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Abstract 

We argue that representation of temporal relationships 
(e.g., before, after) is necessary in databases. We pro- 
pose a graph model for an important class of temporal 
relationships. This model is shown to be a powerful tool 
in identifying generic temporal queries, and in describ- 
ing the process of deduction of temporal relationships. 
The model provides a framework to estimate the cost 
of query evaluation and to identify domain character- 
istics for query optimization. We provide an outline 
of temporal query processing to illustrate how domain 
properties may be utilized. We conclude by present- 
ing an interesting computational model for the tempo- 
ral domain that trades completeness of the deduction 
for computational efficiency. Some open problems are 
mentioned. 

1 Introduction 

Representation of temporal information and reasoning 
is necessary in applications such as scheduling, project 
management, process or device modeling, planning and 
version management in CAD. The data used by these 
applications are often voluminous, persistent and need 
to be shared. Therefore, it is attractive to harness 
database technology for storage and retrieval of tem- 
poral information. 

In order to support temporal information manage- 
ment we need to identify the DBMS functionality which 
would make the task of representation and computa- 
tion over temporal data simpler. There has been sig- 
nificant work in the area of temporal data modeling 
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[Sno 851, [Gad 851, [Nav 861. Current models of tem- 
poral databases assume that the temporal descriptions 
associated with an object (or tuple) are specified ab- 
solutely with respect to a time-line’ (e.g., 25Jan1988 
on the timeline of the Gregorian calendar). How- 
ever, relative temporal specifications, based on tem- 
poral relationships, are important for many applica- 
tions. For example, in a planning problem in the blocks 
world, the support blocks can only be moved afier the 
blocks on top of them. Providing for temporal relation- 
ships makes the computation over the temporal domain 
costly. For example, determining the temporal relation- 
ship between two events may now require computation 
of the transitive closure as well as arithmetic calcula- 
tions. 

Although temporal relationships have been studied 
in program verification, logic programming, and artifi- 
cial intelligence, there has been little work in examining 
the problem of supporting the temporal relationships 
in databases. Enriching the representation of data with 
temporal relationships raises issues such as what kind of 
queries may now be expressed and what query process- 
ing techniques are appropriate. We briefly discuss these 
issues in the paper. In order to answer these questions, 
we propose a simple graph model. The model is shown 
to be attractive for defining temporal queries, analyz- 
ing the complexity of query processing and in identi- 
fying the database characteristics that could be used 
in heuristics for query processing. This paper presents 
an overview of the graph model and its capabilities. 
We conclude with a discussion on how the computa- 
tional complexity of temporal query processing may be 
reduced significantly by a technique of weakening de- 
duction, based on reference intervals [All 831. 

1.1 Examples of Applications 

We first present some examples to motivate the need 
to represent both relative and absolute temporal infor- 
mation: 

lA time-line is defined by a unit of time and a scale 
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Scheduling: The problem of scheduling occurs fre- 
quently in computer aided manufacturing and project 
management [Sat 851. The result of scheduling is essen- 
tially a partial order on individual operations. Causal 
relationships also induce a temporal relationship ( “if 
reaction1 causes reaction&, then interval of reaction1 
must precede that of reaction&“). Additionally, there 
are constraints that involve absolute time e.g., “‘step1 
of a process must be initiated no later than 30 seconds 
after completion of step&“. 
Computer Aided Design: Versions of VLSI designs 
[Kat 851 are often tagged with temporal information 
such as release time of the design, which indicates the 
t*ime interval over which the design was the most, recent 
version. A chip uses many components and its design 
may be best described by a part-of hierarchy. For this 
example, we assume that versions are created only be- 
cause of changes in the leaf nodes in the hierarchy. The 
part-of relation induces a containment relationship be- 
tween the release times of a component and its parent 
component in the part-of hierarchy. Therefore, to an- 
swer the query “What is the release time of the most 
recent version of the chip” we need the ability to rep- 
resent the containment relationship. 
Other Applications: Any model of action requires 
support for temporal relationships [All 841. Conse- 
quently, examples of temporal relationships could be 
found in the domain of planning and device model- 
ing [Wil 871. Story understanding was one of the do- 
mains where temporal relationships were first studied 
[Kah 771. Since the problem of discovering causal rela- 
tionships is closely related to temporal ordering, medi- 
cal information systems also need a similar representa- 
t,ion of time [Dow 861. 

1.2 Related Work in Databases 

Modeling time in databases involves several issues. We 
mention some of the concepts that are relevant to our 
work. A comprehensive summary of various research 
directions in this field may be found in [Sno 861. 

