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Abstract 

We critically evaluate the current state of research in multiple 
query opGrnization, synthesize the requirements for a modular 
opCrnizer, and propose an architecture. Our objective is to 
facilitate future research by providing modular subproblems and a 
good general-purpose data structure. In rhe context of this 
archiuzcture. we provide an improved subsumption algorithm. and 
discuss migration paths from single-query to multiple-query 
oplimizers. 

The architecture has three key ingredients. First. each type of work 
is performed at an appropriate level of abstraction. Segond, a 
uniform and very compact representation stores all candidate 
strategies. Finally, search is handled as a discrete optimization 
problem separable horn the query processing tasks. 

1. Problem Definition and Objectives 

A multiple query optimizer (h4QO) takes several queries as 
input and seeks to generate a good multi-strategy, an exe- 
cutable operator gaph that simultaneously computes an- 
swers to all the queries. The idea is to save by evaluating 
common subexpressions only once. The commonalities to 
be exploited include identical selections and joins, predi- 
cates that subsume other predicates, and also costly physi- 
cal operators such as relation scans and SOULS. The multiple 
query optimization problem is to find a multi-strategy that 
minimizes the total cost (with overlap exploited). Figure 
1 .l shows a multi-strategy generated exploiting common- 
alities among queries Ql-Q3 at both the logical and physi- 
cal level. 

To be really satisfactory, a multi-query optimization algo- 
rithm must offer solution quality, ejjiciency, and ease of 
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implementation. Solution quality requires that the opti- 
mizer: produce good 1 -strategies (strategies for a single 
query or single-query strategies); identify many kinds of 
commonalities (e.g., by predicate splitting, sharing rela- 
tion scans); and search effectively to choose a good combi- 
nation of l-strategies. Efficiency requires that the opti- 
mization avoid a combinatorial explosion of possibilities, 
and that within those it considers, redundant work on 
common subexpressions be minimized. ‘Finally, ease of 
implementation is crucial - an algorithm will be practically 
useful only if it is conceptually simple, easy to attach to 
an optimizer, and requires relatively little additional soft- 
WXC 

Our goal is to suggest a way that research on MQO can be 
organized. Current state of research is not close to sup- 
porting a really satisfactory solution. At this early stage, it 
seems important that new techniques be modular, and that 
critical data structures be separated from specific 
algorithms. We also prefer to understand the entire space of 
legal solutions before developing heuristics that will limit 
the search. 

The paper is structured as follows. Section 2 argues that 
there are many applications that generate queries suitable 
for MQO. The same techniques are likely to reduce opti- 
mization time spent by a physical database designer. Sec- 
tion 3 surveys relevant previous work, and identifies the 
need for a stronger architectural framework. Section 4 pro- 
vides an overview of the proposed architecture, describes a 
uniform, compact representation for candidate strategies, 
describes a new transformation that creates common 
subexpressions, comments briefly on search issues and 
discusses evolution paths from single query optimizers 
(SQOs) to MQOs. Section 5 contains conclusions. 

2. Applications 

The literature describes sets of queries whkre MQO yields 
substantial savings. but does not indicate where such com- 
binations could be expected. We identify here applications 
scenarios that generate many overlapping queries, so that 
the payoff from MQO is likely to be substantial. 
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Relations: 
CUST(cf, name, age, zipcode) 
ORDERtot, cii, qty) 

Ql : select l 

from CUST 
where credit = 'bad' 

Q2: select * 
from CUST 
where age < 40 
order by zipcode 

Q3: select l 

from CUST, ORDER 
where age < 50 and CUST.c# = ORDER.c# 
order by zipcode 

02 Q3 

LY-.l 
Figure 1.1 

1. Sequential File Processing: Traditional data 
processing often batches several requests to be executed in 
one pass over a sequential master file (e.g., CUST in 
Figure 1.1). Such behavior is awkward to achieve with 
current relational systems. To avoid issuing separate 
queries (which Scan and Sort redundantly), one must embed 
all the reqtmsts in a host-language program that scans the 
master file and invokes all the types of additional pro- 
cessing. This requires knowledge of a host language, and 
can be inefficient due to passing tuples between the DBMS 
and programming language environments. Furthermore, it 
places the optimization burden on the programmer. 

