
Temporal Relationships in Databases

Surajit Chaudhuri
Stanford University

Abstract

We argue that representation of temporal relationships
(e.g., before, after) is necessary in databases. We pro-
pose a graph model for an important class of temporal
relationships. This model is shown to be a powerful tool
in identifying generic temporal queries, and in describ-
ing the process of deduction of temporal relationships.
The model provides a framework to estimate the cost
of query evaluation and to identify domain character-
istics for query optimization. We provide an outline
of temporal query processing to illustrate how domain
properties may be utilized. We conclude by present-
ing an interesting computational model for the tempo-
ral domain that trades completeness of the deduction
for computational efficiency. Some open problems are
mentioned.

1 Introduction

Representation of temporal information and reasoning
is necessary in applications such as scheduling, project
management, process or device modeling, planning and
version management in CAD. The data used by these
applications are often voluminous, persistent and need
to be shared. Therefore, it is attractive to harness
database technology for storage and retrieval of tem-
poral information.

In order to support temporal information manage-
ment we need to identify the DBMS functionality which
would make the task of representation and computa-
tion over temporal data simpler. There has been sig-
nificant work in the area of temporal data modeling

Permission to copy without fee all or part of this mat&al ir
graued provided hat the copies 8re not made or distriLuted for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date qx~, and notice is giver
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or SpeciP permission from the Endowment

[Sno 851, [Gad 851, [Nav 861. Current models of tem-
poral databases assume that the temporal descriptions
associated with an object (or tuple) are specified ab-
solutely with respect to a time-line’ (e.g., 25Jan1988
on the timeline of the Gregorian calendar). How-
ever, relative temporal specifications, based on tem-
poral relationships, are important for many applica-
tions. For example, in a planning problem in the blocks
world, the support blocks can only be moved afier the
blocks on top of them. Providing for temporal relation-
ships makes the computation over the temporal domain
costly. For example, determining the temporal relation-
ship between two events may now require computation
of the transitive closure as well as arithmetic calcula-
tions.

Although temporal relationships have been studied
in program verification, logic programming, and artifi-
cial intelligence, there has been little work in examining
the problem of supporting the temporal relationships
in databases. Enriching the representation of data with
temporal relationships raises issues such as what kind of
queries may now be expressed and what query process-
ing techniques are appropriate. We briefly discuss these
issues in the paper. In order to answer these questions,
we propose a simple graph model. The model is shown
to be attractive for defining temporal queries, analyz-
ing the complexity of query processing and in identi-
fying the database characteristics that could be used
in heuristics for query processing. This paper presents
an overview of the graph model and its capabilities.
We conclude with a discussion on how the computa-
tional complexity of temporal query processing may be
reduced significantly by a technique of weakening de-
duction, based on reference intervals [All 831.

1.1 Examples of Applications

We first present some examples to motivate the need
to represent both relative and absolute temporal infor-
mation:

lA time-line is defined by a unit of time and a scale

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 160

Scheduling: The problem of scheduling occurs fre-
quently in computer aided manufacturing and project
management [Sat 851. The result of scheduling is essen-
tially a partial order on individual operations. Causal
relationships also induce a temporal relationship (“if
reaction1 causes reaction&, then interval of reaction1
must precede that of reaction&“). Additionally, there
are constraints that involve absolute time e.g., “‘step1
of a process must be initiated no later than 30 seconds
after completion of step&“.
Computer Aided Design: Versions of VLSI designs
[Kat 851 are often tagged with temporal information
such as release time of the design, which indicates the
t*ime interval over which the design was the most, recent
version. A chip uses many components and its design
may be best described by a part-of hierarchy. For this
example, we assume that versions are created only be-
cause of changes in the leaf nodes in the hierarchy. The
part-of relation induces a containment relationship be-
tween the release times of a component and its parent
component in the part-of hierarchy. Therefore, to an-
swer the query “What is the release time of the most
recent version of the chip” we need the ability to rep-
resent the containment relationship.
Other Applications: Any model of action requires
support for temporal relationships [All 841. Conse-
quently, examples of temporal relationships could be
found in the domain of planning and device model-
ing [Wil 871. Story understanding was one of the do-
mains where temporal relationships were first studied
[Kah 771. Since the problem of discovering causal rela-
tionships is closely related to temporal ordering, medi-
cal information systems also need a similar representa-
t,ion of time [Dow 861.

1.2 Related Work in Databases

Modeling time in databases involves several issues. We
mention some of the concepts that are relevant to our
work. A comprehensive summary of various research
directions in this field may be found in [Sno 861.

Conceptual modeling of time-line is an important
area of research. There is a long standing debate on
whether the right representation of temporal attribute
is a point or an interval (or variant thereof). These
issues have been dealt in detail elsewhere: [And 821,
[All 831, [Lad 861, [Gad 851, [Cli 851 [Nav 861, [Sno 851.
For the purposes of this paper, we do not need to take
a stand on this issue. There has also been significant
work in the related area is the axiomatization of the
temporal structures [All 841, [McD 821.