Conceptual modeling of time-line is an important 
area of research. There is a long standing debate on 
whether the right representation of temporal attribute 
is a point or an interval (or variant thereof). These 
issues have been dealt in detail elsewhere: [And 821, 
[All 831, [Lad 861, [Gad 851, [Cli 851 [Nav 861, [Sno 851. 
For the purposes of this paper, we do not need to take 
a stand on this issue. There has also been significant 
work in the related area is the axiomatization of the 
temporal structures [All 841, [McD 821. 

We are concerned with the computational issues that 
are involved in supporting temporal domain. Our 
clata model is relational and therefore retrieval is set- 

orient.ed. This model of comput.ation is different from 
the theorem-proving methods t,hat have so far been 
used in connection with temporal reasoning. Since com- 
putation with temporal relationships involves transit,ive 
closure, the techniques of recursive query processing 
may be applied. However, we take a very domain spe- 
cific view of computation in t,his paper. The t,echniques 
to utilize database characteristics to improve query pro- 
cessing are investigated. We will therefore not discuss 
the past work in the area of recursive query processing 
or theorem proving. 

The problem of how temporal information may be 
structured in relational databases is a relevant research 
issue. In order to appreciate the normal forms that have 
been developed in this connection, it is important t.o 
recognize the two different temporal aspect,s associated 
with an attribute. 
Temporal Aspects of Attributes: There are two 
temporal aspects of each attribute [Cli 851: 

Domain: The domain of the attribute could be 
t.ime, e.g., date of birth, date of last marriage. 
Such attributes are called Time Attributes (TA). 
Attributes like name of an employee, rank or salary 
of an employee are not TAs. 

Variability with Time: An orthogonal property is 
whether the value of an attribute is a function of 
time. In case the attribute does not change wit.h 
time, it is called a constant attribute (CA), e.g., 
name of an employee, date of birth. Otherwise, it 
is a time varying attribute (TVA). The examples 
of TVAs are date of most recent marriage, rank or 
salary of an employee. 

Observe that the two properties above are orthogonal. 
For example, while both date of birth and date of most 
recent marriage are TAs, the former is a CA and the 
latter a TVA. The normal forms suggest methodolo- 
gies to group attributes in relations. Examples of such 
modeling are nested normal form [Cli 851, time normal 
form [Nav 861 and the homogeneous model [Gad 851. 
These different approaches to modeling led to different 
extensions to the relational model. 

Organization of the paper: The rest of the paper 
is organized as follows. In the following section, we dis- 
cuss our representation of temporal data (in relational 
form) and the properties of the temporal relationships. 
Section 3 is devoted to the introduction of the graph 
model. In Section 4, examples of the temporal queries 
are presented and some aspects of query evaluation are 
discussed. Section 5 investigates how domain specific 
knowledge may be used to reduce the computational 
complexity. A hypothesis about temporal applications 
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is stated, and the method of weakening deduction is 
discussed. We conclude with some open problems. 

2 Representation of Temporal 
Informat ion 

The Problem: We should support relative as well 
as absolute temporal information. The value of the 
temporal attribute of a tuple is either known absolutely 
(numerically) or may be constrained by its temporal 
relationships (e.g., before, after) to other tuples. 
Assumptions: The following simplifying assumptions 
will be made: 

l We restrict ourselves to a subset of binary temporal 
relationships only. This class will be defined in Sec- 
tion 2.2. Our representation needs to be extended 
to capture temporal relationships that involve an 
increment of absolute value, e.g., we can’t capture 
the assertion “The explosion occurred 4 minutes 
after the car had left the street”. 

l We are concerned with the representation of rela- 
tionships between values that have time as a do- 
main. Therefore, one can consider TAs as the focus 
of our discussion. The domain of time occurs im- 
plicitly in TVAs. However, TVAs involve the addi- 
tional concept of variability and we do not address 
that aspect here. 

a We do not consider the normalization issues here. 
This simplification is also motivated by our desire 
to keep the model simple. Therefore, we may view 
as if no data dependencies (e.g., functional depen- 
dencies) are present. We also assume consistency 
of the database. 

A complete model of temporal databases must weaken 
each of these assumptions. However, these constraints 
allow us to isolate the issues specific to supporting tem- 
poral relationships in a simple way. 

Database Schema: We now consider a relational 
representation for our temporal data. A value for the 
temporal attribute in a tuple is specified either abso- 
lutely or is related to values in one or more tuples sym- 
bolically. If there is only one temporal attribute, then 
we can refer to value of another tuple by its identity 
(or key). Such a representation fits the description of 
an event database, where events are recorded and ev- 
ery event may have multiple temporal specifications. 
Accordingly, we refer to our model database as the 
“event database” that includes the following relation 
that stores the t,emporal dependencies among events: 

Temp(e, R, e’) 

e is an event-ident,ity or an absolute t,emporal 
value. 

R represents the temporal relationship between e 
a.nd e’; i.e., e is relat,ed to e’ by R. 

e’ is either an event-identity or an absolute t.em- 
poral value. 

