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Abstract 
In this paper, we investigate the issues involved in 

using multiprocessors for high performance transaction 
processing applications. We use a simulation model to 
compare the performance of three different architectures, 
namely, Shared Everything, Shared Nothing and Shared 
Disks. In Shared Everything, any processor can access 
any disk and all memory is shared. In Shared Nothing, 
neither disks nor memory is shared. In Shared Disks, 
any processor can access any disk, but each has its own 
private main memory. We first study four different vari- 
ations of the Shared Disks architecture which attempt to 
minimize lock request messages. We will then compare 
the best Shared Disks variation with Shared Nothing and 
Shared Everything. In addition, we study how intra- 
query parallelism affects the performance of the archi- 
tectures. 

1. Introduction 
Applying multiple processors to database prob- 

lems has been an active arca of rcscarch. In the database 
machine area, several rcscarch prototypes as well as a 
few commercial products have been built. However, 
most of these systems have attcmptcd to accelerate long 
running queries such as joins. Less attention has been 
directed by researchers to efticicnt transaction processing 
on multiprocessors. The design of multiprocessors for 
high speed transaction processing is the main focus of 
our research. There has been a lot of debate in the tran- 
saction processing industry about the suitabaility of 
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various architectures for transaction processing. This 
debate has focussed on issues such as reliability and per- 
formance. We attempt to provide answers about the per- 
formance of these architectures by comparing them with 
uniform assumptions. 

In this paper, we will concentrate on three issues: 
(1) The main aim of this paper is to compare the per- 

formance of three different architectures, 
namely, Shared Everything( Shared 
Nothing and Shared Disks(SD) with uni- 
form assumptions. In a SE system, all disks are 
directly accessible from all processors with the 
same access times and all memory is shared. 
Examples of this architecture include the 
Sequent Symmetry systcm[SEQU 861, the 
Firefly, the IBM 3090 series of machines and 
SPUR[HILL 863. In an SN architecture, each 
disk is connected to a single processor and each 
processor has its own private memory. A collec- 
tion of SUNS on an Ethcmct exemplities this 
architecture. Additionally, a TANDEM TXP sys- 
tem is essentially an SN architecture[BART 811 
with extra hardware for high availability. In a 
SD architecture any processor can access any 
disk but each processor has its own private 
memory. IBM provides the “multi-system data 
sharing facility” [STRI 821 as a feature of its 
IMS database system which is the ability to cou- 
ple different systems running IMS in a SD 
contiguration. 

(2) In a brute force implementation of a SD architcc- 
turc almost every lock request needs two mes- 
sages. Since messages are expensive, the SD 
architecture is unattractive unless this can be 
avoided. We will study different variations of 
SD which try to reduce the number of messages 
and compare their performance. We will then 
compare the best SD architecture with SN and 
SE. 

(3) We also study the effect of inua-query parallel- 
ism for SE, SN and SD. In a SN system parallel- 
ism in a query is structural in nature. Each pro- 
ccssor must run the portion of the query plan 
relevant to the database on its disks. Therefore, 
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the degree of parallelism in a query plan is deter- 
mined by the distribution of data. The optimal 
distribution of data is a very hard problem since 
one needs to balance the load on all the proces- 
sors and yet not cause too many messages. 
However, in a SE system, a query can be split 
into n pieces, for any n > 1 and any processor 
can run each of the n pieces. There is no cost for 
switching jobs between processors and the only 
cost paid for parallelism is the cost of starting up 
a new process. However, the extensibility of the 
SE architecture is limited by the bandwidth 
offered by the latest bus and memory technol- 
ogy. The SD architecture offers an intermediate 
range of flexibility between SE and SN. Unlike 
SN, any portion of the query plan can be exe- 
cuted by any processor. However, once a portion 
of the query plan is assigned to a processor, reas- 
signing it for load balancing reasons involves 
sending messages. Therefore, we will not con- 
sider reassignment for SD. Also, like SN, 
transmission of query pieces to processors 
involves sending messages. One of the most 
interesting design decisions in each of the archi- 
tcctures is the degree of intra-query parallelism 
one should aim for. For SE and SD, this decision 
can be made at query optimization time. For SN, 
the decision must be made at data distribution 
time. 

In [BHID 871 and [BHID 881 we have studied SE 
and SN under various workload conditions and com- 
pared their performance. In [CHID 881, we studied how 
SN and SE performed as lock contention was varied. In 
[BHID 871, [BHID 881 we studied different types of 
workloads and reported that results for both the above 
issues were substantially different for two different 
classes of workloads: 

(4 either high lock contention or strict response con- 
straints present 

(b) low lock contention and no rcsponsc constraints 
The main observation we made was that high lock 
contention or strict response constraints magnify 
both the performance gap between SE and SN and 
the performance gains due to parallelism. In addi- 
tion, we comparcd the effect of load imbalances on 
both architccturcs and studied alternative tile 
organizations. We showed that a sequential file 
system creates disk hot spots when intra-query 
parallelism is present and a parallel file system is 
necessary. In this paper, we will first compare the 
performance of different variations of the SD 
architecture and then compare the best one with 
SN and SE. 
We have built discrete event simulators for all the 

architectures. In section 2, we will discuss the different 

variations of the SD architecture. The simulators and the 
input workloads that we have used are discussed in the 
section 3. In section 4, we then present a variety of simu- 
lation results. 