We are concerned with the computational issues that
are involved in supporting temporal domain. Our
clata model is relational and therefore retrieval is set-

orient.ed. This model of comput.ation is different from
the theorem-proving methods t,hat have so far been
used in connection with temporal reasoning. Since com-
putation with temporal relationships involves transit,ive
closure, the techniques of recursive query processing
may be applied. However, we take a very domain spe-
cific view of computation in t,his paper. The t,echniques
to utilize database characteristics to improve query pro-
cessing are investigated. We will therefore not discuss
the past work in the area of recursive query processing
or theorem proving.

The problem of how temporal information may be
structured in relational databases is a relevant research
issue. In order to appreciate the normal forms that have
been developed in this connection, it is important t.o
recognize the two different temporal aspect,s associated
with an attribute.
Temporal Aspects of Attributes: There are two
temporal aspects of each attribute [Cli 851:

Domain: The domain of the attribute could be
t.ime, e.g., date of birth, date of last marriage.
Such attributes are called Time Attributes (TA).
Attributes like name of an employee, rank or salary
of an employee are not TAs.

Variability with Time: An orthogonal property is
whether the value of an attribute is a function of
time. In case the attribute does not change wit.h
time, it is called a constant attribute (CA), e.g.,
name of an employee, date of birth. Otherwise, it
is a time varying attribute (TVA). The examples
of TVAs are date of most recent marriage, rank or
salary of an employee.

Observe that the two properties above are orthogonal.
For example, while both date of birth and date of most
recent marriage are TAs, the former is a CA and the
latter a TVA. The normal forms suggest methodolo-
gies to group attributes in relations. Examples of such
modeling are nested normal form [Cli 851, time normal
form [Nav 861 and the homogeneous model [Gad 851.
These different approaches to modeling led to different
extensions to the relational model.

Organization of the paper: The rest of the paper
is organized as follows. In the following section, we dis-
cuss our representation of temporal data (in relational
form) and the properties of the temporal relationships.
Section 3 is devoted to the introduction of the graph
model. In Section 4, examples of the temporal queries
are presented and some aspects of query evaluation are
discussed. Section 5 investigates how domain specific
knowledge may be used to reduce the computational
complexity. A hypothesis about temporal applications

161

is stated, and the method of weakening deduction is
discussed. We conclude with some open problems.

2 Representation of Temporal
Informat ion

The Problem: We should support relative as well
as absolute temporal information. The value of the
temporal attribute of a tuple is either known absolutely
(numerically) or may be constrained by its temporal
relationships (e.g., before, after) to other tuples.
Assumptions: The following simplifying assumptions
will be made:

l We restrict ourselves to a subset of binary temporal
relationships only. This class will be defined in Sec-
tion 2.2. Our representation needs to be extended
to capture temporal relationships that involve an
increment of absolute value, e.g., we can’t capture
the assertion “The explosion occurred 4 minutes
after the car had left the street”.

l We are concerned with the representation of rela-
tionships between values that have time as a do-
main. Therefore, one can consider TAs as the focus
of our discussion. The domain of time occurs im-
plicitly in TVAs. However, TVAs involve the addi-
tional concept of variability and we do not address
that aspect here.

a We do not consider the normalization issues here.
This simplification is also motivated by our desire
to keep the model simple. Therefore, we may view
as if no data dependencies (e.g., functional depen-
dencies) are present. We also assume consistency
of the database.

A complete model of temporal databases must weaken
each of these assumptions. However, these constraints
allow us to isolate the issues specific to supporting tem-
poral relationships in a simple way.

Database Schema: We now consider a relational
representation for our temporal data. A value for the
temporal attribute in a tuple is specified either abso-
lutely or is related to values in one or more tuples sym-
bolically. If there is only one temporal attribute, then
we can refer to value of another tuple by its identity
(or key). Such a representation fits the description of
an event database, where events are recorded and ev-
ery event may have multiple temporal specifications.
Accordingly, we refer to our model database as the
“event database” that includes the following relation
that stores the t,emporal dependencies among events:

Temp(e, R, e’)

e is an event-ident,ity or an absolute t,emporal
value.

R represents the temporal relationship between e
a.nd e’; i.e., e is relat,ed to e’ by R.

e’ is either an event-identity or an absolute t.em-
poral value.

The admissibility of an absolute temporal value de-
pends on the time-line and whether the point or t,he
interval is the primitive concept. For example, when
the time-line is the Gregorian calendar, an example of
a tuple in Temp will be:

(WorldJVarZZ, <, 1950)

A special case of this representation scheme is when the
temporal relationship is restricted to equality and the
reference is to absolute temporal values only. In such a
case, the value of the temporal attribute of each event
is known absolutely. Most of the previous temporal
database work assume such a restriction about TAs.

For ease in querying, it may be desirable to represent
the information explicitly whether e or e’ represents an
absolute or relative value. We can add attributes d and
d’ to Temp which encodes respectively whether e and
e’ is an event-identity or not. Thus, the value of d (or
d’) is either absolute or event. However, for the rest
of our discussion, we will view the tuples in Temp only
as triplet. We will implicitly refer to Temp(e, l2, e’) by
eRe’.

