Anatomy of a Modular Multiple Query Optimizer

Amon Rosenthal, Upen S. Chakravarthy

Computer Corporation of America
Four Cambridge Center
Cambridge, MA 02142,

ARPANet Address: last name@cca.cca.com

Abstract

We critically evaluate the current state of research in multiple
query oplimization, synthesize the requirements for a modular
optimizer, and propose an architecture. Our objective is 1o
facilitate future research by providing modular subproblems and a
good general-purpose data structure. In the context of this
archilecture, we provide an improved subsumption algorithm, and
discuss migration paths from single-query to multiple-query
opumizers.

The architecture has three key ingredients. First, each type of work
is performed at an appropriate level of abstraction. Second, a
uniform and very compact representation stores all candidate
strategies. Finally, search is handled as a discrete optimization
problem separable from the query processing tasks.

1. Problem Definition and Objectives

A multiple query optimizer (MQO0) takes several queries as
input and seeks to generate a good multi-strategy, an exe-
cutable operator graph that simultaneously computes an-
swers to all the queries. The idea is to save by evaluating
common subexpressions only once. The commonalities to
be expioited include identical selections and joins, predi-
cates that subsume other predicates, and also costly physi-
cal operators such as relation scans and sorts. The multiple
query optimization problem is to find a mulu-strategy that
minimizes the total cost (with overlap exploited). Figure
1.1 shows a multi-strategy generated exploiting common-
alities among queries Q1-Q3 at both the logical and physi-
cal level.

To be really satisfactory, a multi-query optimization algo-
rithm must offer solution qualiry, efficiency, and ease of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

implementation. Solution quality requires that the opti-
mizer: produce good I-strategies (strategies for a single
query or single-query strategies); identify many kinds of
commonalities (e.g., by predicate splitting, sharing rela-
tion scans); and search effectively to choose a good combi-
nation of 1-strategies. Efficiency requires that the opti-
mization avoid a combinatorial explosion of possibilities,
and that within those it considers, redundant work on
common subexpressions be minimized. Finally, ease of
implementation is crucial - an algorithm will be practically
useful only if it is conceptually simple, easy to attach 1o
an optimizer, and requires relatively little additional soft-
ware.

Our goal is to suggest a way that research on MQO can be
organized. Current state of research is not close to sup-
porting a really satisfactory solution. At this early stage, it
seems important that new techniques be modular, and that
critical data structures be separated from specific
algorithms. We also prefer to understand the entire space of
legal solutions before developing heuristics that will limit
the search.

The paper is structured as follows. Section 2 argues that
there are many applications that generate queries suitable
for MQO. The same techniques are likely to reduce opti-
mization time spent by a physical database designer. Sec-
tion 3 surveys relevant previous work, and identifies the
need for a stronger architectural framework. Section 4 pro-
vides an overview of the proposed architecture, describes a
uniform, compact representation for candidate strategies,
describes a new transformation that creates common
subexpressions, comments briefly on search issues and
discusses evolution paths from single query optimizers
(SQO0s) to MQO:s. Section 5 contains conclusions.

2. Applications

The literature describes sets of queries whére MQO yields
substantial savings, but does not indicate where such com-
binations could be expected. We identify here applications
scenarios that generate many overlapping queries, so that
the payoff from MQO is likely to be substantial.

230



Relations:
CUST (c#, name, age, zipcode)
ORDER (o#, c#, qty)

Ql1: select *
from CUST

where credit = 'bad’

Q2: select *
from CUST
where age < 40
order by zipcede
Q3: select *

from CUST, ORDER
where age < 50 and CUST.c# = ORDER.c#
order by zipcode

Q3

inde@

Q1 Q2

Gcredit = '‘Bag’

CusT

ORDER

Figure 1.1

1. Sequential File Processing: Traditional data
processing often batches several requests to be executed in
one pass over a sequential master file (e.g., CUST in
Figure 1.1). Such behavior is awkward to achieve with
current relational systems. To avoid issuing separate
queries (which Scan and Sort redundantly), one must embed
all the requests in a host-language program that scans the
master file and invokes all the types of additional pro-
cessing. This requires knowledge of a host language, and
can be inefficient due to passing tuples between the DBMS
and programming language environments. Furthermore, it
places the optimization burden on the pro-grammer.

231

The following applications, though not formulated as an
MQO problem, can benefit from the use of MQO tech-
niques.

