
Dynamic Derivation of Personalized Views’

Erich J. Neuhold and Michael Schref12

Institute for Integrated Publication
and Information Systems
GMD, Darmstadt, FRG

Abstract

Traditionally user interfaces to databases have either
assumed complete knowledge of the conceptual schema
of the database or they have relied on the utilization of
predefined views to restrict the universe of discourse for
end users or application programmers. This paper
introduces an interface mechanism to dynamically derive
personalized views and consequently a dynamic learning
facility for the utilization of a database. The principles
are based on ideas developed for the dynamic creation of
universal views in multi-database environments.

1. Introduction

In database applications we usually can assume that end
users and application programmers only need to know
some particular subset of the whole conceptual schema
and consequently the database. The traditional answer to
this situation has been to provide users or user groups
with their specific views on the conceptual schema.
These user views are completely predefined by the
database administrator, and the users can pose queries
and (restricted) updates only against these views.

This approach is appropriate if the scope of the queries a
user may want to formulate is known in advance. But in
case a user wants to pose an unexpected query, or in case

1)

2)

‘l’kis research was partially supported by the Austrian Science
Foundation (“Fends zur Foe&rung der wissemchaftlichen
Fomchung”) under Project No. P5976P
Current Address: Institut fuer Angmndte Infommtik,
Technical University of Vienna, Austria

Permission to copy without fee all or put of this & is
granted lzfovided that the copies are not mule or distritnncd for
direct commercial advantage. the VLDB copyright ru&e and
the title of the public&on aud its date appear, md notice is given
that copying is by petmission of the Very Large Da Bose
Endowment. To copy othawisc, or to republish, rcquix~ 8 fee
and/or special permission from the Endowment

Proceedings of the 14th VLDB Conference _ ,.-

a new user wants to access the database a predefined
view is not the answer. To solve the problem two
solutions have been proposed: (a) a new user view is
defined before the query is actually posed, or (b) the user
must learn about the whole conceptual database schema
and pose his/her query accordingly. In order to support
the second alternative recent research in database
systems has investigated graphical tools for browsing
through the objects of a database [KM&t, GIW,
MOT%, BH86, LAlW].

Our research combines both alternatives, and extends
them to the framework of object oriented systems
[BAN87,GR83,DS%,COX86]. The following scenario is
assumed: The user is allowed to formulate his queries
against a hypothetic view of the database. A hypothetic
view exists only in the mind of the user and has not yet
been actually established. An intelligent knowlcdge-
based system will assist the user to materialize this
hypothetic view when the queries are processed. The user
hereby is freed to a large extent from learning about the
sometimes very complex database schema and from
navigating on the logical level through that schema.

Our work in the framework of object-oriented systems
most readily compares to the work on universal schema
interfaces to relational databases. In a universal schema
interface [MAIQ MRSSS7] accesses to the database are
formulated using attributes only. It is assumed that the
relationship among these attributes can be automatically
derived by joining several stored relations. In order to
ensure correct and meaningful answers two
requirements have to be satisfied: First, every attribute
must have exactly one meaning, i.e it may not be
semantically overloaded (unique role assumption).
Secondly, the sets of attributes with a meaningful
semantic relationship have to be predefined as “objects”.
If a universal relation is assumed the set of maximal
objects can be computed from functional and
multivalued dependencies [MU83].

The implicit join method [LIT%] has been developed as
an alternative to the universal schema approach. Again
the user is allowed to omit interrelational joins in his
query. But, contrary to the universal schema approach no
objects have to be predefined. The necessary joins are
derived from natural dependencies among the attributes.

Los Angeles, California 1988 1113

A natural dependency exists between two attributes if
they share a domain and at least one of them belongs to
the primary key. Incomplete queries are completed by
means of a query graph. The nodes correspond to
relations, the edges to interrelational joins. Incomplete
queries have an unconnected query graph. They are
completed by adding as few natural dependencies as
possible to connect the query graph. However, the
minimization of the number of joins may not always be
the correct interpretation of a user query. The number of
joins is merely a syntactic measure. As an alternative we
suggest to use an object-oriented semantic data model
and a knowledge-based approach to complete
incomplete queries. The research is based on concepts
used for navigation free queries in the relational model,
on research in the field of semantic and object-oriented
data modelling [MBW8O,SH181,HM81,NEU86], and on
research in object-oriented database integration [SN88a,
SN88b].

An introduction to the object-oriented database model
used within our research is presented in Section 2. The
overall approach to derive personalized views is outlined
in Section 3. In Section 4 the principles of navigating in
the conceptual schema are discussed. This is followed in
Section 5 with the handling of complex queries during
the construction of the personalized user views. Finally,
conclusions and future research directions are presented
in Section 6.

2. The object-oriented database model

The VODAK-data model will be used as the basis of the
discussions. The model is a synthesis of semantic data
modelling concepts and object-oriented system
principles. A more detailed description of the model can
bc found in [KNS88]. The model includes the four main
abstraction principles of semantic data models
classification, aggregation [SS77], specialization, and
grouping [HM81]. (The latter will not be discussed
here).

Classification means that objects having the same type of
properties are collected to object classes. The properties
of an object are represented by attributes and by
relationships. An attribute takes an instance of a
printable data type as its value. In contrast, relationships
take non-printable object identifiers as values. For
example, in the ORDER database of Figure 1 the class
CUSTOMER has the attributes Name, Address and
Credit, and the relationship ResidentIn, which identifies
the REGION in which the customer resides. The object
class REGION in turn has the relationship
ResponsibleSalesman, which specifies the salesman who
is responsible for all customers of the region.

The other abstraction principles are expressed by
different semantic relationship types introduced in the
following.

ureeation is supported in two senses: (a) to model a
relationship in which several independent objects
participate, and (b) to model dependent components of a
superordinate or complex object. The first case is
expressed by a has-constituent relationship, the second
case by a has-comnonent relationship. Their inverses are
constituent-of and comoonent-of. A specific name may
be given to a particular occurrence of a relationship type.
For example in Figure 1 the class SHIPMENT-OFFER
models the fact that carriers offer to ship a product to
some region at a specific price. The three has-constituent
relationships to the classes CARRIER, PRODUCT, and
REGION have been named ShippingCarrier,
ShippedProduct and DeliveredIn. The price of a
particular shipment is represented by the attribute
ShippingCharge.