Temporal Relationships as values: In the repre-
sentation scheme above, we have treated temporal rela-
tionship as an attribute instead of a relation. As a con-
sequence, we can talk about properties of the temporal
relationships such as subsumption (e.g., < implies 5).
Also, we can refer to relationships using quantification
(e.g., 3). From the point of view of query processing,
computat@ of a query such as “What are the tem.-
poral relationships between event a and event b?” in-
volves reference to a single database relation as against
searching multiple relations. This technique of repres-
nting relationships as objects is known as reification
[Gen 871.

2.1 Properties of Temporal Relation-
ships

We need to specify the class of temporal relationships
we support. Therefore, let us consider now the logical
properties of temporal relationships. We would like to
include properties that capture common temporal rela-
tionships, An example of such a property is t.ransitivity.

162

e.g., before is transitive. We restrict the properties of
temporal relationships to the set mentioned below as
these properties are well understood and help define
many temporal relationships. This definition has been
motivated by the taxonomy of relationships in [All 831:

l Intrinsic Properties: By intrinsic properties of a
relationship R, we mean properties of R that may
be stated without reference to any other relation-
ship:

- Transitivity (e.g., before, after)

- Symmetry (e.g., overlapping)

- Antisymmetry (e.g., before, contained-in)

- Reflexivity (e.g., overlapping)

l Extrinsic Properties: By extrinsic property of a
relationship R, we refer to properties that involve
reference(s) to at least one other relationship. For
many of the temporal relations the extrinsic prop-
erty is an axiom of the form

vx, y, %(x7&y A yRzr - X7&%) (1)

where Ri,Rs and Rs are temporal relationships.
An example is the following property: U if t is
contained-in y and y precedes t, then x precedes
t “. In this example, Z, y, and .Z designate temporal
intervals and the relationship precedes between the
intervals is defined in the obvious way. We restrict
the set of extrinsic properties to (1) only.

Limitations: We have restricted the set of temporal
relationships to a set C, such that if R E C then R can
be completely characterized by axiom schemata men-
tioned above. The representation could be based on ei-
ther points or intervals so long as the above restriction
is respected. An example of such a set is C = { <, 5, >
, 2, =, f} over time points. On the other hand, the
set Cl = {before, after, overlaps, incomparable} over
intervals is not admissible. This is because if two inter-
vals share a common overlapping interval, they may be
related by any one of the relationships as mentioned in
Cl. One reason for the lack of expressivity is that we
have excluded extrinsic properties of the form

vx, Y, 4(ZRlY) A (YRzZ) -+ vww
i

Our axiom schemata enforces that given two events,
their temporal relationships are all atomic (no nontriv-
ial disjunction). This makes the form of the derived
information same as the base information.

Com&ational Implications: The logical proper-
ties also govern the complexity of query processing.
There are some interesting computational implications
of these properties:

Intrinsic Properties: The property of a relation
being transitive immediately suggests that compu-
tation of transitive closure will be necessary to an-
swer many interesting queries. The antisymmetry
property of a relation allows us to infer equality
constraints among temporal values. It is a sini-
ple task to write a relational query to infer these
equalities. The property of being symmetric im-
plies that when the relation is joined to ot,her re-
lations, it must be augmented such that a tuple
(a R b) occurs iff (b R u) were present in the orig-
inal relation. This may not be necessary if the
query satisfies appropriate symmetry conditions.

Extrinsic Properties: We mentioned earlier in this
section that the extrinsic properties will be speci-
fied using axiom (1). From database point of view,
such an axiom schema implies computation of Gen-
eralized Transitive closure. The computation may
be cast as a path problem and algorithms for this
task has been discussed in [Day 861. A single ap-
plication of this axiom results in the following join:

Result(x, &, t) c q+Tev(x, R Y)

W un+Temp(y, R %)

We have so far seen some implications of the logical
properties. But, we need a framework in which we
can determine meaningful queries and can also iden-
tify the domain characteristics that may be relevant for
query processing. In the following section, we present
a graph-model to meet these goals.

3 A Graph Model of Temporal
Databases

3.1 Database Graph

The primitive concepts that we have considered so far
are:

1. Events: Every event is uniquely recognized by an
event-id.

2. Absolute temporal values: An example is
Jan.251 988.

3. Temporal Relationships: Examples are before and
after.

163

Temporal relationships exist between events and be-
tween an event and an absolute value. Any two abso-
lute ,temporal values on the same time-line are always
related.

Corresponding to every event database, we may now
construct a graph where nodes are of two sorts (event-
id or absolute temporal value) and the directed edges
represent temporal relationships. The edges must be
labeled to distinguish among various kinds of temporal
relationships. Thus, an assertion in the event database
is mapped to a labeled edge in this graph. We will refer
to this graph as the database graph, denoted by G.

3.2 Extended Database Graph

Because of the logical properties of temporal relation-
ships, the database graph G implies additional tempo-
ral relationships among nodes in G. The following algo
rithm augments the graph G such that all such tempo-
ral relationships implied by G is present in the resultant
graph G’:

1.

