
Extmdcd User-Dcfincd Tudcxiug
wit.h Application to Tm tual Databases

Clilford A. Lynch
Division of Library Automation

Office 1 If t.he Presiclcr~t and Universitywide Services
l.Jnivcrsity of California

Berkeley, CA 94720

Michael Stonebraker
Deparl.ment of Electrical Engineering & Computer Sciences

IJniversity of California, Berkeley
Berkeley, CA 94720

Abstract

A number of application-specific searching mechanisms,
including keyword searching in textual databases, can
he implemented naturally in a relational DIIMS us-
ing abst.rnct clat.atypes and user-defined operators. For
qur:~-y efficicucy these operators and abstract datat,ypes
must be supported by indices. A new indexing scheme
is p~.oposcd which allows 3 large class of query predi-
cAea 14~ bc evaluated using indices, including ma11y key
opc.rntors for textual dat,ahnses. The iudexing s:(heme
;11so significantly reduces the spa.ce required to store
iudcxcd textual tlat,a in a rclntioun.1 database system.

I. Illtroduc t ion

Iuformntion retrieval systems such as online library cat-
alogs, citation retrieval systems, and full-text datsb<ase
systems are usually implemented using either inverted-
file database systems or special-purpose software that
does not use a DBMS ILynch 1987). Substantial prob-
lems arise when attempts are made to use a modern
relational DBMS such as INGRES or DB2 to support
these applications. Examples of such problems are ex-
cessive disk space consumption and overly complex and
expensive queries. This paper explores the application

Permission to copy without fee all or put of this material is
granted provided that the copies are not made or distributed for
direct comercial advmntage, the VLDB copyright. notice and
the title of the publi&on and its date appear, and notice is giver
that copying is by pcnnission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, reqnims a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 306

of user-defined operators and abstract datatypes as a
means of effectively impleluenting information retrieval
(IR) applicat,ions using re1a.tiona.l DBMS technol lgy.

An abstract da.tatype (ADT) is an enca.psulated
data structure that is :Lccompanied by a set of user-
defined operat.ors with which to manipulate the ADT.
The internal itllpb~ll~elltation is concealed from its users,
who msnipula.te the ADT using its associated opera-
tors. User-defined operators can also be defined for ex-
isting (built-in) da.tn.types, 31~1 t,lnls serve as an extensi-
bi1it.y mechanism in their own right. In the early 1980s
several efforts were made t.o incorporate ADTs into
rcl Itional database syst,ems, including ADT-INGRES
[Oug et al. 19841 and RAD [Osborn k Heaven 1986).
Current research DBMSs such as POSTGRES [Stone-
braker & Rowe 19851, EXODUS [Carey & Dewitt 1985:
Carey ct al. 1986a,1986b] and STARBURST [Schwarz
et al. 1986; Lindsay et al. 19871 clearly view sys-
tem extensibility as a major goal and include mecha-
nisms to simplify the incorporation of new operators
and datatypes.

In order to make user-defined operators practical
for large, high-volume database applications, however,
appropriate secondary index structures must provide
fast access paths for query evaluation. Previous work
on indexing support for ADTs and user-defined op-
erators [Stonebraker et al. 1983a; Stonebraker 19861
showed how a variety of operators and accompanying
indices could be included in a relational DBMS. This
paper.demonstrates that the previous indexing propos-
als must be generalized in order to overcome the prob-
lems inherent in using relational DBMS technology for
IR applications.

Section 2 of the paper begins by defining keyword
searching, a common sea.rch technique for textual cl;ita
of all types. This is clone in the context of a database
design for n.n online library catalog. The space uti-
lixation and query complexity problems that arise with
a st,anclard RDBMS ‘are illustrated. Section 3 reviews
previous proposals for addressing these problems and
argues the case for user-dcfincd operat.ors as the appro-
priate method for incorporat.ing keyword :‘! ;Irching into
an RDBMS. Previous proposals for indexing such op
rlators are examined in Section 4. Sect.ion 5 develops
a new extended indexing proposal and compares t,he
resulting performance and query urilization against a
typical inverted-file DBMS, INGRES, and DB2. As a
byproduct of t.liis analysis we show that the storage sys-
tem used in 1NGRES provides major benefits for bibli-
ographic datnb‘ases compared to that of DB2. Sect,ion
G surveys reLIted user-defined opera.tors for IR applica-
t,ions that can be supported effectively by the proposed
indexing scheme.

2. Database Definition and Queries for
Keytcrm Searching

A rtFlationa1 database corresponding to a typical online
library catalog would include a relation BOOKS:

CREATE TABLE BOOKS
(BOOK- ID INTEGER,
TITLE LONG VARCHAR,
other columns) ;

and a relation conta.ining keywords from the TITLE
column of books in t,he BOOKS relation:

CREATE TABLE TITLE-KEYWORDS
(TITLE-KEYWORD vA~tcm,
BOOK-ID INTEGER);

An online catalog would include similar relations for
keywords extracted from other columns, such as subject
headings or cataloger’s notes appearing in BOOKS.

The keywords appearing in the TITLE-KEY-
WORDS relation that corresponds to a TITLE col-
umn value in the BOOKS relation are not simply all
of the words in the TITLE column value. The precise
algorithm for deriving keywords is very application-
dependent. The value in the TITLE column of
BOOKS will be in mixed case, and, therefore, the key-
words appearing in TITLEKEYWORDS will be con-
verted to all uppercase (or lowercase) to permit case-
insensitive searching. Words containing punctuation,
such as “data-base” may generate multiple keywords

(e.g., “DATA”, “BASE”, and “DhTABASE”). Vnri;lnt
spellings m2.y be accommodated by genernt.ing nlult,iple

keywords (t bus the word “colourn in a lil.lc generates
keywords “1-!OLOR” and “COLOUR”). Abbrcviat.ions
may bc expanded (e.g., “U.S.” in a title gcncrates key-
words “UNITED” and “STATES”). Some words are
suppressed because they are too common to be useful
for retrieval purposes (e.g., articles such as “THE” or
“A”).

A typical la.rge online catn.log might have four mil-
lion tuplcs in the BOOKS relation and 20 million tuples
in the ‘I’lTLE-KEYWORDS relation. For performance
reasnns, indicts would bc created on BOOKS(BOOK-
ID) 3Jld ‘l’[‘l’LE-KEY WORDS(TlTLE-KEYWORD).

