local lock requests) for PRI and APRI. The number of
terminals is held constant at 6000. PRIlOOOi stands for
the PRI architecture with a message cost of 1000 instruc-
tions and PRI5OOOi stands for PRI with message cost of
5ooO; similarly for APRI5OOOi. The gain for the
PRIlOOOi curve is small because 1000 is too small a
message cost to cause a substantial overhead. However,
the gain for the PRI5OOOi curve is substantial(almost
100%) as the locality is increased from 0.1 to 0.9.
Notice, however, that the PRI5OOOi curve is concave
upwards, which means that most of the gain is between
localities 0.5 and 0.9. It might be hard to achieve such
high localities. Figure 4 shows that the response time for
PRISOOOi improves with better locality. The gains for
APRI are approximately the same as for PRI. However,
the APRI curve is convex upwards which means that
most of the gains are in the 0.1 to 0.5 locality region.
This degree of locality is easier to achieve and thus
APRI shows better locality gains than PRI.

4.2. Effect of Batching
In this experiment, we will study the effects of

batching Iock messages, for CLM and APRI. Message
batching would bc a loser for PRI since the interval
between lock rcqucsts from a processor A to a processor
B is of the order of 50 ms. Since lock requests are syn-
chronous, and each transaction makes 10 requests, for a
degree of batching of 4 this will add about 750 ms to the
response time. This kind of overhead would make it
impossible to keep the subsccond response time con-
straints that are necessary for most transaction systems.
In APRI the lock requests are asynchronous and the
batching overheads are lower. In CLM, all lock requests
go to the central lock manager; thcrcforc, the period
between requests is only 5 ms.

Figures 5 and 6 show throughput and response
time as a function of degree of batching for four varia-
tions of CLM. In the curve labels, 1OOOi stands for a
CLM with message cost of 1000 instructions and 5000i
stands for a message cost of 5000 instructions. 6OOOt and
4000t stand for 6000 and 4000 terminals respectively. As
the degree of batching increases all the four curves in
Figure 5 show large throughput gains and then flatten
out. After batching degree 9 the curves fall slightly
showing that the advantage of rcduccd mcssagc costs are
ovcrcomc by the disadvantage of waiting for mom lock
requests. At higher batching dcgrces, the mcssagc costs
become insignihcant, thcrcforc, the curves for 1OOOi and
5000i merge together. For lower number of terminals,
the throughput is smaller but the rcsponsc time is better.

Figures 7 and 8 show throughput and rcsponsc
time as a function of degree of batching for two varia-
tions of APRI. Comparing tigurcs 5 and 7, APRI pcr-
forms about the same as CLM at higher batching
degrees, but performs much better than CLM at lower

batching degrees.

Batching has two effects: (1) reducing the message
cost for lock requests by a factor equal to the batching
degree. (2) increasing the response time due to waiting
for a batch to form. We performed an experiment to iso-
late and observe the effect of (2). In figure 9 CLMl
stands for CLM with degree of batching 1. CLM9 stands
for CLM with degree of batching 9. However, the
CLMl curve represents an architecture where the mes-
sage costs are 1/9th of those of CLM9. For example, the
CLMl point at X coordinate = 2000 was taken by using
a message cost of 2000/9 = 222 instructions. Thus, both
CLMl and CLM9 have the same message costs; how-
ever, CLM9 has to pay the penalty for batch waiting
times. Thus CLM9 has a throughput about 20
transactions/set below CLMl and a response time which
is about 2 seconds higher.