The following applications. though not formulated as an 
MQO problem, can benefit from the use of MQO tech- 
niques. 

2. Condition Monitoring: CCA is designing a High 
Performance Active Database (HiPAC [DAYA88]) which 
is capable of monitoring multiple conditions on a database. 
A condition is encapsulated in a rule which is a triple of 
the form <event, condition, action>. where condition may 
reference information both in the event and in the database. 
A signal is generated if the condition is non-null. We 
expect that sets of conditions will often monitor different 
aspects of a general situation, and hence will have 
substantial commonality. When a set of conditions is first 
imposed, they may be simultaneously evaluated on the 
current state of the database. During monitoring, the 
problem of evaluating all conditions triggered by the same 
signal (e.g., new radar blip) can also benefit from 
exploiting commonalities. 

3. Supporting application-oriented objects: 
Application-oriented interfaces permit definition of 
operations on objects in the user’s mental model. Under 
the covers, a user object may be represented as sets of 
database views. Evaluation of these views is likely to 
generate overlapping queries. 

For example, consider a transaction by which a 
documentation group downloads specifications and draw- 
ings for some product. Suppose that in the stored database, 
Documents and Drawings are associated with Parts and a 
Product contains many Parts. To make things more man- 
ageable, views Prod-Specs(Prodn”, Speck, Author ) and 
Prod-Drawings(Prod#, Draw#, Artist) have been defined, 
e.g., 

View Prod-Specs = 
[Prod-Part(Part#,Prod#)join part# 
Specs(Doc#, Author, Part#) 

The definition of Prod-Drawings is similar. Now the 
download transaction for product 1234 is: 

[Select (Prod-Specs1 Prod*= 1234); 
Select (Prod-Drawings1 Prod#= 1234) I 

When expanded, the two views represent queries with very 
substantial overlap. 

In this example, there is no natural way to combine the 
two views into one relation - joining them yields a 
Cartesian product of Specs and Drawings for each Part. If 
instead the two views were union compatible (i.e., had the 
same column attributes), one could have formed the union 
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view. In this case, MQO techniques would need to be ap- 
plied within u single query to detect common subexpres- 
sions.’ 

4. Logic programs/database views: V i e w 
definitions that are composed of union compatible 
expressions (or equivalently intensionally defined predicates 
in logic programs) are likely to have substantial overlap. 
Evaluation of a query on such views (or predicates) can use 
multiple query evaluation techniques for exploiting inna- 
query commonalities. 
As an example, the query (select lEmployed where nation- 
ality .not equal. US]) has substantial overlap when the 
following definitions are used. 

Base relations: 

Personneltid, name, nationality) 
Faculty(id, rank, compensation) 
Staff(id, rank, compensation) 

View Definition: 

Employed = (Faculty join Personnel) 
union (Staff join Personnel) 

5. Database Design: In physical database design, the 
cost of a user query must be determined for many different 
decisions about supported access paths. The user wants a 
set of separate l-strategies, not a multi-strategy. Our 
interest is to reduce the optimization rime by using MQO 
techniques to avoid repeating the analysis of common 
s&expressions. 

For each “logical” relation R, we create separate relations 
R1, R2. . . . corresponding to the different options for 
access path selection. Now evaluation of different design 
choices means performing a set of single query 
optimizations involving different Ri. We would expect 
extensive commonality among the different queries. 

3. Previous MTOrk 

Multiple query optimization (also called global query op- 
timization) has been investigated in both database and logic 
programming. Section 3.1 summarizes important MQO 
techniques in the literature. Section 3.2 discusses why 
additional work is needed. 

1 Any MQO problem can be converted to an SQO problem 
by taking “outer union” of all query results: however, the 
conversion does not seem to aid the solution. 

