An Analysis of Three Transaction Processing Architectures

Anupam Bhide
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720.

Abstract

In this paper, we investigate the issues involved in
using multiprocessors for high performance transaction
processing applications. We use a simulation model to
compare the performance of three different architectures,
namely, Shared Everything, Shared Nothing and Shared
Disks. In Shared Everything, any processor can access
any disk and all memory is shared. In Sharcd Nothing,
neither disks nor memory is shared. In Sharcd Disks,
any processor can access any disk, but cach has its own
private main memory. We first study four different vari-
ations of the Shared Disks architecture which attempt to
minimize lock request messages. We will then compare
the best Shared Disks variation with Shared Nothing and
Shared Everything. In addition, we study how intra-
query parallelism affects the performance of the archi-
tectures.

1. Introduction

Applying multiple processors to database prob-
lems has been an active arca of rescarch. In the database
machine area, several rescarch prototypes as well as a
few commercial products have becen built. However,
most of these systems have attempted o accelerate long
running queries such as joins. Less atlention has been
directed by researchers to efficient transaction processing
on multiprocessors. The design of multiprocessors for
high speed transaction processing is the main focus of
our research, There has been a lot of debate in the tran-
saction processing industry about the suitabaility of

This research was sponsored by the Defense Advanced Research
Projects Agency under contract N00039-84-C-0089, the Ammy
Research Office under contract DAAL03-87-G-0041, and the National
Science Foundation under contract MIP-8715235.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial adventage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires & fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

various architectures for transaction processing. This
debate has focussed on issues such as reliability and per-
formance. We attempt to provide answers about the per-
formance of these architectures by comparing them with
uniform assumptions.

In this paper, we will concentrate on three issucs:

(1) The main aim of this paper is to compare the per-
formance of three different architectures,
namcly, Shared Everything(SE), Shared
Nothing(SN) and Shared Disks(SD) with uni-
form assumptions. In a SE system, all disks are
directly accessible from all processors with the
same access times and all memory is shared.
Examples of this architecture include the
Sequent Symmetry system[SEQU 86], the
Firefly, the IBM 3090 series of machines and
SPUR[HILL 86]. In an SN architecture, each
disk is connected to a single processor and each
processor has its own private memory. A collec-
tion of SUNs on an Ethernct exemplifies this
architecture. Additionally, a TANDEM TXP sys-
tem is essentially an SN architecture{BART 81]
with extra hardware for high availability. In a
SD architecture any processor can access any
disk but each processor has its own private
memory. IBM provides the "multi-system data
sharing facility” [STRI 82] as a feature of its
IMS database system which is the ability to cou-
ple different systems running IMS in a SD
configuration.

(2) Inabrute force implementation of a SD architcc-
turc almost every lock request necds two mes-
sages. Since messages are expensive, the SD
architecture is unattractive unlcss this can be
avoided. We will study different variations of
SD which try to reduce the number of messages
and compare their performance. We will then
compare the best SD architecture with SN and
SE.

(3) We also study the effect of intra-query parallel-
ism for SE, SN and SD. In a SN system parallel-
ism in a query is structural in nature. Each pro-
cessor must run the portion of the query plan
relevant to the database on its disks. Therefore,

339



the degree of parallelism in a query plan is deter-
mined by the distribution of data. The optimal
distribution of data is a very hard problem since
one needs to balance the load on all the proces-
sors and yet not cause 00 many messages.
However, in a SE systcm, a query can be split
into n pieces, for any n > 1 and any processor
can run each of the n pieces. There is no cost for
switching jobs between processors and the only
cost paid for parallelism is the cost of starting up
a new process. However, the extensibility of the
SE architecture is limited by the bandwidth
offered by the latest bus and memory technol-
ogy. The SD architecture offers an intermediate
range of flexibility between SE and SN. Unlike
SN, any portion of the query plan can be exe-
cuted by any processor. However, once a portion
of the query plan is assigned to a processor, reas-
signing it for load balancing reasons involves
sending messages. Therefore, we will not con-
sider reassignment for SD. Also, like SN,
transmission of quecry picces to processors
involves sending messages. One of the most
interesting design decisions in ecach of the archi-
tectures is the degree of intra-query parallelism
one should aim for. For SE and SD, this decision
can be made at query optimization time. For SN,
the decision must be made at data distribution
time.

In [BHID 87] and [BHID 88] we have studied SE
and SN under various workload conditions and com-
pared their performance. In [BHID 88], we studied how
SN and SE performed as lock contention was varied. In
[BHID 87], [BHID 88] we studied different types of
workloads and reported that results for both the above
issues were substantially different for two different
classes of workloads:

(a) either high lock contention or strict response con-
straints present
(b) low lock contention and no responsc constraints

The main obscrvation we made was that high lock
contention or strict response constraints magnify
both the performance gap between SE and SN and
the performance gains due to parallelism. In addi-
tion, we comparcd the effect of load imbalances on
both architecturcs and studicd aiternative file
organizations, We showed that a scquential file
system creates disk hot spots when intra-query
parallelism is present and a parallcl file system is
necessary. In this paper, we will first compare the
performance of different variations of the SD
architecture and then compare the best one with
SN and SE.

We have built discrete event simulators for all the
architectures. In section 2, we will discuss the different

340

variations of the SD architecture. The simulators and the
input workloads that we have used are discussed in the
section 3, In section 4, we then present a variety of simu-
lation results.