4.3. Effect of Message Cost
In this section, we compare the c&et of CPU mes-

sage cost on the different SD architectures. Figures 10,
11 and 12 show the throughput, response time and the
CPU utilization for various SD variations against the
CPU cost of sending a message. This is the number of
instructions it takes a processor to send a message. We
assume that it takes the same number of instructions for
the receiving processor to receive a message. For DIS,
however, the “CPU cost of messagcs” represents the
extra number of CPU instructions needed to communi-
cate lock requests to the disk controller. This is the only
extra overhead in DIS, since, all the architccturcs need to
communicate with the disk controller to read/write
pages. This number is typically small. That is why the
DIS curve is plotted only between 500 and 2500. CLM9
stands for the CLM variation with a batch size = 9 and
CLMl stands for batch size = 1. Similarly for APRIl
and 9. In Figure 12, the CPU utilizations of the central
lock manager and those of the other processors are dif-
ferent; for example, CLMl-elm curve shows the lock
manager utilization of the CLMl architecture and simi-
larly the CLMl-all curve shows the utilization of the
other processors. Figure 10 shows that CLMl is very
sensitive to message cost. Figure 1Zexplains why: since
the lock manager processor spends most of its time pro-
cessing messages, the CLMl-elm curve rises very fast
and is very near saturation. Thus the central lock
manager becomes the bottleneck in this system. This
shows that it is worthwhile to keep the CPU utilization of
the central lock processor low, perhaps by using a faster
processor. For CLM9, the CLM9-all curve rises very
fast also, but is farther away from saturation, so CLM9
shows very good performance. If the workload is
hctcrogcnous, with few infrcqucntly running transactions
which make many lock rcqucsts and most transactions
which make few, the presence of the lock intensive tran-
sactions will dcgradc the rsponsc time of the short

347

Finure 10 Figure 9
CLM: Batching vs Reduced Message Costs
250 __.._ * -----:---..-.-.--: _______-.__.;

1000 2ooo 3000 4ooo 5000
Effective CPU Message Cost

Figure 11

%o ls‘O0 2klO 35bO 45.00 5Gxl
CPU Message Cost in instructions

Figure 13 Figure 14
Effect of Dcgrcc of Parallelism with Response Constraints 333 t--SSSSS-‘S- !‘--.__ _ ___- ~I ______-. ~-‘l _____._-.--_ i Effect of Degree of Parallelism with Response Constraints

CPU Message Cost in instructions

Figure 12

1.02

0.82

0.72

‘: OS2
1 0.52

0.42

0.32

0.22
500 1500 2500 3500 4500 5500

CPU Message Cost in insttuctions

.lsec

Dcgrcc Of Parallelism Degree Of Parallelism

348

transactions. CLM thus is an unstable design because of
the presence of a potential hot spot.

The best performers are DIS, APR19 and CLM9.
The good performance of DIS is intuitively expcctcd.
However, DIS requires extra hardware in the form of a
disk controller which is able to keep track of locks.
Therefore, it is reassuring to know that both CLM9 and
APR19 can match the performance of DIS very closely.
APRI9 is better than CLM9 in terms of response time
and almost the same in terms of throughput. PRI does
worse than both APR19 and CLM9 but bcttcr than
CLMl. As explained bcforc, the lock messages in PRI
cannot be batched because the degradation in response
time would be too high. Also notice that APRII does
better than PRI specially at higher message costs. The
gap between APRIl and PRI is the gain of asynchronous
locking over synchronous locking at low lock contcn-
tions (The probability of conflict on making a lock
request is approximately 0.0007 with these parameters).
For higher lock contention workloads, APRI should per-
form worse; we have not investigated this effect yet.