2. The SD Architectures 
In this section, we will describe the different varia- 

tions of the SD architecture which attempt to minimize 
the cost of lock request messages. The SD architecture 
bears a distinct resemblance to a fully replicated data- 
base system as far as the design of a locking protocol. 
Locking schemes for SD architectures may be classified 
based on two criteria: (1) centralized or distributed (2) 
synchronous or asynchronous. 

Another issue for SD architectures is how to keep 
buffers consistent. Each processor in an SD system has 
its own buffer pool. Consistency must be maintained 
between the different buffer pools, and between the 
buffer pools and the database version on disk. One easy 
solution is to purge the updates of a transaction from the 
buffer pool after commit the transaction is committed 
when the log is written out, but locks are not released 
until all the updated pages are written out on disk. Thus 
the database always contains the latest copy. Pages are 
always read from disk and there are no buffer hits. We 
call this the buffer purge method. Another alternative 
would be to design a buffer invalidarion protocol which 
marks as invalid all buffer pages on a processor updated 
by another processor. The problem is that a buffer invali- 
dation protocol can result in a large number of messages, 
unless it is well-design& 

One method to reduce messages would be to route 
transactions to processors such that locality of reference 
is maximized. However, a study of IMS traces LBEUT 
841 has shown that there is a portion of data (lo-15%) 
which is referenced in 80% of all update lock requests. 
Updates to such high-traflic data would result in 
notifications to almost all the processors. Thus it is not 
clear whether an invalidation protocol would do better 
than a purge protocol and any such invalidation protocol 
must be carefully design& 

Buffer invalidation protocols are: 
(1) hard to optimize 
(2) sensitive to hot spots 

Therefore, for the purpose of this paper, we have chosen 
to use the simpler buffer purge protocol only. We will 
study the design of buffer invalidation protocols and the 
tradeoffs between them and buffer purge in a future 
paper. In this paper, we have considered a database size 
which is fairly large: 8 Gigabytes (2,000,000 pages of 
4Kbytes each). Even with a 80-20 access pattern and 160 
Mbytes (40,000 buffers of 4 Kbytes each, 4000 on each 
processor) of total buffer space the best buffer hit ratio 
we can hope for is of the order of 0.08. Therefore, the 

340 



effect of no buffer hits in the SD architecture variations 
should have small performance effects. 

WC will now dcscribc the four SD variations that 
we intend to study. 
(1) Disk Controller Locking (DIS): In this distri- 

buted schcmc, each disk controller maintains a 
lock table for all the data on the disks connected 
to it. An example is the Limited Lock Facility for 
the 3830 IBM disk controller. Locking is pcr- 
formed with the Lock and Proceed channel com- 
mand word. If the lock is available, the I/O pro- 
gram can continue to read or write the disk. If the 
lock is not available, the I/O program terminates 
early. When the lock is relcascd, an interrupt is 
generated so that the I/O program can bc issued 
again. Other channel command words arc sup- 
ported to relcasc a lock and read the lock table. 
A spare control unit is nccdcd to rccovcr from a 
locking unit failure. In this architccturc no mcs- 
sages arc needed for lock rcqucsts. The only 
extra price is that of communicating with the 
disk controller for a lock even in the cast of a 
buffer hit. Howcvcr, specialized h‘ardware in the 
form of sophisticated disk controllers is nccdcd. 

(2) Central Lock Manager (CLM): In this ccntral- 
ized scheme, one processor is dcsignatcd to be 
the lock manager. Other processors send all lock 
request messages to this processor. In our simu- 
lations, WC have used a 10 processor system for 
all the architccturcs. In CLM, WC designate one 
of these as the lock manager and use the other 9 
as transaction processors. This will ensure a fair 
comparison with the other architccturcs. Since 
sending mcssagcs is expensive in terms of CPU 
instructions, we will attempt to oplimizc on the 
number of mcssagcs sent by batching many lock 
rcqucsts into one message. 

(3) Primary Copy Method: (PRI): In this distributed 
scheme, the database is divided into partitions 
and each processor is given authority over one 
partition. This method gels its name from the 
analogy with the method of the same name pro- 
posed for replicated databases. A lock rcqucst 
can be handled locally if it lies in the processor’s 
partition. Otherwise, a message must be sent to 
the processor which controls the partition. The 
choice of database partitions and assignment of 
primary authority need not be static and could bc 
made by global load balancing software on the 
basis of current load and rcfcrcncc pattern. How- 
cvcr, our simulation model dots not consider 
changes in primary copy authority in order to 
maintain simplicity. In this schcmc, one can save 
on lock mcssagcs by routing transactions lo pro- 
cessors such that most of the lock rcqucsu are 

local. In section 4.1, we will study how lock 
request locality affects performance. 