The datnh‘ase requires ccJ)rsiderable disk space for
redundant information. Specifically, the DBMS does
not understand the semantics of keywords because key-
words ‘are derived from a title by an application pro-
gram external to the DBMS. These derived v&es ap-
pear once in the TITLEKEYWORDS table proper and
again in the secondary index to this relation (at least
under DB2). In addition, the need to create multiple
tables because a book title can have many keywords
creates overhead through the BOOK-ID columns nec-
es&ry to rela.te those tables to one another as well as
the need to index BOOKS OJA BOOK-ID.

Space utilization is not a problem unique to re-
lational databases. It also arises in inverted-file sys-
tems commonly used for information retrieval applica-
tions. An inverted-file implementation of the example
database would consist of book records containing a
title and all the extracted title keyterms. The title
keywords would be extracted into a B-tree index, with
each unique title keyword appearing in the B-tree ac-
companied by a list of pointers to all records containing
that keyword. An inverted-file system has no built-in
understa.nding of keywords, and thus precomptited key-
words must be stored in both data and indices. Com-
puter Corporation of America’s Model 204 inverted-file
DBMS includes an interesting but ultimately unsatis-
factory attempt to ameliorate this problem. Model 204
allows fields in records to be defined as standard keys
(both indexed and stored in the data records) or as in-
visible keys [CCA 19861. Invisible keys are indexed and
then removed from the data records. While this re-
duces space utilisation, the reduction is accomplished
at the expense of logical database integrity and con-
sistency. There is no way to update invisible key en-
tries in indices to reflect changes to the data records
from which they came since the DBMS has no means
of computing invisible key values from the remaining

307

&lds of I he dat,a record. In acltlit,ion, query evaluation
strat,egies are severely con&nined becnusc predicates
invc;lviug invisible keys can be resolved only through
reference to indicts and not by direct examination of
records sclccted by other predicates.

Howcvcr, a relational system consumes subs!,an-
tiillly more space than ‘rn inverted-file system since
BOOK-ID v&es connecting t,he multiple relations
must be stored as well. The need for indices on BOOK-
ID to provide adequate retrieval pcrformn.nce further
increnscs storn.ge overhead. Tcchniqucs such <as invisi-
ble keys will be no more &&factory iu a relational sys-
tem than they arc in an invert,ed-file system like Model
204.

The amount of spa.ce consumed is dependent on
the specifics of table storage and index data structures.
It is interest,ing to contrn.st 1NGRES and DB2 in this re-
gard. INGRES has the ability to construct primary or
secondary indices, whereas DB2 offers only secondary
indices and clustering [Selinger et al. 1979; Stonebraker
et al. 19761. Since the relations BOOKS and TlTLE
KEYWORDS each have only a single index, the IN-
GRES storage scheme allows significant space savings
by allowing these tables also to serve directly as indices.
In the case of INGRES, we assume that BOOKS is a
hash table on a primary key of BOOK-ID and that
TlTLEKEYWORDS is a B-tree on primary key of
TITLE-KEYWORD. For DB2, we assume that TITLE
KEY WORDS is clustered on TITLE-KEYWORD, and
that secondary indices exist on BOOKS(BOOK-ID)
and TITLEKEYWOKDS(TITLEKEYWORD).

DB2 does manage index storage more efficiently
than INGRES. In pa.rticular, DB2 stores each value
only once in an index, followed by a list of tuple IDS
(TIDs) identifying rows containing that value. IN-
GRES repeats the index value once for each tuple con-
taining it by storing a (value,TID) entry. In a biblio-
graphic database, some keyword values will appear tens
of thousands of times. Implementation of a compressed
storage scheme for index pages in INGRES using dif-
ferential encoding techniques would be advantageous in
bibliographic retrieval applications.

A typical user query against an online catalog is
“find all books containing the words ‘american’ and
‘history’ anywhere in the book’s title.” This translates
into the SQL query:

SELECT BOOK-ID.TITLE,other columne
FROM BOOKS, TI-TLE-KEYWORDS TKl,
TITLE-KEYWORDS TK2

W!iERE BOOKS. BOOK-ID = TKl .BOOK-ID
AliD TKl.B(NlK-ID = TKZ.BOOK..ID
AND TKl.TITLE-KEYWORD = "AMERICAN"
AMD TK2.TITLE-KRYWORD = "HlSTORY";

This is a reasonably complex query involving three
joins. In general, a user query involving n keywords
translates to an SQL query involving n + 1 joins. These
joins make the queries expensive, particularly when
more than two or three keywords are specified.

3. Previous Proposals for Iniproving
Bibliographic Databahes with
RDBMSs

A few rcscarchers have previously examined the difficul-
ties in using standard RDBMSs for bibliographic and
information retrieval applications. (Macleod L Craw-
ford 1983) survey this work. Pn.pers such as [Craw-
ford 1981; ‘laclcod & Crawford 1983, Schek 19811
discuss some of the problems in ha~,dling keywords
within the relational model a.nd recognize that in a
stand.ard relational system separate relations for key-
words are required, and consequently that keyword
queries will require joins. These papers offer few pro-
posals for resolving the problems that they identify.
[Macleod 19791 suggests some cosmetic extensions us-
ing macros to simplify query formulation and some ex-
tended string-matching operators that are akin to more
elaborate versions of the SQL LIKE operator. Such ex-
t,ended string-matching operators have also been pro-
posed in other contexts such as document processing
(Stonebraker et al. 19861. [Schek 19811 sketches a pro-
posal to enhance an RDBMS with a series of operators
that pattern match on text fields and thus allow the
searching of keywords that are appropriately encoded
within the text fields (or any other substring). This ap-
proach has been refined and implemented in the AIM-II
system [Dadam et al. 1986). These proposals are not
satisfactory solutions for keyword searching for the fol-
lowing reasons:

l Proposals for pattern-matching operators are of
little use unless indices can be defined to permit

. their rapid evaluation. However, pattern-matching
facilities are so general that the only feasible type
of index structure will be similar to those described
in [Schek 1978, 1981; Kropp et al. 19791. Such a
structure requires a very large index on arbitrary
string fragments and slow, complex access method
algorithms that match fragment patterns by se-
lecting candidate tuples through computations on
the index and then examining the tuples. Space
requirements and performance from such an index

308

will be unacceptable in a large database.

l The extrsct.ion of keywords is n. sufflcicntly com-
plex, algorit.hmically oriented process tha.t it is un-
likely to be expressed through arty rmsonable Set of
pa.tt,ern-matc]lilIg operators. At best, enormously
complex pn.tterJJs will be required which will be
computationally expensive. This problem will re-
lllilill eveJi in SystClJlS wlJiclJ IlilVe CllOUgll JJlcmory

to allow a d&abase to be memory-resiJent.

l Proposals to add Luilt-in operators specifically to
match fields that contain a keyword do not ma.ke
SCJISC since, as previously discussed, keyword ex-
traction is highly application-dependent. It is not
feasible to develop a standard keyword-matching
opera.tor that will meet the needs of textual appli-
cations.