4.4. Comparison of SE, SN and SD
In this section, we compare the effect of parallel-

ism on SD, SE and SN. From the previous section
(ligurcs 10 and 11). WC see that DIS, CLM9 and APRI9
have approximately similar performance. Both DIS and
APRI9 have the same throughputs as CLM9 but the
response times are about 20% bcttcr. Since DIS needs
special hardware it would be unfair to use it to compare
SD against SN and SE. The APRI architecture has an
additional locality parameter which is hard to estimate.
Therefore we chose the CLM9 variation (central lock
manager with message cost of 5000 and batching degree
9) for this experiment. We asssume the same message
cost for SN: 5000 instructions. The default parameters
from Table 1 were used for this set of simulations. Fig-
ures 13 and 14 show throughput and response time
against the degree of parallelism for the different archi-
tcctures in a response time constrained environment.
The response time constraint is that 90 % of the transac-
tions must have a response time of less than 1 second.
This is a fairly tight constraint since the average total
stand-alone cxccution time of a single uansacrion is
0.233 seconds. For SD, WC have also plotted another
curve with the rcsponsc constraint changed to 90% uan-
sactions respond within 2 seconds. This curve is labcllcd
as SD-CLM9-2scc and the one with the 1 second con-
straint is labcllcd as SD-CLM9-lscc. SN and SE curves
are plotted with a 1 second constraint only and are
labcllcd SN, SNl and SE. We have plotted two varia-
tions of SN. For the curve labcllcd SN, sub-queries
belonging to the same transaction were executed on dif-
ferent processors and hence had to pay a message cost
for 3*n messages if n is the dcgrec of parallelism. For
the curve labcllcd SNl, all the subqucries belonging to a

transaction were executed on one processor and thus no
message cost had to be paid. To obtain each data point
in figures 13 and 14, a number of simulation runs were
required. Each simulation run was taken with a given
number of terminals and depending on whether the con-
straint is achieved or not the number of terminals is
increased or decreased for the next run. A binary search
type technique was used to find the maximum number of
terminals that can be supported with the given constraint.

At low degrees of parallelism, SD-CLM9 has
response times of the order of 2 seconds. Therefore,
almost no transactions can meet the 1 and 2 second dead-
lines. The points not shown for the SD curves should be
taken to be almost 0. Thus intra-query parallelism is
necessary for good SD performance when tight response
constraints are present. Note that the SD curves lie in
between the curves for SN and SE. In fact if the
response constraint is relaxed to 2 seconds, SD (the SD-
CLM9-2sec curve) performs almost as well as SE for
high degrees of parallelism.

In Figure 13, the SN curve goes up initially as
parallelism helps to increase the number of transactions
making the response time constraint. After parallelism
degree 3, however, the cost of messages starts to drive
the curve down. SNl does much better than SN at higher
degrees of parallelism because no message cost has to be
paid. However, in a real SN architecture, it would be
hard to achieve SNl, since it involves localizing the data
of every transaction on one processor. Therefore the per-
formance of SN would lie somewhere between SN and
SNl. Note that SE beats both SN and SD. In Figure 16,
SE and SN are about 30 transactions/set apart at a
degree of parallelism of 1 and this gap increases at
higher degrees of parallelism. Both SE and SD (with 1
second response time) achieve their best performances of
253 transactions/set and 228 transactions/see at a degree
of parallelism of 5, while SN achieves its best pcrfor-
mance of 179 transactions/set at a parallelism degree of
3. Thus, there is a 41 % performance gap between SE
and SN and a 22% gap between SN and SD. SNI and
SE are about 30 transactions/see apart at all the degrees
of parallelism.

From Figure 13 it is clear that parallelism
improves performance substantially for all three archi-
tectures. For SE, the performance jumps 55 % between
parallelism degrees 1 and 5. For SN, the jump is smaller,
about 35 % between dcgrces 1 and 3 and then throughput
falls bctwccn degrees 3 and 5. Parallelism reduces the
response time and hence more transactions satisfy the
response time constraint of 1 second. It also helps to bal-
ance the loads on the CPUs and the disks, and to achieve
higher utilizations.

Figure 14 shows the average transaction response
time. Response times increase as the degree of parallel-
ism is increased, because, at higher degrees of

349

parallelism more terminals arc supported and throughput
increases. The fact that the throughput increases shows
that even though avcragc rcsponsc time incrcascs, the
variation in response time dccrcascs (more transactions
make the 1 second deadline) for higher dcgrces of intra-
query parallelism.