2

3.

4.

Initialize G’ to G.

For every three nodes (x, y, z), such that some
transitivity axiom applies, add an edge between x
and z with an appropriate label. Thus, if we use
axiom (1) on a triplet (e I, e2, ~1, with (el%e2),
(ezRses), then we must add an edge from ei to es
with label ‘Rs.

If a relationship R is symmetric, then for every
edge from x to y with a label R, we add an edge
from y to z with label R.

Repeat steps 1 and 2 till the graph G’ does not
change any more.

Since we do not delete any edges, G’ is independent of
the order of application of the transitivity or the sym-
metry rule. We call G’ the extended database graph.
The algorithm terminates because G is finite and a fix-
point is guaranteed to exist for the horn clause program
implied by the logical properties.
Lemma. There exists a relation R between nodes 3:
and y in G iff there is an edge with label R between x
and y in G’.
Cl

This algorithm describes the inference of temporal
relationships in terms of graph traversal and augmenta-
tion. We will discuss the advantage of such a viewpoint
in section 3.4.

3.3 Temporal Relationships among
Events

Conceptualizing the event database in terms of the
database graph makes it simple to appreciate the fol-
lowing temporal relationships among event,s. These re-
lationships should be meaningful across a wide choice
of the base set of temporal predicates:

Closure of an event: Closure of an event. e is t.he
smallest set (call it K) containing e such tha.t

y E I< * 372 3r((yRt v zRy) A (2 E A-))

This set will be denoted by closure(e). The closure
of an event is the set of all nodes belonging t.o
the same connected component as the event in the
database graph G. This can be computed as the
transitive closure of n(,,y)Temp(z, R, y).

Restricted Closure of an event: Our definition of
restricted Closure is very similar to Closure, as dis-
cussed above. However, instead of quantifying ‘E
existentially, we restrict R to a fited relationship,
e.g, <. Thus, restricted closure with respect to R
(denoted by ClosureR(e)), is the smallest set (call
it K) containing e such that:

(Y E K) ++ 3z((yRz) A (z E A’))

Hence, ClosureR(e) is the maximal connected sub-
graph of G’ (call it Gk) containing e such that ev-
ery edge in it has R as its label. If R is a transitive
relationship, then every node in the subgraph CR
is related to e by R. If R does not occur in the
right hand side of any extrinsic axioms, then this
operation corresponds to the transitive closure on
"(2,V) q7Z=R)TemdXf%d.

Weakly related events: We say that two nodes
e and e’ are weakly related iff closure(e) =.
closure(e’). For two events to be weakly related
they must belong to the same connected compo-
nent in the database graph. Intuitively, two nodes
are weakly related iff the events share some tem-
poral constraint.

Independent events: The extended database graph
G’ may have more than one connected compo-
nents. Two events belong to different connected
components iff they are not weakly related. We
call such events independent. A trivial example is
when an event el is specified absolutely, whereas
events e2 and e3 are related by e2 < e3. Thus,
the number of connected components indicate how
many independent sets of events are there in the
database.

164

l Directly related events: An important query is
“Given two nodes e and e’, is there an R such
that e’Re’?“. If such an R exists, e and e’ are said
to be directly related. This induces the following
property on an event:

Direct(e) = {e’ 1 3R (e R e’ V e’ R e)}

If two nodes are directly related, then they are
also weakly related. The nodes are directly related
iff there is an edge between them in the extended
database graph G’. In order to evaluate this prop-
erty, closure needs to be computed.

l Absolute Bounds: This is an example of a prop-
erty that relates temporal attribute of an event to
the time-line. Absolute time t is the greatest lower
bound on event e iff t is the greatest t’ for which
t’ 5 e. Let Z be closures(e). Then, consider
the set 2’ 2 2 such that all members of 2’ are
absolute nodes. The greatest lower bound is the
maxima1 of t,he set 2’. If the time-line is bounded
between 0 and now, then the lower bound corre-
sponds to 0 when 2’ is empty. The upper bound
may be defined analogously.

l Closure of an absolute value: We define closure of
an absolute value a, denoted as closureabS(a) as
the closure of an event, with an added restriction
that every member of this set must be an event. In
terms of the graph model, closureabs(a) is the set
of all event nodes that are in the same connected
component as a in graph G,. G, augments G by
adding an edge between a and every other absolute
node a’ in G with an appropriate label. Restricted
closure of a with respect to R (closureibs) may be
defined similarly.

We have enumerated some of the obvious temporal re-
lationships among events. This list is not exhaustive
and illustrates the correspondence between the tempo-
ral relationships and the graph properties.

We now establish the correspondence between dis-
tance in the graph and the facts on which the derived
data depends. Let us consider the case where no extrin-
sic property is applicable in the database. For example,
if the only temporal relationships are: {<, =}. In that
case, the distance between two nodes in G indicate the
number of facts on which the deduction of the temporal
relationship (weak or direct) is dependent. Of course,
thore could be multiple paths between two nodes, each
one representing a prrof path.