2. The SD Architectures

In this section, we will describe the different varia-
tions of the SD architecture which attempt to minimize
the cost of lock request messages. The SD architecture
bears a distinct resemblance to a fully replicated data-
base system as far as the design of a locking protocol.
Locking schemes for SD architcctures may be classified
based on two criteria: (1) centralized or distributed (2)
synchronous or asynchronous,

Another issue for SD architectures is how to keep
buffers consistent. Each processor in an SD system has
its own buffer pool. Consistency must be maintained
between the different buffer pools, and between the
buffer pools and the database version on disk. One easy
solution is to purge the updates of a transaction from the
buffer pool after commit: the transaction is committed
when the log is written out, but locks are not released
until all the updated pages are written out on disk. Thus
the database always contains the latest copy. Pages are
always read from disk and there are no buffer hits. We
call this the buffer purge method. Another alternative
would be to design a buffer invalidation protocol which
marks as invalid all buffer pages on a processor updated
by another processor. The problem is that a buffer invali-
dation protocol can result in a large number of messages,
unless it is well-designed.

One method to reduce messages would be to route
transactions to processors such that locality of reference
is maximized. However, a study of IMS traces [REUT
84] has shown that there is a portion of data (10-15%)
which is referenced in 80% of all update lock requests.
Updates to such high-traffic data would result in
notifications to almost all the processors. Thus it is not
clear whether an invalidation protocol would do better
than a purge protocol and any such invalidation protocol
must be carefully designed.

Buffer invalidation protocols are:

(1) hard to optimize
(2) sensitive to hot spots

Therefore, for the purpose of this papcr, we have choscn
to use the simpler buffer purge protocol only. We will
study the design of buffer invalidation protocols and the
tradeoffs between them and buffer purge in a future
paper. In this paper, we have considered a database size
which is fairly large: 8 Gigabytes (2,000,000 pages of
4Kbytes each). Even with a 80-20 access pattern and 160
Mbytes (40,000 buffers of 4 Kbytes each, 4000 on each
processor) of total buffer space the best buffer hit ratio
we can hope for is of the order of 0.08. Therefore, the



effect of no buffer hits in the SD architccture variations
should have small performance effects.

We will now describe the four SD variations that
we intend to study.

(1) Disk Controller Locking (DIS): In this distri-
buted scheme, each disk controller maintains a
lock table for all the data on the disks connected
to it. An example is the Limited Lock Facility for
the 3830 IBM disk controller. Locking is per-
formed with the Lock and Procced channel com-
mand word. If the lock is available, the I/O pro-
gram can continuc to read or write the disk. If the
lock is not available, the I/O program terminates
carly. When the lock is relecascd, an intcrrupt is
generated so that the I/O program can be issued
again. Other channcl command words arc sup-
ported to release a lock and rcad the lock table.
A spare control unit is nceded to recover from a
locking unit failurc. In this architecture no mes-
sages are needed for lock requests. The only
extra price is that of communicating with the
disk controller for a lock even in the case of a
buffer hit. However, specialized hardware in the
form of sophisticated disk controllers is nceded.

Central Lock Manager (CLM): In this central-
ized scheme, onc processor is designated to be
the lock manager. Other processors send all lock
request messages to this processor. In our simu-
lations, we have used a 10 processor system for
all the architectures. In CLM, we designate one
of these as the lock manager and use the other 9
as transaction processors. This will ensure a fair
comparison with the other architectures. Since
sending messages is expensive in terms of CPU
instructions, we will attempt to optimize on the
number of messages sent by batching many lock
requests into one message.

Primary Copy Mcthod: (PRI): In this distributed
scheme, the database is divided into partitions
and each processor is given authority over one
partition, This mcthod gets its name from the
analogy with the method of the same namc pro-
poscd for replicated databascs. A lock request
can be handled locally if it lies in the processor’s
partition. Otherwise, a messagc must be sent to
the processor which controls the partition. The
choice of database partitions and assignment of
primary authority nced not be static and could be
made by global load balancing software on the
basis of current load and reference pattern. How-
cver, our simulation modcl docs not consider
changes in primary copy authority in order to
maintain simplicity. In this scheme, onc can save
on lock mcssages by routing transactions (o pro-
cessors such that most of the lock requests are

@)

€)

341

local. In section 4.1, we will study how lock
request locality affects performance.

Asynchronous Primary Copy Method: (APRI):
In the PRI scheme, one cannot batch messages
because the time interval between a processor
scnding two messages to another processor is too
large and thus there is a degradation in rcsponse
time. In PRI, lock requests are synchronous.
However, if the lock requests are asynchronous,
batching would be possible. In the APRI scheme,
a processor sends a message containing a lock
request and continues processing assuming that it
will get the lock. If a negative response is
received, then the transaction must be aborted.
At commit time, the transaction waits until it gets
all responses to its lock requests. It commits suc-
cessfully if it gets all its locks, othcrwise, it is
aborted. This is similar to optimistic concurrency
control, except that the scrializability check is
not postponed till commit time; as soon as any
negative responsc is reccived to a lock request
the transaction is aborted.

Q)

2.1. Previous Work

{YU 85a], [YU 85b] have studicd the performance
of SD architcctures. [YU 85b] concentrates on a distri-
buted pass-the-buck locking protocol that is uscd by IMS
to synchronize locking in a SD environment. They have
shown that this protocol docs not work beyond 8 proces-
sors, because of increase in contention due to increase in
buck cycle time. Our distributed protocols, PRI and
APRI are limited only by the bus bandwidih and have no
such inhcrent limitation. [YU 85a] studics a modcl simi-
lar to our CLM, but there is no study of message batch-
ing to improve performance. [REUT 84] proposes a
range of SD architectures, but there is no performance
study. The main contribution of this paper is to compare
SE, SN and SD architectures with uniform assumptions.
We are not aware of any paper in existing litcrature
which docs that.

3. The Simulation Model

In turn, we discuss the architccture, the file system,
the workload, the concurrency control algorithm and the
buffer cache and logging aspects of our simulation
model. In the last sub-scction, we will describe the
queucing modcl we uscd.