5. Conclusions
We have dcscribcd a study of Ihc performance of

three multiprocessor archilcclurcs, namely, Shared
Nothing(Shared Everything and Shared
Disks(SD), in transaction processing. We first studied
four different variations of SD which altcmpted to optim-
ize on the number of lock rcqucst messages sent. We stu-
died the performance effects of two mechanisms for
doing this: batching for CLM and APRI and increasing
lock request locality for PRI and APRI. We observed
that DIS, APRI with batch size 9 and CLM with batch
size 9 had roughly comparable performance and were
bdler than Ihe other variations. WC used CLM with
batch size 9 to compare SD against SN and SE and to
study the effect of the degree of intra-transaction paral-
lelism. We observed that SD performs as well as the
optimistic SN version (which assumes that each transac-
tion is local to a single processor) and much belter than a
reasonably pessimistic version. Thus SD is a viable
architecture in cases where it is not possible to partition
the database so that the data for most transactions is local
to one processor. However, we also observed that CLM
with batch size 9 needs high dcgrces of parallelism to
meet response time constraints.

We observed that SE outperformed SN and SD by
a fairly wide margin. Howcvcr, SE has two disadvan-
tages:

(1) It is limited by bus and memory bandwidths.
(2) It has a potcnlial single point of failure:
the shared memory.

Therefore, SE is Ihe architcclurc of choice for cnviron-
mcnls where the transaction throughput rcquircmcnts are
within the bus/memory Icchnological barrier and failures
can bc handled in other ways. One way to do this would
be to connect up SE nodes in a SN configuration. SD
would be the archi@.xure of choice if throughput
requirements were LOO large to USC SE. Designing a SD
transaction processing system is casicr than designing a
SN system because the database partitioning problem
does not arise. SD, of course, has its own technological
limitations, namely bus bandwidth. However, this bus is
less loaded as compared to an SE bus, since, the SE bus
must handle memory uaffic in addition to disk traffic.
Thus, Lhc choice of an archilcclurc for a transaction pro-
ccssing system depends on throughput rcquircmcnts,
availability requirements, workload considcradons and
hardware technoIogics available.

References.
[BART 811

[BHID 871

[BHID 881

[ELHA 841

LGRAY 841

WL 861

lREW 841

[SEQU 863

[STRI 821

TyU 85al

[YU 85bl

Bartlett, J.F., “A Non-Stop Kernel,” Proc.
8th Symposium on Operating Systems
Principles, 198 1.

Bhide, A., and Stoncbraker, M., “Perfor-
mancc Issues in High Performance Tran-
saction Processing Architectures,, Proc.
2nd Intemalional Workshop on High Per-
formance Transaction Processing, Ott
1987.

Bhide, A., and Stonebraker, M., “A Per-
formance Comparison of Two Architec-
tures for Transaction Processing” Proc.
4th Id. Conference on Data Engineering,
Feb 1988.

Elhard, K. and Bayer, R., “A Database
Cache for High Performance and Fast
Restart in Database Systems,” ACM
Trans. on Database Systems, Dee 1984.

Gray, J., et. al. ” A Measure of Transac-
tion Processing Power,” Datamation 1984.

Hill, M., et. al., “Design Decisions in
SPUR,” IEEE Computer, Nov. 1986.

Reuter, A. and Shoens, K., “Synchroniza-
tion in a Data Sharing Environment,”
unpublished manuscript.

Sequent Computers, “Balance Guide to
Parallel Programming,,, June. 1986.

Strickland, J., et. al., “IMS/VS: An Evolv-
ing System”, IBM Systems Journal 21,
4(1982).

Yu, P., et. al., “Modclling of Centralized
Concurrency Control in a Multi-System
Environment,” Proceedings of the 1985
SIGMETRICS Confcrcnce on Measure-
ment and Modclling of Computer Sys-
tems, Aug 1985.

Yu, P.. ct. al., “Distributed Concurrency
Control Analysis for Data Sharing,”
Proceedings of the InU. Conference on
Management and Performance Evaluation
of Computer Systems, 1985.

350