Soecialization is used (a) to classify real word objects
which are modelled by a superclass into disjoint
subclasses (category-specialization), and (b) to model
real world objects in different real world situations (role-
specialization). Contrary to the principle of type
specialization in object-oriented programming languages
[GR83, COXSS] a real world object which is represented
by an instance of a subclass is also represented by an
instance of the superclass. The instance of the subclass
and the instance of the superclass, which model the same
real world object, are related by the &
@ecialization)-of, tsp. cateeotv-specialilation-of
relationship. Its inverses are has-role and has-cateeonL,
soecialization.

In the example of Figure 1 the class PRODUCT has the
set-valued component OrderedBy. An instance of the
class ORDERING-CUSTOMER represents a
CUSTOMER in the role of being the customer of a
particular product. As such he/she has ordered the
particular product on a certain date in a certain quantity.
This is expressed by the attributes OrderDate and
Quantity. Note: if some customer has ordered several
products he/she will be represented by several instances
of the class ORDERING-CUSTOMER, but only by a
single instance of the class CUSTOMER.

When modelling one has to be careful to identify the
dependencies between the object class instances (which
will be simply refered to as objects in our further
discussions): A relationship object (aggregate object)
depends on the objects which constitute the relationship;
a component object depends on its superordinate object;
and an instance of a subclass is dependent on the
instance of the superclass which models the same real
world object. Therefore an object is directly denendent
on another object if one of the following semantic
relationships holds between them: has-constituent,
comnonent-of, role-of, and cateeotv-snecialization-of.

184

CUSTOMER Class
attributes:

Name : STRING
Address: STRING
credit: DW

relationshiD8:
ResidentIn: REGION

end CUSTOMER

ClaSS REGION
.
relationshiD8:

Responsiblesalesman: SALESMAN
end REGION

SHIPXENT-OFFER class
has-constituents:

ShippedProduct: PRODUCT
DeliveredIn: REGION
Shippingcarrier: CARRIER

attributes:
ShippingCharge: DM

end SHIPMENT-OFFER

PRODUCT Class
attributes:

ProductNo: INTEGER
ManufacturedFirst: YEAR

methods:
Price: DM

has-comDonents:
OrderedBy:set-of ORDERING-CUSTOMER

end PRODUCT

ORDERING-CUSTOMER class
ComDonent-of: PRODUCT
role-o<: CUSTOMER
attributes:

OrderDate: DATE
Quantity: INTEGER

end ORDERING-CUSTOMER

SALESMAN and CARRIER need not be
further specified here.

Fiuure 1: order database

These semantic data model concepts are merged with
object-oriented system concepts. The fundamental
principles of object-oriented systems are data
abstraction and inheritance. Data abstraction means that
a data structure and its associated operations are defined
together and encapsulated into an abstract data type, or
abstract module. In object-oriented systems the abstract
module is called an obiect class and will be considered
equivalent to an object class of the semantic data model.
The operations are defined for the instances of the class
and are called methods. A method is executed for an
object by sending the object a message which identifies
the method by a method-selector and which possibly

carries several actual parameters. Such a message will be
denoted as: [<addressee> <message-selector >:
(<argument-values > I], where the addressee is either an
object class, or a variable containing a set of instances. In
the latter case the message will be sent to all of them. A
mnemnonic identifier enclosed in single quotes will be
used to denote that a message is sent to a particular
instance, which is actually identified by an unprintable
internal instance identifier.

We assume that an attribute value may be retrieved by
using the attribute name as a message selector. One or
more objects related to an object by some relationship
may either be retrieved by a message, using the name of
the relationship as message selector, or by a message,
using the name of the type of semantic relationship as
message selector and the name of the related class as
actual parameter. For example the customers of the
product ‘product-S can be either retrieved by [‘product-
5’ OrderedBy] or by [‘product-S has-component:
ORDERING-CUSTOMER].

Furthermore we will assume that the message
“where:<condition>” sent to a class, or a variable
containing several instances, will return those instances
of the class, or variable, which satisfy the given condition.

Jnheritance is utilized as follows: If an instance of a
subclass can not handle a message, the message is
delegated to the instance of the superclass, to which the
first instance is related by a role-of or catePo?-
stialization-of relationship.

3. The overall approach to derive
personalized views

We believe that due to missing semantics an intelligent
user interface should not be built directly on a
conventional database system. Rather a knowledge based
model should be provided as interface to a given
relational, fact, or document database. This knowledge
base is initially established by some domain expert
together with the database administrator, for those parts
of the database that are thought to be needed in the
specific application domains. Some initial research
results on the interactive process to develop this
knowledge base may be found in [NS88]. It is an object
oriented and semantically enriched representation of the
original database schema. For example, domains are
provided for all attributes; object classes, attributes,
relationships, etc., are identified, and synonymous names
are added to the original names. Specialized operations
on these databases are represented as methods attached
to the object-classes. This initial knowledge base will be
continuously refined. Such a refinement will be
necessary whenever the knowledge base has been found
to be incomplete, or in case the conceptual schema of the
original database has been changed.

185

Whenever an end user or application programmer wants
to utilize the database he/she has some “objects of
interest” in mind These objects of interest will then be in
the center of the user’s attention toward the database for
at least the duration of several queries, establishing in
that way a user’s view on the database. However, at first
this view is purely hypothetical, that is it only exists in the
mind of the user, and will have to be established in
reality through interactions between the user and the
knowledge base. These interactions and the actions in
the knowledge base will be discus& in the remainder of
this paper.

The user poses a simple query by sending a message
based on his “hypothetical” object of interest. In the
user’s hypothetical view of the database the object is
assumed to have a method which implements the
response to the message. But the object and the
identified method may not yet exist in his “real” view and
moreover the object might actually not have been
defined with the referred method. In this case a new view
component, which is compatible with the user’s
hypothetical view, must be derived dynamically.