3.1 Applicable Techniques from Previous 
MQO Research 

Most published MQO techniques can be broadly classified 
as: a) techniques for finding/exploiting commonality, and 
b) search techniques for choosing a multi-query strategy. 
This section distills useful techniques from the literature; it 
is not a historical survey. 

Commonality Finding: This can be further broken 
down into (i) finding subexpressions that are same (ident- 
ical) among queries and (ii) finding whether one expression 
subsumes another expression. (A query or subexpression 
el subsumes expression e2 if the result of e2 is contained 
in the result of el.) 

Most work on subsumption has focused on predicates and 
projections. [FINK821 compared an incoming query with 
materialized results (from earlier queries): in his application 
there was no need to detect subsumption of subexpres- 
sions. [CIiAK86] identified equivalent and subsuming sub- 
expressions by analyzing the query graph of a query 
[SELI79]. [SELL863 uses equivalence of subexpressions at 
the join level and subsumption at the selection level. Other 
kinds of subsumptions are possible - both logical (outer- 
join subsumes join) and physical (Sort subsumes Group- 
by; a Sort on multiple attributes can subsume a Sort on a 
single attribute). 

Search techniques: Search for an optimum usually be- 
gins w&h a set of l-strategies, such as might be produced 
by a mod&d single query optimizer, plus information 
about equivalence of subexpressions. One difficulty is that 
the number of strategies can be large. State-space search 
algorithms are proposed in [GRAN80. SELL86], with 
heuristics (e.g., the A* algorithm from artificial intelli- 
gence) to reduce the labor. In contrast, [CHAK86] uses 
heur-istics to directly generate a strategy without search. 
(In this work, multi-strategies are expressed directly as 
pseudocode, rather than as an operator graph). Direct gen- 
eration is very simple but is more likely to produce a sub 
optimal strategy. 

Techniques from single-query optimization will also be 
useful in our work. In particular, we use an AND-OR op- 
erator graph IROSE82, ROSE861 to represents alternative 
strategies and their commonalities, and divide the optimi- 
zation process into explicit levels of abstraction (essen- 
tially the same levels as are used in ([BAT087, FREY87, 
GRAE871). 

3 .Z What More is Needed to Provide a 
Robust MQO Architecture 

In this section, we discuss some problems with existing 
approaches, that need to be resolved before a powerful, 
modular MQO could be built. The main focus of this paper 
is an architecture with clear subproblems, so that results 
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on those subproblems could eventually be combined into 
an overall architecture. 

Most existing approaches use a three-step procedure: 1) 
generate a set of alternative l-strategies; 2) identify com- 
monalities (exploiting equivalence and subsumption a- 
mong subexpressions); 3) search for an optimum multi- 
strategy. Each step tends to be indivisible, and to assume 
that all operators and heuristics are at the same level of ab- 
straction. Below, we describe reasons why this approach 
cannot be fully satisfactory (Our main point of reference 
will be [SELL86], since it proposes the most complete and 
appealing solutions to date). 

Modularity: It is hard to “mix and malch” to combine 
techniques from different papers. We need u) define natural, 
limiled subproblems on which individual researchers could 
concentrate. We also need interfaces and common represen- 
tations that would permit results to be combined. For ex- 
ample, there is no common model in which one might 
combine query-graph techniques for subsumption 
[CHAK86] with sets of strategies in [SELL86]. And im- 
proving the search algorithm is difficult when it is inter- 
twined with exploitation of commonalities, as in 
[CHAK86] and most SQOs. 

Organizing work by levels of abstraction: Figure 
1.1 shows a multi-strategy that exploits commonalities in 
both logical-level operations (e.g., selections) and physical 
operations (sorts and scans). It is necessary to find both 
types of commonalities. The problem of organizing this 
process is not dealt with explicitly resulting in limited ex- 
ploitation of commonalities [CHAK86, SELL86]. 

Existing algorithms do all their work at one level of ab- 
straction. [CHAK86] detect commonalities only at logical 
level. This results in ignoring sharing at the physical level 
(e.g., tradeoffs about whether each scan and sort ought to 
be shared). [SELL861 seems to elaborate entirely to physj- 
cal level. then detect/use commonalities resulting in 
analysis over a vastly expanded graph and complex im- 
plementation. 