2. Condition Monitoring: CCA is designing a High
Performance Active Database (HiPAC [DAYAS88]) which
is capable of monitoring multiple conditions on a database.
A condition is encapsulated in a rule which is a triple of
the form <event, condition, action>. where condition may
reference information both in the event and in the database.
A signal is generated if the condition is non-null. We
expect that sets of conditions will often monitor different
aspects of a general situation, and hence will have
substantial commonality. When a set of conditions is first
imposed, they may be simultaneously evaluated on the
current state of the database. During monitoring, the
problem of evaluating all conditions triggered by the same
signal (e.g., new radar blip) can also benefit from
exploiting commonalities.

3. Supporting application-oriented objects:
Application-oriented interfaces permit definition of
operations on objects in the user’s mental model. Under
the covers, a user object may be represented as sets of
database views. Evaluation of these views is likely to
generate overlapping queries.

For example, consider a transaction by which a
documentation group downloads specifications and draw-
ings for some product. Suppose that in the stored database,
Documents and Drawings are associated with Parts and a
Product contains many Parts. To make things more man-
ageable, views Prod_Specs(Prod#, Spec#, Author ) and
Prod_Drawings(Prod#, Draw#, Artist) have been defined,

e.g.,

View Prod_Specs
[Prod_Part (Part#,Prod#) join part#
Specs (Doc#, Author, Part#)

The definition of Prod_Drawings is similar. Now the
download transaction for product 1234 is:

(Select {Prod_Specs| Prod#= 1234};
Select {Prod_Drawings| Prod#= 1234} ]

When expanded, the two views represent queries with very
substantial overlap.

In this example, there is no natural way to combine the
two views into one relation — joining them yields a
Cartesian product of Specs and Drawings for each Part. If
instead the two views were union compatible (i.e., had the
same column attributes), one could have formed the union



view. In this case, MQO techniques wouid need to be ap-
plied within a single query 10 detect common subexpres-
sions. 1

se views: View
of union compatible

nallv defined nradicatac
nally genneg preaicates

4. Logic programs/databas
definitions that are composed

—eascinng (or eauivalently intencio

Cxplcabluub {or equivaiently intensior

in logic programs) are likely to have substantial overlap.

Evaluation of a query on such views (or predicates) can use

multiple query evaluation techniques for explomng intra-

query commonalities.

As an example, the query (select [Employed where nation-
ality .not equal. US]) has substantial overlap when the

following definitions are used.
Base relations:
name, nationality)

compensation)
compensation)

Personnel (id,
Faculty(id, rank,
Staff (id, rank,

View Definition:

Employed = (Faculty join Personnel)
union (Staff join Personnel)

5. Database Design: In physical database design, the
cost of a user query must be determined for many different

ﬂt‘alelUﬂb about supporu:u dCCesSsS pams The user wanis a
set of separate 1-strategies, not a multi-strategy. Our

intarest is to reduce the optimization time by usine MQQO
BLA0OL 10 W ARAULT UL OpedTuclans 0N /0 Uy dolliy VI

techniques to avoid repeating the analysis of common
subexpressions.

For each “logical” relation R, we create separate relations
Ry, Ry, ... corresponding to the different options for

access path selection. Now evaluation of different design
choices means performing a set of single query
optimizations involving different R;. We would expect

extensive commonality among the different queries.

3. Previous Work

Multiple query optimization (also called global query op-
timization) has been investigated in both database and logic
provrammmg Section 3.1 summarizes important MQO

aratiira Cantinn 29 Adisriiana

tha Is Ca
vauuu.‘uvo in the aierature. ucbuuu S.« GISCuUsses \hu)

additional work is needed.

1 Any MQO problem can be converted to an SQO problem
by taking “outer union” of all query results: however, the
conversion does not seem to aid the solution.

232

3.1 Applicable Techniques from Previous
MQO Research

Most published MQO techniques can be broadly classified

as: a\ lprhn|qnpc for ﬁnrhno/pvnlruhng r-nmmnrmllny and

[itL0 41-H

b) search techniques for choosing a multi-query strategy.
This section distills useful techniques from the literature; it
is not a historical survey.

Commonality Finding: This can be further broken
down into (i) finding subexpressions that are same (ident-
ical) among queries and (ii) finding whether one expression
subsumes another express:on (A qucry or subexprcssmn

el subsumes exprassion e2 if the result of 22 is contained
Wi ORUUWMITICY VAPIWOOIVIL Wer 34 MW IWOWIL VI VL B0 VULWALNIIVG

in the result of el.)