An issue unaddressed so far is the consistency of the
database. We must have a way to say that if events x

and y are related by a relationship Ri, then x and y

can’t be related by 722. In order to express this, we in-
troduce the relation contradicts for which the foIIowiI~g
axiom holds:

\Jx,Y,%,‘& [contradicts(7Zl, %) H

(XRlY) - -(x%y) I

In terms of the graph model, we can say that if for some
temporal relationships Ri and TLz contradicts(TL1, %)
is true, then there can’t be two edges between two nodes
(in the same direction) in G’ with labels Ri and R2

3.4 Advantages of the Graph Model:

Viewing our event database as a graph is useful in many
ways. First, we are able to conceptualize the generic
temporal relationships of the last section in terms of
simple graph properties. We can also describe the infer-
ence of temporal relationships implied by the database
graph as the process of edge traversal and edge aug-
mentation of the database graph. Of course, one could
directly use the graph algorithms if the temporal rela-
tionships are maintained in main memory. Further, an
edge traversal or augmentation corresponds to a join
operation. This connection between the operations on
the graph and relational operators indicates that the
graph model can be used in query planning. A com-
plete discussion of the cost mode1 is beyond the scope
of the current paper. However, we now mention some
of the factors that affect the cost of computation:

1. Set of logical Properties: These specify the in-
terdependence of various temporal relationships.
Therefore, these partially determine the cost of
graph transformation. For example, independence
of temporal relationships may be utilized in query
planning.

2. Structure of the database: Properties of the graph
database may be used to characterize the complex-
ity of query evaluation and to decide the applicabil-
ity of heuristic techniques. In the following section,
we discuss how the relative frequency of occurrence
of relative versus absolute temporal information
may influence query processing. The knowledge
of other graph properties may be useful in identi-
fying the termination conditions of algorithms or
in strengthening data selection.

3. Query: Given a database graph G, and a query,
we need to address the following questions:

(a) What part of extended database G’ is the an-
swer to the query?

165

(b) How to compute the above subset of G’ ? In
terms of the graph model, we can raise ques-
tions such as which search strategy should be
followed (i.e., in what order are the axioms to
be applied)?

The graph model provides a conceptual framework to
analyze the computational aspect of temporal query
processing. The following section illustrates the use of
t.he graph model in identifying domain specific heuris-
tics in query evaluation.

4 Temporal Query: Specifica-
tion and Processing

In this section, we examine how temporal queries may
be processed. We provide some examples and de-
scribe the computation informally in terms of the graph
model. Next, we describe our query language and fi-
nally provide a brief overview of query processing.

4.1 Examples of Temporal Queries

l Relating events and absolute time values:

1. Find lower time bounds on the event e: An
absolute value t is a lower time bound on
an event e iff t 2 e. To obtain the great-
est lower time bound, we need to compute
Ma;cimal(closure~ (e)), restricted to abso-
lute nodes. However, if we want any lower
time bound, then we need to traverse paths of
increasing length from e, only until we reach
an absolute node in the database graph (in-
stead of all). Such a query is useful in Medical
Information Systems, where time of a biologi-
cal event may have to be inferred from causal
relationships.

2. Find events that took place in between an ab-
solute temporal interval (a, b). This is a con-
junctive query and can be decomposed into
two primitive,queries.

(a) Find set of events that succeed a:

S1 = closure:bs(a)

(b) Find set of events that precede b:

Sz = closurezb*(b)

The answer to the query is 5’1 n SZ. The pro-
cess analyzer programs that look at the col-
lected process data in a scheduling environ-
ment requires this kind of queries. The graph

traversal technique outlined in the previous
query can be used. However, the computa-
tion of S1 and S? should be shared.

l Relationship between events:

Temporal relationship between two event.s
el, e2: This query is equivalent to the follow-
ing subqueries:

(a) e? E direct(el)

(b) e2 E closure(el)

The second query needs to be executed only
if the first query returns no answer. However,
the query processing strategy should opt.imize
the queries together. This example has been
worked out in section 4.3.

Common ancestors of two events (el, e2):
This query is equivalent to computing
closure< (el)nclosure< (e2). However, if only
one common ancestor is required, then the
computation may be terminated as soon as
the first answer is available. As in other cases,
the query processing may be easily optimized
so that the closures need not be computed
independently.

4.2 Query Language

Our goal here is to suggest primitives for expressing
queries involving temporal relationships. From sec-
tion 2, we recall that an atomic formula is of the
form Temp(t, R, 2). We have three sorts in our lan-
guage event-id, absolute value and temporal relation-
ships. The first and the third argument in Temp are re-
stricted to be of the sort event-id or absolute value. The
second argument should be of the sort temporal rela-
tionship. For any event database with a database graph
G, a tuple is in Temp iff the tuple corresponds to an
edge in the corresponding extended database graph G’
(derived from extension of G) or the tuple corresponds
to a true arithmetic statement over the time-line (e.g.,
25Jan1988 before 26Jan1988).