(4) Asynchronous Primary Copy Method: (APRI): 
In the PRI scheme, one cannot batch messages 
because the time interval between a processor 
sending two messages to another processor is too 
large and thus them is a degradation in response 
time. In PRI, lock requests are synchronous. 
However, if the lock rcqucsts are asynchronous, 
batching would be possible. In the APRI scheme, 
a processor sends a message containing a lock 
request and continues processing assuming that it 
will get the lock. If a negative response is 
received, then the transaction must be aborted. 
At commit time, the transaction waits until it gets 
all responses to its lock requests. It commits suc- 
cessfully if it gets all its locks, otherwise, it is 
aborted. This is similar to optimistic concurrency 
control, except that the serializability check is 
not postponed till commit time; as soon as any 
negative response is received to a lock request 
the transaction is abort& 

2.1. Previous Work 
[YU 85a], [YU 85b] have studied the performance 

of SD architectures. [YU 85b] conccntratcs on a distri- 
buted pass-the-buck locking protocol that is used by IMS 
to synchronize locking in a SD environment. They have 
shown that this protocol dots not work beyond 8 proces- 
sors, because of increase in contention due to increase in 
buck cycle time. Our distributed protocols, PRI and 
APRI are limited only by the bus bandwidth and have no 
such inherent limitation. [YU 85a] studies a model simi- 
lar to our CLM, but there is no study of message batch- 
ing to improve performance. [REUT 841 proposes a 
range of SD architccturcs, but there is no performance 
study. The main contribution of this paper is to compare 
SE, SN and SD architectures with uniform assumptions. 
We are not aware of any paper in existing literature 
which does that. 

3. The Simulation Model 
In turn, we discuss the architecture, the file system, 

the workload, the concurrency control algorithm and the 
buffer cache and logging aspects of our simulation 
model. In the last sub-s&on, WC will describe the 
qucucing model we used. 

3.1. The Machine Architectures 
To make a fair comparison between SD, SE and 

SN, WC have used the same system paramclers in both 
cnvironmcnts whcncvcr this assumption is realistic. The 
paramctcrs are summarized in Table 1. The default value 
shown in the table has been used in the simulation runs, 
howcvcr, for particular runs, we have used diffcrcnt 
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values from those in Table 1. These will bc noted wher- 
ever they occur. 

The choice of parameter values has been 
influenced by the fact that the ultimate goal of our pro- 
ject is to study the viability of using the SPUR architcc- 
ture (a SE type architecture) being dcvelopcd here at 
Berkelcy[HILL 861 as a transaction processor. We 
assume that page-size is 4 Kbytcs. @u-speed has been 
set to 4 MIPS for every processor. We use a uniform dis- 
tribution for disk-random-access-time with a mean of 20 
ms. Log pages are written onto the log disks in a 
sequential manner. The parameters for sequcnlial log 
writes are disk-rot-time, the rotation time for a disk, 
diskgage-access-time, the time rcquircd to read/write a 

Table 1: Svsi 
Machine 

Parameters 
page-size 
cpu-speed 

disk~random~access~time 

disk-rot-time 

diskgage-access-time 
network-speed 

instger-message 
number of cpus 
number-of-disks 

number of buffers 
System I 

Parameters 
jile-system type 

batch-s;e 
lock-request-locality 

par degree 
Workload 

Paramctcrs 
accessJlattern 
no-ofgages 

write access ratio 
no if terminals - - 

think time 

Dbase-Size 
inst per page 

Concufrcncy Cc 
Paramctcrs 

timeout-interval 
delay 

mult degree 

I Parameters 
rametcrs 

Default Value 
4 Kbytes 
4 MIPS 

20 ms mean, 
uniform distribution 

16 ms mean, 
uniform distribution 

1.333 ms 
10 Mb/see / 30 Mbytc/sec 
5000 inst/mcssage (mean) 

10 
80 

40000 
.amcters 

Default Value 
random/sensibly split 

1 
0.1 

Kamctcrs 
Default Value 

random, 80-20 rule 
10 (mean) 

0.5 
4000 

20 see mean, 
cxp distribution 

2,000,OOO granules 
12,500 (mean) 

uol Paramelcrs 
Dcfaul t Value 

10 set 
0 see 
400 

page. 
For the SN system, we have used 10 Mb/set as the 

speed of the local area network. For the SD system, we 
have used 30 Mbyte/set as the speed of the network 
which connects all the disks and all the processors. The 
higher speed is necessary, since all the pages accessed by 
transactions must be read across the network. We 
assume that messages are cxponcntially distributed with 
a mean size of 1000 bits. Hence, the time each message 
requires for transmission on the network will be distri- 
buted exponentially with mean lOOO/network speed. In 
our simulations, we have observed network &lizations 
of only 5 - 30% with these parameters. Therefore, the 
network related parameters am not critical in determin- 
ing system performance. The number of CPU instruc- 
tions required to process a message is assumed to be 
exponentially distributed with mean instger-message, 
and this parameter has been set to 5000 
instructions/message. Our simulation results are sensi- 
tive to this parameter and it is one of the main factors 
which determines the difference in performance between 
the SN/SD architectures and SE. We will study the sensi- 
tivity to message cost of SD results in section 4.3. We 
have already studied this for SN and SE in [BHID 881. 
We have used a 10 processor system for each of the 
architccturcs as the basic configuration in which to run 
our experiments because SPUR[HILL 861 currently runs 
out of memory bandwidth with 10 four MIP processors. 
By limiting the size of the SE system, we avoid having to 
explicitly model memory and bus contention. For the 
CLM variation of the SD architecture, we designate one 
processor out of 10 as the lock manager and use the other 
9 to process transactions. Also, we have used a total of 
80 database disks. In both the SE and SD architectures 
these are all attached to the bus and can be accessed 
from any processor. In SN, 8 are attached to each of the 
10 processors. In addition to the database disks, we use 
4 to 6 dcdicatcd disks for the SE and SD logs, and one 
disk per processor for the SN log. The number of SE/SD 
log disks is chosen based on workload paramctcrs, so 
that the log disks will not become a bottlcncck. 