3.1. The Machine Architectures

To make a fair comparison between SD, SE and
SN, we have uscd the same systcm parameters in both
cnvironments whenever this assumption is realistic. The
paramcters are summarized in Table 1. The dcfault value
shown in the table has been used in the simulation runs,
however, for particular runs, we have uscd different



values {rom those in Table 1. These will be noted wher-
ever they occur.,

The choice of parameter valucs has been
influenced by the fact that the ultimate goal of our pro-
ject is to study the viability of using the SPUR architec-
ture (a SE type architccture) being developed here at
Berkelcy[HILL 86] as a transaction processor. We
assume that page_size is 4 Kbytes. Cpu_speed has been
set to 4 MIPs for every processor. We use a uniform dis-
tribution for disk_random-access-time with a mean of 20
ms. Log pages are wrilten onto the log disks in a
sequential manner. The parametcrs for sequential log
writes are disk_rot_time, the rotation time for a disk,
disk_page-access-time, the time requircd to read/write a

Table 1: System Parameters
Machine Parameters
Parameters Dcfault Value
page_size 4 Kbytes
cpu_speed 4 MIPs
disk_random_access_time 20 ms mcan,
uniform distribution
disk_rot_time 16 ms mean,
uniform distribution
disk_page_access_time 1.333 ms
network_speed 10 Mby/sec / 30 Mbyte/sec
inst_per_message 5000 inst/message (mean)
number_of cpus 10
number_of disks 80
number_of buffers 40000
System Parameters
Parameters Dcfault Value
file_system_type random/scnsibly split
batch_size 1
lock_request_locality 0.1
par degree 1
Workload Paramcicrs
Parameltcrs Dcfault Value
access_pattern random, 80-20 rule
no_of pages 10 (mcan)
write_access_ratio 0.5
no_of terminals 4000
think_time 20 scc mean,
cxp distribution
Dbase_Size 2,000,000 granules
inst_per page 12,500 (mean)
Concurrency Control Parameters
Parameters Dcfault Value
timeout_interval 10 sec
delay 0 scc
mult degree 400

page.

For the SN system, we have used 10 Mb/sec as the
speed of the local area network. For the SD system, we
have uscd 30 Mbyte/sec as the speed of the network
which connects all the disks and all the processors. The
higher speed is nccessary, since all the pages accessed by
transactions must be read across the nctwork. We
assume that messages are exponcntially distributed with
a mean size of 1000 bits. Hence, the time each message
requires for transmission on the network will be distri-
buted exponentially with mean 1000/network_speed. In
our simulations, we have observed network utilizations
of only 5 - 30% with these parameters. Therefore, the
network related parameters are not critical in determin-
ing system performance. The number of CPU instruc-
tions required to process a message is assumed to be
exponentially distributed with mean inst_per_message,
and this parameter has been sct to 5000
instructions/message. Our simulation results are sensi-
tive to this parameter and it is one of the main factors
which determines the difference in performance between
the SN/SD architectures and SE. We will study the sensi-
tivity to message cost of SD results in scction 4.3. We
have alrcady studied this for SN and SE in [BHID 88].
We have used a 10 processor system for each of the
architectures as the basic configuration in which to run
our experiments because SPUR[HILL 86] currently runs
out of memory bandwidth with 10 four MIP processors.
By limiting the size of the SE system, we avoid having to
explicitly model memory and bus contention. For the
CLM variation of the SD architecture, we designate one
processor out of 10 as the lock manager and use the other
9 to process transactions. Also, we have used a total of
80 database disks. In both the SE and SD architectures
these are all attached to the bus and can be accessed
from any processor. In SN, 8 are attached to each of the
10 processors. In addition to the database disks, we use
4 to 6 dedicated disks for the SE and SD logs, and one
disk per processor for the SN log. The number of SE/SD
log disks is choscn based on workload paramcters, so
that the log disks will not become a bottleneck.

3.2, The Software System Model

For both the SD and SE architecture we used a
random file model, in which consecutive disk blocks of a
file are distributed randomly over all the disks. This
choice is motivated by our desire to cxplore intra-query
parallclism. We wish to maximize the probability that
multiple sub-plans can be processed in parallel without
bottlenecking on accessing a single disk drive. For the
SN architecture we have a "sensibly split" file model
where a file is split between the disks of some number of
processors (this number would depecnd on how many
files a query accesses, the pattern of access etc.) such

“that the degree of parallelism achieved for a query is n.

342

It should be noted that achicving a parallelism of exactly



n depends on knowing a lot about the application and the
sct of pages accesscd by a query. The portion of a file on
one single processor has disk blocks allocated randomly
on all disks attached to it. Note, that if the random file
model were to be used for SN a single file would be dis-
tributed over all the nodcs. Thus a single query would
very likely be executed on all nodes and would result in
poor performance. For CLM and APRI, the default mes-
sage batch size used is 1. For PRI and APRI, the default
lock request locality usced is 0.1. This value represcnts
the case where lock requests are randomly scattered over
the entire database. Par_degree is the degree of parallel-
ism which is to be used in executing each query and indi-
cates the number of parallel sub-queries into which each
query is deccomposed. We have varied Par_degree in
section 4.4, elsewhere we use a value of 1.

