
Closed World Databases Opened Through Null Values

Georg Gottlob’ and Roberto Zicari”

* Inrtitut fiir Angewandte Informatih, Technische Universitiit Wien, A-1049 Wien, Austria

*z Dipartimento di Elettronica, Politecnico di Milano, I-20133 Milano, Italy

ABSTRACT:

We propose a new approach to the treatment of null-
valued attributes in the relational model. The approach
is based on the new concept of locally-controlled open
world database. A locally-controlled open world dab
base permits the definition of portions of a traditional
closed world database as open-world. Attributes, part
of a relation, or entire relations can be explicitly defined
as ‘open” through the insertion of null-values. Under
this assumption, we consider three different types of null
values: the standard unknown, does not e&t, and the
new one, called open. We give a complete formal speci-
fication of the semantics of these null values. We extend
the arithmetic and logical operators to cover nulls and
outline how relational operators cau be extended ac-
cordingly. This paper describes ongoing work. We state
some open problems to be solved iu order to render our
approach more operational

1. Introduction

The treatment of “incomplete” or ‘inapplicable infor-
mation in the relational model has been widely ad-
dressed by researchers. One of the major difficulty is
given by the fact that several different interpretations
can be associated with a null value [ANSI75]. Codd
[Codd79) proposed a formal treatment of nulls under the
“unknowr? (unk in the rest of the paper) interpretation.
Reiter [Reit86], studied the problem of query evaluation
for databases considered as theories of llrst-order logic
with l unknown” marked nulls. Biskup [Biskal] defined
two types of null values which correspond respective-

Permission to copy without fee sll cu put of this mstwisl is
granted provided tht the copies ut not msde or distritnued for
direct commercial advantage, the VLDB copyright mtice snd
the title of the publication and its date sppesr, and notice is given
that copying is by permission of the Very Large Dets Bsse
Endowment. To copy otherwise, or to republish, requires s fee
and/or bpecial permission from the Ewlowment.

ly to universally and existentially quantified variables.
Lien [Li79], and Zaniolo [Zan83] studied a formal treat-
ment of nulls under the ‘does not exist” (dne in the
rest) interpretation. Vassiliou (Vas79) considered the
problem of managing nulls with both the ‘unknown’
and ‘does not exist” interpretations. He pointed out
some problems in using a many-valued logic for describ-
ing the semantics of arithmetic expressions and logic
quantifiers, and proposed an approach based on Scott’s
denotational semantics. Recently, Codd [Codd86,87]
proposed a solution for combining the dnc and unk null
values still using a many-valued logic for logical opera-
ton.

In the context of an “open world” database [Reit78],
Zaniolo [Zan84] introduced the ‘no information” (ni in
the rest) interpretation for nulls. A no information null
is a lower level value with respect to the dnc and unk in-
terpretations and acts as a placeholder for missing or in-
complete information and also characterises situations
where no actual information is available about an at-
tribute. Zaniolo also introduced the concept of a ‘more
informative tuple’, that permits to eliminate ‘less infor-
mative tuples’@ that do not add any information with re-
spect to the tuples already stored in the database. The
ni interpretation solved some of the problems suffered
by Codd’s proposal [Codd79]. However some partial
knowledge available to the user may be lost with this
approach.

Also under the ‘open world assumption”, Roth, Korth
and Silberschatr IRKS851 extended Zaniolo’s approach
considering the dne , unk , and ni all together. They
also extended Zaniolo’s notion of ‘more informative’
tuple to handle the three types of nulls and defined
the semantics of the relational operations accordingly.
Other more sophisticated solutions to the problem of
null values have been proposed in [Lp79], [ImLpBl],
[Wo82], [KeW85] and [Im84].

We propose a new approach to the treatment of null val- ’
ues in the relational model. The approach is based on
the new concept of locally-controlled open world data-
base. A locally-controlled open world database permits
the definition of portions of a traditional closed world

Proceedings of the 14th VL,DB Conference
Los Angeles, California 1988 50

database as open-world. Attributes, part of a relation,
or entire relations can be explicitly defined as ‘open’
through the insertion of null values. Under this as-
sumption, we consider three types of null values: the
standard unknown and does not e&t, and the new one,
called open.

The most important contribution of our paper consists
of presenting a complete specification of the semantics
of relational instances which contain null values of ei-
ther type. Our approach for defining the semantics is a
model-theoretic one (see also [Bisk81] and (Mai83]). We
will show that to each instance r of a relation schema
R, there corresponds a precise set of ‘possible worlds’
which we call the mod& of r. Intuitively, these models
stand for all the possible ‘real world situations” that
may correspond to the given relation instance.

The rest of the paper is structured as follows: section
two gives a brief general overview of null values under
the Open and Closed World Assumptions. Section three
informally introduces our new concepts by examples
and presents a motivation for our approach. Section
four, after stating some basic definitions, describes the
semantics of the null values under this new approach.
In section five we present a consistency criterium for
relational instances and show how some instances can
be reduced to smaller ones without loss of information.
Section six show8 how the semantics of comparison op
erators and of arithmetical operators can be extended
to cover null values and points out some problems re-
lated to the generalisation of the relational operators.
This paper describes ongoing work. There are still sev-
eral open problems to be solved before our model can
become operational In section seven, we identify the
most important of these open problems and discuss sev-
eral possible extensions of our work.

2. Null Values under the Closed and Open World
Assumptions

Our approach is based upon the observation that when
considering a database, the choice between the two well
known assumptions, closed and open world [Reit78] is
not entirely satisfactory to represent real life situations.
The introduction of null values in the relational model
stresses this consideration.