3.2. The Software System Model 
For both the SD and SE architcclure we used a 

random file model, in which consecutive disk blocks of a 
file are distributed randomly over all the disks. This 
choice is motivated by our desire to explore intra-query 
parallelism. We wish to maximize the probability that 
multiple sub-plans can be processed in parallel without 
bottlenecking on accessing a single disk drive. For the 
SN architecture we have a “sensibly split” file model 
whcrc a file is split bctwccn the disks of some number of 
processors (this number would dcpcnd on how many 
files a query acccsscs, the pattern of access etc.) such 
that the degree of parallelism achieved for a query is n. 
It should be noted that achieving a parallelism of exactly 
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n depends on knowing a lot about the application and the 
set of pages accessed by a query. The portion of a file on 
one single processor has disk blocks allocated randomly 
on all disks attached to it. Note, that if the random file 
model were to be used for SN a single file would be dis- 
tributed over all the nodes. Thus a single query would 
very likely be executed on all nodes and would result in 
poor performance. For CLM and APRI, the default mes- 
sage batch size used is 1. For PRI and APRI, the default 
lock request locality used is 0.1. This value represents 
the case where lock requests are randomly scattered over 
the entire database. Par degree is the degree of parallel- 
ism which is to be used i?r executing each query and indi- 
cates the number of parallel sub-queries into which each 
query is dccomposcd. We have varied Par-degree in 
section 4.4, elsewhere we use a value of 1. 

3.3. The Workload Model 
We have assumed that transactions access pages 

according to Zipf’s Law with 80% of the acccsscs going 
to 20% of the database. The 20% frequently accessed 
pages are distributed uniformly over all the disks and 
also over all the processors for SN. Table 1 also 
describes the other workload paramctcrs. No-ofgages 
is the total no of pages that each transaction accesses 
which we assume to have an exponential distribution 
with mean 10. This makes our transactions about the 
same size as the TPl benchmark[GRAY &4] which does 
5 to 10 I/OS. The number of instructions spent in pro- 
cessing a page is cxponcntially disuibutcd with a mean 
of instgergage, which is set to 12,500. Write/access 
ratio is the ratio of number of pages updated to total 
number of pages accessed. Conscqucntly, each page is 
updated with this probability. No of terminals is the 
number of terminals which are a&chid to the system 
from which users enter queries. Think-Time is the time a 
user thinks before submitting a new query after he gets a 
reply to his previous query. This is assumed to have an 
exponential distribution with mean 20 sec. Dbase-Size is 
the size of the database in terms of the number of lock- 
able objects. WC have set Dbase-Size to 2,000,OOO 
granules. This leads to a low lock contention probability. 
Elsewhere ([BHID 881, [BHID 87]), we have studied 
workloads with high lock contention. Our results indicate 
that in high lock contention environments, performance 
is similar to environments where response constraints are 
present. 

If response time constraints are spccihcd for a par- 
ticular workload, then the No of terminals parameter is - - 
varied until the maximum number of terminals that can 
bc supported with the given response time constraints is 
found. Thus getting one data point for a given workload 
with response time constraints can involve a number of 
simulation runs. 

3.4. The Concurrency Control Model 
We use dynamic 2-phase locking as the con- 

currency control method. We chose to implement 
timeouts instead of deadlock dctcction since global 
deadlock detection is diflicult to model in SN. The 
timeout mechanism seemed to work very well and the 
number of restarts was negligible. If timeout occurs, all 
locks are released and the transaction is restarted after a 
time equal to delay. In APRI we use asynchronous lock- 
ing. This means that transactions do not wait for lock 
requests to complete and continue processing. If the lock 
is busy, the transaction must be aborted. 

MuIt-degree is the number of active transactions 
in the system at any time. 

3.5. The Buffer Cache and Logging Model 
For SD, we have used the buffer purge scheme 

described in section 2. For SN and SE, we have imple- 
mented a database cache scheme[ELHA 841. We have 
assumed a database cache large enough to contain all the 
updated pages of a transaction. This cache is used to 
hold all pages that are (1)currentIy “pinned” for reading 
by an active transaction (2)“dirty” pages that have been 
updated by an active transaction and (3) frequently 
accessed pages which are not in categories (1) and (2). 
When a transaction commits, its updates are not written 
to the database. Instead, the buffers are marked as 
“updated” and the actual database update is deferred 
until the buffer replacement policy needs to reclaim an 
“updated” buffer. A list of available buffers (those not in 
categories (1) and (2) above) is maintained as a FIFO 
queue. Every time a buffer is accessed it goes to the tail 
of the FIFO queue. At commit time updated pages are 
written to the log. This use of page level logging 
corresponds to the tactic used by some commercial sys- 
tems, and we plan to experiment with record level log- 
ging in the future. In our model of SE/SD we have to 
multiplex the log among 4 to 6 dcdicatcd disks to prevent 
the log from becoming a bottleneck. In SN, we keep one 
log disk per processor. In case of a timeout, the transac- 
tion is aborted. In this scheme, aborting a transaction is 
simple; all its updates are discarded. WC have not 
modellcd the recovery from system or media failure. The 
default cache size is 40000 buffers. 