Most work on subsumption has focused on predicates and
projections. [FINK82] compared an incoming query with
materialized results (from earlier queries); in his application
there was no need to detect subsumption of subexpres-
sions. [CHAKS&6] identified equivalent and subsuming sub-
expressions by analyzmg the query graph of a query
oY 1101 ICTT T 0L iinnn ansilesalaman Af ciilemcincncalnaa ae
[DDLA. 17]. I_DDLL;OU] us>Cd> cquxveucuuc Ul §uUb)\pleblUllb al

the join level and subsumption at the selection level. Other
kinds of subsumntions are nossible — both Innmal (outer-

Adiaes VL SUDSIIPRIVRIS &0 prusaiee

join subsumes Jom) and phyexcal (Sort subsumes Group-
by; a Sort on multiple attributes can subsume a Sort on a
single attribute).

Search techniques: Search for an optimum usually be-
gins with a set of 1-strategies, such as might be produced
by a modified single query optimizer, plus information
about equivalence of subexpressions. One difficulty is that

tha nuumhar Af ctratacise ran ha largas Ctata_enare caarcrh
in€ NUMOoST 01 SUatlgics Can oC 1arge. siail-5pacte séarcn

algorithms are proposed in [GRANS0Q, SELL86], with
heuristics (e.g., the A* algorithm from artificial intelli-
gence) to reduce the labor. In contrast, [CHAKS6) uses
heur-istics to directly generate a strategy without search.
(In this work, multi-strategies are expressed directly as
pseudocode, rather than as an operator graph). Direct gen-
eration is very simple but is more likely to produce a sub-

optimal strategy.

Techniques from single-query optimization will also be

neaful ‘r\ our uyr\rb 1r\ narnhnlar we use an ANTIL_.NR An_
usCiu: Ir S€ an AN -Un Op

erator graph [ROSE82, ROSE86] to represents alternative
strategies and their commonalities, and divide the optimi-
zation process into explicit levels of abstraction (essen-
tally the same levels as are used in ((BATO87, FREY87,
GRAES7)).

What More is Needed to Provide a
Robust MQO Architecture

3.2

In this section, we discuss some problems with existing
apprnarhpc that need to be resolved before 2 nnwerfnl

1491102 8 Leh Sl 0 2CSLVIVOA DUIRIC & Giilal

modular MQO could be built. The main focus of thS paper
is an architecture with clear subproblems, so that results



on those subproblems could eventually be combined into
an overall architecture.

Most existing approaches use a three-step procedure: 1)
generate a set of alternative 1-strategies; 2) identify com-
monalities (exploiting equivalence and subsumption a-
mong subexpressions); 3) search for an optimum mulu-
strategy. Each step tends to be indivisible, and 1o assume
that all operators and heuristics are at the same level of ab-
straction. Below, we describe reasons why this approach
cannot be fully satisfactory (Our main point of reference
will be [SELLS6), since it proposes the most complete and
appealing solutions to date).

Modularity: It is hard to “mix and match” to combine
techniques from different papers. We need o define natural,
limited subproblems on which individual researchers could
concentrate. We also need interfaces and common represen-
tations that would permit results to be combined. For ex-
ample, there is no common model in which one might
combine query-graph techniques for subsumption
[CHAKS86] with sets of strategies in [SELL86]. And im-
proving the search algorithm is difficult when it is inter-
twined with exploitation of commonalities, as in
[CHAK86] and most SQOs.

Organizing work by levels of abstraction: Figure
1.1 shows a multi-strategy that exploits commonalities in
both logical-level operations (e.g., selections) and physical
operations (sorts and scans). It is necessary to find both
types of commonalities. The problem of organizing this
process is not dealt with explicitly resulting in limited ex-
ploitation of commonalities [CHAKS86, SELL86).

Existing algorithms do all their work at one level of ab-
straction. [CHAK86] detect commonalities only at logical
level. This results in ignoring sharing at the physical level
(e.g., tradeoffs about whether each scan and sort ought to
be shared). [SELL86] seems to elaborate entirely to physi-
cal level, then detect/use commonalities resulling in
analysis over a vastly expanded graph and complex im-
plementation.