For example the customer Smith may be the object of
interest in the query posed by some salesman. The
salesman will now assume that the object ‘Smith’ can
respond to the message “OrderedProducts” by delivering
to him the set of products Smith has ordered. But
investigating the Or&r database of Figure 1 it becomes
clear that these products must be retrieved by selecting
those instances of the class PRODUCT which contain in
the component OrderedBy an instance which represents
Smith in the role of customer of some product.

Before we develop the concepts to derive a view
dynamically, let us analyze the reasons why the personal
perspective of some user may not directly match the
objects and methods in the conceptual schema. In the
simplest case a user may want to address a data model
concept, which is present, but has been given a different
name by the database administrator and/or the domain
expert. More complicated, a user may assume that some
real world fact is represented by a certain data model
construct, but actually it has been modelled by a different
one, e.g., the customer situation illustrated above.

Differences in naming can be resolved by a knowledge
navigator mechanism which uses domain specific
thesauri in or&r to find the appropriate synonym. To
handle structural differences is more cumbersome. In
this case a message which is received by some object
cannot be handled by the object. Instead, the message
has to be answered by some semantically related
object(s). Our approach to handle structural differences
can now be characterized as follows: In a first step, the
objects which can at least respond to an adapted form of
the message have to be identified. Then the original
message has to be appropriately transformed and
fonvarded to these objects. Finally, the answers from the
various objects have to be combined.

As a simple example consider the message
“ResponsibleSalesman” sent to a specific customer. No
appropriate method can be found with the class
CUSTOMER, because salesmen are only assigned to
regions and not to specific customers. Nevertheless a
salesman is responsible for all customers that reside in
his region. If therefore the original message is forwarded
along the relationship “ResidentIn” to the customer’s
region the appropriate method will be found and the
expected answer can be returned.

A message fotwardineDlan defines at the class level how
messages that cannot be handled directly are to be
forwarded to semantically related objects. For example,
the message fonvarding plan

a = “ResidentIn REGION ResponsibleSalesman
SALESMAN”

will be associated using the selector “ResponsibleSales-
man”, with the class CUSTOMER in the created
customer view. As another example, consider the
message forwarding plan for OrderedProducts (see
Figure 2)

b = “has-role ORDERING-CUSTOMER component-
of PRODUC?”

which states how products ordered by a specific customer
can be determined Another message forwarding plan

c = “((component-of PRODUCT constituent-of
SHIPMENT-OFFER) intersect (role-of
CUSTOMER ResidentIn REGION constituent-of
SHIPMENT-OFFER)) has-constituent CARRIER”

states that the carriers an ordering customer may
possibly use must accept the product ordered for
shipping, and that they must ship this ordered product
into the region where the customer resides. A message
which follows the first path via PRODUCT will retrieve
the carriers who are able to ship the product the
customer has ordered. A message which follows the
second path via REGION will retrieve the carriers who
offer a shipment into the region where the ordering
customer resides. The intersection of the set of carriers
returned by the two messages produces those that may
possibly serve the ordering customer.

The message forwarding plans a and b will eventually be
incorporated into the customer view illustrated in Figure
2, where object-coloring and upward inheritance as
explained in [SN&Ja] provide for the other properties of
the object class CUSTOMER-V: Instances can be
tagged (colored) with a class-name to tell them to follow
primarily the behavior of that class. For example if the
puyT~;;g$ i “,’ ,;~~&#m$&v~~~~;~

, * v
“Credit” will retrieve his credit in USS it&ad of DM.
Properties not defined at the view class CUSTOMER-V
are inherited upward from the class CUSTOMER.

186

CUSTOMFaR-V chss
view of: CUSTOMER
attributes:

Credit: uss
methods :

Responsiblesalesman: SALESNAN
-

ResidentIn REGION
ResponsibleSalesman SALESMAN

Orderedproducts: PRODUCTS
messase forwardins elan

has-role ORDERING-CUSTOMIZR
COItIpOnent-Of PRODUCT

d CUSTOMER-V

Fiuure 2: PerSOnal view CUSTOMER-V

4. The concept of message forwarding

When developing a message forwarding plan we employ
principles similar to those adopted for the dynamic
integration of object-oriented databases [SNBb]. For
reasons of code sharing the message forwarding plan is
not developed at the instance level but rather at the class
level. In or&r to produce a plan two steps have to be
taken:

(a) Path detection: An inauirv message is initiated and
forwarded along “promising” semantic relationships to
other object classes in the conceptual schema. To select
“promising” relationships close cooperation with the
interactive knowledee navieator is required. The
knowledge navigator, an expert system which uses a
domain knowledge base, various thesauri, and general
knowledge components about the user and his
environment, will not be discussed here. However, if the
knowledge navigator fails, the system will seek the help
of the requesting user, the domain expert, or even the
data base administrator to identify the necessary
semantic relationships, object classes, and methods.

(b) Path combination: From the possible paths
determined during the path detection phase those of
semantic relevance will be selected and combined
Contrary to other approaches, this selection is not based
on the physical length of the path, but on the semantic
surroundings of the object classes visited on the path
The concept of context of an object tries to capture the
informal notion of these object environments by the
definition: The context of an object o is the set of objects
on which o is dependent. The context of an object class 0
is the set of object classes which contain the instances on
which the instances of the class 0 are dependent.

In the following the algorithms necessary for path
detection and path combination are discussed and some
of the principles (rules) are exemplified. A complete set
of rules to be followed by the algorithm is given in the
appendix of the paper.

Message Dath detection aleorithm:

When a message is forwarded from an object 01 to
another object 02 the following situations may exist:
(a) context (01) > context (02)
(b) context (01) < context (02)
(c) otherwise

In cnse (a) the new context contains only a subset of the
objects of the previous context. This occurs when the new
object 02 belongs to a more general object class 02, that
is, it is less specified and therefore depends on fewer
objects than the instance 01 of the class 01. The trivial
situation exists when 02 is a superclass of 01. We then
say that a context eeneralization occurs when a message
is forwarded from 01 to 02.