The admissibility of an absolute temporal value de- 
pends on the time-line and whether the point or t,he 
interval is the primitive concept. For example, when 
the time-line is the Gregorian calendar, an example of 
a tuple in Temp will be: 

( WorldJVarZZ, <, 1950) 

A special case of this representation scheme is when the 
temporal relationship is restricted to equality and the 
reference is to absolute temporal values only. In such a 
case, the value of the temporal attribute of each event 
is known absolutely. Most of the previous temporal 
database work assume such a restriction about TAs. 

For ease in querying, it may be desirable to represent 
the information explicitly whether e or e’ represents an 
absolute or relative value. We can add attributes d and 
d’ to Temp which encodes respectively whether e and 
e’ is an event-identity or not. Thus, the value of d (or 
d’) is either absolute or event. However, for the rest 
of our discussion, we will view the tuples in Temp only 
as triplet. We will implicitly refer to Temp(e, l2, e’) by 
eRe’. 

Temporal Relationships as values: In the repre- 
sentation scheme above, we have treated temporal rela- 
tionship as an attribute instead of a relation. As a con- 
sequence, we can talk about properties of the temporal 
relationships such as subsumption (e.g., < implies 5). 
Also, we can refer to relationships using quantification 
(e.g., 3). From the point of view of query processing, 
computat@ of a query such as “What are the tem.- 
poral relationships between event a and event b?” in- 
volves reference to a single database relation as against 
searching multiple relations. This technique of repres- 
nting relationships as objects is known as reification 
[Gen 871. 

2.1 Properties of Temporal Relation- 
ships 

We need to specify the class of temporal relationships 
we support. Therefore, let us consider now the logical 
properties of temporal relationships. We would like to 
include properties that capture common temporal rela- 
tionships, An example of such a property is t.ransitivity. 
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e.g., before is transitive. We restrict the properties of 
temporal relationships to the set mentioned below as 
these properties are well understood and help define 
many temporal relationships. This definition has been 
motivated by the taxonomy of relationships in [All 831: 

l Intrinsic Properties: By intrinsic properties of a 
relationship R, we mean properties of R that may 
be stated without reference to any other relation- 
ship: 

- Transitivity (e.g., before, after) 

- Symmetry (e.g., overlapping) 

- Antisymmetry (e.g., before, contained-in) 

- Reflexivity (e.g., overlapping) 

l Extrinsic Properties: By extrinsic property of a 
relationship R, we refer to properties that involve 
reference(s) to at least one other relationship. For 
many of the temporal relations the extrinsic prop- 
erty is an axiom of the form 

vx, y, %(x7&y A yRzr - X7&%) (1) 

where Ri,Rs and Rs are temporal relationships. 
An example is the following property: U if t is 
contained-in y and y precedes t, then x precedes 
t “. In this example, Z, y, and .Z designate temporal 
intervals and the relationship precedes between the 
intervals is defined in the obvious way. We restrict 
the set of extrinsic properties to (1) only. 

Limitations: We have restricted the set of temporal 
relationships to a set C, such that if R E C then R can 
be completely characterized by axiom schemata men- 
tioned above. The representation could be based on ei- 
ther points or intervals so long as the above restriction 
is respected. An example of such a set is C = { <, 5, > 
, 2, =, f} over time points. On the other hand, the 
set Cl = {before, after, overlaps, incomparable} over 
intervals is not admissible. This is because if two inter- 
vals share a common overlapping interval, they may be 
related by any one of the relationships as mentioned in 
Cl. One reason for the lack of expressivity is that we 
have excluded extrinsic properties of the form 

vx, Y, 4(ZRlY) A (YRzZ) -+ vww 
i 

Our axiom schemata enforces that given two events, 
their temporal relationships are all atomic (no nontriv- 
ial disjunction). This makes the form of the derived 
information same as the base information. 

Com&ational Implications: The logical proper- 
ties also govern the complexity of query processing. 
There are some interesting computational implications 
of these properties: 

Intrinsic Properties: The property of a relation 
being transitive immediately suggests that compu- 
tation of transitive closure will be necessary to an- 
swer many interesting queries. The antisymmetry 
property of a relation allows us to infer equality 
constraints among temporal values. It is a sini- 
ple task to write a relational query to infer these 
equalities. The property of being symmetric im- 
plies that when the relation is joined to ot,her re- 
lations, it must be augmented such that a tuple 
(a R b) occurs iff (b R u) were present in the orig- 
inal relation. This may not be necessary if the 
query satisfies appropriate symmetry conditions. 