Representation: Most existing work generates sers of 
l-strategies. This is a natural representation when using 
the results of an existing SQO, but has problems in con- 
venience and efficiency. First, algorithms need to deal’con- 
ceptually with two data Structures, since one needs an 
associared data suucUre to identify equivalent subexprcs- 
sions. Second, if one wants to perform a fairly complete 
search, there is tremendous redundancy - a low-level 
subexpression may be repeated many times. 

The architectural issues (above) are the focus of this paper, 
and we hope our solution can amplify the effectiveness of 
future research. We identify narrower, more specific prob- 
lems for further research; the architecture helps ensure that 
the results will combine easily. We also give a new algo- 

rithm for creating and merging common subexpressions. 
Furthermore, we discuss how MQO architectures relate to 
architectures for the “bread and butter” problem of single 
query optimization. 

4. Architectural Description 

4.1 Overview of Our Approach to MQO 

Our approach has three key ingredients: multilevel decom- 
position by level of abstraction; an “AND-OR operator 
graph” that provides an efflcienr represenradon of altema- 
live strategies and their commonalides; separation of 
search from the generation of the strategy set. 

1. Multilevel decomposition: MQO must apply 
heuristics and query transformations ar several levels of 
abstraction. There is a logical level (or join-level), corre- 
sponding roughly to the implementable relational algebra. 
The principal operators here are selection, projection, and 
2-input joins. There is a physical level that includes rela- 
tion scans and sorting, and distinguishes different imple- 
mentations of join. The initial queries can be considered to 
be at zero% level, at which each query is a single operator 
and leaf nodes (base relations) are merged. Other levels are 
possible, to deal with higher level processing and opti- 
mizations (nested subqueries, high-level recursion opera- 
tors), but will not be discussed here. 

Our idea is that each level of processing starts and ends 
with a graph that contains (as subgraphs) all the interesting 
l-strategies for all the queries. To pass between levels, it is 
necessary to: 

Elaborate nodes to substrategies at the next more 
detailed level 

Create additional alternatives. An MQO must con- 
sider types of l-strategies that would not be of 
interest in SQO, e.g., to delay a selection in one 
query to permit the result to be shared with another. 
Another example is to exploit subsumption by 
splitting an operation into two, one of which may 
be shared. 

Finding and merging identical subexpressions: By 
merging them ar this level, we avoid the need fo 
track the relationship at the next more detailed level. 
We also avoid repeated analysis of the same subex- 
pression. 

The above list of tasks is not intended as an algorithm. 
Rather, at each level the implementer can choose any 
algorithm appropriate for that level. For example, at the 
physical level SQO techniques that group results by 
“interesting order” may be used; at the logical level, 
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[CHAK86] exploits the query graph [SELI79] to identify 
shared subexpressions. 
2. Efficient representation of alternative 
strategies and their commonalities: We need an 
efficient way to generate and represent (all l-strategies) 
that minimizes redundancy. MQO algorithms constantly 
need to recognize equivalent subexpressions and (ideally) to 
avoid processing each of the equivalents separately. 

We meet these requirements through an operator graph, 
here called the AND-OR graph. It contains operator nodes 
(ANDs, since all inputs are needed) and “OR” nodes that 
represent the fact that any of a set of alternative inputs can 
be used. (See section 4.2 for more details). Common 
subexpressions are represented just once. 

We intend to use the AND-OR graph at all levels. Each 
node that appears in an AND-OR graph appears in one (or 
more) l-strategies. In Section 4.4 we compare the AND- 
OR graph with an explicit set of l-strategies, from the 
point of view of search algorithms. 

3. Search: Our main contribution on search is architec- 
tural - it is treated as a strictly combinatorial problem 
decoupled from the query processing work needed to gener- 
ate the AND-OR graph. In an architectural context, the 
contribution is that those search algorithms can be 
compared directly with other pure search algorithms. A side 
benefit is that the AND-OR graph gives a sense of the en- 
tire space, so one can judge how much is lost by various 
search heuristics. 