We clarify this concept with an example. Consider a
simplified company database consisting only of one re-
lation with schema R(EMP, DEPT,TEL) and an in-
stance rl of R:

EMP DEPT TEL

Smith CS 5512

instance rr

Under the ‘closed world assumption” (CWA), instance
rr of relation R says that in our world (our company in
the example) one employee, Smith, works in the Com-
puter Science department, and has 5512 as telephone
number. No other facts are true: that is, no other em-
ployees work for the company, there are no other de-
partments, and Smith does not have a second phone
number.

If we consider the same relation R, but under the ‘open
world assumption’, things change. With our current
knowledge, we can only say that employee Smith works
in Computer Science, and has 5512 as telephone num-
ber. We do not have any further information whether
Smith is the only employee or not, whether CS is the
only department, and whether Smith has other tele-
phone numbers.

So far we have considered only totally specified facts
(i.e. without incomplete information) stored in the data-
base. When some or all the information regarding at-
tributes of a relation are “missing’ or ‘not known” it
is common practice in the database field to introduce
null values. A variety of reasons may cause incomplete
information in the database, see for example [KeW85]
for a description of several sources of incomplete infor-
mation. Different types of nulls have been considered
in the literature (ANSI75).

For closed world databases most authors agree that the
various interpretations of nulls can be reduced to the
following two:

- unk: the value exist, but it is not known;

- dne: the value does not exist.

Consider an instance r2 of relation R:

EMP DEPT TEL

Smith CS 5512

Black CS unk

Victor CS dne

instance r2

Under the ‘closed worldw assumption, the following
facts can be inferred from r2:

l there are only three employees: Smith, Black,
and Victor;

l there is one department: Computer Science;

l Smith has one telephone: 5512;

l Black has one telephone, but we do not know
the number;

l Victor does not have any telephone.

51

No other facts are true.

For open world datab- a different type of null, called
no-information, haa been proposed [Zau84] 01 a lower-
level placeholder for both dnc and ank.

ComGder an instance ra of R :

instance r3

Under the l open world’ assumption the folbwing facts
can be inferred from rs:

l the employees Smith and O’Brian work in
Computer Science;

l Smith hu 5512 aa telephone number;

l we do not know whether O’Brian, in Com-
puter Science, has a telephone or not.

Because of the open world assumption, we also do not
know any other information concerning the three at-
tribute of relation R. So for example, we do not know
whether Smith haa another phone number in CS other
than 5512, or whether there exist other employee8 work-
ing for some other departments and M on.

In the next two sections we describe our concept of lo-
cally opened databases.

3. Locally Opened Databaaea

Our approach ie simple, yet powerfui: We consider clo-
sed world databases which can relax part or all of their
closure assumption when explicitely marked.

We consider three types of nulls; the standard unk and
dne, and the new one , we call open. An open null says
that an attribute of a particular tuple is under the open
world assumption: therefore the attribute value may
not exist, or there may be exactly one value, or there
may be several values (from the attribute domain) for
it; in other no&r, things are left eopen’.

The approach ia better explained with ill example. Con-
sider the three different instance8 of R, ro, rb, and t,
with null valuecl:

r-e : r-e :

EMPI DEPZ EMPI DEPlj TE

EMPI DEPlj TE$

Smitd CS 1 55121

Srnit~ cs 1 open1

Ismit~ cs 1 Smitd CS 1 55121

f,, :

1 open 1 open 1 opcnl

Instance r, show8 a database where no attributes have
the “open” value. This models a closed world databane.
The semantics of the two null values is the one given in
section 2.

Instance rb models a database which is closed except for
the value of attribute TEL of the second tuple. Under
thii interpretation, the following facto can be inferred
from rb:

l Smith is the only employee;

l CS is the only department;

l Smith has one phone number 5512;

l Smith may have rero or one or several other
additional phone numbers, we do not know.

No other facts are true.

Note that the value ‘open’ in TEL does not mean
that TEL L a set-valued attribute [AbBi84,ScSc861. If
Smith had more than one additional phone numbers,
this would be represented by a set of tuples each with
mme value for EMP and DEPT, and different number
for TEL.

Instance r, models an open world database. In fact, all
attributes of the second tuple are left ‘open’, this corre-
rponds to say that we know that Smith work8 in CS, and
ha8 5512 a8 phone number, but nothing else ia known
and therefore cannot be negated. It is important to note
that the way a database is considered (closed, partially-
opened, opened) ia explicitly controlled through intro-
duction (or absence) of ‘open’ nulls. Hence we are not
bound to any partial a priori choice between the open
and closed world assumption.

There are three important motivation8 for our approach.

The 6rst one in the high expressive power resulting from
the combination of the three different nulls. The unk
and dnc null8 have already been recognted a8 impor-
tant by several authors. The addition of the open null

52

allow8 to model a large number of further situations of
highly applicative importance.

The second motivation is related to the nested relation
or NF’ data model [ScPi82, AbBi84, FiVG85, ScSc86).
We observed that when a single type of null, namely the
unk null ie introduced into a nested relation which is
interpreted under the CWA, then thie unk null must be
represented by either unk or open in the corresponding
flat relation (according to the position of the unk in
the ne-sted relation). Furthermore, when the empty set
0 appear8 aa attribute value in a nested relation, then
this value corresponds to a dne in the corresponding flat
relation.

Consider for example the following instance r, of a
nested relation with schema (EMP, {TEL}). It ia easy
to gee that after application of the UNNEST operator,
r, must be transformed into the following flat instance
r/ with the schema (EMP, TEL):

IEMP]l

I EMPI {TEL} 1

1 b 1 unk 1

rn ‘f

Due to our three different nulls we are thus able to ap
ply (in many cases) the UNNEST operator to a nested
relation with uak null8 and to model uncertain infor-
mation in flat relations which otherwise could only be
modelled by wing the nested relations approach.