3.3. The Workload Model

We have assumed that transactions access pages
according to Zipf's Law with 80% of the acccsses going
to 20% of the database. The 20% frequently accessed
pages are distributed uniformly over all the disks and
also over all the processors for SN. Table 1 also
describes the other workload paramcters. No_of pages
is the total no of pages that cach transaction accesses
which we assume to have an exponential distribution
with mean 10. This makes our transactions about the
same size as the TP1 benchmark[GRAY 84] which does
5 to 10 I/Os. The number of instructions spent in pro-
cessing a page is exponentially distributed with a mean
of inst_per_page, which is set to 12,500. Write/access
ratio is the ratio of number of pages updated to total
number of pages accessed. Consequently, cach page is
updated with this probability. No_of terminals is the
number of terminals which are attached to the system
from which users enter queries. Think_Time is the time a
user thinks before submitting a new qucry after he gets a
reply to his previous query. This is assumed to have an
exponential distribution with mean 20 sec. Dbase_Size is
the size of the database in terms of the number of lock-
able objects. We have sct Dbase_Size to 2,000,000
granules. This leads to a low lock contention probability.
Elsewhere ([BHID 88], [BHID 87]), we have studied
workloads with high lock contention. Our results indicate
that in high lock contention environments, pcerformance
is similar to environments where response constraints are
present.

If response time constraints are specified for a par-
ticular workload, then the No_of terminals parameter is
varied until the maximum number of terminals that can
be supported with the given response lime constraints is
found. Thus getting one data point for a given workload
with response time constraints can involve a number of
simulation runs.

343

3.4. The Concurrency Control Model

We use dynamic 2-phase locking as the con-
currency control method. We chose to implement
timeouts instcad of deadlock dctection since global
deadlock detection is difficult to model in SN. The
timeout mechanism scemed to work very well and the
number of restarts was negligible. If timeout occurs, all
locks are released and the transaction is restarted after a
time equal to delay. In APRI we use asynchronous lock-
ing. This means that transactions do not wait for lock
requests to complete and continue processing. If the lock
is busy, the transaction must be aborted.

Mult_degree is the number of active transactions
in the system at any time.

3.5. The Buffer Cache and Logging Model

For SD, we have used the buffer purge scheme
described in section 2. For SN and SE, we have imple-
mented a database cache scheme[ELHA 84]. We have
assumed a database cache large enough to contain all the
updated pages of a transaction. This cache is used to
hold all pages that are (1)currently "pinned” for recading
by an active transaction (2)"dirty" pages that have been
updated by an active transaction and (3) frequently
accessed pages which are not in categories (1) and (2).
When a transaction commits, its updates are not written
to the database. Instead, the buffers are marked as
"updated" and the actual database update is deferred
until the buffer replacement policy needs to reclaim an
"updated” buffer. A list of available buffers (those not in
categories (1) and (2) above) is maintained as a FIFO
queue. Every time a buffer is accessed it goes to the tail
of the FIFO queue. At commit time updated pages are
written to the log. This use of page level logging
corresponds to the tactic used by some commercial sys-
tems, and we plan to experiment with record level log-
ging in the future. In our modcl of SE/SD we have to
multiplex the log among 4 to 6 dedicatcd disks to prevent
the log from becoming a bottleneck. In SN, we kecp one
log disk per processor. In case of a timeout, the transac-
tion is aborted. In this scheme, aborting a transaction is
simple; all its updates are discarded. We have not
modelled the recovery from system or media failure. The
default cache size is 40000 buffers.

3.6. The Simulation Queueing Model

In this section, we describe the gueueing simula-
tion modcl! for both the SE, SN and SD architectures.
Figure 1 shows the queueing model for the SE architec-
ture. A transaction waits at thc Ready Qucue until the
number of aclive transactions in the system falls below
the degree of multiprogramming that has been choscn,
Then it enters the system and is split into a number of
sub-queries equal to the degree of parallelism. Each
sub-query is modelled as a list of pages to be processed.



Terminals

A

Ready Ducue 1
Join and i:‘:
Disk Queue 1 Release
T L Commit
' 1
SPLIT 1
A A X
e Disk Quenc {120 CPUl Queue
BUF l l |
1 ]
9)\@ 4 I I 'O ™~
10
lServers
h
O 1 Timeout ! No
Block Queue P
Fig. 1

Shared Everything Quecucing Model

The number of pages assigned to cach sub-query is
exponentiaily distributed with a mean equal to the aver-
age number of pages read by the transaction divided by
the degree of parallclism. Each sub-query is an indepen-
dent job in the qucucing network and cycles between the
disk queue, using the disk, the CPU qucue, using the
CPU and the blocked qucues until all its pages have been
processed. There is a single quecue for all CPUs since the
scheduler assigns a job to the next available CPU. CC is
the node where a sub-query generaics concurrency con-
trol requests. The blocked qucue holds sub-queries
which are waiting for locks. For cach page in its read or
write set, a sub-query first gocs to CC node to get a lock
and then to the BUF nodc to get a buffer. If the particular
page is already in the cache, the sub-query gocs directly
to the CPU queue. Otherwise, it gocs to the disk qucue
for a particular disk, then it goes to the CPU queuc to
process that page. Afier all its pages have been pro-
cesscd a sub-query job goes to the Join node and waits
until all its sibling sub-querics arrive. Then all locks are
released, the log record containing all the updated pages
is written, and the transaction job goes back to the termi-
nal qucue. If a sub-query times out while waiting for a
lock, it goes to the Join and Release Locks node where it
waits for its sibling sub-qucrics. Each sibling is located
and forced to this node. Then, they rclcase all locks and
the transaction is restarted after a time delay. However,
the rcad and write lists of the transaction are prescrved
so that the same access patiern is repeated on restart.