Representation: Most existing work generates sets of
1-strategies. This is a natural representation when using
the results of an existing SQO, but has problems in con-
venience and efficiency, First, algorithms need to deal con-
ceptually with two data structures, since one needs an
associated data structure to identify equivalent subexpres-
sions. Second, if one wants to perform a fairly complete
search, there is tremendous redundancy — a low-level
subexpression may be repeated many times.

The architectural issues (above) are the focus of this paper,
and we hope our solution can amplify the effectiveness of
future research. We identify narrower, more specific prob-
lems for further research; the architecture helps ensure that
the results will combine easily. We also give a new algo-

233

rithm for creating and merging common subexpressions.
Furthermore, we discuss how MQO architectures relate to
architectures for the “bread and butter” problem of single
query optimization.

4. Architectural Description

4.1 Overview of Our Approach to MQO

Our approach has three key ingredients: mulrilevel decom-
position by level of abstraction; an “AND-OR operator
graph” that provides an efficient representation of alierna-
tive strategies and their commonalities; separation of
search from the generation of the strategy set.

1. Multilevel decomposition: MQO must apply
heuristics and query transformations at several levels of
abstraction. There is a logical level (or join-level), corre-
sponding roughly to the implementable relational algebra.
The principal operators here are selection, projection, and
2-input joins. There is a physical level that includes rela-
tion scans and sorting, and distinguishes different imple-
mentations of join. The initial queries can be considered to
be at zero'th level, at which each query is a single operator
and leaf nodes (base relations) are merged. Other levels are
possible, to deal with higher level processing and opti-
mizations (nested subqueries, high-level recursion opera-
tors), but will not be discussed here.

Our idea is that each level of processing starts and ends
with a graph that contains (as subgraphs) all the interesting
1-strategies for all the queries. To pass between levels, it is
necessary to:

Elaborate nodes to substrategies at the next more
detailed level

Create additional alternatives. An MQO must con-
sider types of 1-strategies that would not be of
interest in SQO, e.g., to delay a selection in one
query to permit the result to be shared with another.
Another example is to exploit subsumption by
splitting an operation into two, one of which may
be shared.

Finding and merging identical subexpressions: By
merging them at this level, we avoid the need to
track the relationship at the next more detailed level.
We also avoid repeated analysis of the same subex-
pression. ’

The above list of tasks is not intended as an algorithm.
Rather, at each level the implementer can choose any
algorithm appropriate for that level. For example, at the
physical level SQO techniques that group results by
“interesting order” may be used; at the logical level,



[CHAKS6] exploits the query graph [SELI79] to identify
shared subexpressions.

2. Efficient representation of alternative
strategies and their commonalities: We need an
efficient way to generate and represent {all 1-strategies)
that minimizes redundancy. MQO algorithms constantly
need to recognize equivalent subexpressions and (ideally) to
avoid processing each of the equivalents separately.

We meet these requirements through an operator graph,
here called the AND-OR graph. It contains operator nodes
(ANDs, since all inputs are needed) and “OR” nodes that
represent the fact that any of a set of alternative inputs can
be used. (See section 4.2 for more details). Common
subexpressions are represented just once.

We intend to use the AND-OR graph at all levels. Each
node that appears in an AND-OR graph appears in one (or

more) 1-strategies. In Section 4.4 we compare the AND-
OR graph with an explicit set of 1-strategies, from the
point of view of search algorithms,

3. Search: Our main contribution on search is architec-
tural — it is treated as a strictly combinatorial problem
decoupled from the query processing work needed to gener-
ate the AND-OR graph. In an architectural context, the
contribution is that those search algorithms can be
compared directly with other pure search algorithms. A side
benefit is that the AND-OR graph gives a sense of the en-
tire space, so one can judge how much is lost by various
search heuristics.

The architecture is tied together by a very simple algo-
rithm. ’

Create an AND-OR operator graph at
level zero for a set of queries.

Repeat for each level of abstraction

Elaborate the graph to the next (more
detailed) level of abstraction. In-
clude transformations that create
subgraphs for new alterna-tives
(e.g., operator movement and split-
ting) . Merge common subexpressions.

Until (the most detailed level of ab-
straction)

Evaluate operator costs and Search for
an optimal multi-strategy

3 For example, Figure 4.2 has 27 nodes representing 8 1-
strategies, but 56 nodes would be needed if 1-strategies
were separately represented.