Set-valued relations (Zaniolo 19831 offer a way to
nv&l joins. The BOOKS relation might be redefined
(using Zaniolo’s GEM notation for sets adapted for
SQL) a.s:

CREATE TABLE BOOKS
(BOOK-ID INTEGER,
TITLE LOIJC VARCHAR,
TITLE-KEYWORDS {VARCHAR},
other columns) ;

a.nd a query for books by title keyword ‘history” in the
set-valued relation would be specified as

SELECT * FROM BOOKS WHERE
"HISTORY" IN TITLE-KEYWORDS;

However, the availability of sets does not eliminate the
need to store keyterms redundantly both in the relation
proper and again in the index. Additiona,lly, proposals
for set-valued relations do not speak to an indexing
strategy for nleJJlberS of a set comprising a column value
and have not been generalized to permit set elements
that are ADTs. The indexing proposal presented here
can be readily extended to work for an RDBMS that
has been enriched to include sets as a datatype and
complements set-valued relations well.

Nested relations (Dadam et al. 1986; Schek and
Scholl 19863 can be viewed as a generalization of set-
valued relations. They could be used to provide much
the same effect as set-valued relations: the title key-
words for each title could be defined as a single-column
relation. Nested relations share with set-valued rela-

tions a high storage overhead due to the need to re-
dundantly store t,he keywords in the relation and in an
index, and again proposn.1~ for nested relations do not
fully address the indexing issue. Finally, a nested rela-
tion irril~l’nielltnt,ioJl of a large bibliogrn.phic dntab,ase
would give rise to a. database containing millions of re-
lations; this is likely to be quite cumbersome.

4. Extondcd Secondary Indices, User-
Defined Operators, and Abstract
Datatypes

Keyword derivation is a rather ad-hoc, database- and
applicalioll-specific process, best implemented by the
developer of a particular application using procedures
written in a programming la.nguage. By its na-
ture, keyword extraction is not a database primitive.
The natural and appropriate tools for this type of
application-specific extension within a DBMS are ab-
stract datatypes nnd user-defined operators. However,
to be practical, user-defined operators must be accom-
panied by secondary indices. Previous proposals re-
viewed below do not provide the necessary indexing
capability and must be generalized.

[Stonebraker et a.]. 1983a] (and subsequently
[St,onebraker 19861, which greatly extended, simplified,
n.nd generalized the proposal from the original paper)
developed a detailed scheme for defining ADTs and
user-defined operators in database systems. Perhaps
the most importCant contribution of these two papers is
their recognition that ADTs and accompanying opera-
tors must be supported by secondary indices to be vi-
able in many real-world’contexts. Without the perfor-
ma.nce such indices provide, ADTs have limited utility
as practical tools for building production applications.
Thus, a facility called e&ended secondary indices was
also proposed, which provides the following capabilities:

l The ability to create indices on ADT columns with
existing operators.

l The ability to create indices on ADT columns to
support new user-defined operators.

l The ability to create indices on non-ADT columns
(e.g., existing built-in datatypes) to support new
user-defined operators.

The proposed facility can be summarized as follows.
Note that the proposal of (Stonebraker 1986) has been
recast, from QUEL to SQL and some of the terminology
has been changed here.

309

1. AD’l’s are registered with t,he DBMS; the def-
inition iu~.ludcs t(he specifica.tion of a pa.ir of functions
to convert t.he ADT to and from cha.rncter form, which
arc used to support input and output of the ADT.

2. New opcrstors can he rctgistcred with the
DBMS. The main c<ase considered is hina.ry infix op-
erators, where one defines the datstypcs of the left-
and right-hand operands and the operator’s result, the
operator’s precedence, and the name of a function that
implements the operator.

3. Restrict.ed classes of Boolean-valued binary
operators, in which both arguments have the sa.me
datatype, may be supported through B-t,rec indices us-
ing the B-tree access method built into the DBMS. The
classes of operators that can be supported through the
B-tree access method are those that can play the same
role as the usual compa.rison operators with respect to
the datatype upon which they operate. To construct
a B-l.ree consisting of instances of a given datatype, it
is necessary to have an operator that provides an or-
dering on that datatype analogous to the 5 operator
on numeric or character datatypes. This B-tree can
be searched for entries satisfying operators analogous
to any of the operators (5, 2, =, >, <} using this
compa.rison operator. Other restricted classes of opera-
tors can bc supported through different access methods
which may be included in the DBMS. The specific re-
strictions are access-method-dependent. In this paper
we will consider only B-tree indices.

A user-defined operator class is csta.blished for B-
trees by providing a. name for the class and supplying a
list of user-defined operator names, and specifying the
correspondence between the user-defined operators and
the standard B-tree operators {<, >,’ =, 5, 2). (See
(Stonebraker 19861 for details.) Any built-in datatype
that can be ordered using the usual comparison oper-
ators (e.g., integers or strings) is assumed to have an
associated default ordering class consisting of the stan-
dard comparison operators.

A B-tree index to support a specific ordering op-
erator class can be created through the SQL statement

CREATE INDEX indez-name ON table (column)
ORDERING operator-class-name

The analog to < in operator-class-name is used to place
the values that appear in column into a B-tree struc-
ture. Subsequently, predicates of the form (column
relop value) can be supported through this B-tree index
when relop is an operator that is a member of the user-

defined ordering operator class specified in the CRE-
ATE INDEX statement. The ORDERING clause is
compatible with current query language usage in that,
if it is omit,t.ed, t#he built-in ordering operat,or class is
used when col~lmn contains a Li;ilt-in datntype known
to the DBMS, such a.s integer or character string.