3.6. The Simulation Queueing Model 
In this section, we describe the queueing simula- 

tion model for both the SE, SN and SD architectures. 
Figure 1 shows the qucueing model for the SE architec- 
ture. A transaction waits at the Ready Queue until the 
number of active transactions in the system falls below 
the dcgrce of multiprogramming that has been chosen. 
Then it enters the system and is split into a number of 
sub-queries equal to the degree of parallelism. Each 
sub-query is modclled as a list of pages to be processed. 
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Fig. 1 

Shared Everything Qucucing Model 

The number of pages assigned to each sub-query is 
exponentially distributed with a mean equal to the avcr- 
age number of pages read by the transaction divided by 
the degree of parallelism. Each sub-query is an indepen- 
dent job in the qucucing network and cycles bctwccn the 
disk queue, using the disk, the CPU queue, using the 
CPU and the blocked qucucs until all its pages have been 
processed. There is a single queue for all CPUs since the 
scheduler assigns a job to the next available CPU. CC is 
the node where a sub-query generates concurrency con- 
trol requests. The blocked queue holds sub-queries 
which are waiting for locks. For each page in its mad or 
write set, a sub-query first goes to CC node to get a lock 
and then to the BUF node to get a buffer. If the particular 
page is already in the cache, the sub-query goes dircetly 
to the CPU queue. Othcrwisc, it goes to the disk queue 
for a particular disk, then it goes to the CPU qucuc to 
process that page. After all its pages have been pro- 
cesscd a sub-query job goes to the Join node and waits 
until all its sibling sub-queries arrive. Then all locks are 
released, the log record containing all the updated pages 
is written, and the transaction job goes back to the termi- 
nal queue. If a sub-query times out while waiting for a 
lock, it goes to the Join and Release Locks node where it 
waits for its sibling sub-qucrics. Each sibling is located 
and forced to this node. Then, they rclcasc all locks and 
the transaction is restarted after a time delay. However, 
the read and write lists of the transaction are prescrvcd 
so that the same access pattern is repeated on restart. 

L------------~----_-__J 

Fig. 2 a 
Shared NothinQucueing Model 

Figure 2a shows the queucing model for the SN 
architccturc and a detailed view is shown for one of the 
10 identical processors in Figure 2b. The Ready Queue 
and the SPLIT node have the same functions as in SE. In 
this case, however, there are 10 separate processors 
which communicate over a network. Each transaction 
has a home node which is the node at which it entered 
the system and the splitting of a transaction into sub- 
queries takes place at the home node. For each sub- 
query, a message is sent to its execution site to start up 
the sub-query. This cormsponds to a model of the filc- 
system where files are split such that each query is exe- 
cutcd on n processors, where n is the dcgrce of parallel- 
ism for that simulation run. Each sub-query joins the 
CPU queue at the Net Out node and consumes the CPU 
time nccdcd to send a message. On arriving at its dcsti- 
nation, the sub-query joins the CPU qucuc at the Net In 
node and consumes the CPU time spent in processing the 
arriving message. For each page, the order of access is 
CC, BUF, disk and CPU as in the previous arehitceture. 
When all its pages have been processed, a sub-query 
moves to the Join and Commit node, when: it waits for 
all its siblings to complete. The log record for the query 
is then written and all locks are released. There are a 
total of 3 rounds of messages exchanged: (1) a message 
is sent from the home node to each exceution site con- 
taining the subquery to be executed (2) a message is sent 
from each execution site to the home node indicating that 
subqucry processing is done and it is ready to commit (3) 
after the home node gets a “done” mcssagcs from all 
sites a “commit” mcssagc is sent to each of them. Thus, 
if degree of parallelism is n, the number of messages 
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To Join & Commit 

To Join & Rcleam 

Fig. 2b 
A Shared Nothifi’gocesssor 

exchanged is 3*n. This protocol is appropriate when 
only one query is performed at each site. If multiple 
queries were simulated, we would riced a general 2- 
phase commit protocol with additional messages. In 
case a timeout occurs at any of the execution sites while 
waiting for locks, an “abort” message is sent to the home 
node, which in turn sends an “abort” message to each of 
the other execution sites. Jobs which timeout go to the 
Join and Release Locks node, where they wait for their 
siblings, and once all their siblings have been forced to 
this node, their locks are released and they are restarted 
after time d&y. 

The SD simulation model resembles tbc SN model 
except for lock requests and the fact that disks are 
shared. In CLM, a job wanting to make a lock request 
waits at a batch node until batch_size other jobs collect. 
Then these jobs are bundled up and the CPU message 
cost for sending the mcssagc is paid. The message goes 
out over the network and is rcceivcd by the lock manager 
processor. The cost of rccciving the message is paid and 
each lock request is proccsscd. The lock manager pro- 
cessor maintains 9 separate ba& nodes, one for each 
transaction processor. After waiting at the right bufch 
node for batch-size other responses, they arc packed into 
a message, the CPU cost of sending is paid and the mes- 
sage goes to the network queue. The lock response is 
received by the requesting processor after paying the 
CPU cost of receiving a mcssagc. After a transaction 
commits, a lock release message is sent to the lock 
manager. PRI and APRI have similar simulation models 
except that the lock requests go to appropriate transac- 
tion processors, instead of a lock manager processor. In 
APRI, another difference is that a job spins off a lock 
request and continues processing. If the response 
received is negative, the transaction gets aborted. Each 
job waits for all its lock responses to come back after it 
has linishcd all its processing and just before it gets to 
the Join and Commil node. After a transaction commits a 
lock release message is sent to the all processors from 

which locks were requested. These release messages are 
batched along with the lock request messages. In DIS, 
the lock requests go to the disk controller. In all the SD 
architectures, we route transactions to the processor with 
the least number of active transactions. This helps in 
balancing processor loads. 