The third motivation for our approach is related to the
problem of updating views [BaSp81, GPZ88j.

Updates of projective views are a source of incomplete
information. Consider for example the view V defined
as a projection on EMP of the database r:

m pJ

database r : view V :

Now if we insert into V the tuple < Zhou >, this should
correspond to adding the tuple < Zhou, open > to
the underlying database r, because we do not know

how many phone numbers Zhou has. Note that in
moat commercial database systems this is not the ca8e:
in fact, most systems only have one type of null, the
unk . Adding the tuple < Zhou, unk > instead of
< Zhou, open > to the database would introduce an
arbitrary and perhaps incorrect mapping between view
states and database states: we would constrain Zhou to
have only one telephone number.

4. Semantics of Relations with Null Values.

In this section we specify the semantics of relation in-
stances in which the null value8 open, dne and unk are
allowed to appear. Our approach is a model-theoretic
one. We will show that to each instance r of a relation
schema R, there corresponds a precise set of ‘posai-
ble worlds” which we call the models of r. Intuitively,
these model8 stand for all the possible “real world sit-
uations’ that may correspond to the given relation in-
stance. Our notion of model is comparable to the one
of ezteluion defined in [Mai83]. However, the unk null8
are treated according to the completion paradigm aa de-
scribed in [h&83] and the dne null8 represent additional
constraints.

This section is subdivided into three subsections. The
first introduce8 our notation and defines some basic con-
cepts. The second eubsection give8 an exact formal
specification of the semantics of relational instances. Fi-
nally, our approach is illustrated by several examples in
the third subsection.

4.1 Notation and Basic Concepts.

In order to distinguish single values (including null val-
ues) from one another we will u8e in the entire Section
4 the strong equality, also called symbolic equality, de-
fined more formally in section 6, denoted by “==“. If
z and y are data or null values then x == y is true iff
2 and y denote exactly the same value. For instance,
the expressions 3 == 3, dne == dne, open == open
are all true, while the expressions 3 == 5, dne == unk,
dne = open, open = unk, and unk == 5 are all false.
The negation of z == y ia expreeaed by z + y. Later
(in Section 0) we will define another concept of equality,
called the semantic equality. Whenever we use the sign
‘=’ in this section, we refer to the usual mathematical
equality.

We denote by R(A1,. . . , A,,) a relation schema defined
over a set of attributes Al,. . . , A,,. The domain of
each attribute Ai is denoted by Dom(Ai). The domain
Dam(R) of R consists of the cross product Dom(Al) x
Dom(A1) . - * x Dom(A,). We extend each domain
Dom(Ai) to an extended domain Dom*(Ai) by adding
the three symbols dne , unk and open which denote

53

the three different, null values. The extended domain
Dom* (R) of R consists of the cross product Dom*(Al) x
Dom’(A1) x . . . x Dom’(A,).

A relation instance of a schema R ie a subse. t of Dom* (R) .
Such instancee are denoted by lower case letters (if nec-
essary with s&scripts), such as r, rl, to, and so on.

A tuplc of an instance r is an element of r. We denote
tuples by letters such as t, t’, tl, t,, and so on. If t is a
tuple of an instance r, then t[Ai] denotes the compo-
nenf of t which corresponds fo the attribute Ai. The
comparison operators == and + can be extended to
apply to entire tuples in the obvious way.

Before giving a precise definition of the concept of pos-
sible world, let us make some informal remarks.

We wish to establish that to each relation instance r
correspond some models. Each model is a possible world
of the underlying relation schema. In general, there will
be several other possible worlds which are not models
of r. Each possible world consists of tuples filled with
‘effective data values” instead of null values. Consider,
for example, a relational instance r consisting of one
single tuple: r : {< a, unk, b >} and assume that the
domain of the middle attribute of r is the set of integers
{ 1,2,3,4,5}. One possible world which is a model for r
is, for example, the sef {< a, 3, b >). Another model for
r is the set (C a, 5, b >). Thus models are drawn from
relation instances by replacing null values with effective
data values. More generally, possible worlds are sets of
tuplee consieting of effective values.

There is, however, one problem. We do nof wish that
the null value dne be represented by any effective value
in a model. This would violate our intuitive under-
standing of this null value. For this reason, we in-
troduce a dummy symbol I which will be used as a
“filler” for gapa corresponding to dne -nulls (or, in some
cases, to open nulls). Consider, for example, an in-
stance r consisfing of the single tuple < a, dne, unk >.
Two possible models for this instance are the worlds
~~:{<~,I,c>}and~:{<o,I,d>}.

Let us now give a formal definition of the concept of
possible world. If R(AI,. . . , Am) is a relation schema
then a possible world of R is any subset of Doml (R) =
DomA x . * - x Doml(A,), where, for 1 < i I
n Dom’(Ai) = Dom(Ai) U {I}. In order to dis-
tinguish tuples of possible worlds from fuplee of ordi-
nary relation instances, we will refer to the latter by
using greek letters such as 6, 6’ and so on. The i-th
component of such a tuple 6 is referred to as S[Ai]s

Intuitively, a possible world w represents a real life sit-
uation where all tuples of w correspond to true facts,
while all tuples belonging to DomL (R) - w correspond

to false propositions.

The set of all possible worlds of R is denoted by Q(R).

Let r be a relation instance. A relation instance f ob-
tained from r by textually replacing each occurrence of
unk by a nonnull data value is called an unk-completion
of r. This notion is related to the one of completion (see
(Mai83]).