Two approaches to formulating keywords with
user-defined operators are possible. N&her approach
allows useful indexing to support the operators under
the proposa.1 of [Stonebrn.ker 1986]. The first approach
uses a.11 ADT for sets of st*rings. Define a unary opera-
tor, K I,;YWORDS, on strings returning a set-of-strings
ADT containing all the keywords from the input string.
Define CONTAINS as a Boolean-valued binary opera-
tor with one ADT set-of-strings operand and one string
operand. CONTAINS is true if the string operand
is a member of the set specified by the set-of-strings
operand. Using these operands a user query such as
“find all books with the word ‘history’ in the title” can
be formulated as:

SELECT * FROM BOOKS WHERE
KEYWORDS (TITLE) CONTAINS “HISTORY” ;

The indexing proposal of [Stonebraker 19861 does
not allow rapid evalua.tion of this query for two reasons.
The two operand datatypes of the CONTAINS opera-
tor are not identica.l, and thus CONTAINS cannot be
a member of an operator class. Additionally, even if
CONTAINS could be indexed somehow, the presence
of the unary operator KEYWORDS in the WHERE
clause of the query prohibits the use of an index to
evaluate the predicate. The first objection can be over-
come by redefining CONTAINS as an operator on pairs
of sets-of-strings (where A CONTAINS B is true if ev-
ery member of B is a member of A). However, this more
general CONTAINS operator cannot be indexed using
[Stonebraker 19861 b ecause it does not induce a total
ordering on instances of the datatype sets-of-strings. to
one of the ordering operators {=, >, <, 5, 2) in any
operator class.

The second approach defines a Boolean-valued bi-
nary operator on strings, CONTAINS-KEYWORD. A
CONTAINS-KEYWORD B is true if B is a keyword
contained in the string A. With this approach, the user
request for all books with the word ‘history’ in the title
becomes the SQL query

SELECT * FROM BOOKS WHERE
TITLE CONTAINS-KEYWORD "HISTORY";

Again, the indexing proposal of IStonebraker 19861

310

provides IJO help in cvalun.ting this query. The prob-
km is t8hst the CONTAINS-KEYWORD operator is
not n.nalogous to ally of t,hc comparison operators a.nd
thus caunot be a member of a.n operator class.

5. Gcncralized Extended Secondary Indices

The kcyterm searching problem is an inst.ance of a gen-
eral retrieval problem that seems likely to arise in a
wide range of applications. One has a table with a col-
u~nn C of datatype Dl, and a unnry opera.tor U which
takes n.n argument of type Dl and returns a data.type
DB or set-of-D??. There is a B-tree operator class on
Ds?, and an index is required to evaluate predicates of
the form (U(C) opr w), where opr is a member of the
operat.or class and u is a (con&&) value of clntatype
Dd. The following extensions to the scheme described
in (Stonebra.ker 1086] a.dd the functionality necessary
to create indicts in support of this &ass of predicates.

5.1 List Datatypes

A new set of da.tntypcs called LISTS is defined. It is pro-
posed that these be built-in, rather than user-defined,
da.ta.types for the following reasons:

l Building in lists allows the DBMS to extend au-
tomatically most built-in or user-defined operators
011 other datatypes to lists of these datatypes. The
inheritence technique used to extend these opera-
tors is described below.

l The DBMS will need to understand the seman-
tics of lists in order to implement the extensions
to indexing discussed below. If lists are to be user-
defined datatypes, an ad-hoc parameter-passing
mechanism will have to be defined to support in-
dexing.

Almost everything discussed below can be accom-
plished with lists as a user-defined rather than a built-in
datatype, at the expense of less-attractive syntax and
more effort for the user in explicitly extending opera-
tors to lists.

A list is a set of zero or more instances of a spe-
cific datatype; the datatype may be a built-in datatype
or a user-defined ADT. Thus, there are datatypes
LIST-OF-INTEGER, LIST-OF-CHARACTER, LIST-
OF-REAL, etc. The syntax for defining a list encloses
its elements with braces, for example, (1, 2, 3, 4) or
{‘a,’ ‘b,’ ‘c, ’ ‘d’}. Lists of lists (of a specific type) are
permitted.

Built-in or user-defined operators 011 instances of
a given datatype extend to Ii& of that datatype as
follows. Assurlte that {z;} a.ud {yj} are lists of the
appropriate datatype.

l A u~lary operator (in functional notation) F ap-
plied to a list {z;} returns a new list-{F(z;)}.

l Any binn;,y-vn.lued operator OPR where both ar-
guments are of the sa.me datatype permits a list of
that dalatype for either or both arguments, and

{Xi} OPR {Yj} re urns a J~CW list with i *j cntrics t
(5 OPR yj}. If ‘II el I ler a.rgumcnt list is empty, tile
result is an empty list.

l The exception to the prccccding rule is that lists of
Boolean values are not permitted. While Boolean-
valued operators extend to permit lists as argu-
ments, they continue to return Boolean values. A
value of true is returned if the operator returns true
for a.ny {xi OPR yj} and false otherwise. These
rules define the operator =, when extended to lists,
to have the semantics that {Zi} = z is true if and
only if Xi = 2 for some i ; {Xi} = {Yj} is true
if y = yj for some pair (i, j). This exception
permits built-in comparison operat.ors to extend
to lists gracefully. An.alternative way of formulat-
ing the same requirement would be to allow lists of
Boolean values, and to say that when a predicate
evaluates to a list of Boolean values it is consid-
ered true if the list co&&s the value true, and
false 0111~ if all entries in the list of Boolean values
have the value false.

Through these rules all built-in arithmetic oper-
ators extend immediately to lists of integers or reals;
all comparison operators {=, >, <, 1, 5) extend to
lists of any built-in datatypes on which they are defined
(such as integers and strings). Because of the rule for
extending Boolean-valued binary operators above, if L
is a list of integers, for example, (L > X) and (L < X)
may both be true. Thus the standard comparison op
erators do not form a B-tree operator class on LIST-
OF-INTEGERS since they do not create an ordering
on these lists.

5.2 Indexing

We propose to extend the CREATE INDEX statement
to permit another parameter OPERATOR operator-

name in addition to the ORDERING parameter of
[Stonebraker 19861.

311

CREATE 1NDEX indez-name
ON t&de (column-ntzme)
OKDERING operator-clnss-,a(zme
OPERATOR operator-name

are as follows:

1. The operator-name operator must bc a unary
operat.or tllat has an argument datatypc equal to the
d;l(ntype of the co1~mn being indexed. It can return
any tla.tntype including list of a datatype.

2. If operator-nnme ret,urns an ADT, the ORDER-
ING pnramet,er must also be supplied t,o define an or-
&ring operator class for that ADT type that will be
used to build t,he index. This is ncceseary because the
DBMS must know how to order the ADT to build the
index. A nonst,n.nda.rd (user-defined) ordering opcra-
t#or class can be employed to construct a.11 index on a
built-in dafatype returned by operator-name by speci-
fying the ORDERING parameter to identify t,he IlOlb

sta.nd.ard ordering operating class. If operator-n,ame
returns a built-in datntype, the ORDER [NG pa.ram-
eter may be omitted, and the standard built-in order-
ing operator class for t(hat datatype will be used by
default to build t,lte index if such a class exists. (If
t.he DMHS does not know how to order the data.type
rcturncd by operator-name and is not instructed how
t(o do so through specification of an ordering operator
class through the ORDERING para.meter of the CRE
ATE INDEX statement, the attempt to construct the
index is terminated with an error indication.)