To summarize, our architecture requires: (i) use of AND-
OR graphs for representing sharing and alternate strategies;
(i) ability to generate 1-strategies not considered in SQO,
(iii) ability to retain 1-strategies that would be deleted as
suboptimal by SQO; (iv) Modularity — ability to replace
processing modules for any level of abstraction, or for
search,

More details of the AND-OR graph are given in 4.2. Sec-
tion 4.3 comments on transformations performed at each
level, and then presents a new algorithm for creating com-
mon subexpressions. The combinatorial search problem is
discussed in Section 4.4. Section 4.5 discusses migration
from an SQO to an MQO.

4.2 AND-OR Operator Graph and
Multi-strategies

An AND-OR operator-data graph is an acyclic digraph
composed of operator nodes (e.g., join, sort) and data nodes
(inputs to and results from operator nodes). During opti-
mization, the currently-known situation is represented as
an AND-OR operator graph, denoted by G.

A subgraph is well-formed if for each of its operator nodes
(AND nodes) it contains all input edges and for each non-
leaf data node (OR node) it includes one input edge, repre-
senting a choice of how to compute the result of the data
node. We will abbreviate by using “subgraph” for well-
formed subgraph, and AND-OR graph for “AND-OR
operator-data graph”. An elementary subgraph is a graph
with one operator node, its input and output data nodes,
and edges connecting them. Diagrams use rectangles for
data nodes, ovals for operator nodes. Data nodes (i.e., OR
nodes) of indegree 1 are shown only if they are query re-
sults.

A I-strategy for query Q is a subgraph containing the re-
sult node for Q as the only node with out-degree 0; a
multi-strategy for Qy, Qy,... is a subgraph containing the

result nodes for the indicated queries as the only nodes with
out-degree 0); it is analogous to a solution graph of an
AND/OR graph [NILS80]. 2 1-strategies for intermediate
nodes will generally be called subexpressions.

Figure 4.1 illustrates an AND-OR operator graph for three
queries (Q1-Q3 in Figure 1.1) at the logical level. For
economy, we have omitted most of the alternatives for Q3.
As is evident from the figure, shared subexpressions need
be represented only once. Therefore the representation is
compac3, and no extra data structure is needed to represent
equivalence between subexpressions. The AND-OR graph
produced by an optimizer is an indication of the power of

2 [n Al the edges would be directed down; in database, up.
Since we never use the direction, we show them without
arrows. For a closer analogy with AI AND/OR graphs, a
dummy AND node can receive input from each query node.

234



ORDER

CusT

Figure 4.1

the optimizer. If operator costs have been computed, prun-
ing heuristics can be applied.

Once the physical-level graph has been generated, search
for an optimal multistrategy is a separale subproblem.
Furthermore, the graph is usually much smaller than the
total number of nodes in all 1-strategies (let alone the
number of multi-strategies), so there is relatively little ex-
tra cost in generating it explicily. However, if for some
subexpression it is known that no node can be shared be-
tween two queries, then if the subexpression is suboptimal
for its data node the edge into the data node can be ignored.

4.3 Transforms to Exploit Commonality

Several types of transformation are relevant at each level of
abstraction. The transformations (at any level of abstrac-
tion) can be broadly classified into: a) elaboration trans-
formations - that generate many alternative implementa-
tions b) algebraic transformations -that use properties of
the operator to improve strategies, and ¢) commonality-
finding ransformations - that detect, create and merge com-
mon subexpressions among queries.

Tvpical kinds of commonalities that are exploited at the
logical level are equivalence of subexpressions and sub-
sumption. Merging of equivalent subexpressions is the
simplest case of commonality and is exploited widely in

earlier work. Subsumption of expressions (based on opera-
tor semantics) can create additional shared subexpressions.
Earlier attempts do not exploit subsumption to the fullest
extent. Below we provide an algorithm for creating
additional subexpressions.

The join-level graph is then elaborated to the physical
level. At this level, operations like relation scans and sorts
are considered sharable among queries as shown in Figure
4.2 for queries in Figure 1.1. (Most proposals do not con-
sider such sharing). The benefits of sharing (or not sharing)
these low-level operators will be visible to and exploited
by the search process, which runs off the physical-level
AND-OR graph.

4.3.1 Subsumption Based Algorithm for
Creating Shared Subexpressions

This section presents a new algorithm that creates large
shared subexpressions exploiting subsumption at the
smaller expression level. Although the algorithm is de-
scribed at the logical level of abstraction, it is based on the
general properties of operators involved and hence is
equally applicable at other levels also. As an example, at
the logical level selection conditions can be split and
propagated beyond join. As another example, at the physi-
cal level, selections can be moved beyond sorts to identify
a large subexpression.