For instance, let r = (< open, 1, unk >,
< open,unk, unk >}, then fwo different unk-comple-
tions of r are: r = {< open, 1,2 >, < open, 4,5 >} and
f’ = {< open, 1,s >}.

The set of all u&completions of a relation instance r
is denoted by UC(r).

Given a relation instance r of R and a possible world w
of R, we must be able to establish whether w is a model
of r or nof. Hence, we muaf provide a precise definition
of the concept of model. Once we have such a definition,
we can define the semantics of a relation instance r
(which possibly contains null values) as the set of all
models of r. The concept of model is thus central to the
semantica of relational instances. Its exact definition is
given in the next subsection.

4.2 The Model Theoretic Semantica of Relation
Instancea with Null Values

For all this subsection, let r be a relation instance with
schema R(A1,. . . , An) and let, w E R(R) be a possible
world. Our aim is to eetabliih condition8 allowing to
decide whether w is a model of r or not.

Let t be a tuple of r and let 6 be a tuple of w. We say
that t induces 6 , denoted by t D 6, iff for 1 5 i < n at
least one of the following conditions is satisfied:

i

t Ai
I I

== 6[Ai] or
t Ai == open or
t Ai

II I
== ;$::: f/g zI’1. Or tAi ==

The possible world w is a model of r iff the following
four condifiona are all satisfied:

1.) 3PEUC(r)V6Ew3tEP: to6.

2.) Vt E r : ((t -+< open, open,. . . , open > A
t +< dne,dne,...,dne >) =S 36~~: tD6).

3.) VIE w 736’~ w: (6 yk 6’ A Vl Si< n:
(b[Ai] =# I Jo 6[Ai] == 6’[Ai]))s

4.1 < dne,dne,..., dne>Er =+ w= {}.

The above four conditions represent the definition of the
concept of model which in turn define8 the semantics of
relational instancea with or without null values. Let

54

us give some brief informal comment8 to each of these
conditions.

The first condition state8 that unk null8 are to be re-
placed each with a single data value - hence they are
treated according to the completion paradigm [Mai83].

The fimt condition also states that every tuple of 6 must
be induced by at leacrt one tuple of t. Intuitively, this
means that r has to be interpreted under the closed
world assumption unless there appear some open null8
in r.

Each tuple. with open nulls which appears in r may have
a wide variety of corresponding induced tuples in w and
may thus lead to a local ‘expansion’ of the CWA. In
the extreme case, r may contain a tuple topen :
< open, open,. . . , open > which consists only of open
nulls. In this case, since each possible tuple is induced
by b,m.r the CWA is ‘expanded” to a maximum extent
such that it coincide8 with the open world assumption.
Thus r ia de facto interpreted according to the open
world assumption. Note that dnc nulls occurring in r
may in turn restrict this open world assumption (see
condition 3).

The way open null8 are treated by our approach corre-
sponds to the ezteneion paradigm described by Maier
in [Mai83].

The second condition state8 that each tuple of r (ex-
cept the two ‘extreme” tuplee) must induce at least
one tuple of UP. Thie means that each model of r must
contain at least all the ‘$ositive knowledge” contained
in r and must represent a particular choice for each ‘un-
certainty” expreeeed by r. Hence r can be viewed a8 a
set of axiom8 to be satisfied by each model.

In particular, this condition enforces that every tuple of
r consisting only of ordinary data value8 must appear in
the model UJ. Furthermore, every tuple of r containing
one or more uuk null value8 must induce at least one
tuple in w where the unk values have been replaced
by ordinary data values. The open values, in turn, are
resolved iu each model w, either by replacing them with
I (a placeholder for non-existent values) or by one or
several data values (in the latter case, the tuple of r will
correspond to several tuplee in w, each with a different
choice for the open null). Finally, each dne null value
which appear8 in a tuple will be replaced by the value
I in the corresponding tuple(s) of w.

The third condition expresses the strong semantics of
the dnc null value. It says that whenever there exists
a tuple 6 in w which ha8 some I values, then there
cannot be any other tuple in w which differ8 from 6
only by the replacement of some I value8 with real data
values. Since each occurrence of dnc in r induces at leaat

one occurrence of a I value in w (condition 2), each
occurrence of dne iu r implies the effective nonexistence
of real data values in the model w in the given context.
For example, if r contains a tuple < 3, dne, 4 >, then,
by condition 2, w must contain the tuple < 3,1,4 >;
but then, by condition 3, it is enforced that no tuple
< 3,x,4 > may exist in w, where z is an effective data
value.

In a similar way, the third condition also assures that
whenever the choice ‘does not exist” is taken for an
open value of r, then this is reflected by the nonexistence
of other alternatives than I for this open value in the
model w.

Note that it follows from condition 3, that the dne value
is stronger than the open value. This will be made clear
by an example which we present in the next subsection.

Finally, the fourth condition says that whenever the
=extreme” tuple < dne,dne,. . . ,dne > appears in r,
then w must be the empty set. This condition is an ad-
ditional specification to the semantics of dne . It follows
from condition 4 and from condition 1 that a tuple of
the form 61 :< &I,..., I > can never appear in any
model. Condition 4 assures that the only model which
expresses the nonexistence of any data value in a rela-
tion is the empty set. In particular, it is enforced that
the relation instance {< dne, dne,. . . , dne >} and the
empty instance {} both have the same unique model {}.
Indeed, we wish that these two instances have exactly
the same semantics.