The specific temporal relationships are user defined.
However, the graph model enables us to define weakly
related (WR) and independent (I) as additional tempo-
ral relationships. Also, we have two unary functions
lowerbound and upperbound and a predicate absolute
(which checks whether the object is an absolute value)
to apply to objects (variables and constants) of the sort
event-id or absolute value.

We denote the atomic queries over event database by
(m lLn n), where m and n are of the sort event-id or
absolute va,lue; and R is a t.emporal relationship. Also,

166

each of (m, ‘R,,,, n) could be either a variable or a
constant.

4.3 Query Evaluation

We consider how an atomic query may be evaluated.
For simplicity, we assume that no extrinsic properties
are present. The main steps in processing the query
(771 R,,, n) are as follows:

1. If R,,, is a constant (R), we do the following op-
eration:

WkR TeW(z,'R,y)

2. Depending on the bindings in the atomic formula,
one if the following cases apply:

l Both m and n are constants:
- m and n are event-ids: A bidirectional

search, where we traverse one edge at
a time from m and n alternately, works
best if there are a large number of abso-
lute nodes in the graph. This is because
we can relate two absolute values easily.
The bidirectional search implies that the
closures be computed in step. Of course,
the computation will be shared. How-
ever, the answer set will be complete only
if no additional independent relationships
could exist.

- Only one of m and n is an event-id: We
compute the closure (or restricted clo-
sure) of the event-id only if there are large
number of absolute nodes. Otherwise, we
determine cIosureabd(a), where 0 is the
absolute constant.

l Only one of m and n is a constant: To utilize
the available bindings, we must start from the
constant, whether it is an event or an abs+.
lute value, and compute the necessary rela-
tionships.

l Both m and n are unbound: If both m and n
are variables of the sort absolute node, then
the query is potentially unsafe over an infinite
time-line.

The description as above highlights the importance
of domain knowledge. The structure of the database
graph G plays an important role in query processing.
In particular, we considered the database characteristic
of relative occurrence of absolute nodes and the knowl-
edge that two absolute values can be related easily. It
is an open question to identify other domain character-
istics. Examples of promising characteristics are maxi-
mal size of a connected component, acyclicity property

of the graph. Also, optimization across conjuncts is im-
portant so as to prune away large parts of the temporal
graph.

5 Domain Knowledge to Im-

prove Query Processing

The last section discussed the use of database charac-
teristics for query processing. However, the problem
of computing transitive closures for queries remains a
computational bottleneck. Therefore, in this part, we
investigate whether there is some common charact.eris-
tic of many temporal applications that can be used to
speed up query processing. We first state a hypothe-
sis and then discuss a technique of weakening deductzon

that provides an interesting computational model,

5.1 Hypothesis about Temporal Appli-
catigms:

Both Kahn [Kah 771 and Allen [All 831 observed that
the temporal information is best kept organized around
a small set of key events, which serve to index (and
partition) the temporal database. The hypothesis that
such key events may be identified provides us with a
basis for experimenting with heuristic approaches to
query processing.

5.2 Weakening Deduction:

One approach to reduce computational overhead is to
limit the hew&c adequacy of the reasoning system.
Limiting heuristic adequacy implies that the reasoning
system will be incomplete, i.e., even when a conclusion
may be drawn from the database, the reasoning system
may not be able to deduce the conclusion. The moti-
vation to limit the reasoning power is to have a cheap
computational model that answers most of the likely
queries, but is not infallible. This idea is based on the
Reference Interval proposed by Allen [All 831.

Reference Objects: We introduce the concept of
reference objects in our model. The reference objects
aie chosen from the set of events and absolute tempo-
ral.values by a domain expert or by a semiautomated
procedure. For every event, a set of reference objects is
selected with which the event is associated. The refer-
ence objects should correspond to important events or
time-points to which many events are related. Each ref-
erence object has a cluster of events, which are a,11 t,he
events associated with it. The clusters for two reference

167

objects may be intersecting. We assume that if two ref-
erence objects are related, then a relationship between
them exists that refers to other reference objects only.

Computational Model Reference objects help in
guiding the search over the database graph for tem-
poral relationship between two objects. To establish
the temporal relationship between any two events, we
first search for an ezplicil assertion in the database. If
no such assertion is found, then we check whether the
events share some common reference object. If so, then
their temporal relationship is computed. Otherwise,
the temporal relationship between two events across
clusters must always be established through their ref-
erence objects. That means that if events el and e2
are associated with reference object TOI and ~02 re-
spectively, then the computation for establishing the
temporal relationship consists of finding the temporal
relationship between el and rol, e2 and ro2, and finally
between rol and ro2. The relationship between ro1 and
ro2 can be established via other reference objects only.
A formal description follows:

Formal Definition using Graph-Model:

1. Set of reference objects is any chosen subset of
nodes in the database graph.

2. Definitions:

(4

(b)

Clus2er(e,r): This is true iff e is associ-
ated with the reference object r. Thus,
Cluster(e, r) --+ e E closure(r) and if
Cluster(;c, r) and Cluster(y, r), then the
temporal relationship between z and y will
be computed.