The architecture is tied together by a very simple algo- 
rithm. 

Create an AND-OR operator graph at 
level zero for a set of queries. 

Repeat for each level of abstraction 

Elaborate the graph to the next (more 
detailed) level of abstraction. In- 
clude transformations that create 
subgraphs for new alterna-tives 
(e.g., operator movement and split- 
ting). Merge common subexpressions. 

Until (the most detailed level of ab- 
straction) 

Evaluate operator costs and Search for 
an optimal multi-strategy 

3 For example, Figure 4.2 has 27 nodes representing 8 l- 
strategies, but 56 nodes would be needed if l-strategies 
were separately represented. 

To summarize. our architecture requires: (i) use of AND- 
OR graphs for representing sharing and alternate strategies; 
(i) ability to generate l-strategies not considered in SQO. 
(iii) ability to retain l-strategies that would be deleted as 
suboptimal by SQO; (iv) Modularity - ability to replace 
processing modules for any level of abstraction, or for 
search. 

More details of the AND-OR graph are given in 4.2. Sec- 
tion 4.3 comments on transformations performed at each 
level, and then presents a new algorithm for creating com- 
mon subexpressions. The combinatorial search problem is 
discussed in Section 4.4. Section 4.5 discusses migration 
from an SQO to an MQO. 

4.2 AND-OR Operator Graph and 
Multi-strategies 

An AND-OR operator-data graph is an acyclic digraph 
composed of operator nodes (e.g., join, sort) and data nodes 
(inputs to and results from operator nodes). During opti- 
mization, the currently-known situation is represented as 
an AND-OR operator graph, denoted by G. 

A subgraph is well-formed if for each of its operator nodes 
(AND nodes) it contains all input edges and for each non- 
leaf data node (OR node) it includes one input edge, repre- 
senting a choice of how to compute the result of the data 
node. We will abbreviate by using “subgraph” for well- 
formed subgraph, and AND-OR graph for “AND-OR 
operator-data graph”. An elementary subgraph is a graph 
with one operator node, its input and output data nodes, 
and edges connecting them. Diagrams use rectangles for 
data nodes, ovals for operator nodes. Data nodes (i.e., OR 
nodes) of indegree 1 are shown only if they are query re- 
sults. 

A l-strategy for query Q is a subgraph containing the re- 
sult node for Q as the only node with out-degree 0; a 
multi-strategy for Q1. Q2,... is a subgraph containing the 
result nodes for the indicated queries as the only nodes with 
out-degree 0); it is analogous to a solution graph of an 
AND/OR graph lNILS80]. * l-strategies for intermediate 
nodes will generally be called subexpressions. 

Figure 4.1 illustrates an AND-OR operator graph for three 
queries (41-43 in Figure 1.1) at the logical level. For 
economy, we have omitted most of the alternatives for 43. 
As is evident from the figure, shared subexpressions need 
be represented only once. Therefore the representation is 
compac?, and no extra data structure is needed to represent 
equivalence between subexpressions. The AND-OR graph 
produced by an optimizer is an indication of the power of 

2 In AI the edges would be directed down; in database, up. 
Since we never use the direction, we show them without 
arrows. For a closer analogy with AI AND/OR graphs, a 
dummy AND node can receive input from each query node. 
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CUST ORDER 

Figure 4.1 

the optimizer. If operator costs have been computed, prun- 
ing heuristics can be applied. 

Once the physical-level graph has been generated, search 
for an optimal multistrategy is a separate subproblem. 
Furthermore, the graph is usually much smaller than the 
total number of nodes in all l-strategies (let alone the 
number of multi-strategies), so there is relatively little ex- 
tra cost in generating it explicitly. However, if for some 
subexpression it is known that no node can be shared be- 
tween two queries, then if the subexpression is suboptimal 
for its data node the edge into the data node can be ignored. 