The semantics of a relation instance r can now be ex-
pressed as the set MODELS(r) of all models of r. Intu-
itively, these semantics convey exactly all possible real
world situations that may correspond to r. Note that
when all domains are finite, then MODELS(r) can be
effectively computed.

We are now also able to express the fact that two re-
lation instances r and f are semantically equivalent,
denoted by r Z f:

r cll r’ iff MODELS(r) = MODELS(r’).

4.g Some Examples

Consider a relation schema R’ = (X, Y) with Dom(X) =
{o,b} and Dam(Y) = {1,2}. We will present different
instances of R’ and discuss their semantics.

It is easy to see that each relation instance contain-
ing only classical data values admits exactly one model
which contains the same tuples a8 the relation instance
itself. This is consistent with our requirement that rela-
tion instance8 without open nulls are to be interpreted,
according to the closed world assumption. The follow-

55

ing inetance fl, for example, admit6 exactly one model
w::

Y

1 a 1

a2

inrtance fr world w;

Let ue now connider the instance P$ which ia obtained
by adding the tuple < opcn,open > to 4:

instance fS

The last triple of thin instance may induce sero or more
additional model-tapla, giving raise to a variety of five
different modeb of fa which are:

model wi, = w: ;

Hence MODELS(r’,) = {w&,, wibr to!!,, wid, ~4~).
This ia consistent with our original intention to interpret
relational instancea which contain a tuple of the form
< open, . . .,opcn > according to the open world as-
sumption.

In order to illustrate the remantica of unt , let us con-
sider the following relation instance fs:

Y

H

a 1

a un

instance fS

Although there are two choicea (1 and 2) for the unk
value, the general rationale for interpreting thii instance

ia still the closed world assumption, since no open nulla
occur in fs. According the conditions l-4, f3 admits the
following two models:

ITI 1

III 1 Ltl 2

model w&,, model wb,,

Let ux~ now consider a somewhat more complicated re-
lational instance 4, which combiiea several different
types of null values.

I I 1

a dne

t-t-i b unk

[blopenl

instance f,

What are the models of Y$? The first tuple of 4, by
condition 2, enforces the existence of a tuple < a, I > in
every model off,. By condition 3, no other tuple with
X-component a may appear in a model. Moreover,
condition 2 enforces that at least one of the two tuples
< b, 1 > or < b,2 > must appear in any model. It
follows (by condition 3) that the open value of the third
tuple cannot be translated into 1. Hence, there remain
three alternatives for this open value: either 1, or 2 or
both. In the latter case, the third tuple would give raise
to two tuplea in the model; one of these two model-
tuples, however, would coincide with the tuple induced
by the second tuple in 4.

By considering condition 1, we conclude that the set of
possible worlds which are candidates for being models
of f, is limited to the three worlds:

Now, by checking all four conditions for each of these
worlds, we conclude that all the three are models of f,.

Finally, let us define a new relation instance 4 of R’ by
f6 = r-f, U (< open,open >}, i.e., by adding the tuple
< open, open > to f,.

56

x Y

a dne

EB

b unk

b open

open open

instance #s

It is easy to see that all models of 4 are aleo models
of ti5, but that 4 admits the following two additional
models:

a a

I ill

b 1 b 2

2 1

& da

There are no further models for (,, because the choice
of the Y-component of the taple with X-component a
is limited to 1. In this sense, we may say that in our
model the dne null ie stronger than the open null

6. Inconsistent Relationa and Redundancy Elim-
ination

In this section we will brieiy discuss a few particular
problems related to the null values introduced by our
approach. Some of the issues treated here are still under
investigation.

Fit, let us note that there exist relational instances
which do not admit any model. Consider, for example
an instance I of R’ of the form

Y

El

a 1

a dn

instance r

It is easy to prove that r cannot have any model. As-
sume r has a model w. Then, by Condition 2 of Section
4, the two tuples < a, 1 > and < a, I > must be el-
ements of w, but this is a contradiction to Condition
3.

Indeed, according to our intended informal semantics,
r expresses a contradiction: the f% tuple rtates that a
is in relation with 1, while the second tuple states that
there exists no effective value which is related to ‘a”.

The possibility of contradictory instances due to the
dnc null has also been noted by Roth, Korth and Sil-
berschatr (RKS85j.

In general, we will say that a relation instance r is in-
con&tent iff r has no model. Such instances should be
avoided, because they have no meaning.

Our definition of inconsistent instance is a semantic one.
The question whether there exist simple syntactic cri-
teria for recognising inconsistent instances arises natu-
rally. In case all domains are infinite, this question is
answered positively by the following theorem for which
we omit the proof:

Theorem. Let R(Al, . . . , An) be a relation schema
such that 11 Dona 11 = oo for 1 5 i 5 n. A rels
tion instance r of R is inconsistent iff there exist two
tuples t, t’ E r such that the following conditions are all
satisfied:

a) neither open nor unk nulls occur in t

b) the dne occurs at least once in t

c) t’ can be derived from t by the substitution of
one or more occurrences of the dne null with unk
or with an effective data value.

This theorem is important, because it guarantees that
the recognition of inconsistency can be done by using
purely syntactic criteria, i.e., by checking all pairs of
tuples of a given instance. It is easy to see, that the
complexity of consistency checking is quadratic in the
number of tuples of an instance.

The theorem does not hold for finite domains. Algo-
rithms for consistency checking in the case of finite do-
mains are currently under investigation.

Let us now draw our attention to the second issue ad-
dressed in this section: redundancy.

A tuple t of a relation instance is redundant iff t can
be removed from r without changing the semantics of
r, i.e., iff MODELS(r - {t}) = MODELS(r).