The simulator is written is C and is about 10,000 
lines of code. Each data point is obtained by a simula- 
tion run lasting for l,OOO,OOO events. A transition from 
one queue to another is counted as an event. Results 
were observed to very stable at this point. Each run lasts 
90 minutes on a Sequent Balance machine and simulates 
60 - 75 minutes of system time. 

4. Simulation Results 
Our main emphasis is on transaction throughput in 

the three architectures. As mentioned in section 2, the 
two main techniques we will study for improving SD 
performance are batching of messages and increasing 
lock request locality. In section 4.1 we will study the 
effect of lock request locality on PRI and APRI. In scc- 
tion 4.2 we will show the effects of batching lock request 
messages for CLM and APRI. In section 4.3 we will 
compare the four SD variations, namely, DIS, CLM, PRI 
and APRI for different message costs. We will choose 
the best SD architecture from section 4.3 and compare it 
with SN and SE for different degrees of intra-query 
parallelism in section 4.4. The simulations in sections 
4.1, 4.2 and 4.3 were performed without response time 
constraints. In section 4.4, we will use response time 
constraints to compare SE, SN and SD. 

4.1. Effect of Locality 
In a SD architecture, a transaction can be executed 

on any processor unlike SN. An optimal processor allo- 
cation policy for transactions must reconcile two somc- 
times conflicting objectives: (1)In both PRI and APRI, 
efforts can be made to route transactions to that proces- 
sor which holds the lock authority for most of the 
granules accessed by the transaction (assuming that 
accesses can be predicted with some degree of accu- 
racy). This saves two messages for each local lock 
request. (2)The second objective is to try to balance the 
load on all the processors. 

In this experiment, we will try to estimate the pay- 
off from trying to maximize lock request locality. This 
will help a designer in making the correct trade-off 
between balancing processor loads and maximizing lock 
locality. Also, if a designer knows roughly how much 
locality can be obtained from his workload, he can judge 
whether APRI/PRI is better than CLM which has no con- 
cept of locality. Changing the access pattern enables us 
to change the locality ratio. 

Figures 3 and 4 show the throughput and response 
time respectively against the locality ratio (fraction of 
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local lock requests) for PRI and APRI. The number of 
terminals is held constant at 6000. PRIlOOOi stands for 
the PRI architecture with a message cost of 1000 instruc- 
tions and PRI5OOOi stands for PRI with message cost of 
5ooO; similarly for APRI5OOOi. The gain for the 
PRIlOOOi curve is small because 1000 is too small a 
message cost to cause a substantial overhead. However, 
the gain for the PRI5OOOi curve is substantial(almost 
100%) as the locality is increased from 0.1 to 0.9. 
Notice, however, that the PRI5OOOi curve is concave 
upwards, which means that most of the gain is between 
localities 0.5 and 0.9. It might be hard to achieve such 
high localities. Figure 4 shows that the response time for 
PRISOOOi improves with better locality. The gains for 
APRI are approximately the same as for PRI. However, 
the APRI curve is convex upwards which means that 
most of the gains are in the 0.1 to 0.5 locality region. 
This degree of locality is easier to achieve and thus 
APRI shows better locality gains than PRI. 

4.2. Effect of Batching 
In this experiment, we will study the effects of 

batching Iock messages, for CLM and APRI. Message 
batching would bc a loser for PRI since the interval 
between lock rcqucsts from a processor A to a processor 
B is of the order of 50 ms. Since lock requests are syn- 
chronous, and each transaction makes 10 requests, for a 
degree of batching of 4 this will add about 750 ms to the 
response time. This kind of overhead would make it 
impossible to keep the subsccond response time con- 
straints that are necessary for most transaction systems. 
In APRI the lock requests are asynchronous and the 
batching overheads are lower. In CLM, all lock requests 
go to the central lock manager; thcrcforc, the period 
between requests is only 5 ms. 

Figures 5 and 6 show throughput and response 
time as a function of degree of batching for four varia- 
tions of CLM. In the curve labels, 1OOOi stands for a 
CLM with message cost of 1000 instructions and 5000i 
stands for a message cost of 5000 instructions. 6OOOt and 
4000t stand for 6000 and 4000 terminals respectively. As 
the degree of batching increases all the four curves in 
Figure 5 show large throughput gains and then flatten 
out. After batching degree 9 the curves fall slightly 
showing that the advantage of rcduccd mcssagc costs are 
ovcrcomc by the disadvantage of waiting for mom lock 
requests. At higher batching dcgrces, the mcssagc costs 
become insignihcant, thcrcforc, the curves for 1OOOi and 
5000i merge together. For lower number of terminals, 
the throughput is smaller but the rcsponsc time is better. 

Figures 7 and 8 show throughput and rcsponsc 
time as a function of degree of batching for two varia- 
tions of APRI. Comparing tigurcs 5 and 7, APRI pcr- 
forms about the same as CLM at higher batching 
degrees, but performs much better than CLM at lower 

batching degrees. 