4.3 Transforms to Exploit Commonality 

Several types of transformation are relevant at each lev.el of 
abstraction. The transformations (at any level of absuac- 
tion) can be broadly classified into: a) elaboration uans- 
formations - that generate many alternative implementa- 
tions b) algebraic transformations -that use properties of 
the operator to improve strategies, and c) commonality- 
finding transformations - that detect, create and merge com- 
mon subexpressions among queries. 

Typical kinds of commonalities that are exploited at the 
logical level are equivalence of subexpressions and sub- 
sumption. Merging of equivalent subexpressions is the 
simplest case of commonality and is exploited widely in 

earlier work. Subsumption of expressions (based on opcra- 
tor semantics) can create additional shared subexpressions. 
Earlier attempts do not exploit subsumption to the fullest 
extent. Below we provide an algorithm for creating 
additional subexpressions. 

The join-level graph is then elaborated to the physical 
level. At this level, operations like relation scans and sorts 
are considered sharable among queries as shown in Figure 
4.2 for queries in Figure 1.1. (Most proposals do not con- 
sider such sharing). The benefits of sharing (or not sharing) 
these low-level operators will be visible to and exploited 
by the search process, which runs off the physical-level 
AND-OR graph. 

4.3 .l Subsumption Based Algorithm for 
Creating Shared Subexpressions 

This section presents a new algorithm that creufes large 
shared subexpressions exploiting subsumption at the 
smaller expression level. Although the algorithm is de- 
scribed at the logical level of abstraction, it is based on the 
general properties of operators involved and hence is 
equally applicable at other levels also. As an example, at 
the logical level selection conditions can be split and 
propagated beyond join. As another example, at the physi- 
cal level, selections can be moved beyond sorts 10 identify 
a large subexpression. 

Our algorithm extends and generalizes the work of 
-821. In m82] a test is made to detect whether a 
given query is subsumed by a previously computed query 
in order to utilize the temporary created by the query. That 
algorithm works at the query level and hence cannot make 
use of subsumption at the subexpression level. On the 
other hand, [SELL863 concentrates on the use of identical 
subexpressions and detects and uses subsumption only at 
the selection level. 

Algorithm: 

/* We assume that any pair of operators can be tested. 
At the logical level, this means that selecrion and 
join conditions can be tested for equivalence and 
subsumption. Similarly, at the physical level se- 
lection and sorts can be tested for equivalence and 
subsumption. Furthermore, when an expression el 
subsumes e2, we assume that el/e2 which is the 
remainder of el that differs from e2 is available. */ 

/* To simplify the presentation, we omit the steps that 
detect and merge equivalent subexpressions. */ 

Perform the following transformations 

for each pair of operator nodes nl and n2 (from distinct 
queries) that are roots of an elementary subgraph and 
share common input data nodes do 
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sorted by C# 

case: 
operators are unary (e.g., select): 

let scl and sc2 be the selection conditions for nl 
and n2 respectively. 

If SC 1 subsumes sc2 then 
create an elementary graph with sc2 and create 
a new operator node scl/sc2 which receives the 
result of the node sc2. 

operators are binary (e.g., join)’ 

let jl and j2 be the operators at the root nodes; let 
SC 11, SC 12 and sc21, sc22 be the selection 
condition, if any, along the two inputs (true is a 
valid selection condition). 

If sell subsumes sc21 and jl subsumes j2 then 
push scll/sc21 and jl/j2 beyond the join (j2) 
and merge. If sc12 subsumes sc22 and j 1 
subsumes j2 then push sc12/sc22 and jl/j2 
beyond the join 02) and merge. 

until no more transformations are applicable 

* In practice the cases under the binary operator are 
combined for efficiency; other subsumption possibilities 
are omitted for the sake of brevity. 

Figure 4.4 is obtained after the application of the above 
algorithm to Figure 4.3. Two additional strategies (one for 
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CUST 

Figure 4.3 

ORDER 

each query) are created which share a large subexpression 
consisting of a join and wo selections. To summarize. the 
algorithm progressively creates larger shared subexpres- 
sions applying the transformations outlined on elementary 
sub_rfaphs. Conditions belonging to different queries are 
split m order to detect a larger equivalent subexpression. 