In case (b) the new context contains more objects than
the previous context. This situation arises when the
object 02 belongs to a more specific class 02, that is, it is
specified in more detail than the object 01 of class 01
and therefore depends on more objects. In the trivial
situation 02 is a subclass of 01. However, considered
globally we have to distinguish whether the message
originally has been passed from a specialization of 01, a
generalization of 01, or some other context. If the
message has come from some more specific context of
01, e.g., some subclass of 01, which of course has to be
different from 02, then considered in total a context
switch occurs. In the other situations a context
svecialization occurs when a message is forwarded from
01 to 02.

In case (c) a context switch will always occur.

Context specializations and generalizations can be
handled automatically by the system. They correspond to
key joins resp. to projections in relational databases and
a connection trap [COD701 cannot occur. Differently, a
context switch corresponds to more general joins where
a connection trap is possible and consequently the user,
DBA, or domain expert has to be involved to clarity the
semantic situation that exists.

An inquiry message is not forwarded further, iE
(1) the method searched for has been located, or
(2) a cycle has been encountered, or
(3) a context left previously is reentered, or
(4) too many context switches occurred.

A cycle is found when an object class already
encountered during forwarding is entered again. Here
we have to distinguish between two cases. First, the cycle
corresponds to a possible recursive query, e.g., a
recursion over the part-subpart hierarchy “PART has-
category-specialization COMPLEX-PART has-
component SUBPART role-of PART, or secondly, it is
of some type which is not semantically meaningful. In the

187

first case the cycle will be added to the possible paths,
but in both cases a cycle will not be followed again.

If an inquiry message reenters a context it previously left
the fotwarding process can also be terminated as further
forwarding will not add new information to the detection
process.

A context switch always carries the user from one
environment to a new one. Each time he has to learn to
understand the new environment in order to make the
necessary decisions on the acceptability of the identified
paths. With too many such switches it is very likely that
the user will be too confused to make reasonable
decisions, and we feel it is then better to terminate the
search- This context switch based approach is
semantically much more appropriate than to limit the
search to a maximum number of forwarding steps, as it is
done in other solutions to the problem.

Message nlan combination algorithm

To create the final message forwarding plan the answers
gained from the path detection algorithm have to be
combined. The algorithm chosen for message path
combination again is derived from the algorithm
developed for the dynamic creation of global views in
multi-database environments [SN88b].

Message forwarding plans that preserve the (local)
context are favoured against others. Context switches in a
plan will always be pointed out to the requesting user for
approval.

In principle two message forwarding plans are
candidates for combination if they intersect at some
class. Here again plans which do not intersect with any
other plan before they intersect with each other are
preferable, because their front parts may be combined
into a single plan.

The algorithm therefore contains the following steps:

1. Build all equivalence classes P, of plans that intersect
for the first time with object class C. Note: that a
common prefix of two paths is not considered an
intersection.

2. From every equivalence class P, choose the two plans
which have the minimum number of context switches
between the last object class in a common prefix and the
object class C

3. Combine the selected plans from an equivalent class
n
:G by “set intersection” if C is reached from a context
generalization in every inherent path of the two plans,
(b) by “set union” if C is reached from a context
specializationin every inherent path of the two plans,

(c) by an operator supplied by the user otherwise..

4. Reintegrate the new (combined) plan into the
equivalence classes and repeat steps 2 and 3 until no
further plans can be combined.

5. In case some equivalence classes are circularly
dependent on each other the plan combination steps 2,3,
and 4 will not result in a single (combined plan) and
special steps have to be taken to resolve the circular
dependencies as we will show by an example. (The
complete rules can be found in the Appendix).

Assume three plans pl, p2, and p3 and the three
corresponding equivalence classes P P , and P,. The
circular dependencies now could haveThe?orm

. -.

. . . . -. ---.p 3 --____ *-v
C

where 11 = length of pl between A and B
12 = length of p2 between B and C
13 = length of p3 between C and A
and 12 > 11 > 13.

We select now the path where li is maximum, i.e., p2, and
replace the subpath from S to C via B by the direct
subpath of p3 from S to C. That is, we form a common
prefix between p2 and p3 breaking the circular
dependency.

6. After step 5 reintegrate the new (combined) path into
the equivalence classes and repeat steps 2 to 6 until a
single (combined) plan remains.

Using our Order database in Figure 1 as an example, the
inquiry message for “Carrier” initiated at the class
ORDERING-CUSTOMER will return with the paths

P = “component-of PRODUCT constituent-of
SHIPMENT-OFFER has-constituent CARRIER”

Q = “role-of CUSTOMER ResidentIn REGION
constituent-of SHIPMENT-OFFER has-constituent
CARRIER”.

188

The plans p and q intersect for the first time at the class
SHIPMENT-OFFER. The plans reach the class
SHIPMENT-OFFER, i.e., the context (SHIPMENT-
OFFER, CARRIER, PRODUCT, REGION} from
different context generalizations, i.e., {PRODUCT} and
{REGION}. Therefore they are combined using an
intersection. This results in the plan c given above. Using
an intersection ensures that a carrier returned by the
final plan actually ships the product which the customer
has ordered into the region in which the customer
resides.

5. Complex queries

So far we have not treated cycles that were encountered
by the path detection algorithm. After a single
(combined) message forwarding plan has been produced
by the steps 1 to 6 above, the cycles have to be
investigated and possibly integrated into the plan. A
detailed discussion is beyond the scope of this paper but
we have included the rules used by the integration
algortihm into the appendix. The rules essentially ensure
that only “useful” cycles are included in the plan., and
rule 6 given there furthermore ensures that only cycles
are included which can be expected to terminate during
the actual execution of a query against the plan.

For example a message fonvarding plan representing a
part explosion problem, e.g. collecting the combined
weight of a complex part by the plan

“(has-category-specialization COMPLEX-PART
has-component SUBPART role-of PART) has-
category-specialization SIMPLE-PART Weight
KILO”

developed for the class PART, will terminate, as every
cycle will eventually end with an instance of a SIMPLE-
PART.