3. As the index is created, each value in column-
name is passed to the operator operator-name. If the
operator returns a single value, that value (along with
the TID of the relevant row) is placed in the index. If
the operator returns a Lst, then entries are placed in
the index for each element of the list, along with the
TID of the relevant row. If nul1 values are allowed in
the relation, it will be desirable to allow the operator
to return zero values (indicating that nothing is to be
stored in the index for the given tuple) or a null value
for the returned datatype, depending on the specific
application.

The choice of processing here, depending on
whether the operator returns a list, is the only point
where DBMS must understand the semantics of lists.

Jf lists are yruvialed as user-defined rather than built.in
datnt,ypcs, sollIe r7.d hoc m&hod must be used to allow

lists to be pasFed bn.ck from the operator.

MiLny ind K c:ll(.riea ~a.11 be gcncrated from a single
column value in a ~uple. Therefore, if the old and new
vnluc~ for a colun~n in a tuple being updated are made
available t,o t,he intl~~xing rolltines, significa.nt optimiza-
t ion IWLY be possible in some inst,a.nces when operator-
name returns a list. Assume 1hn.t t.he value of column-
nnme is being changed from old to new. Only those list
elements in operutor-nnme(n.ew) - operator-nam,e(old)
need to be entered into the index, a.nd only those list
elements in operator-nnme(oldj ~. operator-name(new)
need to be deleted from the index.

4. An index built through t,his construct CCLJI be
used to resolve predicates of t.he form

(operutor-ncLme(cofumn-name) relop w2lue)

where rrfop is any operator in the B-tree operator class
used to build the index (either the default ordering op-
erator class or one explicitly specified through the OR-
DERING paramet.er). Resolving the predicate is ac-
complishccl simply by looking up value in the B-tree
index that has been created on operator-name(column-
name) using the ordering operator class, This proposal
is upwardly compatible to t,he proposal in [Stonebraker
1986). If no OPERATOR p nra.meter is specified in the
CREATE INDEX statement, then the index can be
used to resolve predicates of the form (column-name
relop value) where relop is a member of the ordering
operator class specified in the ORDERING parameter.
Note that the two predicate types (column-name relop
value) and (operator-name (column-name) relop value)
cannot be supported through the same index.

SQL also permits the creation of indices using mul-
tiple columns through the syntax

CREATE INDEX indez-name ON table (col-
umnI,columnf?,...,columnk)

Specifying k-ary operators rather than unary operators
in the OPERATOR keyword of the extended CREATE
INDEX statement permits a straightforward accommo-
dation of this more general form of index construction,
thus allowing the construction of an index that can be
used to quickly evaluate predicates of the form

(operator-name(columnI,cohmn2,...,columnk) re-
lop value).

312

5.3 Apl)lzcatiolls to ;Tcytcrm Searching

One operator nc~cds t.o be defiaed to extract a.)1 key-

wo& rronl n stl~ilig:

DEFINE OPERATOR TOKEN=KEYWORDS,
ARGUMJ9ITl =CHARACTER ,
RESULT-:r.IST-OF-CHARACTER

The table TITLE-KEYWORDS then can be clilni-
11iLhY1, nlol1g wii.11 its associated index. 111 its place, an
addit~ional index on the BOOKS relation CCLJJ be built:

CREATE INDEX TITLE-KEYWORDS ON
BOOKS(TITLE) OPERATOR KEYWORDS;

Using tl1is operator, a search for all books with
titles co11tai11i11g a specified keyword (for exa.mple,
“DATABASE”) call be formulated as

SELECT * FhlJM BOOKS WHERE
KEYWORDS (TITLE) = “DATABASE” ;

Here the operator = is bci11g exte11ded a.s discussed
above to per111it a LIST-OF-CHAR.ACTER dn.tatype
011 the left and a CHARACTER datatype OJJ the riglit.
Si1’1ilarly, all books with titles contai11i11g keywords
bcgi1111i11g with the prefix “COMPUT” (“COMPUT-
ERS*, “COMPUTING”, etc.) call be reqnested by

SELECT * FROM BOOKS WHERE
KEYWORDS(TITLE) LIKE “COMPUTX” ;

5.4 Effects on Query Processing Costs

Coinpa.risons will be made a.mo11g four environments:
511 inverted-file system such as ADABAS [Software AG
1982) (wl1icl1 is commonly used in real bibliographic
retrieval systems today, n.11d thus provides a perfor-
ma11ce baseline for other i1~iple1iientatio11s); sta11dard
INGRES; sta11dard DB2; a11d a relational system in-
corporating the extensio11s proposed in this.paper. this
analysis are summ,arized in Table 1. In the analysis,
we assume that the database consists of tl1e two tables
defirled at the beginning of Section 2 for tl1e INGRES
a11d DB2 cases, a11d tl1at in the exte11ded relational case
the database co11sists of a si11gle relation with secondary
i11dex as defined in Section 5.3.

We will cornpare the 11umber of reads necessary to
evaluate queries. A hash table lookup is assumed to be
o11e read (no overflow); a B-tree lookup is assumed to
be three reads (the effects of cacl1ing i11dex blocks in the

buffer pool are ignored). Storage pa.ges arc assumed to
be 1 K. We assume that a TID or an inverted-file record
11u111ber is 4 bytes, a11d thns about 1000 TIDs fit on a
storage page. We assume that title keywords average
9 cliara.cters i11 length, a.nd that the integer values for
BOOK-IDS require 4 bytes. We .WSUJJK that a.bout 300
tuplcs from t,he TITLEKEYWORDS rekation fit on a
storage page si11ce each tuple averages 14 bytes includ-
i11g a leugtli COUJ~ for the variable-length keyword.

Co11sider a single keyword query, such as %nd all
books with t.11e word ‘p<acket’ in the title.” This trans-
lates i11to an SQJ, query:

SELECT BOOK-ID,TITLE,other columns
FROM BOOKS.TITLE-KEYWORDS WHERE

BOOKS. BOOK-ID =
TITLE-KEYWOR.DS.BOOK-ID AND

TITLE-KEYWORDS. TITLE-Kk:YWOR.D =
“PACKET” ;

in sta11dard DB2 or INGRES, a11d i11to the query

SELECT BOOK-ID,TITLE.other columns FROM
BOOKS WHERE KEYWORDS (TITLE) = “PACKET” ;

in the extc11ded relatio11al system.