We identify three important situations where a relation
contains redundant tuples. These three situations are
exemplified respectively by the following instances r,,,,
ra, and r7 :

A _, H

ra ra r7

57

The second tuple of rcr ia obviously redundant because
there b a unique posoibile value for the open null, namely
1. Thus both ra and t, - { < 0, open >} admit exactly
one model consisting of the single tuple < Q, I >.

Thii type of redundancy ir called type a mdundancy
and ia defined more generally 88 followr: A tuple t E r
i type a redundant iff there is another taple t’ E r
such that t’ doer not contain open or unk nulls and t
can be obtained from t’ by replacing all occurrencea of
dne with open .

Let PI) now consider the second type of redundancy,
type /3 redundancy. It b easy to eee that the second
tuple of ra is redundant becauee each model-tuple in-
duced by the second tuple of of ra ia also induced by
the 6rst tuple and because the existence of at least one
model-tuple with X-component Q ia enforced by the
third tuple anyway.

Before giving a formal definition of type p redundancy,
we introduce a partial ordering ‘E” on attribute values
and on tuplee of a relation instance.

Let t and y be nulb or data values. y refiner 2, denoted
by 2 C y iff one of the following conditions holds:

l z ie open and 1 is either unk , or dnc , or a
nonnull datavalue;

l z ia unk and y ia a nonnull datavalue;

l z is identical to y.

A tuple t E r refines a tuple t’ E r, denoted by t’ E t iff
for each attribute A of r t’[A] E t[AJ.

A tuple t of r is type /J redundant iff there exist two
tuplea t’ and t” both distinct from t such that t’ C_ t E t”
and such that uak does not occur in t’.

Finally, let us consider the thii pattern of redundancy,
type 7 redundancy. The second tuple of r7 is redundant
because each model-tuple induced by the second tuple
is also induced by the 6rat tuple and vice versa. This
b 80 because the third tuple of r, con&rake the open
null appearing in the 6rst tuple to be mapped to a value
different from I (for consistency reasons).

More generally, we can define type 7 redundancy as
follown:

A tuple t E r ia type 7 redundant iff there exist distinct
tuples t’ and t” (different from t), ruch that t’ does not
contain unk and t’ E: t and such that the following three
conditions are satisfied for each attribute A of r:

a) t’[A] == open =+ (t[A) == unk A t”[A) $!
{open ,dnc }.

b) t’[A] == I + t”(A] 4 {unk , open }.

c) t’[A] is nonnull =+ t”[A] == t’[A].

It can be shown that all three tyw of redundancia are
effectively redundancies in the sense of our definition.
If finite domains are considered, then there exist other
types of redundancies. It remains to be seen whether
the here presented types of redundancy a, p and 7 are
an exhaustive list in case all domains are infinite.

6. Arithmetical, Logical, and Relational Opera-
tore

Let us first state some desirable properties of arithmeti-
cal and logical operators.

Our four principles for arithmetic and logical operators
are the following (we consider in the rest expressions
obtained through composition of logical and arithmetic
operators):

a) Extension : If an expression E containa only non-
null datavalues, then its value is the same aa if all op
erators had their classical meaning.

b) Preservation of identities: Any operator (or pair
of operators) which is (are) associative, commutative,
and distributive for nonnull datavalues have the same
property if null values are involved. In particular, we
request to hold:

l the associativity and commutativity of *, +,
4 v;

l the distributivity of + over +, and of A over
V;

l De Morgan’s laws.

However we do not require that 0 is the only neutral
element, and that the law of the excluded middle is still
valid.

c) Monotonicity of substitution: If we replace in an
expression E a value x with a value y, such that x E y,
then we obtain a new expression E’ whose result e’ is a
refinement of the result c of E, that ie: e’& e.

d) No global information loss for sure valuea: If
we group all possible datavalueil in two groups as fol-
lows: group I contains the “for sure” values, i.e., dne
and all nonnull data values, group II contains “uncer-
tain” values unk and open, then any expression E which
is composed only of values belonging to group I cannot
result in a value of group II.

Arithmetic operators

Table 1. displays the semantics of any binary arithmetic
operator (0) in presence of null-valued attributes.

58

Table 1

For particular data values, the choice of the result ia
left open to the implementor: u/O may result in a run-
time error or alternatively in a dne value. A different
semantics from the one in the above table can also be
given to the following expression: 0 + unk resulting in
0.

Logical operatore

If we place true in the top clase, unk in the eecond, falac
in the third, open in the fourth, and dnc in the fifth, the
logical AND of any two itema is an item of whichever
class ia the lower of the two operanda. Table 2 displays
the semantica of the AND operator in the presence of
null values.

s
Table 2

Note that the result open of the expression ‘F AND
open * represents an information loo. We know for
sure that this expression evaluates to a value different
from T for each effective data value the operand open
may take, but the result open stand8 for the possible
valuer I, F and T. Nevertheless, open is the most ap
propriate result value we can stipulate for the expression
‘F AND open “. Indeed, each other value would lead
to an injuetified gain of information. If we used two
additional null, say open- which can never be turned
into T and open + which can never be turned into F,
we could circumvent this problem. We prefer, however,
to cope with a lees of information, rather than dealing
with five null values. Note also that a similar problem
& with arithmetical operators. Everybody agreea
with WI that on real valued domains unk * unk muat
yield unk . But then we loose the information that this
result muat be a nonnegative number.

If we arrange attribute values in a different order: dnc aa
the highest, open, true, unk and falac next in the order,
then the logical OR of any two items ia the item which
ia the higher of the two operands. Table 3 displays
the semantics of the OR in the presence of null vlaues.
Table 4 displays the semantics of the NOT operator.