Thus far, we have investigated the situation where an end
user or application programmer has a specific “object of
interest” in mind and builds for himself a personalized
view concerning the context of this “object of interest”,
with the methods and algorithms described in Sections 3
and 4. The mechanisms will normally produce an object
class hierarchy with the class of the object of interest as
the root and the other object classes either below or
connected to it through relationships.

An object class below the root may itself have two kinds
of methods and attributes attached:
(a) methods and attributes which model properties that
are independent from the specific object of interest the
user has in mind,
(b) methods and attributes which model properties that
are dependent on the object of interest.

With the concepts presented so far an object retrieved by
a forwarded message will only be able to have methods
and attributes of type (a) above, as the relationships
between the different objects touched by the forwarded
message will be lost from one query execution to the
next.

However, situations in which messages can refer to the
environment of the preceeding message(s) are quite
natural in a database. For example consider the Order
database of Figure 1 and the message ordering-
customers: = [‘prod632 has-component: ORDERING-
CUSTOMER], which retrieves the customers who have
ordered the product numbered “632”. The variable
ordering-customers will then contain the customers in
the role of customers of the product “632”. Therefore, the
date on which customer Smith has ordered product “632
can be retrieved by [[ordering-customers where: Name =
“Smith”] OrderDate]. As it is implicitely assumed that
the message OrderDate will retrieve the date on which
customer Smith and not some other customer has
ordered product “632” the message refers to the
environment of the previous message [has-component:
ORDERING-CUSTOMER].

In Section 3 we have explained how a user view class
CUSTOMER-V (Figure 2) can be constructed and how
the products ordered by a specific customer may be
z-eg$ int;rakyz;;;;iks feryJ~br$~f&.&&

OrderedProducts]. Now assum; that the OrderDate of
the product “632” ordered by Mr. Smith is to be retrieved
It would be expediant if, in analogy to the above, the
message [[ordered-products where: ProductNo = “632”]
OrderDate] could be used. Here the message OrderDate
refers to the environment of the previous message
OrderedProducts as we implicitely assume that the date
should be returned on which the customer Smith, and not
some other customer, has ordered product “632”. Now let
us investigate what actually will happen to the message
[‘prod632 OrderDate], which is one of the messages
produced by the above request, if it is treated
unconnected to any previous message. As the class
PRODUCT to which the instance prod632 belongs has
no appropriate method for OrderDate a message
forwarding plan will be initiated. The plan which will be
suggested to the user will be “has-component
ORDERING-CUSTOMER OrderDate DATE”. But
this plan will retrieve not only the date when Mr. Smith
has ordered the part “632” but also the dates when other
customers have ordered the part.

The message OrderDate sent to the product ‘prod632
does not deliver the desired result because the
environment in which the product originally has been
retrieved has not been kept with the object identifier
‘prod632’. In contrast, we have seen that the message
OrderDate sent to the instance of ORDERING-
CUSTOMER which represents Mr. Smith in the role of
a customer of the product “632”, i.e., ‘Smith-ordering632’,
retrieves the desired result as this instance reflects the

189

appropriate environment. As a solution to our problem,
we will retain with any object returned by a forwarded
message the environment(s) through which the object
has been retrieved. For this purpose the object is context
colored with the most specific environments through
which the message has been forwarded.

A simplistic approach would be to color the object by all
the objects the message has visited in its forwarding
process. However, it is not necessary to represent all
objects visited by the message in the context-color. It will
be sufficient just to remember the objects which
determine the most specific environments (contexts) the
fotwarded message has visited. In the following we
analyse how these objects can be determined.

A class C represents a most snecific context in a message
forwarding path, iff its context is a superset of the context
of its predecessor and of the context of its successor in
the path, providing they exist.

Similarly, we want to identify those classes of a message
forwarding plan whose instances identify a most specific
context in any execution of the plan. In addition, we
would like to determine the most specific contexts of a
message forwarding plan statically and not dynamically
during the execution of the plan.

If two inherent paths of a message forwarding plan
intersect with each other at a class which represent a
most specific context in both paths, then the next most
specific context, that has to be determined, does not
depend on whether one has actually come from the first
or second path If we now require that all inherent paths
of a message forwarding plan only intersect at most
specific contexts, then the most specific contexts of the
message forwarding plan can be determined statically
from the most specific contexts of its inherent paths. So
we have:

Let p be a message forwarding plan and L be the set of
all inherent paths of p. Let all possible pairs of paths in L
be non-interfering. Then a class which determines a most
specific context in some inherent path of L determines a
most specific context in p.

With this technique every object that has been retrieved
by a forwarded message is colored by the objects which
determine the most specific contexts the message has
touched. For example, this will be the instances of the
class ORDERING-CUSTOMER which represent Mr.
Smith in the role of a customer of the or
retrieved by 9T3f&lMti% the message [‘Smith
OrderedProducts]. The objects in the most specific
contexts model the necessary properties of the
relationship between the object of interest and the
retrieved object(s). If in a subsequent message the
context color of an object is taken into account, methods
of type (b) can be utilized in a dynamic view.

Consider the completed customer view of Figure 3. The
class ORDERED-PRODUCT describes the behavior of
context-colored product instances. A context-colored
product instance is dependent on the particular customer
instance for which the message forwarding plan which
retrieved it has been executed, this is reflected in making
ORDERED-PRODUCT a comnonent-of
CUSTOMER-V, and specifying its context
ORDERING-CUSTOMER.

instances the customer Smith has &lered will be
returned. Each instance will, however, be colored with
the most specific contexts the message fo

l!ie!$H
TKi% touches. E.g., in our case ‘prod632

would be one such object returned, where
‘smith-ordering632 is the instance of ORDERING-
CUSTOMER which represents Smith as customer of the
product “632”. In addition, each object returned will
receive the color ORDERED-PRODUCT to change its

GrderDate] will now be handled properly, as the
coloring will appropriately restrict the scope of its
execution; whereby the predefined method “context” is
used to refer to the context of a oontext-colored object
(see: Figure 3).