344

Join
and
Commit

Netwark

Fig.2 a
Shared NothingQucucing Model

Figure 2a shows the queucing model for the SN
architecturc and a detailed view is shown for one of the
10 identical processors in Figure 2b. The Ready Queue
and the SPLIT node have the same functions as in SE. In
this case, however, there arc 10 scparate processors
which communicate over a network. Each transaction
has a home node which is the nodc at which it entered
the system and the splitting of a transaction into sub-
queries takes place at the home node. For each sub-
query, a message is sent to its execution site to start up
the sub-query. This corresponds to a model of the file-
system where files are split such that each query is exe-
cuted on n processors, where n is the degree of parallel-
ism for that simulation run. Each sub-query joins the
CPU qucue at the Net Out node and consumcs the CPU
time nceded to send a message. On arriving at its desti-
nalion, the sub-query joins the CPU queue at the Net In
node and consumes the CPU time spent in processing the
arriving message. For each page, the order of access is
CC, BUF, disk and CPU as in the previous architccture.
When all its pages have bcen processed, a sub-query
moves to the Join and Commit node, where it waits for
all its siblings to complete. The log record for the query
is then written and all locks arc released. There are a
total of 3 rounds of messages exchanged: (1) a message
is sent from the home node to cach exccution site con-
taining the subquery to be exccuted (2) a message is sent
from each execution site to the home node indicating that
subquery processing is done and it is rcady to commit (3)
after the home node gets a "done” messages from all
sites a "commit" message is sent to cach of them. Thus,
if degree of parallelism is n, the number of messages



To Network Queue

ToJoin & Commit

= To Join & Release

From SPLIT /

Fig. 2b
A Shared NothiRgocesssor

exchanged is 3*n. This protocol is appropriatc when
only one query is performed at each site. If multiple
queries were simulated, we would nced a general 2-
phase commit protocol with additional messages. In
case a timeout occurs at any of the execution sites while
waiting for locks, an "abort" mcssage is sent to the home
node, which in turn sends an "abort" message to cach of
the other execution sitcs. Jobs which timeout go to the
Join and Release Locks node, where they wait for their
siblings, and once all their siblings have been forced to

this node, their locks are released and they are restarted

after time delay.

The SD simulation model rescmbles the SN model
except for lock requests and the fact that disks are
shared. In CLM, a job wanting to make a lock request
waits at a batch node until batch_size other jobs collect.
Then these jobs are bundled up and the CPU message
cost for sending the message is paid. The message goes
out over the network and is rcceived by the lock manager
processor. The cost of receiving the message is paid and
each lock request is processed. The lock manager pro-
cessor maintains 9 scparate batch nodes, onc for each
transaction processor. After waiting at the right batch
node for batch_size other responses, they arc packed into
a message, the CPU cost of sending is paid and the mes-
sage goes to the nctwork qucue. The lock response is
received by the requesting processor after paying the
CPU cost of receiving a mecssage. After a transaction
commits, a lock rclease message is sent to the lock
manager. PRI and APRI have similar simulation models
except that the lock requests go to appropriatc transac-
tion processors, instcad of a lock manager processor. In
APRI, another difference is that a job spins off a lock
request and continues processing. If the response
received is negative, the transaction gets abortcd. Each
job waits for all its lock responses to come back aficr it
has finished all its processing and just before it gets to
the Join and Commit node. Aficr a transaclion commits a
lock release message is sent to the all processors from

345

which locks were requested. These release messages are
batched along with the lock request messages. In DIS,
the lock requests go to the disk controller. In all the SD
architectures, we route transactions to the processor with
the least number of active transactions. This helps in
balancing processor loads.

The simulator is written is C and is about 10,000
lines of code. Each data point is obtained by a simula-
tion run lasting for 1,000,000 events. A transition from
one qucue to another is counted as an event. Results
were observed to very stable at this point. Each run lasts
90 minutes on a Sequent Balance machine and simulates
60 - 75 minutes of system time.

4. Simulation Results

Our main emphasis is on transaction throughput in
the three architectures. As mentioned in section 2, the
two main techniques we will study for improving SD
performance are batching of messages and increasing
lock request locality. In section 4.1 we will study the
effect of lock request locality on PRI and APRI. In sec-
tion 4.2 we will show the effects of batching lock request
messages for CLM and APRI. In scction 4.3 we will
compare the four SD variations, namely, DIS, CLM, PRI
and APRI for different message costs. We will choose
the best SD architecture from section 4.3 and compare it
with SN and SE for different degrees of intra-query
parallelism in section 4.4. The simulations in sections
4.1, 4.2 and 4.3 were performed without response time
constraints. In section 4.4, we will use response time
constraints to compare SE, SN and SD.

4.1. Effect of Locality

In a SD architecture, a transaction can be exccuted
on any processor unlike SN. An optimal processor allo-
cation policy for transactions must reconcilc two some-
times conflicting objectives: (1)In both PRI and APRI,
efforts can be made to route transactions to that proces-
sor which holds the lock authority for most of the
granules accessed by the transaction (assuming that
accesses can be predicted with some degree of accu-
racy). This saves two messages for each local lock
request. (2)The second objective is to try to balance the
load on all the processors.

In this experiment, we will try to estimate the pay-
off from trying to maximize lock request locality. This
will help a designer in making the correct trade-off
between balancing processor loads and maximizing lock
locality. Also, if a designer knows roughly how much
locality can be obtained from his workload, he can judge
whether APRI/PRI is better than CLM which has no con-
cept of locality. Changing the access patiern ¢nables us
to change the locality ratio.