4.4 Search 

The search problem is to take the AND-OR operator graph 
produced above and find the cheapest solution subgraph, 
i.e., multi-strategy. This strictly combinatorial problem 
can be attacked without complications from query elabora- 
tion and commonality detection. 

The problem of finding an optimal multi-strategy is NY- 
hard. (It is equivalent to finding a minimum-weight sub- 
graph of an AND/OR graph [GARE79]). Hence we must 
resort to heuristic solutions. 

Sharing is the heart of the computational difficulty. With- 
out shared intermediate results, the search problem could be 
decomposed into separate search for each query, and time 
would be linear in the size of the AND-OR graph. Ttie 
multi-query problem can be made more decomposable if 
shared nodes are deleted from the graph - this can some- 
times be achieved by examining bounds on costs of opera- 
tors and subsuategies. 

cl1 
70 6 age < 40 

I 1 
Q2 

& 6 qty < 10 

Figure 4.4 

How Suitable is the AND-OR Graph for 
Search? 

Some search algorithms run better on an AND-OR graph 
than on a separate list of (l-strategies that are subgraphs of 
the AND-OR graph). The necessary condition for a multi- 
strategy search algorithm to run on the AND-OR graph is 
that its steps be concerned only with the cost of producing 
a resulting data node, and not with knowing what vertices 
were used within the subexpression. We have identified 
several useful computations that compute bounds by 
making extreme assumptions about sharing, e.g., that no 
nodes are shared, or that all shared nodes are available free. 
These bounds can then be used to determined that certain 
nodes and edges do not appear in the optimum multi- 
strategy, and hence may be deleted from the graph. (The 
exact arguments are technical and too long for inclusion 
here). 

Otlner search algorithms need more information about the 
interior of a subgraph. The complete set of 1 -strategies can 
always be generated from G. As a middle g-round, a dy- 
namic programming solution would need to know which 
sharable intermediate results had been made available. 
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4 .S Compatibility with SQO Architectures 

A single-query optimizer is a necessary part of any DBMS 
that supports a high-level language. If il is ever imple- 
mented, MQO will be an add-on. Hence, we fist propose 
an SQO that can be easily extended to an MQO. We then 
address the problem of extending currently available 
uaditional [SELI79] and extensible optimizers [BAT087, 
GRAE87, FREY871 to an MQO. 

What is the Minimum Extension Required? 

One approach is to add a front or back end to an existing 
SQO [FINK82, SELL86J. This is easy to implement, but 
will not always produce a good multi-strategy, since the 
optimum multi-strategy may not be a composition of op- 
timal l-strategies. In fact, the optimum may involve l- 
strategies that would not even be considered by the SQO. 

An MQO needs several capabilities that are not present in 
an SQO - generation of additional 1-strategies to increase 
the opportunities for sharing, recognition and merging of 
equivalent subexpressions, and search algorithms that ex- 
amine l-strategies (in the context of the A.ND-OR graph) 
to find the optimum multi-strategy. 

To facilitate extension to MQO, an SQO would ideally be 
divided into levels of abstraction matching the MQO de- 
sign, and the interface af each level would be an explicit 
AND-OR graph for the entire query. Creation of new l- 
strategies and recognition of commonaliiies need to be 
added at each level. 

At the logical level, there would be two ways to imple- 
ment the creation and merging of the new strategies. First, 
one could take the AND-OR g-raph output by the logical 
level of the SQO and apply transformations to generate and 
merge the new strategies. Alternatively, one could go in- 
side the SQO routines for this stage. The algorithm that 
analyzes the query graph and produces join strategies at the 
logical level could be extended to consider multiple queries 
simultaneously, and generate the ANTD-OR graph with all 
commonalities exploited. [CHAK86] shows how such an 
algorithm can generare a single multi-strategy combining 
all the queries; the algorithm could be extended to consider 
all possibilities. 