Table 3 Table 4

Note that for AND and OR, dne is an ‘absorbing truth
value, this means that when dne occurs in a logical ex-
pression, the entire expression results in dne . Here dne
has the semantics of the null-value defined by Bochvar
in the context of many-valued logic8 [Res69, Got82].

It is easy to see that all four principles stated at the the
beginning of this section are satisfied by our definition
of the arithmetical and logical operators.

Equality and Relational Operators

We distinguish between two kinds of equality of at-
tribute values: a semantic equality, denoted with * = “,
and a symbolic equality, denoted with ’ = l . The ‘ =I’
operator checks for semantic equality, while ’ == ’
checks for equality of representation, i.e. the operator
evaluates to true iff two values are symbolically equal.
Table 5 and 6 display the semantics of these operators.
The need for two equality representations has also been
recognised in [Codd80, GZC87j.

Table 5

== b dne unk open
u=bF F F

ine F T F F

I--

unk F F T F
open F F F T

Table 6

We now discuss the behavior of relational operators
when null values are considered. We do not provide

59

formal definitions of the semantics of all relational op
erators, but limit ourselv~ to an informal presentation
of some of the implications that the introduction of nulls
have on the extension of standard operators. A deeper
analysis of this part is important and is subject to cur-
rent research.

Selection 0. Let us restrict our attention to select
predicates of the form ‘A = d” or “A = B’ , where A
and B are attribute names and d id a nonnull value. We
6rst define a strong selection operator b based on the
symbolic equality sign which accepts only sure tuples:

h&(r) = {t E I 1 t[A] == d}.

&4=&3(r) = {t E r 1 t[A] is nonnull A t[A] == t[B]}.

If we want to define a weak selection b accepting also
uncertain tuples, then we are faced with an interesting
problem: sometimes an unk or open null cannot be re-
placed by a particular value, because this would lead
to an inconsistency. For example, if t contains two tu-
ples < a, unk , dne > and < a,4,6 >, then we know
for sure that the unk null of the first tuple can never
assume the value 4. Hence any selection (even a weak
one) equating the second attribute of r with 4 should
discard the first tuple of r. Let cat(s) be a predicate
which is satisfied whenever I is a consistent instance.
Then we can define our weak selection on a relation r
with schema S as follows:

bA=d(r) = {t’ 1 3 E r : t[A] E (d, unk , open } h

WI == d A t’(D - A] == t[D - A] A cst(r u {t’})}.

5,4d (r) = {t’ 13 E r : (t[A] = t[B]) =/= F A

t’[A] == t’[B] == min(t[A],t[B]) A t’[D - AB] ==
t[D - AB] A cst(r U {t’})}

where tin denotes the miniium of two values accord-
ing to the ordering I defined by {dne , nonnulls} <
unk < open.

Cartesian product x. The Cartesian product can be
defined in a similar way as the standard one.

Projection X. The projection can be defined in a sim-
ilar way as the standard one. However, the execution
of the x operator may lead to an inconsistent result.
Consider, for example the instance r,, of Section 3. If
we project on the TEL attribute, then we get an incon-
sistent relation containing the three tuples < 5511 >,
< dne >, and < unk >. There are different ways
to circumvent this problem: One is to require that the
projected attributes always contain the primary key of
each relation and to forbid that nulls occur in the pri-
mary key columns. Another (and more appealing) way
is to automatically eliminate all tuples with dne nulls
which are responsible for inconsistencies from the result
of a projection.

A second problem with projection is the elimination of
duplicates when projected tuples contain unk nulls. If
several identical tuplea, e.g. of the form < a, unk >
are generated during a projection, we propose to elim-
inate all but one of these tuples and to add the tuple
< a, open > to the result.

Union U The union operator can be defined in a sim-
ilar way as the standard one using the symbolic equality
to eliminate duplicates. As for the projection operator,
execution of a union operator may result in inconsistent
relation instances.

Join w Join is a derived operator. It can be defined as
a selection applied to a Cartesian product of two relation
instances. Since we have defined two types of selection,
a strong and weak one, we can define a strong and a
weak join accordingly.

Difference -,Intersection n The definition of these
operators is similar to the standard one using the sym-
bolic cqualify. However, problems can arise with re-
dundant relations. For example, if the application of a
set difference or of an intersection eliminates the third
tuple from instance r7 of section 5, then the second tu-
ple is no more redundant. Therefore, we must make
sure that the operands of these operations are nonre-
dundant. This can be obtained either by eliminating
redudant tuples before applying the operations or by
imposing some restrictive sufficient conditions on the
operands which make sure that they are nonredundant.
One such condition is, for instance, that only dne and
nonnull values are allowed to appear as field values in
the operands.

7. Open Problems and Possible Extensions

The most significant contribution of this paper is the
presentation and semantical specification of a new ap
preach for binding nulls into the relational model. Sev-
eral problems, however, have to be resolved until our
ideas can be fruitfully applied. The most important bf
these problems are:

a) The consistency problem when finite domains are
considered.

b) The problem of finding simple syntactic criteria for
nonredundancy of relation instances under both assump
tions, finite and infinite domains.

c) The interaction of constraints, such as FDs, MVDs,
JDs, etc. with our model of nulls.

d) The adequacy problem of relational operators. We
will extend our approach to cover partitioned relations
with sure and uncertain tuples [Bisk83, Mai83]. On such
relations, the generalisations of the classical relational

60

operators can be defined more adequately.

We also believe that our approach is well suited for be-
ing applied in the context of nested relations (see section
3), where nulls have been considered so far only under
the open world assumption [RKSSL, GZC87].