Figures 3 and 4 show the throughput and responsc
time respectively against the locality ratio (fraction of



Figure 3

P§IJ Effect of Primary Copy Locality

273
-}11- P — FPRI1000i
23 ﬁs

B /
//

Z

50001

173 //////

1231 v v
0.100.200.30 0.40 0.50 0.60 0.70 0.80 0.90

Locality Ratio

Figure 5

&Mz Effect of Message Batching

2381 + —hc;

CLMS

Ll a-E-Lh-ar]

138

/——:ewsmmzem
_ CLM1000i:4000t

0001-4000t

38
1.0 6.0 110
Message Baiching

Figure 7

16.0 21.0
Degree

278
E -ty APRI}000i-6000t
' // __#—+ APRIS000i-6000t
u228
b
t

1784

128

1.0 6.0 11.0 16.0 210
Message Batching Degree

Figure 4
PRI Effect of Primary Copy Locality
R
N
21X
ENIN
: N
T
(A IRNEN
| N
N \@oom
T -APRIS000i
3 oy —— PRI1000i
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Locality Ratio
Figure 6
i &;L, M: Effect of Message Batching
R
i1
5
n
s
(9
T .
1 1.M5000i-6000t
m LM1900i-6000¢
( .M50G0i-4000t
é = CLM 10001 -4000%
0
10 6.0 11.0 16.0 210
Message Batching Degree

Figure 8 _
1dé]’RI: Effect of Message Batching

_+ APRI1000i-6000

0w~ 0Fedd Qu3oTwe X
o

\\\\—\/# APRIS000i-6000t

1 v v
1.0 6.0 11.0 16.0 21.0
Message Batching Degree

346



local lock requests) for PRI and APRI. The number of
terminals is held constant at 6000. PRI1000i stands for
the PRI architecture with a message cost of 1000 instruc-
tions and PRIS000i stands for PRI with mcssage cost of
5000; similarly for APRI5000i. The gain for the
PRI1000i curve is small because 1000 is too small a
message cost to cause a substantial overhcad. However,
the gain for the PRIS000i curve is substantial(almost
100%) as the locality is increased from 0.1 to 0.9.
Notice, however, that the PRISO00i curve is concave
upwards, which means that most of the gain is between
localities 0.5 and 0.9. It might be hard to achicve such
high localities. Figure 4 shows that the response time for
PRIS000i improves with better locality. The gains for
APRI are approximately the same as for PRI, However,
the APRI curve is convex upwards which means that
most of the gains are in the 0.1 to 0.5 locality region.
This degree of locality is easicr to achieve and thus
APRI shows better locality gains than PRI,

4.2. Effect of Batching

In this experiment, we will study the effects of
batching lock messages, for CLM and APRI. Message
batching would be a loscr for PRI since the interval
between lock requests from a processor A 10 a processor
B is of the order of 50 ms. Since lock requests are syn-
chronous, and each transaction makes 10 requests, for a
degree of batching of 4 this will add about 750 ms to the
response time. This kind of overhcad would make it
impossible to kecep the subsecond response time con-
straints that are necessary for most transaction systems.
In APRI the lock requests are asynchronous and the
batching overheads are lower. In CLM, all lock requests
go to the central lock manager; thcrefore, the period
between requests is only 5 ms.

Figures 5 and 6 show throughput and response
time as a function of degree of batching for four varia-
tions of CLM. In the curve labels, 1000i stands for a
CLM with message cost of 1000 instructions and 5000i
stands for a message cost of 5000 instructions. 6000t and
4000t stand for 6000 and 4000 terminals respectively. As
the degree of batching increases all the four curves in
Figure 8 show large throughput gains and then flatten
out. After batching degree 9 the curves fall slighdy
showing that the advantage of reduccd mcssage costs are
overcome by the disadvantage of waiting for more lock
requests. At higher batching degrees, the message costs
become insignificant, therefore, the curves for 1000i and
5000i merge together. For lower number of tcrminals,
the throughput is smaller but the responsc time is better.

Figures 7 and 8 show throughput and responsc
time as a function of degree of batching for two varia-
tions of APRI. Comparing figurcs 5 and 7, APRI per-
forms about the same¢ as CLM at higher baiching
degrees, but performs much better than CLM at lower

347

batching degrees.

Batching has two effects: (1) reducing the message
cost for lock requests by a factor equal to the batching
degree. (2) increasing the response time duc to waiting
for a batch to form. We performed an experiment to iso-
late and observe the effect of (2). In figure 9 CLM1
stands for CLM with degree of batching 1. CLM9 stands
for CLM with degree of baiching 9. However, the
CLM1 curve represents an architecture where the mes-
sage costs are 1/9th of those of CLM9. For example, the
CLM1 point at X coordinate = 2000 was taken by using
a message cost of 2000/9 = 222 instructions. Thus, both
CLM1 and CLM9 have the same message costs; how-
ever, CLM9S has to pay the penalty for batch waiting
times. Thus CLM9 has a throughput about 20
transactions/scc below CLMI1 and a response time which
is about 2 seconds higher.

4.3. Effect of Message Cost

In this scction, we compare the cffect of CPU mes-
sage cost on the different SD architectures. Figures 10,
11 and 12 show the throughput, response time and the
CPU utilization for various SD variations against the
CPU cost of sending a message. This is the number of
instructions it takes a processor to scnd a message. We
assume that it takes the same number of instructions for
the receiving processor to reccive a message. For DIS,
however, the "CPU cost of messages” represents the
extra number of CPU instructions nceded to communi-
cate lock requests to the disk controller, This is the only
extra overhead in DIS, since, all the architectures need to
communicate with the disk controller to read/write
pages. This number is typically small. That is why the
DIS curve is plotted only between 500 and 2500. CLM9
stands for the CLM variation with a batch size = 9 and
CLM1 stands for batch size = 1. Similarly for APRI1
and 9. In Figure 12, the CPU utilizations of the central
lock manager and those of the other processors are dif-
ferent; for example, CLM1-clm curve shows the lock
manager utilization of the CLM1 architecture and simi-
larly the CLM1-all curve shows the utilization of the
other processors. Figure 10 shows that CLM1 is very
sensitive to message cost. Figure 12.explains why: since
the lock manager processor spends most of its time pro-
cessing messages, the CLM1-cIm curve rises very fast
and is very ncar saturation. Thus the central lock
manager becomes the bottleneck in this system. This
shows that it is worthwhile to kecp the CPU utilization of
the central lock processor low, perhaps by using a faster
processor. For CLM9, the CLM9-all curve riscs very
fast also, but is farther away from saturation, so CLM9
shows very good performance. If the workload is
heterogenous, with few infrequently running transactions
which make many lock rcquests and most transactions
which make few, the presence of the lock intensive tran-
sactions will degrade the rsponsc time of the short