Our algorithm extends and generalizes the work of
[FINK82]. In [FINKS82] a test is made to detect whether a
given query is subsumed by a previously computed query
in order to utilize the temporary created by the query. That
algorithm works at the query level and hence cannot make
use of subsumption at the subexpression level. On the
other hand, [SELL86] concentrates on the use of identical
subexpressions and detects and uses subsumption only at
the selection level.

Algorithm:

/* We assume that any pair of operators can be tested.
At the logical level, this means that selection and
join conditions can be tested for equivalence and
subsumption. Similarly, at the physical level se-
lection and sorts can be tested for equivalence and
subsumption. Furthermore, when an expression el
subsumes €2, we assume that el/e2 which is the
remainder of el that differs from e2 is available. */

/* To simplify the presentation, we omit the steps that
detect and merge equivalent subexpressions. */

Perform the following transformations
for each pair of operator nodes nl and n2 (from distinct

queries) that are roots of an elementary subgraph and
share common input data nodes do

235



Q1 Q2

age < 40

age < 40

Seq. scan

CuUsT

(zipcode) Gage <40 jon

outer

Sort
(zipcode)

=

Q3

Sort
(zipcode)

Loop
join
inner

outer

Sort
(zipcode)
Loop
join

inner

Merge
join

ORDER
sorted by C#

Figure 4.2

case:
operators are unary (e.g., select):

let sc1 and sc2 be the selection conditions for nl
and n2 respectively.

If sc1 subsumes sc2 then
create an elementary graph with sc2 and create
a new operator node sc1/sc2 which receives the
result of the node sc2.

operators are binary (e.g., join)~

* . .

In practice the cases under the binary operator are
combined for efficiency; other subsumption possibilities
are omitted for the sake of brevity.

236

let j1 and j2 be the operators at the root nodes; let
scll, sc12 and sc21, sc22 be the selection
condition, if any, along the two inputs (true is a
valid selection condition).

If sc11 subsumes sc21 and j1 subsumes j2 then
push sc11/sc21 and j1/j2 beyond the join (j2)
and merge. If s¢12 subsumes sc22 and j1
subsumes j2 then push sc12/sc22 and j1/j2
beyond the join (j2) and merge.

until no more transformations are applicable

Figure 4.4 is obtained after the application of the above
algorithm to Figure 4.3. Two additional strategies (one for



Q2 Q1

CUST.C# = ORDER.C#

CUST.C# = ORDER.C#

CUST ORDER

Figure 4.3

each query) are created which share a large subexpression
consisting of a join and two selections. To summarize, the
algorithm progressively creates larger shared subexpres-
sions applying the transformations outlined on elementary
subgraphs. Conditions belonging to different queries are
split in order to detect a larger equivalent subexpression.

4.4 Search

The search problem is to take the AND-OR operator graph
produced above and find the cheapest solution subgraph,
i.e., multi-strategy. This strictly combinatorial problem
can be attacked without complications from query elabora-
tion and commonality detection.

The problem of finding an optimal multi-strategy is NP-
hard. (It is equivalent to finding a minimum-weight sub-
graph of an AND/OR graph (GARE79]). Hence we must
resort to heuristic solutions.

Sharing is the heart of the computational difficulty. With-
out shared intermediate results, the search problem could be
decomposed into separate search for each query, and time
would be linear in the size of the AND-OR graph, Tl
multi-query problem can be made more decomposable if
shared nodes are deleted from the graph — this can some-
times be achieved by examining bounds on costs of opera-
tors and substrategies.

237

Q1 Q2

G,

gage <40 qty <10

CUST.C# =
ORDER.C#

CUST.C# =
ORDER.C#

CUST.C# « ORDER.C#

age <4 qty < 10,

age<5 qty < 20

CUsT ORDER

Figure 4.4

How Suitable is the

Search?

AND-OR Graph for

Some search algorithms run better on an AND-OR graph
than on a separate list of {1-strategies that are subgraphs of
the AND-OR graph). The necessary condition for a multi-
strategy search algorithm to run on the AND-OR graph is
that its steps be concemned only with the cost of producing
a resulting data node, and not with knowing what vertices
were used within the subexpression. We have identified
several useful computations that compute bounds by
making extreme assumptions about sharing, e.g., that no
nodes are shared, or that all shared nodes are available frce.
These bounds can then be used to determined that certain
nodes and edges do not appear in the optimum mult-
strategy, and hence may be deleted from the graph. (The
exact arguments are technical and too long for inclusion
here).