Using the same mechanism for the message forwarding
plan to identify carriers that are able to ship the ordered
products of a customer (see plan c in section 4) we
finally arrive at the completed customer view
CUSTOMER-V illustrated in Figure 3.

CUSTOMER-V class
viewof: CUSTOMER
attributes:

credit: US$
mm:

Responsiblesalesman: SALESMAN
messase foxwardinct elan

ResidentIn REGION
ReeponsibleSaleeman SALESNM

OrderedProducts: eet-of
ORDERED-PRODUCT-V

pressacre forwardinu Dlan
has-role ORDERING-CUSTOMER
component-of PRODUCT

a CUSTOMER-V

190

class ORDERED-PRODUCT-V
view-of: PRODUCT
COnmOnent-Of: CUSTOMER-V
context: ORDERING-CUSTOMER
methods:

OrderDate: DATE
messaae forwardins nlan
context ORDERING-CUSTOMER

OrderDate DATE
Possiblecarrier: set-of

POSSIBLE-CARRIER-V
messaue forwardina plan:

context ORDERING-CUSTOMER
((component-of PRODUCT
constituent-of SHIPMENT-
OFFER has-constituent
CARRIER) intersect
(role-of CUSTOMER ResidentIn
REGION COIIStitUent-Of
SHIPMENT-OFFER has-consituent
CARRIER))

d ORDERED-PRODUCT-V

POSSIBLE-CARRIER-V class
. . .

end POSSIBLE-CARRIERS

Fisure 3: Completed view Class CUSTOMER

6. Conclusion

The dynamicvicwdeflnitiontcchniqueintroduccdinthis
paper eliminates the need that for each user (group) all
complete views, he/she will ever need, be prcdefined
before any query can be executed. First of all, such work
would place a very heavy burden on the DBA and the
domain expert, but it would also lead to many problems
and considerable amounts of work when the conceptual
schemaoftheclatabaschastobcchangcd.

The method described is derived from methods
developed for the dynamic creation of global views in
multi-databases, and it is based on the idea that a user
will always have some object(s) of interest in mind when
he wants to work with the database. The view is then
dynamically created around those object(s) of interest
and can be behavourially and structurally quite different
from the conceptual (object oriented) schema. The paper
introduces two concepts, message forwarding and object
context coloring, to support (a), the construction of
dynamic (object oriented) user views, and (b), the
identification and control of the correct execution of
complex queries even when large structural differences
between views and conceptual level exist.

The techniques described are currently in the process of
being implemented on Sun workstations. The prototype
should allow the construction of user oriented dynamic

views for multi-media databases, documents, materials,
descriptions, designs, business data, etc. The dynamic
view construction features allow a user to start useful
work with a database, even when he/she has only very
limited knowledge about the database technology
employed and the properties of the data and data
structures contained in the database on hand.

7. Acknowledgement

We are grateful to Markus Stumptner for his helpful
comments on the paper.

8. Literature:

W’W Banerjee J., et al.: Data model issues for
object-oriented applications. In: ACM Transactions on
Office Information Systems, Vol. 5, No. 1,1987, pp. 3-26.

P-W Bryce, D. and R. Hull: “SNAP: A
Graphics-Based Schema Manager.” In: Proceedins of the
Second International Conference on Data Engineering,
Los Angeles, 1986, pp. 151-165.

PM=1 Brodie M., J. Mylopoulos (eds.): On
Knowledge Base Management Systems. Springer, New
York, 1986
[COD701 Codd, E.F.: “A Relational Model for Large
Shared Data Banks.” In: Comm of ACM, Vol13, No. 6,
1970.
[COXSS] Cox, B.: “Object-Oriented Programming:
An evolutionary Approach.” Eddison Wesley, Reading
Massachussets, 1986.

[D=1 Dayal U. and J. M. Smith: “PROBE: A
Knowledge-Oriented Database Management System.”
In: [BM86]
[DU87] Urban, S. D. and L M. Delcambre:
“Perspectives of a Semantic Schema.” In: Proceedings of
the Third International Conference on,Data
Engineering, 1987, pp. 485-492.

PJW Furtado, L and E. J.. Neuhold: “Formal
Techniques for Data Base Design.” Springer, Berlin
1985.

ww Goldman K.J., P.C. Kanellaiks, S.A.
Goldman, S.B. Zdonik: “ISIS: Interface for a Semantic
Information System”. ACM SIGMOD 1983, pp. 328342.

1GRf-Y Goldberg, A. and D. Robson: Smalltalk-
80: The Language and its implementation. Addison-
Wesley,Reading Massachusctts,l!W.

W811 Hammer, M. and D. McLeodz “Database
Description with SDM: A Semantic Database Model.”
In: ACM Transactions on Database Systems, Vol. 6, No.
3,1981, pp. 351-381.

I~84 King R. and S.Melville: “Ski: A Semantics
Knowledgeable Interface”. VLDB, 1984, pp. 30-33.

191

[KN=Jl Klas W., E. J. Neuhold and M. S&e&
“On an object oriented data model for a knowledge
base.” In: Proceedings of the European Teleinformatics
conference, North Holland, 1988.

[LAR=1 Larson, J. A: “A Visual Approach to
Browsing in a Database Environment,” IEEE Computer,
Vol. 19, No. 6, June 1986, pp. 62-71

[LITW Litwin, W.: “Implicit joins in the
multidatabse system MRDSM”. IEEE-COMPSAC,
1985, pp. 495504.

W-31 Maier, D.: The Theory of Relational
Databases. Computer Science Press, 1983
WBWSO] Mylopoulos J., PA. Bernstein, H.K.T.
Wong: “A Language Facility for Designing Database-
Intensive Applications.” In: ACM Transaction on
Database Systems, Vol. 5, No. 2,1980, pp. 185207.
pOO86] Moon, D.: “Object-Oriented Programming
with Flavors.” In: Proc. ACM Conference on Object-
Oriented Systems, Languages, and Applications.
Portland, Oregon, Sept. 1986.