Batching has two effects: (1) reducing the message 
cost for lock requests by a factor equal to the batching 
degree. (2) increasing the response time due to waiting 
for a batch to form. We performed an experiment to iso- 
late and observe the effect of (2). In figure 9 CLMl 
stands for CLM with degree of batching 1. CLM9 stands 
for CLM with degree of batching 9. However, the 
CLMl curve represents an architecture where the mes- 
sage costs are 1/9th of those of CLM9. For example, the 
CLMl point at X coordinate = 2000 was taken by using 
a message cost of 2000/9 = 222 instructions. Thus, both 
CLMl and CLM9 have the same message costs; how- 
ever, CLM9 has to pay the penalty for batch waiting 
times. Thus CLM9 has a throughput about 20 
transactions/set below CLMl and a response time which 
is about 2 seconds higher. 

4.3. Effect of Message Cost 
In this section, we compare the c&et of CPU mes- 

sage cost on the different SD architectures. Figures 10, 
11 and 12 show the throughput, response time and the 
CPU utilization for various SD variations against the 
CPU cost of sending a message. This is the number of 
instructions it takes a processor to send a message. We 
assume that it takes the same number of instructions for 
the receiving processor to receive a message. For DIS, 
however, the “CPU cost of messagcs” represents the 
extra number of CPU instructions needed to communi- 
cate lock requests to the disk controller. This is the only 
extra overhead in DIS, since, all the architccturcs need to 
communicate with the disk controller to read/write 
pages. This number is typically small. That is why the 
DIS curve is plotted only between 500 and 2500. CLM9 
stands for the CLM variation with a batch size = 9 and 
CLMl stands for batch size = 1. Similarly for APRIl 
and 9. In Figure 12, the CPU utilizations of the central 
lock manager and those of the other processors are dif- 
ferent; for example, CLMl-elm curve shows the lock 
manager utilization of the CLMl architecture and simi- 
larly the CLMl-all curve shows the utilization of the 
other processors. Figure 10 shows that CLMl is very 
sensitive to message cost. Figure 1Zexplains why: since 
the lock manager processor spends most of its time pro- 
cessing messages, the CLMl-elm curve rises very fast 
and is very near saturation. Thus the central lock 
manager becomes the bottleneck in this system. This 
shows that it is worthwhile to keep the CPU utilization of 
the central lock processor low, perhaps by using a faster 
processor. For CLM9, the CLM9-all curve rises very 
fast also, but is farther away from saturation, so CLM9 
shows very good performance. If the workload is 
hctcrogcnous, with few infrcqucntly running transactions 
which make many lock rcqucsts and most transactions 
which make few, the presence of the lock intensive tran- 
sactions will dcgradc the rsponsc time of the short 
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transactions. CLM thus is an unstable design because of 
the presence of a potential hot spot. 

The best performers are DIS, APR19 and CLM9. 
The good performance of DIS is intuitively expcctcd. 
However, DIS requires extra hardware in the form of a 
disk controller which is able to keep track of locks. 
Therefore, it is reassuring to know that both CLM9 and 
APR19 can match the performance of DIS very closely. 
APRI9 is better than CLM9 in terms of response time 
and almost the same in terms of throughput. PRI does 
worse than both APR19 and CLM9 but bcttcr than 
CLMl. As explained bcforc, the lock messages in PRI 
cannot be batched because the degradation in response 
time would be too high. Also notice that APRII does 
better than PRI specially at higher message costs. The 
gap between APRIl and PRI is the gain of asynchronous 
locking over synchronous locking at low lock contcn- 
tions (The probability of conflict on making a lock 
request is approximately 0.0007 with these parameters). 
For higher lock contention workloads, APRI should per- 
form worse; we have not investigated this effect yet. 

4.4. Comparison of SE, SN and SD 
In this section, we compare the effect of parallel- 

ism on SD, SE and SN. From the previous section 
(ligurcs 10 and 11). WC see that DIS, CLM9 and APRI9 
have approximately similar performance. Both DIS and 
APRI9 have the same throughputs as CLM9 but the 
response times are about 20% bcttcr. Since DIS needs 
special hardware it would be unfair to use it to compare 
SD against SN and SE. The APRI architecture has an 
additional locality parameter which is hard to estimate. 
Therefore we chose the CLM9 variation (central lock 
manager with message cost of 5000 and batching degree 
9) for this experiment. We asssume the same message 
cost for SN: 5000 instructions. The default parameters 
from Table 1 were used for this set of simulations. Fig- 
ures 13 and 14 show throughput and response time 
against the degree of parallelism for the different archi- 
tcctures in a response time constrained environment. 
The response time constraint is that 90 % of the transac- 
tions must have a response time of less than 1 second. 
This is a fairly tight constraint since the average total 
stand-alone cxccution time of a single uansacrion is 
0.233 seconds. For SD, WC have also plotted another 
curve with the rcsponsc constraint changed to 90% uan- 
sactions respond within 2 seconds. This curve is labcllcd 
as SD-CLM9-2scc and the one with the 1 second con- 
straint is labcllcd as SD-CLM9-lscc. SN and SE curves 
are plotted with a 1 second constraint only and are 
labcllcd SN, SNl and SE. We have plotted two varia- 
tions of SN. For the curve labcllcd SN, sub-queries 
belonging to the same transaction were executed on dif- 
ferent processors and hence had to pay a message cost 
for 3*n messages if n is the dcgrec of parallelism. For 
the curve labcllcd SNl, all the subqucries belonging to a 

transaction were executed on one processor and thus no 
message cost had to be paid. To obtain each data point 
in figures 13 and 14, a number of simulation runs were 
required. Each simulation run was taken with a given 
number of terminals and depending on whether the con- 
straint is achieved or not the number of terminals is 
increased or decreased for the next run. A binary search 
type technique was used to find the maximum number of 
terminals that can be supported with the given constraint. 