Transitively correlated : Two events e and e’
are correlatediff there is some reference object
P such that Cluster(e, r) and Cluster(e’, r).
e is transitively correlated to e’ iff there exists
a sequence ai,where 00 = e and for some m,
a, = e’ and for all i, ai is comparable to ai.+l.

3. Retrieval: The temporal relationship between any
two events may be found by first trying for an ex-
plicitly asserted relationship, or else, trying for a
temporal relationship via the set of reference ob-
jects. More precisely, temporal relationship be-
tween two events e and e’ may be deduced iff there
are temporal associations (e,r) and (r’,e’), such
that the reference intervals r and r’ are transitively
correlated and every member in the corresponding
sequence is a reference interval.

Computational Advantage: We will now give an
example to illustrate the computational advantage of
this approach. Let us consider an n-node database
graph which is a tree. We assume that the database
graph is of the form of k: disjoint sets of subtrees, i-t,11
set containing ni nodes. Assume that the reference ob-
jects form the root of each subtree. The edges bet,ween
reference objects form a tree. Thus, there is at most
one path between two reference objects. The path rep-
resents the relation between the reference objects of the
two clusters. Therefore,

k

c ni = n
i=l

Finding the temporal relation between two nodes in
clusters i and j involve the following:

1. Edge traversals within clusters to relate to the ref-
erence objects. This amounts to (n; - 1) + (nj - 1)
traversals.

2. Edge traversals across clusters. This takes Ic - 1
traversals.

Thus, in the worst case, the number of edge traversals in
the reference object method is ni+nj+lc-3. Otherwise,
the number of edge traversals is n - 1. By a judicious
selection of k, one could thus get significant saving in
computational cost.

Augmentation of Query Language: In order t.o
support this kind of computational model in our query
language, we need three additional primitives:

Reference(e): This asserts that e is a reference
object.

Cluster(e,r): This asserts that e is associated to
the cluster of r.

Reference-related(e1, R, e2): This holds iff the
weakened retrieval process yields a temporal rela-
tion ‘R between el and e2. Clearly, this predicate
preserves the soundness property of the temporal
relationship:

Reference-rehted(e1, R, e2) + Temp(e1, R, e2)

Limitations of the approach: Since we do not fol-
low all paths between the two nodes in the database
graph, such a reasoning system is incomplete. Only a
subset of all the relationships between the two events
may be deduced:

l Even if there is a temporal relationship between
two events, we may not be able to deduce it,.

168

l We may be able to deduce only a weak rela.tion-
ship when a stronger relationship exists. A com-
mon situation would be even if two events are di-
re& related, we may only be able to infer that
they are weakly related. For example, assume
cluster(rol) = {rol,el,eZ} and cluster(ro2) =
Ipo2, e3). Let G = {el < e2,e2 < e3, el <
TOI, ~02 > e3, rol < roz}. By this method of com-
putation we could only infer that el is weakly re-
lated to es although they are directly related be-
cause of transitivity of <.

However, the domain hypothesis (Section 5.1) assures
us that this computational model will be complete most
of the time as the interaction between two events be-
longing to different clusters should mostly be via the
corresponding reference intervals.

5.3 Other Approaches

We mention two other approaches to reduce the cost
of query processing. Both these are based on the tech-
nique of precomputation.

l Views over Temporal databases: Selective materi-
alization of views may reduce the amortized cost of
query processing over the database [Han 871. As
an example, assume that the information about
lower and upper bounds on values of the tempo-
ral attribute of the events are kept materialized.
Then, while searching for temporal relationship be-
tween two events this information may be utilized
to prune away the irrelevant part of the database
at a low cost by strengthening the selection clause.
Of course, materialized views introduce the prob-
lem of view maintenance. We need to examine
what kind of views are incrementally maintain-
able [Bla 871 and how best these can be composed
[Fin 821. This work is currently in progress at
Stanford University.

l Main Memory Data Structures: Appropriate main
memory indexing structures may be quite useful.
There has been significant work in the past in the
area of path compression that is relevant. Path
compression techniques construct a physical path
between any two nodes directly as and when the al-
gorithm discovers the relationship between those.
Unfortunately, most of these algorithms, such as in
[Ull 731, assume that the input data remain unal-
tered and inferences are monotonic. This assump-
tion is not valid for temporal database, where data
update and inferences are interleaved. However,
it is worth investigating to what extent the tech-
niques can be adapted to our problem. Another

problem is that main memory structures in path
compression algorithms are very tightly associated
with the specific queries. This makes it harder to
directly use these data structures for general in-
dexing of temporal data.

6 Conclusion

Many applications require representation of tempo-
ral relationships. In this paper, we proposed that
such temporal relationships be supported in relational
databases. The following issues related to such repre-
sentation have been considered:

l A common set of logical properties of temporal re-
lationships.

l A graph model that serves the following purposes:

- Representation of the database assertions as
a labeled graph.

- Graph transformations and path traversals
describe the deductions implied by the prop-
erties of the temporal relationships.