Extrinsic Properties: We mentioned earlier in this 
section that the extrinsic properties will be speci- 
fied using axiom (1). From database point of view, 
such an axiom schema implies computation of Gen- 
eralized Transitive closure. The computation may 
be cast as a path problem and algorithms for this 
task has been discussed in [Day 861. A single ap- 
plication of this axiom results in the following join: 

Result(x, &, t) c q+Tev(x, R Y) 

W un+Temp(y, R %) 

We have so far seen some implications of the logical 
properties. But, we need a framework in which we 
can determine meaningful queries and can also iden- 
tify the domain characteristics that may be relevant for 
query processing. In the following section, we present 
a graph-model to meet these goals. 

3 A Graph Model of Temporal 
Databases 

3.1 Database Graph 

The primitive concepts that we have considered so far 
are: 

1. Events: Every event is uniquely recognized by an 
event-id. 

2. Absolute temporal values: An example is 
Jan.251 988. 

3. Temporal Relationships: Examples are before and 
after. 
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Temporal relationships exist between events and be- 
tween an event and an absolute value. Any two abso- 
lute ,temporal values on the same time-line are always 
related. 

Corresponding to every event database, we may now 
construct a graph where nodes are of two sorts (event- 
id or absolute temporal value) and the directed edges 
represent temporal relationships. The edges must be 
labeled to distinguish among various kinds of temporal 
relationships. Thus, an assertion in the event database 
is mapped to a labeled edge in this graph. We will refer 
to this graph as the database graph, denoted by G. 

3.2 Extended Database Graph 

Because of the logical properties of temporal relation- 
ships, the database graph G implies additional tempo- 
ral relationships among nodes in G. The following algo 
rithm augments the graph G such that all such tempo- 
ral relationships implied by G is present in the resultant 
graph G’: 

1. 

2 

3. 

4. 

Initialize G’ to G. 

For every three nodes (x, y, z), such that some 
transitivity axiom applies, add an edge between x 
and z with an appropriate label. Thus, if we use 
axiom (1) on a triplet (e I, e2, ~1, with (el%e2), 
(ezRses), then we must add an edge from ei to es 
with label ‘Rs. 

If a relationship R is symmetric, then for every 
edge from x to y with a label R, we add an edge 
from y to z with label R. 

Repeat steps 1 and 2 till the graph G’ does not 
change any more. 

Since we do not delete any edges, G’ is independent of 
the order of application of the transitivity or the sym- 
metry rule. We call G’ the extended database graph. 
The algorithm terminates because G is finite and a fix- 
point is guaranteed to exist for the horn clause program 
implied by the logical properties. 
Lemma. There exists a relation R between nodes 3: 
and y in G iff there is an edge with label R between x 
and y in G’. 
Cl 

This algorithm describes the inference of temporal 
relationships in terms of graph traversal and augmenta- 
tion. We will discuss the advantage of such a viewpoint 
in section 3.4. 

3.3 Temporal Relationships among 
Events 

Conceptualizing the event database in terms of the 
database graph makes it simple to appreciate the fol- 
lowing temporal relationships among event,s. These re- 
lationships should be meaningful across a wide choice 
of the base set of temporal predicates: 

Closure of an event: Closure of an event. e is t.he 
smallest set (call it K) containing e such tha.t 

y E I< * 372 3r((yRt v zRy) A (2 E A-)) 

This set will be denoted by closure(e). The closure 
of an event is the set of all nodes belonging t.o 
the same connected component as the event in the 
database graph G. This can be computed as the 
transitive closure of n(,,y)Temp(z, R, y). 

Restricted Closure of an event: Our definition of 
restricted Closure is very similar to Closure, as dis- 
cussed above. However, instead of quantifying ‘E 
existentially, we restrict R to a fited relationship, 
e.g, <. Thus, restricted closure with respect to R 
(denoted by ClosureR(e)), is the smallest set (call 
it K) containing e such that: 

(Y E K) ++ 3z((yRz) A (z E A’)) 

Hence, ClosureR(e) is the maximal connected sub- 
graph of G’ (call it Gk) containing e such that ev- 
ery edge in it has R as its label. If R is a transitive 
relationship, then every node in the subgraph CR 
is related to e by R. If R does not occur in the 
right hand side of any extrinsic axioms, then this 
operation corresponds to the transitive closure on 
"(2,V) q7Z=R)TemdXf%d. 

Weakly related events: We say that two nodes 
e and e’ are weakly related iff closure(e) =. 
closure(e’). For two events to be weakly related 
they must belong to the same connected compo- 
nent in the database graph. Intuitively, two nodes 
are weakly related iff the events share some tem- 
poral constraint. 