WOWI Motro, A: “Constructing Queries from
Tokens”. ACM SIGMOD 1986, pp. 120-131

NJ831 Maier, D. and J.D. Ullman: “Maximal
objects and the semantic of universal relation databases.”
ACM Transactions on Database Systems, Vol. 8., No. 1,
1983, pp. 1-14
[MRSS87] Maier D., D. Rozenshtein, S. Salveter, J.
Stein, D. Warren: “PIQUE: A relational query language
without relations.” In: Information Systems, Vol. 12, No.
3, pp. 317-335,1987.

[NEUMI Neuhold, E.J.: “Objects and abstract data
types in information systems.” In: Proc. of the IFIP TC2
Working Conference on Database Semantics; R.
h44?ersman, Steel T.B. (eds.). North Holland, 1986, pp. l-

F-84 Neuhold, E.J. and M. Schrefl: “Towards
databases for knowledge representation.” In: Schmidt
J.C, Thanos C (eds.): On Knowledge Based
Management Systems II. Springer, Heidelberg, New
York, 1988. (in print)
[SHI81] Shipman, D. W.: “The Functional Data
Model and the Data Language DAPLEX.” In: ACM
Transactions on Database Systems, Vol. 6, No. 1,1981,
pp. 140-173.

v-4 Schrefl, M. and E. J. Neuhold: “Object
Class Definition by Generalisation using Upward
Inheritance”. Proceedings of the 4th International
Conference on Data Engineering, IEEE, 1988, pp. 4-13

w=1 Schrefl, M. and E. J. Neuhold: “A
knowledge-based approach to overcome structural
differences in object-oriented database integraiion”.
Proceedings of the IFIP Working Conference “The Role
of Artificial Intelligence in Databases and Information
Systems.” Guangzhou, North Holland, 1988.

]SS77l Smith, J.M. and D.C.P. Smith: “Database
Abstraction: Aggregation and Generalization.” ACM
Transactions on Database Systems, Vol. 2, No. 2,1977,
pp. 105133.

Appendix

Definitions

Def. (message forwarding path):
(a) Let r be the name of a relationship and C the name
of a class, then “r C is a message forwarding path.
Note: Here the term relationship is meant to refer to
relationships, attributes, and parameterless methods.
(b) If 1 is a message forwarding path, r is the name of a
relationship and C the name of a class, then “1 r e is a
message forwarding path

Def. (message forwarding plan):
(a) Every message forwarding path is a message
forwarding plan.
(b) If p and q are message forwarding plans, then the
concatenation of p and q, pq, is a message forwarding
plan.
(c) 4p is a message forwarding plan, then the iteration
of p, p , is a message forwarding plan.
(d) If p and q are message forwarding plans, then (p
union q) and (p intersect q) are message forwarding
plans.

&f. (result class of a message forwarding plan):
The result class of a message forwarding plan p, result-
class(p), is defined as
(a) C, iff p=“r C
(b)
(c)

resultclass(q2), iff p=qlq2
result-class(q), iff p=q

(d) result-&ss(ql)=result&ss(q2), iff p=(ql union
q2) or p=(ql intersection 42)

&f. (validity of a message forwarding plan):
A message forwarding plan p is valid for a class 0, iff
(a) p=“r C, and the relationship r is defined between
the class 0 and the class C
(b) p=qlq2, and ql is valid for 0, and q2 is valid for
reault-cla&ql)
(c) p=q , and q is valid for 0 and for result-class(q)
(d) p=(ql union q2) or p=(ql intersection q2), ql and
q2 are valid for 0, and result-&ss(ql)=result-&ss(q2)

Def. (result class of a message forwarding plan):
The result class of a message forwarding plan p, result-
class(p), is defined as
(a) C, iffp=“r C
(b)
(c)

result-class(q2), iff p-qlq2
resultclass(iff p=q

192

(d) result-class(ql)=result-class(q2), iff p=(ql union
42) or p=(ql intersection q2), ql and q2 are valid for 0,
and result-class(ql)=result-class(q2)

kf. (inherent path):
A message forwarding path 1 is an inherent path of the
message forwarding plan p iff 1 can be obtained from p
by a sequence of the foll9wing substitutiong:
(a) if p has a subplan q then substitute q in p by q
(b) if p has a subplan q=(ql union 42) or q=(ql
intersection q2), then substitute q in p by either ql or q2.

&f. (predecessor):
Let Cr,..Cu be the sequence of classes that appear in the
given order in a message forwarding path 1 valid for 0 .
T$n;~tpredecessor of a class Ci in 1, predecessor(Ci,l),

(a) asO,ifi=l
tb) as ‘i-19 ifi>l,i<=n.

&f. (execution of a message forwarding plan):
The execution of p on an object o is defined as follows:
(a) if p = “r C”, then the answer to the message “r&Y
sent to 0, i.e. [o r:C],is returned as result of p
(b) if p =qlq2, then ql is executed on o, q2 is executed
on the objects returned by the execution of ql, and the
union of the results of these executions of q2 is returned
as result of Q.
(c) if p=q , then q is executed on o. If the result is the
null object, then o is returned. Otherwise p is executed
on all objects returned, and the union of the results of
these executions is returned as result of p.
(d) if p=(ql union 92) or p=(ql intersection q2), then
ql and q2 are executed separately for o and the union
(tsp. intersection) of the results of both executions is
returned as result of p.

kf. (current context):
The current context of a message at the class 0 in a
message forwarding path 1 valid for S, current-
context(O,l) is:
(a) {}, iff 1 does not contain 0
(b) context(S), if O=S
(c) current-context(predecessor(O),l), if current-
context@redecesso r(O),l) > context(O)
(d) context(O), otherwise

&f. (most specific context):
Let C2,..,Cn (n>=2) be the sequence of classes in a
message forwarding path 1 valid for C . Then the class C.
determines a most specific context in rf iff 1

(a) i= 1, and context > context(C)
(b) i>l, i<n, and context(Ci-r) 2 context >
mntdFi+ J
(c) i=n, n>l, and context(Cu-l) < context

&f. (non interfering inherent paths):
We call two inherent paths 1 and k of a message
forwarding path non-interfering iff

(a) every class C which determines a most specific
context in 1 and which is contained in k determines also a
most specific context in k, and
(b) every class C which determines a most specific
context in k and which is contained in 1 determines also a
most specific context in 1.