Assume that there axe n books containing the key-
word ‘packet” in the title. For the inverted-file systeln,
the query requires one i11dex lookup (3 reads), n/1000
reads to obtain the inverted list, a11d n reads to ac-
tually fetch the records, for a total of 3 + n/1000 +
n reads. For INGRES, one index lookup on TITLE
KEYWORDS is required (3 reads), followed by n/300
page reads to obtain all of the tuples a11d BOOK-IDS;
n hash table lookups are then required against the
BOOKS relation to obtain the actual records, for a to-
tal of 3 + n/300 + n reads. If differental encoding is
used to store the TITLEKEYWORDS relation in un-
exte11ded INGRES, query cost is equivalent to that of
the inverted-file system.

For DB2, the situation is much worse. One index
lookup (3 reads) and n/300 reads of tuples in TITLE
KEYWORDS are needed to obtain BOOK-IDS. Each
of the n BOOK-IDS must then be looked up (at tl1ree
reads per lookup) in the BOOK-ID index to BOOKS.
After each BOOK-ID is looked up, the corresponding
tuple from BOOKS must be read. The total cost is 4n
+ n/300 + 3 reads.

With the proposed extension, DB2 requires only 3
+ n/lOOO + n reads, as does INGRES with differen-

313

t.ial cncodi~~g on the secondary index built through the
extcndcd indexing mechanism. Without differential en-
coding, the performance of INCRES with the proposed
extension is unaltered.

Consider a two-keyword query, such as “find all
books with the words ‘computer’ and ‘art’ appearing
in the title.” This turns into an SQL query like

SELECT BOOK-ID,TITLE.other columns
FROM BOOKS b’HERE
KEYWORDS(TIT~.E) = ~~ARTI’ AND
KEF :‘;‘ORDS (TITLE) = “HISTORY ’ ;

in the ext~encled RDBMS. The query for the standard
DBMS is idenr,ical in structure to the example query
at the beginning of the paper. Assume that there are
12,000 books that have a title containing the keyword
COMPUTER i)Iid 17,000 t,hat have a title containing
the keyword ART, aud assume that there are 40 books
where the keywords COMPUTER and ART both ap-
pcnr in the title. In analyzing staudard INGRES and
DB2 we will assume (optimistically) that the query
planner chooses the most selective predicate as its ac-
cess path and tha.t there is sufficient memory to main-
tain one p<art of the join in memory.

In an inverted-file system like ADABAS, this query
would require two ;Ildex lookups (one for each keyword)
a.nd the reading into memory of two record pointer
lists, one of J2 pages and one of 17 pages. These two
lists of pointers would be intersected to find the records
containing both keywords, and the 40 resulting record
pointers would be used to read 40 records. The total is
75 reads.

INGRES will perform one lookup and 40 page
reads to load the tuples in TITLEKEYWORDS satis-
fying TITLEKEYWORD=“COMPUTER” into mem-
ory, and then perform an index lookup and 56
page reads to run through the tuples in TITLE
KEY WORDS satisfying TITLEKEY WORD=“ART”,
matching each against the incore tuples from the first
predicate. This will result in 40 tuples, each of
which has to be read from BOOKS for a total of 142
reads. If differential encoding is used to store TITLE
KEYWORDS, then the performance is equivalent to
the inverted-file system in terms of I/O as long as the
tuples satisfying the most selective predicate can be
maintained entirely in memory. It is worth noting, how-
ever, that the processing done by INGRES to resolve
the join will be much more CPU-intensive than the
pointer lit intersection performed by the inverted-file
system. In addition, if the smallest set of tuples cannot

be maintained in memory, the I/O cost for 1NGRES
without differenlial encoding becomes 1927 reads; with
differential encoding it is 271 rea.ds.

Aga.in, the situation with DB2 is much worse. Ba-
sically the same procc-:.ing logic is followed, but it re-
quires 100 reads instead of 40 to obtain the resuIta.nt
tuples froul BOOKS. 1~1 addition, an extra read is re-
quired after each index lookup to start the sequential
scan of t.uples in TITLE-KEY WORDS. Thus, DB2 will
require 264 reads.

For the proposed extended relational dntabase,
this query would require 1 index lookup (3 reads) fol-
lowed by reading 12 index pages that identify 12,000
rows in BOOKS (assuming that the extended RDBMS
selects the optimal access path). These rows would
be read and scanned to resolve the iudex. The total
is 12,015 reads. The renson that this performs badly,
however, is that the evaluation strategy for the Boolean
AND is not appropriate. If t,he DBMS knew the strat-
egy of looking up the other predicate involved in the
AND, first intersecting the TID lists and then reading
the TIDs resulting from the TID list computation, the
performance would be identical to that of the inverted-
file implementation. (See [Lynch 19871 for a discussion
of this query processing strategy.)

In general, if there are two keywords, the first iden-
tifying z books and the second y books (Z 5 y), and
there are z books containing both keywords, then the
inverted-file system takes 6 + z/1000 + y /lOOO + z
rea.ds; INGRES requires 6 + z/300 + y/300 + z ; and
the extended relational system requires 3 + z/l000 +
z reads. With appropriate query processing strate-
gies, the extended rela.tional system requires min(6 +
z/1000 + y/1000 + z, 3 + s/1000 + Z} reads.

5.5 Effects on Space Utilization

Assume that the database contains 4 million books,
that the average title is 45 characters long, and that
the average title keyword is 9 characters long; we as-
sume 5 keywords per title on average. Assume further
that about one million unique title keywords occur in
the database. There are 20 million occurrences of title
keyterms. (These values are consistent with actual ob-
served figures for bibliographic databases of this size,
such as the University of Califbrnia’s MELVYL@online
catalog [Lynch 19871.) We analyze the space required
in order to provide an index on title keyterms.

The inverted-file system will store every title
keyterm occurrence in its record in the data records

314

(20 million * 9 bytes), t,he unique title keywords in the
index (1 million * 9 bytes), and 20 million pointers in
t,hc index. This totals 215MB.

Standard INGRES will require 24 million BOOK-
IDS to connect the TITLEKEYWORDS and BOOKS
relations (20 million in TITLE-KEYWORDS and 4 mil-
lion in BOOKS), pl us one copy of the title keywords
(20 million * 9 bytes, or n.bout OJW million * 9 bytes
if differential encoding is used). This totals lO5MB if
differerit,ia.l encoding is used in the TlTLEKEYWORD
relation and 276MB if different,ial encoding is not used.