Independent events: The extended database graph 
G’ may have more than one connected compo- 
nents. Two events belong to different connected 
components iff they are not weakly related. We 
call such events independent. A trivial example is 
when an event el is specified absolutely, whereas 
events e2 and e3 are related by e2 < e3. Thus, 
the number of connected components indicate how 
many independent sets of events are there in the 
database. 
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l Directly related events: An important query is 
“Given two nodes e and e’, is there an R such 
that e’Re’?“. If such an R exists, e and e’ are said 
to be directly related. This induces the following 
property on an event: 

Direct(e) = {e’ 1 3R (e R e’ V e’ R e)} 

If two nodes are directly related, then they are 
also weakly related. The nodes are directly related 
iff there is an edge between them in the extended 
database graph G’. In order to evaluate this prop- 
erty, closure needs to be computed. 

l Absolute Bounds: This is an example of a prop- 
erty that relates temporal attribute of an event to 
the time-line. Absolute time t is the greatest lower 
bound on event e iff t is the greatest t’ for which 
t’ 5 e. Let Z be closures(e). Then, consider 
the set 2’ 2 2 such that all members of 2’ are 
absolute nodes. The greatest lower bound is the 
maxima1 of t,he set 2’. If the time-line is bounded 
between 0 and now, then the lower bound corre- 
sponds to 0 when 2’ is empty. The upper bound 
may be defined analogously. 

l Closure of an absolute value: We define closure of 
an absolute value a, denoted as closureabS(a) as 
the closure of an event, with an added restriction 
that every member of this set must be an event. In 
terms of the graph model, closureabs(a) is the set 
of all event nodes that are in the same connected 
component as a in graph G,. G, augments G by 
adding an edge between a and every other absolute 
node a’ in G with an appropriate label. Restricted 
closure of a with respect to R (closureibs) may be 
defined similarly. 

We have enumerated some of the obvious temporal re- 
lationships among events. This list is not exhaustive 
and illustrates the correspondence between the tempo- 
ral relationships and the graph properties. 

We now establish the correspondence between dis- 
tance in the graph and the facts on which the derived 
data depends. Let us consider the case where no extrin- 
sic property is applicable in the database. For example, 
if the only temporal relationships are: {<, =}. In that 
case, the distance between two nodes in G indicate the 
number of facts on which the deduction of the temporal 
relationship (weak or direct) is dependent. Of course, 
thore could be multiple paths between two nodes, each 
one representing a prrof path. 

An issue unaddressed so far is the consistency of the 
database. We must have a way to say that if events x 

and y are related by a relationship Ri, then x and y 

can’t be related by 722. In order to express this, we in- 
troduce the relation contradicts for which the foIIowiI~g 
axiom holds: 

\Jx,Y,%,‘& [ contradicts(7Zl, %) H 

(XRlY) - -(x%y) I 

In terms of the graph model, we can say that if for some 
temporal relationships Ri and TLz contradicts(TL1, %) 
is true, then there can’t be two edges between two nodes 
(in the same direction) in G’ with labels Ri and R2 

3.4 Advantages of the Graph Model: 

Viewing our event database as a graph is useful in many 
ways. First, we are able to conceptualize the generic 
temporal relationships of the last section in terms of 
simple graph properties. We can also describe the infer- 
ence of temporal relationships implied by the database 
graph as the process of edge traversal and edge aug- 
mentation of the database graph. Of course, one could 
directly use the graph algorithms if the temporal rela- 
tionships are maintained in main memory. Further, an 
edge traversal or augmentation corresponds to a join 
operation. This connection between the operations on 
the graph and relational operators indicates that the 
graph model can be used in query planning. A com- 
plete discussion of the cost mode1 is beyond the scope 
of the current paper. However, we now mention some 
of the factors that affect the cost of computation: 

1. Set of logical Properties: These specify the in- 
terdependence of various temporal relationships. 
Therefore, these partially determine the cost of 
graph transformation. For example, independence 
of temporal relationships may be utilized in query 
planning. 

2. Structure of the database: Properties of the graph 
database may be used to characterize the complex- 
ity of query evaluation and to decide the applicabil- 
ity of heuristic techniques. In the following section, 
we discuss how the relative frequency of occurrence 
of relative versus absolute temporal information 
may influence query processing. The knowledge 
of other graph properties may be useful in identi- 
fying the termination conditions of algorithms or 
in strengthening data selection. 

3. Query: Given a database graph G, and a query, 
we need to address the following questions: 

(a) What part of extended database G’ is the an- 
swer to the query? 
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(b) How to compute the above subset of G’ ? In 
terms of the graph model, we can raise ques- 
tions such as which search strategy should be 
followed (i.e., in what order are the axioms to 
be applied)? 

The graph model provides a conceptual framework to 
analyze the computational aspect of temporal query 
processing. The following section illustrates the use of 
t.he graph model in identifying domain specific heuris- 
tics in query evaluation. 

4 Temporal Query: Specifica- 
tion and Processing 

In this section, we examine how temporal queries may 
be processed. We provide some examples and de- 
scribe the computation informally in terms of the graph 
model. Next, we describe our query language and fi- 
nally provide a brief overview of query processing. 