At low degrees of parallelism, SD-CLM9 has 
response times of the order of 2 seconds. Therefore, 
almost no transactions can meet the 1 and 2 second dead- 
lines. The points not shown for the SD curves should be 
taken to be almost 0. Thus intra-query parallelism is 
necessary for good SD performance when tight response 
constraints are present. Note that the SD curves lie in 
between the curves for SN and SE. In fact if the 
response constraint is relaxed to 2 seconds, SD (the SD- 
CLM9-2sec curve) performs almost as well as SE for 
high degrees of parallelism. 

In Figure 13, the SN curve goes up initially as 
parallelism helps to increase the number of transactions 
making the response time constraint. After parallelism 
degree 3, however, the cost of messages starts to drive 
the curve down. SNl does much better than SN at higher 
degrees of parallelism because no message cost has to be 
paid. However, in a real SN architecture, it would be 
hard to achieve SNl, since it involves localizing the data 
of every transaction on one processor. Therefore the per- 
formance of SN would lie somewhere between SN and 
SNl. Note that SE beats both SN and SD. In Figure 16, 
SE and SN are about 30 transactions/set apart at a 
degree of parallelism of 1 and this gap increases at 
higher degrees of parallelism. Both SE and SD (with 1 
second response time) achieve their best performances of 
253 transactions/set and 228 transactions/see at a degree 
of parallelism of 5, while SN achieves its best pcrfor- 
mance of 179 transactions/set at a parallelism degree of 
3. Thus, there is a 41 % performance gap between SE 
and SN and a 22% gap between SN and SD. SNI and 
SE are about 30 transactions/see apart at all the degrees 
of parallelism. 

From Figure 13 it is clear that parallelism 
improves performance substantially for all three archi- 
tectures. For SE, the performance jumps 55 % between 
parallelism degrees 1 and 5. For SN, the jump is smaller, 
about 35 % between dcgrces 1 and 3 and then throughput 
falls bctwccn degrees 3 and 5. Parallelism reduces the 
response time and hence more transactions satisfy the 
response time constraint of 1 second. It also helps to bal- 
ance the loads on the CPUs and the disks, and to achieve 
higher utilizations. 

Figure 14 shows the average transaction response 
time. Response times increase as the degree of parallel- 
ism is increased, because, at higher degrees of 
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parallelism more terminals arc supported and throughput 
increases. The fact that the throughput increases shows 
that even though avcragc rcsponsc time incrcascs, the 
variation in response time dccrcascs (more transactions 
make the 1 second deadline) for higher dcgrces of intra- 
query parallelism. 

5. Conclusions 
We have dcscribcd a study of Ihc performance of 

three multiprocessor archilcclurcs, namely, Shared 
Nothing( Shared Everything and Shared 
Disks(SD), in transaction processing. We first studied 
four different variations of SD which altcmpted to optim- 
ize on the number of lock rcqucst messages sent. We stu- 
died the performance effects of two mechanisms for 
doing this: batching for CLM and APRI and increasing 
lock request locality for PRI and APRI. We observed 
that DIS, APRI with batch size 9 and CLM with batch 
size 9 had roughly comparable performance and were 
bdler than Ihe other variations. WC used CLM with 
batch size 9 to compare SD against SN and SE and to 
study the effect of the degree of intra-transaction paral- 
lelism. We observed that SD performs as well as the 
optimistic SN version (which assumes that each transac- 
tion is local to a single processor) and much belter than a 
reasonably pessimistic version. Thus SD is a viable 
architecture in cases where it is not possible to partition 
the database so that the data for most transactions is local 
to one processor. However, we also observed that CLM 
with batch size 9 needs high dcgrces of parallelism to 
meet response time constraints. 

We observed that SE outperformed SN and SD by 
a fairly wide margin. Howcvcr, SE has two disadvan- 
tages: 

(1) It is limited by bus and memory bandwidths. 
(2) It has a potcnlial single point of failure: 
the shared memory. 

Therefore, SE is Ihe architcclurc of choice for cnviron- 
mcnls where the transaction throughput rcquircmcnts are 
within the bus/memory Icchnological barrier and failures 
can bc handled in other ways. One way to do this would 
be to connect up SE nodes in a SN configuration. SD 
would be the archi@.xure of choice if throughput 
requirements were LOO large to USC SE. Designing a SD 
transaction processing system is casicr than designing a 
SN system because the database partitioning problem 
does not arise. SD, of course, has its own technological 
limitations, namely bus bandwidth. However, this bus is 
less loaded as compared to an SE bus, since, the SE bus 
must handle memory uaffic in addition to disk traffic. 
Thus, Lhc choice of an archilcclurc for a transaction pro- 
ccssing system depends on throughput rcquircmcnts, 
availability requirements, workload considcradons and 
hardware technoIogics available. 
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