Standard DB2 will store a11 extra (differeutially en-
coded) copy of the keywords in an index (83MB) and an
index for BOOKS 011 BOOK-ID (8 bytes * 4 million, or
32MB), for a total of 226MB if the Tl’I‘LEKEYWORD
relation is stored with differentia.1 encoding, and 397MB
if differential encoding is not used.

The ext,endcd relational system will store one mil-
lion * 9 bytes of keywords and 20 million + 4 bytes of
pointers (assuming a differential encoded index) for a
tot.al of only 89MB.

6. Other Applications of User-Defined
Operators and Generalized Extended
Secondary Indexing

The sa.me need for lists of values derived from
columns appears in many other contexts in biblio-
graphic databases. 111 this section we consider a few
of these situations.

6.1 Searchable vs. Displayable Forms

Typically, users want to search independently of case
and without regard to most punctuation, accent marks,
and special characters. In addition, when specifiying
full titles or subject headings, users want to search in-
dependently of the presence or absence of a leading
article. Thus, a second copy of each field in a bibli-
ographic record is normally maintained which has been
converted to a suitable form for matching against search
criteria entered by the user at a terminal, along with the
“full” field suitable for display to the user as a search
result. These two forms are called searchable and dis-
playable fields respectively. The precise conversion pro-
cess from displayable to searchable form is complex and
varies from system to system, but is similar to keyword
extraction. The searchable form of the field is derivable
from the displayable form (which must be retained in
the database) and its only purpose is to serve as an

access path inl,o the databn.se.

111 a standard RDRMS one would construct the
1300KS t.able as

CREATE TABLE BO:IKS
(BOOK- ID INTEGER,
DISPLAYABLE-TITLE LONG VARCHAR,
SEARCHABLE-TITLE LONG VARCHAR,
other columns) ;

with an index on the SEARCHABLETITLE column.
By defining a unary operator SEARCHABLE that re-
turns the searchable form of the string that is passed
as the function argument, this table could be simplified
by eliminating the SEARCHABLETITLE column and
creating an index:

DEFINE INDEX SEARCHABLE-TITLES ON BOOKS
(DISPLAYABLE-TITLE) OPERATOR SEARCHABLE;

Using this new operator, one can search for books con-
taining a given title through a query such as

SELECT * FROM BOOKS WHERE
SEARCHABLE (DISPLAYABLE-TITLE) =

“THE WINDS OF WAR”;

6.2 Personal Name Jndcxing

(Personal) author na.mes provide an interesting exam-
ple of a rather different keyword extraction algorithm.
A tuple for a book usually will contain a full author
name, such as JOHN JACOB ASTOR, as an additional
field. A user can specify many forms of a name that
should match this author name, such as ASTOR; AS-
TOR,J.; ASTOR,J.J.; ASTOR,JOHN; ASTOR,JOHN
JACOB; or ASTOR,J. JACOB.

To support this type of access, a series of “name
keywords” are extracted from each name in the
database using a rather complex algorithm (DLA 19871.
Each keyword that is not from the last name is pre-
fixed with a character that cannot occur in a name
(the symbol 0 is used in the example below); these key-
words denote initials, first names, and middle names.
The number of prefix characters gives the ‘type” of
the extracted keyword (e.g., one for first initial or
first name, three for middle name, etc.). Essentially,
these special characters are used to avoid requiring
separate indices on first name, first initial, middle
name, first and middle initials, etc. For example,
the name above might produce the name keywords:
ASTOR,OJ,OJOHN,OOJJ,080JACOB. Clearly, this

315

personal name keyword #-xt~rnc~t~ion can bc implemented

bY a user-defined operator, say NAMEK’I‘, where
NAMEKT(“JOIIN JACOB ASTOR”) = {“ASTOR”,
“QJ”, “QJOHN”, “QQJJ”, "OQOJACOW'}.

When vwious forms of the name n.re cncouutercd
by the user iutcrface, the intcrf.ace generates name kcy-
words as follows:

N_a_rne mtxEcd by user _N_rzllle _keyworws. geiieratec!

ASTOR,J ASTOR,BJ
ASTOR,JJ ASTOR,OOJJ
ASTOR,JOIIN ASTOR,OJOIIN
ASTOR, ASTOR,OJOHN,

JOHN JACOB @@@JACOB

Sea.rches for personal names result in predicates of the
form (NAMEKT(AUTHOR) = nnme-keyword) being
included in t,he query const.ructcd by bhe user interface,
with one predicate for each name keyword generated by
the user interface. For example, for t#he end-user query

FIND AUTHOR ASTOR, J

the user interface will generate two name keywords for
“ASTOR” and “QJ” and construct the query

SELECT * FROM BOOKS WHERE
NAMEKT (AUTHOR) = “ASTOR”
AND NAMEKT(AUTHOR) = “OJ”;

7. Conclusions

The extensions to indexing proposed in this paper en-
able a large class of user-defined operators to be sup-
ported by indices. Additional generalizations support-
ing even larger classes of operators are described in
/Lynch 19873; space limitations preclude a discussion
of these generaliiations here. These extensions effi-
cient evaluation of queries containing predicates that
involve such operators. The extensions are essential for
the efficient support of large text-oriented by RDBMSs
and additionally offer great space savings for textual
databases. The proposed extensions also fit well with
proposals for set-valued columns. When complemented
by proper query optimization methods [Lynch 19871
they also offer substantial gains in query execution
performance. Some rethinking of optimization strate-
gies becomes necessary when user-defined indexing is

used ith textual databaes, however, since it replaces
mult~irelat.ion joills (which are extensively optimized
by most :-y&ems) with siu,pler single-rclstion queries
(which historically 1 rave received less atte~ltion as a tar-
get for optimiznt~ion).

Refere!wes

[CCA 19861 Computer Corpora.tion of America. Model
204 System Overview (Cambridge, MA: Computer Cor-
poration of America, 1986).

[Carey & Dewitt 19851 Carey, Michael J. and De-
witt, David J. “Extensible Database Systems,” in Pro-
ceedings, 1st Zntf rnational Workshop on Expert Data
Bases, Kiowa, SC, October 1984.

/Carey et al. 1986a] Carey, Michael J.; Dewitt, David
J.; Richardson, Joel E.; and Shrkita, Eugene J. “Ob-
ject and File Mrmagement in the EXODUS Extensible
Database Management System,” in Proceedings, 12th
International Conference On Very Large Databases,
Kyoto, Japan, August 1986, pp. 91-100.

[Ca.rcy et al. 1986b] Carey, Michael 3.; Dewitt, David
J.; Frn.nk, Daniel; Goetz, Graefe; Richardson, Joel E.;
Shckita, Eugene J.; a.nd Muralikrishna, M. “The Archi-
tecture of the EXODUS Extensible DBMS,” in Proceed-
ings, 1986 International Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, September 1986.