4.1 Examples of Temporal Queries 

l Relating events and absolute time values: 

1. Find lower time bounds on the event e: An 
absolute value t is a lower time bound on 
an event e iff t 2 e. To obtain the great- 
est lower time bound, we need to compute 
Ma;cimal(closure~ (e)), restricted to abso- 
lute nodes. However, if we want any lower 
time bound, then we need to traverse paths of 
increasing length from e, only until we reach 
an absolute node in the database graph (in- 
stead of all). Such a query is useful in Medical 
Information Systems, where time of a biologi- 
cal event may have to be inferred from causal 
relationships. 

2. Find events that took place in between an ab- 
solute temporal interval (a, b). This is a con- 
junctive query and can be decomposed into 
two primitive,queries. 

(a) Find set of events that succeed a: 

S1 = closure:bs(a) 

(b) Find set of events that precede b: 

Sz = closurezb*(b) 

The answer to the query is 5’1 n SZ. The pro- 
cess analyzer programs that look at the col- 
lected process data in a scheduling environ- 
ment requires this kind of queries. The graph 

traversal technique outlined in the previous 
query can be used. However, the computa- 
tion of S1 and S? should be shared. 

l Relationship between events: 

Temporal relationship between two event.s 
el, e2: This query is equivalent to the follow- 
ing subqueries: 

(a) e? E direct(el) 

(b) e2 E closure(el) 

The second query needs to be executed only 
if the first query returns no answer. However, 
the query processing strategy should opt.imize 
the queries together. This example has been 
worked out in section 4.3. 

Common ancestors of two events (el, e2): 
This query is equivalent to computing 
closure< (el)nclosure< (e2). However, if only 
one common ancestor is required, then the 
computation may be terminated as soon as 
the first answer is available. As in other cases, 
the query processing may be easily optimized 
so that the closures need not be computed 
independently. 

4.2 Query Language 

Our goal here is to suggest primitives for expressing 
queries involving temporal relationships. From sec- 
tion 2, we recall that an atomic formula is of the 
form Temp(t, R, 2). We have three sorts in our lan- 
guage event-id, absolute value and temporal relation- 
ships. The first and the third argument in Temp are re- 
stricted to be of the sort event-id or absolute value. The 
second argument should be of the sort temporal rela- 
tionship. For any event database with a database graph 
G, a tuple is in Temp iff the tuple corresponds to an 
edge in the corresponding extended database graph G’ 
(derived from extension of G) or the tuple corresponds 
to a true arithmetic statement over the time-line (e.g., 
25Jan1988 before 26Jan1988). 

The specific temporal relationships are user defined. 
However, the graph model enables us to define weakly 
related (WR) and independent (I) as additional tempo- 
ral relationships. Also, we have two unary functions 
lowerbound and upperbound and a predicate absolute 
(which checks whether the object is an absolute value) 
to apply to objects (variables and constants) of the sort 
event-id or absolute value. 

We denote the atomic queries over event database by 
(m lLn n), where m and n are of the sort event-id or 
absolute va,lue; and R is a t.emporal relationship. Also, 
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each of (m, ‘R,,,, n) could be either a variable or a 
constant. 

4.3 Query Evaluation 

We consider how an atomic query may be evaluated. 
For simplicity, we assume that no extrinsic properties 
are present. The main steps in processing the query 
(771 R,,, n) are as follows: 

1. If R,,, is a constant (R), we do the following op- 
eration: 

WkR TeW(z,'R,y) 

2. Depending on the bindings in the atomic formula, 
one if the following cases apply: 

l Both m and n are constants: 
- m and n are event-ids: A bidirectional 

search, where we traverse one edge at 
a time from m and n alternately, works 
best if there are a large number of abso- 
lute nodes in the graph. This is because 
we can relate two absolute values easily. 
The bidirectional search implies that the 
closures be computed in step. Of course, 
the computation will be shared. How- 
ever, the answer set will be complete only 
if no additional independent relationships 
could exist. 

- Only one of m and n is an event-id: We 
compute the closure (or restricted clo- 
sure) of the event-id only if there are large 
number of absolute nodes. Otherwise, we 
determine cIosureabd(a), where 0 is the 
absolute constant. 

l Only one of m and n is a constant: To utilize 
the available bindings, we must start from the 
constant, whether it is an event or an abs+. 
lute value, and compute the necessary rela- 
tionships. 

l Both m and n are unbound: If both m and n 
are variables of the sort absolute node, then 
the query is potentially unsafe over an infinite 
time-line. 

The description as above highlights the importance 
of domain knowledge. The structure of the database 
graph G plays an important role in query processing. 
In particular, we considered the database characteristic 
of relative occurrence of absolute nodes and the knowl- 
edge that two absolute values can be related easily. It 
is an open question to identify other domain character- 
istics. Examples of promising characteristics are maxi- 
mal size of a connected component, acyclicity property 

of the graph. Also, optimization across conjuncts is im- 
portant so as to prune away large parts of the temporal 
graph. 