Figure 9 Figure 10
CLM: Batching vs Reduced Message Costs
250 738 Effect of Message Cost

\ 188 CEM9
240

Em \ \Q\APRII
23 ' \ gt
\\_ 88 \

N

il
/
<
va
/

(]

220 v v v CLM9 38 =CHM L
1000 2000 3000 4000 5000 500 1500 2500 3500 4500 5500
Effcctive CPU Message Cost CPU Message Cost in instructions
Figure 11 Figure 12
Effect of Message Cost Effcct of Message Cos
100 1.02 A : S CTM-clm
__+CLM1 it SN
L+ 0.92 r— N
R / l / PRI
e
g // e 0.82 4, Sy
- ot
0 J DI . L A6 -
's' {/ [AKPRIL E om2{ = i ,..‘LEM&EII“
e / ] R‘ /
T / U 0.621
1 t \ //
< !
e R . —tC 0.527 L/
(1 % Y ' \\/
4 Bis + v
H 0.42 // \\
s 0.32 ‘\
\\. PN
0 T — " 0.22 il M €bM1-all
500 1500 2500 3500 4500 5500 500 1500 2500 3500 4500 5500
CPU Message Cost in instructions CPU Message Cost in instructions
Figure 13 Figure 14
Effect %E_; I3)cgrce of Parallclism with Response Constraints  Effect of Degree of Parallclism with Response Constraints
1§ 1.25 /(*t’SD‘CLM9-2SCC
; $ H
283 § LY / i
¢ 1.05 74
T FSE T ;
h +*SD-CLM9-2sec ; 0.951
u233 = FSN 1 e
P 4/ $¥lcLmo lsec? 0.85¢
h i
/ B e e e R
1834 ¢
Y ¢ 0.651 D CLMY-Tsee
~——isN d 055 = S:E
133 . ; 0.454 v ; ;
1 2 3 4 5 1 2 3 4 5
Degree Of Parallelism Degree Of Parallclism

348



transactions. CLM thus is an unstable design because of
the presence of a potential hot spot.

The best performers are DIS, APRI9 and CLM9.
The good performance of DIS is intuitively expected.
However, DIS requires extra hardware in the form of a
disk controller which is able to keep track of locks.
Therefore, it is reassuring to know that both CLM9 and
APRI9 can match the performance of DIS very closely.
APRI9 is better than CLM9 in terms of response time
and almost the same in terms of throughput. PRI does
worse than both APRI9 and CLM9 but better than
CLM1. As explaincd before, the lock messages in PRI
cannot be batched because the degradation in response
time would be too high. Also notice that APRI1 does
better than PRI spccially at higher message costs. The
gap between APRI1 and PRI is the gain of asynchronous
locking over synchronous locking at low lock conten-
tions (The probability of conflict on making a lock
request is approximately 0.0007 with these parameters).
For higher lock contention workloads, APRI should per-
form worse; we have not investigated this effect yet.

4.4. Comparison of SE, SN and SD

In this scction, we compare the effect of parallel-
ism on SD, SE and SN. From thc previous scction
(figures 10 and 11), we see that DIS, CLM9 and APRI9
have approximately similar performance. Both DIS and
APRI9 have the same throughputs as CLM9 but the
response times are about 20% better. Since DIS needs
special hardware it would be unfair to usc it to compare
SD against SN and SE. The APRI architecture has an
additional locality parameter which is hard to estimate.
Therefore we chose the CLM9 variation (central lock
manager with message cost of 5000 and batching degree
9) for this experiment. We asssume the same message
cost for SN: 5000 instructions. The default parameters
from Table 1 were used for this set of simulations. Fig-
ures 13 and 14 show throughput and response time
against the degrec of parallelism for the diffcrent archi-
tectures in a responsc timc constrained cnvironment.
The response time constraint is that 90 % of the transac-
tions must have a response time of Iess than 1 second.
This is a fairly tight constraint since the average total
stand-alone cxccution time of a single transaction is
0.233 scconds. For SD, we have also plotted another
curve with the response constraint changed to 90% tran-
sactions respond within 2 seconds. This curve is labelied
as SD-CLM9-2scc and the onc with the 1 second con-
straint is labelled as SD-CLM9-1scc. SN and SE curves
are plotted with a 1 sccond constraint only and are
labclled SN, SN1 and SE. We have plotied two varia-
tions of SN. For the curve labelled SN, sub-queries
belonging to the same transaction were executed on dif-
ferent processors and hence had to pay a message cost
for 3*n messages if n is the degree of parailelism. For
the curve labclled SN1, all the subqueries belonging to a

349

transaction were executed on one processor and thus no
message cost had to be paid. To obtain each data point
in figures 13 and 14, a number of simulation runs were
required. Each simulation run was taken with a given
number of terminals and depending on whether the con-
straint is achieved or not the number of terminals is
increased or decreased for the next run. A binary scarch
type technique was used to find the maximum number of
terminals that can be supported with the given constraint.

At low degrees of paralielism, SD-CLM9 has
response times of the order of 2 scconds. Therefore,
almost no transactions can meet the 1 and 2 second dead-
lines. The points not shown for the SD curves should be
taken to be almost 0. Thus intra-query parallelism is
necessary for good SD performance when tight response
constraints are present. Note that the SD curves lie in
between the curves for SN and SE. In fact if the
response constraint is relaxed to 2 seconds, SD (the SD-
CLM9-2sec curve) performs almost as well as SE for
high degrees of parallclism.