Acknowledgmenta

Roberto Zicari hsa been partially sponsored by the ES-
PRIT project 432 ‘METEOR” and has received a travel
grant from the Italian Embassy in Vienna, Austria. We
are grateful to Peter Pi&or, Michael Schrefl, and Marco
Ferrario who gave us useful comments and suggestions
on the problem of handling null values, as well as to the
referees who helped us improving the original version of
the paper.

References

b
AbBi84] S Abiteboul, N. Bidoit, Non First Normal
orm Relation to Represent Hierarchically Organised

Data, Proc. 3rd ACM SIGACT-SIGMOD, 1984.
(ANSI751 ANSI/XS/SPARC, Study group on data base
management systems: interim report, ACM FDT, 1975.
[BaSpSl] F. Bancilhon, N. Spyratos, Update Semantics
of Relational Views, ACM TODS, voL&no.4,December
1981.
[Bisk81] J.Biskup, A Formal Approach to Null Values in
Database Relations, in Advances in Database Theory,
Vol. I, (H.Gallaire, J. Minker, J.M. Nicolas) , Plenum
Press, New York, 1981.
[Bisk83] J.Biskup, A Foundation of Codd’s Relational
Maybe Operations, ACM TODS 8:4, 1983, pp.608636
[Codd79] E.F. Codd, Extending the database relational
~g~gel to capture more meaning, ACM TODS 4(4),

[Codh86] E.F. Codd, Missing Information (Applicable
and Inapplicable) in Relational Databases, SIGMOD
RECORD, ~01.15, no.4, December 1986.
[Codd87] E.F. Codd, More Commentary on Missing
Information in Relational Databases (Applicable and
Inapplicable information), SIGMOD RECORD, ~01.16,
no.1, March 1987.
[Dad861 P. Dadam et al., A DBMS to Support Extended
NF2 Relations: An Integrated View on Flat Tables and
p;archles, Proc. ACM Sigmod, 1986, Washington

[FivG85] P.Fisch er, D. van Gucht, Determining When
a Structure is a Nested Relation, Proc. 11th VLDB
Conf., Stockholm, Aug. 1985.
[Got821 G. Gottlob, Semantic Representation of Logi-
cal Operators of Programming Languages by means of
three-valued truth tables. in Proc. IEEE 12th Intema-
tional Symposium on Multiple-valued logic, Paris, May
25-27, 1982.
[GPZ88] G. Gottlob, P. Paolini, R. Zicari, Properties
and Update Semantics of Consistent Views, ACM TODS

(to appear), also available as Report no. 88-092, 1988,
Politecnico di Milano, Milano.
[GZCS'I] R.H. Gueting, R. Zicari, D.M.Choy, An Al-
gebra for Structured Office Documents, IBM Almaden
Research Report RJ 5559(56648), San Jose,CA, 1987
(to appear in ACM TOOIS). (submitted for publica-
tion) .
[Im84] T. Imielinski ,On Algebraic Query Processing
m Logical Databases, in Advances in Database The-
ory, voL II, (H. Gallaire, J. MInker, J.M. Nicolas eds.),
Plenum Press, New York, 1984.

In
ImLp81] T. Imielinski, and W. Lipski, On Representing

complete Information in a Relational Database, Proc.
7th VLDB, Cannes, France, 1981.
[KeWSS] A.M. Keller, M.Winalett Wilkins, On the Use
of an Extended Relational Model to Handle Changing
Incomplete Information, IEEETSE, ~01.7, July 1985.

1
Li79] Y.E. Lien, Multivalued Dependencies with Null
aluea in Relational Databases, Proc. 5th VLDB, Rio

de Janeiro, 1979.
[Lp79] W. Lipski, On Semantic Issue Connected with
k;mplete Information Databases, ACM TODS 4(3),

[Mai83] D. Maier, The Theory of Relational Databases,
C!!mputer Science Press, Rockville, MD, 1983, Chapter

[Reit78] R. R el er, ‘t On Closed World Databases Logic
and Databases, (H. Gal&e, Minker, J.M. Nicolas, eds.),
Plenum, New York, 1978.
(Reit86

k
R. Reiter A Sound and Sometimes Complete

Query valuation Algorithm for Relational Databases
with Null Values, JACM, vo1.33,no.2, April 1986.

ii4
Res69] N. Rescher, Many Valued Logic , New York,

cGraw Hill, 1969.

b I
RKS85 M.A. Roth, H.F. Korth, A. Silberschatr, Null
aluee m nonlNF Relational Databases, Report TR-

85-32, University of Texas at Austin, July 1985.

ill
ScPi82j H-J. Schek, P. Pi&or, Data Structures for an

tegrated Data Base Management and Information Re-
trieval System, Proc. VLDB Conf., Mexico, Sept.1982.
[ScSc86] H-J. Scheck, M.H. Scholl, An Algebra for the
Relational Model with Relation Valued Attributes, In-
formation Syatema,vol.ll, no.2,1986.
[Sno86 R. Snodgrass, Temporal Databases, IEEE Com-
puter, s eptember, 1986.
[Vas79] Y. Vassiliou, Null Values in Database Manage-
ment Systems: A Denotational Semantics Approach,
Proc. ACM SOGMOD, Boston, 1979.
[Wo82] E. Wong, A Statistical Approach to Incomplete
kt2mation in Database Systems, ACM TODS 7(3),

.
[Zan83] C. Zaniolo, A Formal ‘Deatment of Nonexis-
tent Values in Database Relations, Bell Laboratories,
unpublished, 1983
[Zan84] C. Zaniolo, Database Relations with Null Val-
ues, Journal of Computer and System Sciences, 28,1984.

61