5 Domain Knowledge to Im- 

prove Query Processing 

The last section discussed the use of database charac- 
teristics for query processing. However, the problem 
of computing transitive closures for queries remains a 
computational bottleneck. Therefore, in this part, we 
investigate whether there is some common charact.eris- 
tic of many temporal applications that can be used to 
speed up query processing. We first state a hypothe- 
sis and then discuss a technique of weakening deductzon 

that provides an interesting computational model, 

5.1 Hypothesis about Temporal Appli- 
catigms: 

Both Kahn [Kah 771 and Allen [All 831 observed that 
the temporal information is best kept organized around 
a small set of key events, which serve to index (and 
partition) the temporal database. The hypothesis that 
such key events may be identified provides us with a 
basis for experimenting with heuristic approaches to 
query processing. 

5.2 Weakening Deduction: 

One approach to reduce computational overhead is to 
limit the hew&c adequacy of the reasoning system. 
Limiting heuristic adequacy implies that the reasoning 
system will be incomplete, i.e., even when a conclusion 
may be drawn from the database, the reasoning system 
may not be able to deduce the conclusion. The moti- 
vation to limit the reasoning power is to have a cheap 
computational model that answers most of the likely 
queries, but is not infallible. This idea is based on the 
Reference Interval proposed by Allen [All 831. 

Reference Objects: We introduce the concept of 
reference objects in our model. The reference objects 
aie chosen from the set of events and absolute tempo- 
ral.values by a domain expert or by a semiautomated 
procedure. For every event, a set of reference objects is 
selected with which the event is associated. The refer- 
ence objects should correspond to important events or 
time-points to which many events are related. Each ref- 
erence object has a cluster of events, which are a,11 t,he 
events associated with it. The clusters for two reference 
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objects may be intersecting. We assume that if two ref- 
erence objects are related, then a relationship between 
them exists that refers to other reference objects only. 

Computational Model Reference objects help in 
guiding the search over the database graph for tem- 
poral relationship between two objects. To establish 
the temporal relationship between any two events, we 
first search for an ezplicil assertion in the database. If 
no such assertion is found, then we check whether the 
events share some common reference object. If so, then 
their temporal relationship is computed. Otherwise, 
the temporal relationship between two events across 
clusters must always be established through their ref- 
erence objects. That means that if events el and e2 
are associated with reference object TOI and ~02 re- 
spectively, then the computation for establishing the 
temporal relationship consists of finding the temporal 
relationship between el and rol, e2 and ro2, and finally 
between rol and ro2. The relationship between ro1 and 
ro2 can be established via other reference objects only. 
A formal description follows: 

Formal Definition using Graph-Model: 

1. Set of reference objects is any chosen subset of 
nodes in the database graph. 

2. Definitions: 

(4 

(b) 

Clus2er(e,r): This is true iff e is associ- 
ated with the reference object r. Thus, 
Cluster(e, r) --+ e E closure(r) and if 
Cluster(;c, r) and Cluster(y, r), then the 
temporal relationship between z and y will 
be computed. 

Transitively correlated : Two events e and e’ 
are correlatediff there is some reference object 
P such that Cluster(e, r) and Cluster(e’, r). 
e is transitively correlated to e’ iff there exists 
a sequence ai,where 00 = e and for some m, 
a, = e’ and for all i, ai is comparable to ai.+l. 

3. Retrieval: The temporal relationship between any 
two events may be found by first trying for an ex- 
plicitly asserted relationship, or else, trying for a 
temporal relationship via the set of reference ob- 
jects. More precisely, temporal relationship be- 
tween two events e and e’ may be deduced iff there 
are temporal associations (e,r) and (r’,e’), such 
that the reference intervals r and r’ are transitively 
correlated and every member in the corresponding 
sequence is a reference interval. 

Computational Advantage: We will now give an 
example to illustrate the computational advantage of 
this approach. Let us consider an n-node database 
graph which is a tree. We assume that the database 
graph is of the form of k: disjoint sets of subtrees, i-t,11 
set containing ni nodes. Assume that the reference ob- 
jects form the root of each subtree. The edges bet,ween 
reference objects form a tree. Thus, there is at most 
one path between two reference objects. The path rep- 
resents the relation between the reference objects of the 
two clusters. Therefore, 

k 

c ni = n 
i=l 

Finding the temporal relation between two nodes in 
clusters i and j involve the following: 

1. Edge traversals within clusters to relate to the ref- 
erence objects. This amounts to (n; - 1) + (nj - 1) 
traversals. 