In Figure 13, the SN curve goes up initially as
parallelism helps to increase the number of transactions
making the response time constraint. After parallelism
degree 3, however, the cost of messages starts to drive
the curve down. SN1 does much better than SN at higher
degrees of parallclism because no message cost has to be
paid. However, in a rcal SN architecture, it would be
hard to achieve SN1, since it involves localizing the data
of every transaction on one processor. Therefore the per-
formance of SN would lie somewhere between SN and
SN1. Note that SE beats both SN and SD. In Figure 16,
SE and SN are about 30 transactions/sec apart at a
degree of parallelism of 1 and this gap increascs at
higher degrees of parallelism. Both SE and SD (with 1
second response time) achieve their best performances of
253 transactions/sec and 228 transactions/sec at a degree
of paraliclism of 5, while SN achieves its best perfor-
mance of 179 transactions/sec at a parallelism degree of
3. Thus, there is a 41 % performance gap between SE
and SN and a 22% gap between SN and SD. SN1 and
SE are about 30 transactions/scc apart at all the degrees
of parallclism.

From Figure 13 it is clcar that parallelism
improves performance substantially for all three archi-
tectures. For SE, the performance jumps 55 % between
parallelism degrees 1 and S. For SN, the jump is smaller,
about 35 % between degrees 1 and 3 and then throughput
falls between degrees 3 and 5. Parallelism reduces the
response time and hence more transactions satisfy the
response time constraint of 1 second. It also helps to bal-
ance the loads on the CPUs and the disks, and to achieve
higher utilizations.

Figure 14 shows the average transaction response
time. Response times increase as the degree of parallel-
ism is incrcased, bccause, at higher degrees of



parallclism more terminals arc supported and throughput
increases. The fact that the throughput incrcases shows
that even though average rcsponse time increascs, the
variation in responsc timc dccreascs (more transactions
make the 1 second dcadline) for highcr degrees of intra-
query parallelism.

5. Conclusions

We have described a study of the performance of
three multiprocessor architccturcs, namely, Sharcd
Nothing(SN), Sharcd Everything(SE) and Shared
Disks(SD), in transaction proccssing. We first studied
four different variations of SD which attempted to optim-
ize on the number of lock request messages sent. We stu-
died the performance effects of two mechanisms for
doing this: batching for CLM and APRI and increasing
lock request locality for PRI and APRI. We observed
that DIS, APRI with batch size 9 and CLM with batch
size 9 had roughly comparable performance and were
better than the other variations. We uscd CLM with
batch size 9 1o compar¢ SD against SN and SE and to
study the effect of the degree of intra-transaction paral-
lelism. We obscrved that SD performs as well as the
optimistic SN version (which assumes that cach transac-
tion is local to a single processor) and much better than a
reasonably pessimistic version. Thus SD is a viable
architecture in cases where it is not possible to partition
the database so that the data for most transactions is local
to one processor. However, we also obscerved that CLM
with batch size 9 needs high degrees of parallelism to
meet response time constraints,

We observed that SE outperformed SN and SD by
a fairly wide margin. However, SE has two disadvan-
tages:

(1) It is limitcd by bus and memory bandwidths.

(2) It has a potential single point of failurc:
the shared memory.,

Therefore, SE is the architecture of choice for cnviron-
ments where the transaction throughput requircments are
within the bus/memory technological barricr and failurcs
can be handled in other ways. Onc way to do this would
be to connect up SE nodes in a SN configuration. SD
would be the architccture of choice if throughput
requirements were (oo large to use SE. Dcsigning a SD
transaction processing systcm is casicr than designing a
SN system becausc the database partitioning problem
does not arise. SD, of coursc, has its own technological
limitations, namely bus bandwidth. However, this bus is
less loaded as compared to an SE bus, since, the SE bus
must handle memory traffic in addition to disk traffic.
Thus, the choice of an architccture for a transaction pro-
cessing system dcpends on throughput rcquirements,
availability requircments, workload considcrations and
hardware technologics available.

References.
[BART 81}

[BHID 87]

[BHID 88]

[ELHA 84]

[GRAY 84]

[HILL 86]

[REUT 84]

[SEQU 86)

[STRI 82]

[YU 85a]

[YU 85b]

350

Bartlett, J.F., "A Non-Stop Kernel," Proc.
8th Symposium on Opecrating Systems
Principles, 1981,

Bhide, A., and Stoncbraker, M., "Perfor-
mance Issucs in High Performance Tran-
saction Processing Architectures” Proc.
2nd International Workshop on High Per-
formance Transaction Processing, Oct
1987.

Bhide, A., and Stoncbraker, M., "A Per-
formance Comparison of Two Architcc-
tures for Transaction Processing” Proc.
4th Intl. Conference on Data Engincering,
Feb 1988.

Elhard, K. and Bayer, R., "A Database
Cache for High Performance and Fast
Restart in Database Systems,” ACM
Trans. on Database Systems, Dec 1984,

Gray, J., et. al. " A Measure of Transac-
tion Processing Power," Datamation 1984,

Hill, M., et. al.,, "Design Decisions in
SPUR," IEEE Computer, Nov. 1986.

Reuter, A. and Shocns, K., "Synchroniza-
tion in a Data Sharing Environment,”
unpublished manuscript.

Sequent Computers, "Balance Guide to
Parallel Programming," June. 1986.

Strickland, J., et. al., "IMS/VS: An Evolv-
ing System", IBM Systems Journal 21,
4(1982).

Yu, P, et. al.,, "Modeclling of Centralized
Concurrency Control in a Multi-System
Environment,” Procecdings of the 1985
SIGMETRICS Conference on Measure-
ment and Modclling of Computer Sys-
tems, Aug 1985.

Yu, P, ct. al., "Distributed Concurrency
Control Analysis for Data Sharing,"
Proccedings of the Intl. Conference on
Management and Performance Evaluation
of Computer Systcms, 1985.