Other search algorithms need more information about the
interior of a subgraph. The complete set of 1-strategies can
always be generated from G. As a middle ground, a dy-
namic programming solution would need to know which
sharable intermediate results had been made available.



4.5 Compatibility with SQO Architectures

A single-query oplimizer is a necessary part of any DBMS
that supports a high-level language. If it is ever imple-
mented, MQO will be an add-on. Hence, we first propose
an SQO that can be easily extended to an MQO. We then
address the problem of extending currently available
traditional {SELI79] and extensible optimizers [BATO87,
GRAES7, FREY87] to an MQO.

What is the Minimum Extension Required?

One approach is to add a front or back end to an existing
SQO [FINKS82, SELLS86). This is easy to implement, but
will not always produce a good multi-strategy, since the
optimum multi-strategy may not be a composition of op-
timal 1-strategies. In fact, the optimum may involve 1-
strategies that would not even be considered by the SQO.

An MQO needs several capabilities that are not present in
an SQO — generation of additional 1-strategies to increase
the opportunities for sharing, recognition and merging of
equivalent subexpressions, and search algorithms that ex-
amine 1-strategies (in the context of the AND-OR graph)
to find the optimum multi-strategy.

To facilitate extension to MQO, an SQO would ideally be
divided into levels of abstraction matching the MQO de-
sign, and the interface at each level would be an explicit
AND-OR graph for the entire query. Creation of new 1-
strategies and recognition of commonalities need to be
added at each level.

At the logical level, there would be two ways to imple-
ment the creation and merging of the new strategies. First,
one could take the AND-OR graph output by the logical
level of the SQO and apply ransformations to generate and
merge the new strategies. Alternatively, one could go in-
side the SQO routines for this stage. The algorithm that
analyzes the query graph and produces join strategies at the
logical level could be extended to consider multiple queries
simultaneously, and generate the AND-OR graph with all
commonalities exploited. {CHAKS86] shows how such an
algorithm can generate a single mulli-strategy combining
all the queries; the algorithm could be extended to consider
all possibilities.

At the physical level, new altemnatives need to be generated
reordered selections and sorts, and subsumptions among
multiattribute sorts. Also, it is nawral for an SQO to
discard all but the cheapest path into a data node. For MQO
the alternatives need to be retained if they contain in-
termediate results that might be shared with other queries.

MQO also has implications for the run-lime control of ex-
ecution strategies. Many DBMSs use tuple streams to
buffer intermediate results. A simple control protocol is to
have each stream produce the next tuple on demand from

238

its consumer. Unfortunately, this implies that each stream
has a single consumer, violating the spirit of MQO (as in
Figure 1.1). Instead, MQO appears to need a more data-
driven protocol including extensive buffering and synchro-
nization.

Extending Conventional Optimizers

Traditional SQOs (as in System R [SELI79]) do not pro-
ceed one level at a time — instead, they use a depth-first
approach that elaborates a logical-level node as soon as it
is generated. This depth-first approach is not compatible
with finding commonalities at the logical level — one
would need 10 apply all mulu-query analysis to the graph
composed of physical operators.

One is forced to thoroughly rewrite the scarch and control
routines to permit layering work in our levels. The
routines that claborate to the join level, and also to the
physical level would survive pretty well, although they
would need the extensions for new functionality (discussed
above). The model of operator costs should also survive.,

An alternative is to just change the search to retain subop-
timal strategies. All strategies would be elaborated 1o the
physical level, and only then would inter-query
commonalities be processed. This approach is feasible,
though working at the physical level means a cost in both
speed and complexity, as discussed in Section 3.2.

Extending ‘Extensible’ Optimizers

A new generation of “extensible” optimizers are described
in [BATOS87, FREY87, GRAE87, ROSER6). The idea is
that the optimizer has a general-purpose control algorithm,
plus an easily extended library of transformations. For ex-
ample, one could write transformations that create new,
sharable subexpressions, and other transformations that
combine them.

But transformations must be executed in an ap-propriate
order, e.g., common subexpressions merged be-fore the
next level of elaboration. Extensible optimizers’ control
algorithms generally do not allow additional control rules,
or have a convenient notion of level of abstraction or

priority.4 Another problem lies in the cost model, which
generally does not adjust for shared subexpressions.
Finally, it is not clear whether the transformations’ pattern
matchers will always be able to search effectively for
commonalities — instead of searching for a lccal pattern,
the search must compare paiterns.