[Crawford 19811 C rawford, Robert G. “The Relational
Model in Information Retrieval,” Journal of the Amer-
ican Society for Information Science 32 (1981), pp. 51-
64.

[Da.dam et al. 19871 Dadam, P.; Duespert, K.; Ander-
son, F.; Blanken, H.; Erbe, R.; Guenauer, J.; Lum, V.;
Pistor, P.; and Walch, G. “A DBMS Prototype to Sup-
port Extended NF2 Relations: An Integrated View on
Flat Tables and Hierarchies,” in Proceedings, SIGMOD
‘86, pp. 356-364.

[DLA 1987) Division of Library Automation. MELVYL
Online Catalog Reference Manual (Berkeley, CA: Divi-
sion of Library Automation, University of California,
1987).

[Kropp, et al. 19791 Kropp, D.; Schek, H-J.; Walch, G.
“Text Field Indexing,” Datenbank-technologie (German
Chapter of the ACM) September ‘21-22, 1979, pp. lOl-
115.

316

[I,indsn.y ct nl. 13871 Lindsay, ihce; McPherson, John;
and Pira.hesh, Hami~l. “A Data Mana.gement Extcn-
siou Architcclure,n in Proceedings, SZGMOD ‘87, Ssn
Francisco, CA, May 1987, pp. 220--226.

[T,ynch 19871 Lynch, Clifford A. Ezlcnding Relational
Database Management Systems for Information Re-
lrieval Aypl&rtions, Ph.D. ‘I’hcsis (Berkeley, CA: De-
pnrt.mcnt of Electrical Engineering and Computer Sci-
ences, University of C:rlifornia, Berkeley 1987).

[Mncleod 1!)79] Maclcod, Ian A. “SEQUEL as a Lnn-
guage for Document Rct~rieval,” Journal of the Ameri-
can Society for Information Science 30 (1975), pp. 243-
247.

[Maclcod & Crawford 19831 Macleod, Ian A. and Craw-
ford, Robert G. “Document Retrieval as a Datab;lse
Applica.tion,” Information Technology: Research and
Development 2 (1983), pp. 43-60.

[Ong et al. 19841 Ong, J.; Fogg, D.; and Stonebraker,
M. UIl~lplelllcllt.ntio~l of D&a Abstraction in the Re-
lational Data.base System INGRES,” SZGMOD Record
14:l (March 1984), pp. 1 -14. [Osborn & Heaven 19861
Oshorn, Sylvia L. and Heaven, T.E. “The Design of a
Relational Datn.ba.se System with Abstract Datatypes
for Domains,” AL’M Transactions on Database Man-
nyement 11:3 (S 1 L ep ember 1986), pp. 357-373.

]Schek 19781 Schek, H-J. “The Reference String Index-
ing Method,” Znform,ation Systems Methodology, Pro-
ceedings, 2nd Conference in Znformatics, Venice, Octo-
ber 10-11.2, 1978, pp. 432-459.

[Schek 19811 Schek, H-J. “Methods for the Administra-
tion of Textual Data in Database Systems,” Znforma-
tion Retrieval Research, Oddy, R.N.; Robertson, S.E.;
Van Rijsbergen, C.J.; a.nd Williams, P.W. (eds.) (Lon-
don, England: Butterworths, 1981), pp. 218-235.

[Schek and Scholl 19861 Schek, H-J. and Scholl,
M.H. “The Relational Model with Relation-Valued At-
tributes,” Informations Systems 11:2 (1986), pp. 137-
147.

[Schwarz et al. 1986] Schwarz, P.; Chang, W.; Frey-
tag, J.C.; Lohman, G.; McPherson, J.; Mohan, C.;
and Pirahesh, H. “Extensibility in the STARBURST
Database System,” in Proceedings, 1986 International
Workshop on Object-Oriented Database Systems, Pa

cific Grove, CA, September 1986, pp. 85-92.

[Selinger et al. 19791 Selinger, Patricia Grifhths; Astra-
han, M.M.; Chamberlin, D.D.; Lorie, R.A.; and Price,
T.G. ‘Access Path Selection in a Relational Database
Mn.nagement System,” in Proceedings, SZCMOD ‘79
(1979), pp. 23 34.

[Software AG 19821 Software AG of North America, Inc.
ADABAS Introduction Manual (Reston, VA: Software
AG of North America, Inc., October 1982).

[Stonebraker 19861 Stonebraker, Michael. “The Inclu-
sion of New Types in Relational Data Base Systems,”
in Proceedings, 2nd International Conference on Data
Base Enyineering, Los Angeles, CA, February 1986.

[Stonebraker et al. 19761 Stonebraker, Michael; Kreps,
Peter; Wong, Eugene; and Held, Gerald. “The Design
and Implementation of INGRES,” ACM Transactions
on Database Systems, 1:s (September 1976), pp 189-
222. Also in The ZNGRES Papers: Anatomy of a Re-
lational Database System, Stonebraker, Michael (ea.)
(Reading, MA: Add ison- Wesley Publishing Co., 1986))
pp. 5-45.

[Stonebraker et al. 1983a] Stonebraker, Michael;
Rubenstein, Brad; and Guttman, Antonin. ‘Appli-
cation of Abstract Data Types and Abstract Indices
to CAD Data Bases,” in Proceedings, Engineering Ap-
plications Stream of 1988 Data Base Week, San Jose,
CA, May 1983. Also in The ZNGRES Papers: Anatomy
of a Relational Database System, Stonebraker, Michael
(ea.) (Reading, MA: Addison-Wesley Publishing Co.,
1986), pp. 317-333.

[Stonebraker et al. 1983b] Stonebraker, Michael; Stet-
tner, Heidi; Kalash, Joseph; Guttman, Antonin; and
Lynn, Nadene. ‘Document Processing in a Relational
Database,” ACM Transactions on Ofice Information
Systems 1:2 (April 1983). Also in The ZNGRES Pa-
pers: Anatomy of a Relational Database System, Stone-
braker, Michael (ed.) (Reading, MA: Addison-Wesley
Publishing Co., 1986), pp. 357-375.

[Stonebraker & Rowe 19851 Stonebraker, Michael and
Rowe, Lawrence A. “The Design of POSTGRES,
in Proceedings, SZGMOD ‘86, Washington, DC, May
1986, pp. 340-355.

[Zaniolo 19831 Zaniolo, Carlo. “The Database Lan-
guage GEM,” in Proceedings, SZGMOD ‘83, pp. 207-
218.

317