At the physical level, new alternatives need to be generated 
reordered selections and sorts, and subsumptions among 
multiattribute sorts. Also, it is natural for an SQO to 
discard all but the cheapest path into a data node. For MQO 
the alternatives need to be retained if they contain in- 
termediate results that might be shared with other queries. 

MQO also has implications for the run-time control of ex- 
ecution strategies. Many DBMSs use tuple streams to 
buffer intermediate results. A simple control protocol is to 
have each stream produce the next tuple on demand from 

its consumer. Unfortunately, this implies that each sueam 
has a single consumer, violating the spirit of MQO (as in 
Figure 1.1). Instead, MQO appears to need a more data- 
driven protocol including extensive buffering and synchro- 
nization. 

Extending Conventional Optimizers 

Traditional SQOs (as in System R [SELI79]) do not pro- 
ceed one level at a time - instead, they use a depth-first 
approach that elaborates a logical-level node as soon as it 
is generated. This depth-first approach is not compatible 
with finding commonalities at the logical level - one 
would need to apply all multi-query analysis io the graph 
composed of physical operators. 

One is forced to thoroughly rewrite the search and conuol 
routines to permit layering work in our levels. The 
routines that elaborate to the join level, and also to the 
physical level would survive pretty well, although they 
would need the extensions for new funcdonality (discussed 
above). The model of operator costs should also survive. 

An altemalive is to just change the search to retain subop- 
timal suategies. All strategies would be elaborated to the 
physical level, and only then would inter-query 
commonalities be processed. This approach is feasible, 
though working at the physical level means a cost in both 
speed and complexity, as discussed in Section 3.2. 

Extending ‘Extensible’ Optimizers 

A new generation of “extensible” optimizers are described 
in [BAT087, FREY87, GRAE87, ROSE861. The idea is 
that the optimizer has a general-purpose control algorithm, 
plus an easily extended library of transformations. For ex- 
ample, one could write fransformarions that create new, 
sharable subexpressions, and other transformations that 
combine them. 

But transformations must be executed in an ap-propriate 
order, e.g., common subexpressions merged bc-fore the 
next level of elaboration. Extensible optimizers’ control 
algorithms generally do not allow additional control rules, 
or have a convenient notion of level of abstraction or 
priority.4 Another problem lies in the cost model, which 
generally does not adjust for shared subexpressions. 
Finally, it is not clear whether the transformations’ pauem 
matchers will always be able fo search effectively for 
commonalities - instead of searching for a lccal pattern, 
th! search must compare paitems. 

4 Exodus has two levels, but the physical (“method”) level 
is second class - one does not transform physical 
suategies, but just creates them [GRAE87]. 
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5. Conclusions 

As multiple query processing research is in its early stages, 
it is important to have a framework which is modular and 
accommodates different solutions to subproblems. We dis- 
cuss here how the approach helps meet the Introduction’s 
criteria for solution quality, and ameliorates the problems 
identified in Section 3.2. 

1. Allows mix and match of techniques: We have 
separated several independent subproblems - strat- 
egy generation at each level of abstraction, plus the 
search problem. The AND-OR graph acts as the in- 
terface between steps. Special techniques and data 
structures (e.g., query graphs) can be applied at any 
level. 

3 -. Work at appropriate level of abstraction: Logical 
commonalities are handled at the logical level (or 
earlier), on a small graph without physical compli- 
cations. SQO elaboration techniques can be applied 
to obtain the physical level, and additional com- 
mortalities can be detected. 

3. Uniform and eficient representation: The AND-OR 
operator graph provides a very efficient and conve- 
nient way to represent all useful information about 
l-strategies and their common subexpressions. It is 
very small compared with (all l-strategies) or (all 
multi-strategies). It is suitable as an interface at all 
levels, and is not restricted to SPJ queries. l-strate- 
gies can easily be generated from our graph. 

4. Solution Quality and Optimizer Efficiency: The 
main ingredients in finding a good solution are a 
wide range of possibilities, and a search that is fast 
enough to consider many of them. The approach’s 
modularity helps in introducing new transformations 
and new search techniques. Other aspects that speed 
the search (and make possible a more thorough op- 
timization) are being investigated. 
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