- A framework to estimate cost of computa-
tions and to identify domain characteristics
that are useful for query evaluation.

a An outline of query processing illustrates how rela-
tive occurrences of absolute values influences eval-
uation heuristics.

l A computational model based on reference objects
[All 831. Our proposed approach trades complete-
ness of deduction for significant reduction in com-
putational complexity.

Further work is necessary to characterize our ap-
proach completely and to extend the techniques pre-
sented in this paper. We mention some of our immedi-
ate interests:

l Determination of the class of temporal properties
(over points and intervals) that can be captured
by the graph model, as it is now defined.

l Development and verification of a cost model for
Temporal Query evaluation, based on the graph
model.

l Evaluation of the temporal view approach.

a Extension of the model to capture a wider class
of temporal relationships, such as periodicity autl
delay.

169

To summarize, our approach has been to admit tem-
poral relationships and to examine the computational
requirements imposed by such representation. We be-
lieve that the above is a pragmatic approach to model-
ing of temporal databases.

7 Acknowledgments

Prof. Gio Wiederhold is responsible for encouraging me
to work on the area of temporal databases. Comments
and suggestions from Waqar Hasan, Peter Rathmann,
Prof. Wiederhold and the reviewers were valuable. The
author appreciates the comments from Arun Swami,
Arthur Keller, Marianne Winslett and Matt Morgen-
stern on an earlier version of the paper. This work was
performed as part of the KBMS project, supported by
DARPA Contract No. N00039-84-C-02111.

References

[Ahn 861 Ahn, I. “Towards an implementation of

[All 831

[All 841

Database Management Systems with Tempo-
ral Support”; IEEE CS Data Engineering Con-
ference, 1986.

Allen, J. F. “Maintaining Knowledge about
Temporal Intervals”; CACM, Nov 1983.

Allen J. F. “Towards a General Theory of
Action and Time”; Artificial Intelligence 23,
1984.

[And 821 Anderson, T.L. “Modeling Time at the Con-
ceptual Level”; in Improving Database Usabil-
ity and Responsiveness, P. Scheurmann (Ed.),
Academic Press, 1982.

[Bla 871

[Cli 851

Blakeley, J. A. “Updating Materialized
Database Views”; University of Waterloo Re-
search Report, May 1987.

Clifford, J. “On an algebra for Historical Rela-
tional Database: Two views”; Clifford James
and Tansel A.U., Proceedings of ACM SIG-
MOD, 1985.

[Day 861 Dayal, Umeshwar and Smith John Miles;
“PROBE: A Knowledge-Oriented Database
Management System”; in On Knowledge Base
Management Systems, Ed. Brodie’ M.L and
Mylopoulos, J, Springer-verlag, 1986.

[Dow 861 Downs, S. M. et al “Automated Summariza-
tion of On-line Medical Records”; MedInfo
1986.

[Fin 821 ,Finkelstein, S. “Common Expression Analy-
sis in Database Applications”; Proceedings of
ACM SIGMOD 1982.

[Gad 851 Gadia, S.K. and Vaishnav J.H. “A Query
Language for a Homogeneous Temporal
Database”; in Proceedings of the ACM sympo-
sium on Principles of Database Systems, Apr.
1985.

[Gen 871 Genesereth, M. and Nilsson, N. Logical
Foundations of Artificial Intelligence; Morgan
Kaufman Press, 1987.

[Han 871 Hanson, E. N. “A Performance Analysis of
View Materialization Strategies”; Proceedings
of ACM SIGMOD, 1987.

[Kah 771 Kahn, K. et al “Mechanizing Temporal
Knowledge”; Artificial Intelligence 9, 1977.

[Kat 851 Katz, R. et al; “Organizing a design database
across time”; Workshop on Large Scale Knowl-
edge Base and Reasoning Systems, Feb 1985.

[Lad 861 Ladkin, P. “Time Representation: A Tax-
onomy of Interval Relations”; Proceedings of
AAAI 1986.

[McD 821 McDermott, D.V. “A Temporal Logic for
Reasoning about Processes and Plans”; cog-
nitive Science 6, 1982.

[Nav 861 Navathe, S. and Ahmed R. “A Temporal Re-
lational Model and a Query Language”; Work-
ing paper, 1986.

[Sat 851

[Sno 851

[Sno 861

[Ull 731

[Wil 871

Sathi, A., Fox, M. and Greenberg, M. “Rep-
resentation of Activity Knowledge for Project
Management”; IEEE Transactions on Pattern
Analysis and Machine Intelligence, September
1985.

Snodgrass, R., Ahn I; “A Taxonomy of Time
in Database”; Proceedings of ACM SIGMOD,
1985.

Snodgrass, R. (Ed.) “Research Concerning
Time in Databases: Project Summaries”;
ACM SIGMOD RECORD, Voll5, No. 4, De-
cember 1986.

Ullman, J.D, Hopcroft J.E and Aho A.V. “On
Finding Lowest Common Ancestors in Trees”;
Proceedings of ACM Symposium on Theory of
Computing, 1973.

Williams, B. “Doing Time: Putting Qualita-
tive Reasoning on Firmer Ground”; Proceed-
ings of IJCAI 1987.

170