2. Edge traversals across clusters. This takes Ic - 1 
traversals. 

Thus, in the worst case, the number of edge traversals in 
the reference object method is ni+nj+lc-3. Otherwise, 
the number of edge traversals is n - 1. By a judicious 
selection of k, one could thus get significant saving in 
computational cost. 

Augmentation of Query Language: In order t.o 
support this kind of computational model in our query 
language, we need three additional primitives: 

Reference(e): This asserts that e is a reference 
object. 

Cluster(e,r): This asserts that e is associated to 
the cluster of r. 

Reference-related(e1, R, e2): This holds iff the 
weakened retrieval process yields a temporal rela- 
tion ‘R between el and e2. Clearly, this predicate 
preserves the soundness property of the temporal 
relationship: 

Reference-rehted(e1, R, e2) + Temp(e1, R, e2) 

Limitations of the approach: Since we do not fol- 
low all paths between the two nodes in the database 
graph, such a reasoning system is incomplete. Only a 
subset of all the relationships between the two events 
may be deduced: 

l Even if there is a temporal relationship between 
two events, we may not be able to deduce it,. 
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l We may be able to deduce only a weak rela.tion- 
ship when a stronger relationship exists. A com- 
mon situation would be even if two events are di- 
re& related, we may only be able to infer that 
they are weakly related. For example, assume 
cluster(rol) = {rol,el,eZ} and cluster(ro2) = 
Ipo2, e3). Let G = {el < e2,e2 < e3, el < 
TOI, ~02 > e3, rol < roz}. By this method of com- 
putation we could only infer that el is weakly re- 
lated to es although they are directly related be- 
cause of transitivity of <. 

However, the domain hypothesis (Section 5.1) assures 
us that this computational model will be complete most 
of the time as the interaction between two events be- 
longing to different clusters should mostly be via the 
corresponding reference intervals. 

5.3 Other Approaches 

We mention two other approaches to reduce the cost 
of query processing. Both these are based on the tech- 
nique of precomputation. 

l Views over Temporal databases: Selective materi- 
alization of views may reduce the amortized cost of 
query processing over the database [Han 871. As 
an example, assume that the information about 
lower and upper bounds on values of the tempo- 
ral attribute of the events are kept materialized. 
Then, while searching for temporal relationship be- 
tween two events this information may be utilized 
to prune away the irrelevant part of the database 
at a low cost by strengthening the selection clause. 
Of course, materialized views introduce the prob- 
lem of view maintenance. We need to examine 
what kind of views are incrementally maintain- 
able [Bla 871 and how best these can be composed 
[Fin 821. This work is currently in progress at 
Stanford University. 

l Main Memory Data Structures: Appropriate main 
memory indexing structures may be quite useful. 
There has been significant work in the past in the 
area of path compression that is relevant. Path 
compression techniques construct a physical path 
between any two nodes directly as and when the al- 
gorithm discovers the relationship between those. 
Unfortunately, most of these algorithms, such as in 
[Ull 731, assume that the input data remain unal- 
tered and inferences are monotonic. This assump- 
tion is not valid for temporal database, where data 
update and inferences are interleaved. However, 
it is worth investigating to what extent the tech- 
niques can be adapted to our problem. Another 

problem is that main memory structures in path 
compression algorithms are very tightly associated 
with the specific queries. This makes it harder to 
directly use these data structures for general in- 
dexing of temporal data. 

6 Conclusion 

Many applications require representation of tempo- 
ral relationships. In this paper, we proposed that 
such temporal relationships be supported in relational 
databases. The following issues related to such repre- 
sentation have been considered: 

l A common set of logical properties of temporal re- 
lationships. 

l A graph model that serves the following purposes: 

- Representation of the database assertions as 
a labeled graph. 

- Graph transformations and path traversals 
describe the deductions implied by the prop- 
erties of the temporal relationships. 

- A framework to estimate cost of computa- 
tions and to identify domain characteristics 
that are useful for query evaluation. 

a An outline of query processing illustrates how rela- 
tive occurrences of absolute values influences eval- 
uation heuristics. 

l A computational model based on reference objects 
[All 831. Our proposed approach trades complete- 
ness of deduction for significant reduction in com- 
putational complexity. 

Further work is necessary to characterize our ap- 
proach completely and to extend the techniques pre- 
sented in this paper. We mention some of our immedi- 
ate interests: 

l Determination of the class of temporal properties 
(over points and intervals) that can be captured 
by the graph model, as it is now defined. 

l Development and verification of a cost model for 
Temporal Query evaluation, based on the graph 
model. 

l Evaluation of the temporal view approach. 

a Extension of the model to capture a wider class 
of temporal relationships, such as periodicity autl 
delay. 
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To summarize, our approach has been to admit tem- 
poral relationships and to examine the computational 
requirements imposed by such representation. We be- 
lieve that the above is a pragmatic approach to model- 
ing of temporal databases. 
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