Message forwardine rules for an inauitv message M
received bv the class 0 from the class C:

The inquiry message M is considered an object with the
attribute OriginalMessage, and the components
PreviousPath, AcquiredPaths and EncounteredCycles.
The component PreviousPath is initialized with the
object class of the addressee of the original message.

(Terminate the search on a success) Rule 1:
If the class 0 has a method which implements the
response to the OriginalMessage, then the class 0, the
method selector and the result class of the found method
are concatenated to the PreviousPath (from which the
first class has been dropped) and recorded with the
attribute AcquiredPaths in the answer to the inquiry
message given to C.

(Terminate the search, if a cycle is encountered) Rule 2:
If the class 0 appears already in the PreviousPath and
the first relationship in the encountered cycle is a has-
category-relationship then mark 0 as start/end point of
the cycle and record it with the attribute
EncounteredCycles in the answer given to C.

(Do not reenter a previously left context) Rule 3:
If the class 0 is contained in the context of an object
class T that appears in the PreviousPath and it is not
contained in the contexts of all those classes that appear
after T in the PreviousPath, then terminate the
forwarding of the inquiry message.

(Avoid too many context switches) Rule 4:
If the number of context switches is greater than
ContextSwitchLimit, then terminate the fonvarding of
the inquiry message.

Rule 5: (Forward the inquiry message to all related
classes)
If no other rule applies, forward M to all classes related
to 0, except to c, . From the answers given, take the
union of the encountered cycles and the union of the
acquired paths to determine the value of the attributes
EncounteredCycles and AcquiredPaths for the answer to
C.

Plan combination rules

P, denotes the equivalence class of plans which intersect
for the first time at the object class C after a possible
common prefix.

193

(Favor plans which preserve the context) Rule 1:
If in every inherent path of some plan no context switch
occurs, then discard those plans in which in some
inherent path a context switch occurs.

Rule 2: (Favor plans which preserve the context at least
locally)
If some plan p=rst of some equivalence class P,, where
result-class(r)=R is the last object class in the common
prefix of the plans in P and result-class(rs)=C, exists
such that C is reached &om R in every inherent path
without any context switch, then discard those plans in
PC in which in some inherent path a con&t switch
occurs in the subpath from R to C

(Avoid unintended context switches) Rule 3:
If in some plan p=rst of some equivalence class P,
where result-class(r)=R is the last class in the common
prefix of P and result-class(rs)=C, some unapproved
content swt ch occurs in the path from R to C, then let f
the context switch be approved by the user.

Rule4: (Take the intersection of two subplans which
come from different context generalizations and meet
with the same current context)
If two plans p=rst and q=nw, where result-class(r)=R
is the last class in the common prefix of P and result-
class(rs)=resultclass(rv)=C, exist in some 5 such that
(a) current-context(C,p) = current-context@,q), and
(b) current-context@redecessor(C,l),p) < context(C,q)
for every inherent path 1 in p which contains C, and
(c) current-context@red -r(C,l),q) < ant=t(C,q)
for every inherent path 1 in q which contains C,
then replace p by p’=(r(s intersect v)t) and q by q’=(r(s
intersect v)w) in P,

Rule!? (Take the union of two subplans which meet
with different current contexts)
If two plans p=rst and q=rvw, where result-class(r)=R
is the last class in the common prefix of P
class(rs)=result-class(ru)=C, exist in some 5

and result-
c such that

for every inherent path I in p and for every inherent path
k in pj: current-context(C,l) is not contained in current-
context(C,k) and vice versa, then replace p by p’=(r@
union q)t) and q by q’=(r@ union q)w)

Rule& (Let the user himself decide in ambiguous
situations)
If two plans p=rst and q=rvw exist in some P, where
result-class(r)=R is the last class in the common prefix
of P, and reault-class(rs)=result-class(tv)=C, then ask
the user either to provide a set-operator, <set-op>, in
order to replace p by p’=(r(s <setop> v)t) and q by
q’=(r(s <setop> v)w) or to decide to discard p or q at
all.

(Resolve Rule 7: circular dependencies among
equivalence classes)
If the equivalence classes P,,,..,P in are circularly
dependent and the plans in every Fccij (j=l..n) have

already been combined, then look for the plan P=NV of
PC.. (j=l,..,n) where result-class(r)=Ct. is the last class
in the common prefix of P . . and re<-class(u)=C.
(k=l,..n) such that the lengt&f the path u is maxima . F
Let p be this plan. Then replace p by p’=wv where w is
the common prefix till the class Cik of the plans in PClk.

Rule 8: (Add cycles to the initial plan)
If P contains only one equivalence class with only one
message forwarding plan p, then continue with the
plan&cycle combination rules.

Plan & cvcle combination rules

Rule I: (Neglect dangling cycles)
If the start-class S of sorrIe acquired cycle k* does not
appear in p, then discard k .

Rule 2: (Neglect cycles which interfere with the
remaining plan)
If some acquired cycle k* intersects yith p at another
class in addition to the start-class S of k , then discard k .

Rule 3: (Neglect cycles over different contexts)
If k is a cycle with start/end-class S.and a context switch
occurs in the path Sk, then discard k .

(Avoid circling the same context) Rule 4:
If k is a cycle with start/end-class S an+ no context
switch occurs in the path Skk, then discard k .

(Comgine cycles with the same start-class) Rule 5:
If the cycles k. and k. have the same start-clasp S and 8
appears in p, ‘then a&c the user to combine ki and kj
properly.

(Accept cycles which rnpy terminate) Rule 6:
If the start-class S of the cycle k appears in p such that S
is followed by a has-category-specialization relationship
to a different class than *the first h-category-
specialization relationship in k , then insert k after S in
P-

Rule 7: (Have the developed plan confirmed by the
=r)
If no other rule applies, then have p confirmed by the
user as final message forwarding plan.

194