4 Exodus has two levels, but the physical (“method”) level
is second class — one does not transform physical
strategies, but just creates them [GRAES7].



5. Conclusions

As multiple query processing research is in its early stages,
it is important to have a framework which is modular and
accommodates different solutions to subproblems. We dis-
cuss here how the approach helps meet the Introduction’s
criteria for solution quality, and ameliorates the problems
identified in Section 3.2.

Allows mix and match of techniques: We have
separated several independent subproblems — strat-
egy generation at each level of abstraction, plus the
search problem. The AND-OR graph acts as the in-
terface between steps. Special techniques and data
structures (e.g., query graphs) can be applied at any
level.

1.

8=

Work at appropriate level of absiraction: Logical
commonalities are handled at the logical level (or
earlier), on a small graph without physical compli-
cations. SQO elaboration techniques can be applied
to obtain the physical level, and additional com-
monalities can be detected.

Uniform and efficient representation: The AND-OR
operator graph provides a very efficient and conve-
nient way to represent all useful information about
1-strategies and their common subexpressions. It is
very small compared with {all 1-strategies) or {all
multi-strategies}. It is suitable as an interface at all
levels, and is not restricted to SPJ queries. 1-strate-
gies can easily be generated from our graph.

Solution Quality and Optimizer Efficiency: The
main ingredients in finding a good solution are a
wide range of possibilities, and a search that is fast
enough to consider many of them. The approach’s
modularity helps in introducing new transformations
and new search techniques. Other aspects that speed
the search (and make possible a more thorough op-
timization) are being investigated.

6. Acknowledgements

The authors thank Umesh Dayal for help{ul comments on
an earlier version of the paper.

7. References

[BATOS87)

D. Batory. “A Molecular Database Systems Technology,”
Computer Science Department TR-87-23, University of
Texas at Austin (1987).

[CHAKS86]
U. S. Chakravarthy and J. Minker. “Multiple Query Pro-
cessing in Deductive Databases using Query Graphs,”

239

Proc. of Twelfth International Conference on Very Large
Data Bases, Kyoto, Japan (August 1986).

[DAYAS8S]

Dayal, U., et al. “The HiPAC Project: Combining Active
Databases and Timing Constraints,” SIGMOD-Record
(March 1988).

[FINK82]

S. Finkelstein. “Common Expression Analysis in Data-
base Applications,” Proc. of the 1982 ACM-SIGMOD
Conference, Orlando (June 1982).

[FREY87)

J. C. Freytag. “A Rule-Based View of Query Optimiza-
tion,” Proc. ACM-SIGMOD Conference on Management
of Data, San Francisco, (1987)

[GARE79]

M. Garey and D. S. Johnson. “Compulers and Intractabil-
ity - A Guide to Theory of NP-Complcteness,” W. H.
Frecman and Company (1979).

{GRAES7]

G. Graefe and D. DeWitt, “The Exodus Optimizer
Generator,” Proc. ACM-SIGMOD Conference on
Management of Data, San Francisco (1987).

[GRANBSO)

J. Grant and J. Minker. “Optimization in Deductive and
Conventional Relational Database Systems,” pp. 195-234
in Advances in Database theory 1, H. Gallaire, J. Minker
and J. M. Nicolas, eds.(Plenum Press, 1980)

[NTLS80]
N. J,, Nilsson. Prirciples of Artificial Intelligence (Tioga
Publishing Company, 1980).

{ROSES82]

A. Rosenthal and D. Reiner. “An Architecture For Query
Optimization,” Proc. ACM-SIGMOD Conference on
Management of Data, Orlando, FL (1982).

[ROSES86]

A. Rosenthal and P. Helman. “Understanding and Extend-
ing Transformation-Based Optimizers,” /EEE Database
Engineering 9, No. 4, pp. 44-51.

[SELI79]

P. Selinger, et al. “Access Path Selection in a Relational
Data Base System,” Proc. of the 1979 ACM-SIGMOD In-
ternational Conference on the Management of Data,
Boston, MA (June 1979).

[SELLS86]
T. K. Sellis. “Global Query Optimization,” Proc. of ACM
SIGMOD, Washington, D. C. (May 1986).



