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ABSTRACT: 

We propose a new approach to the treatment of null- 
valued attributes in the relational model. The approach 
is based on the new concept of locally-controlled open 
world database. A locally-controlled open world dab 
base permits the definition of portions of a traditional 
closed world database as open-world. Attributes, part 
of a relation, or entire relations can be explicitly defined 
as ‘open” through the insertion of null-values. Under 
this assumption, we consider three different types of null 
values: the standard unknown, does not e&t, and the 
new one, called open. We give a complete formal speci- 
fication of the semantics of these null values. We extend 
the arithmetic and logical operators to cover nulls and 
outline how relational operators cau be extended ac- 
cordingly. This paper describes ongoing work. We state 
some open problems to be solved iu order to render our 
approach more operational 

1. Introduction 

The treatment of “incomplete” or ‘inapplicable infor- 
mation in the relational model has been widely ad- 
dressed by researchers. One of the major difficulty is 
given by the fact that several different interpretations 
can be associated with a null value [ANSI75]. Codd 
[Codd79) proposed a formal treatment of nulls under the 
“unknowr? (unk in the rest of the paper) interpretation. 
Reiter [Reit86], studied the problem of query evaluation 
for databases considered as theories of llrst-order logic 
with l unknown” marked nulls. Biskup [Biskal] defined 
two types of null values which correspond respective- 
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ly to universally and existentially quantified variables. 
Lien [Li79], and Zaniolo [Zan83] studied a formal treat- 
ment of nulls under the ‘does not exist” (dne in the 
rest) interpretation. Vassiliou (Vas79) considered the 
problem of managing nulls with both the ‘unknown’ 
and ‘does not exist” interpretations. He pointed out 
some problems in using a many-valued logic for describ- 
ing the semantics of arithmetic expressions and logic 
quantifiers, and proposed an approach based on Scott’s 
denotational semantics. Recently, Codd [Codd86,87] 
proposed a solution for combining the dnc and unk null 
values still using a many-valued logic for logical opera- 
ton. 

In the context of an “open world” database [Reit78], 
Zaniolo [Zan84] introduced the ‘no information” (ni in 
the rest) interpretation for nulls. A no information null 
is a lower level value with respect to the dnc and unk in- 
terpretations and acts as a placeholder for missing or in- 
complete information and also characterises situations 
where no actual information is available about an at- 
tribute. Zaniolo also introduced the concept of a ‘more 
informative tuple’, that permits to eliminate ‘less infor- 
mative tuples’@ that do not add any information with re- 
spect to the tuples already stored in the database. The 
ni interpretation solved some of the problems suffered 
by Codd’s proposal [Codd79]. However some partial 
knowledge available to the user may be lost with this 
approach. 

Also under the ‘open world assumption”, Roth, Korth 
and Silberschatr IRKS851 extended Zaniolo’s approach 
considering the dne , unk , and ni all together. They 
also extended Zaniolo’s notion of ‘more informative’ 
tuple to handle the three types of nulls and defined 
the semantics of the relational operations accordingly. 
Other more sophisticated solutions to the problem of 
null values have been proposed in [Lp79], [ImLpBl], 
[Wo82], [KeW85] and [Im84]. 

We propose a new approach to the treatment of null val- ’ 
ues in the relational model. The approach is based on 
the new concept of locally-controlled open world data- 
base. A locally-controlled open world database permits 
the definition of portions of a traditional closed world 

Proceedings of the 14th VL,DB Conference 
Los Angeles, California 1988 50 



database as open-world. Attributes, part of a relation, 
or entire relations can be explicitly defined as ‘open’ 
through the insertion of null values. Under this as- 
sumption, we consider three types of null values: the 
standard unknown and does not e&t, and the new one, 
called open. 

The most important contribution of our paper consists 
of presenting a complete specification of the semantics 
of relational instances which contain null values of ei- 
ther type. Our approach for defining the semantics is a 
model-theoretic one (see also [Bisk81] and (Mai83]). We 
will show that to each instance r of a relation schema 
R, there corresponds a precise set of ‘possible worlds’ 
which we call the mod& of r. Intuitively, these models 
stand for all the possible ‘real world situations” that 
may correspond to the given relation instance. 

The rest of the paper is structured as follows: section 
two gives a brief general overview of null values under 
the Open and Closed World Assumptions. Section three 
informally introduces our new concepts by examples 
and presents a motivation for our approach. Section 
four, after stating some basic definitions, describes the 
semantics of the null values under this new approach. 
In section five we present a consistency criterium for 
relational instances and show how some instances can 
be reduced to smaller ones without loss of information. 
Section six show8 how the semantics of comparison op 
erators and of arithmetical operators can be extended 
to cover null values and points out some problems re- 
lated to the generalisation of the relational operators. 
This paper describes ongoing work. There are still sev- 
eral open problems to be solved before our model can 
become operational In section seven, we identify the 
most important of these open problems and discuss sev- 
eral possible extensions of our work. 

2. Null Values under the Closed and Open World 
Assumptions 

Our approach is based upon the observation that when 
considering a database, the choice between the two well 
known assumptions, closed and open world [Reit78] is 
not entirely satisfactory to represent real life situations. 
The introduction of null values in the relational model 
stresses this consideration. 

We clarify this concept with an example. Consider a 
simplified company database consisting only of one re- 
lation with schema R(EMP, DEPT,TEL) and an in- 
stance rl of R: 

EMP DEPT TEL 

Smith CS 5512 

instance rr 

Under the ‘closed world assumption” (CWA), instance 
rr of relation R says that in our world (our company in 
the example) one employee, Smith, works in the Com- 
puter Science department, and has 5512 as telephone 
number. No other facts are true: that is, no other em- 
ployees work for the company, there are no other de- 
partments, and Smith does not have a second phone 
number. 

If we consider the same relation R, but under the ‘open 
world assumption’, things change. With our current 
knowledge, we can only say that employee Smith works 
in Computer Science, and has 5512 as telephone num- 
ber. We do not have any further information whether 
Smith is the only employee or not, whether CS is the 
only department, and whether Smith has other tele- 
phone numbers. 

So far we have considered only totally specified facts 
(i.e. without incomplete information) stored in the data- 
base. When some or all the information regarding at- 
tributes of a relation are “missing’ or ‘not known” it 
is common practice in the database field to introduce 
null values. A variety of reasons may cause incomplete 
information in the database, see for example [KeW85] 
for a description of several sources of incomplete infor- 
mation. Different types of nulls have been considered 
in the literature (ANSI75). 

For closed world databases most authors agree that the 
various interpretations of nulls can be reduced to the 
following two: 

- unk: the value exist, but it is not known; 

- dne: the value does not exist. 

Consider an instance r2 of relation R: 

EMP DEPT TEL 

Smith CS 5512 

Black CS unk 

Victor CS dne 

instance r2 

Under the ‘closed worldw assumption, the following 
facts can be inferred from r2: 

l there are only three employees: Smith, Black, 
and Victor; 

l there is one department: Computer Science; 

l Smith has one telephone: 5512; 

l Black has one telephone, but we do not know 
the number; 

l Victor does not have any telephone. 
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No other facts are true. 

For open world datab- a different type of null, called 
no-information, haa been proposed [Zau84] 01 a lower- 
level placeholder for both dnc and ank. 

ComGder an instance ra of R : 

instance r3 

Under the l open world’ assumption the folbwing facts 
can be inferred from rs: 

l the employees Smith and O’Brian work in 
Computer Science; 

l Smith hu 5512 aa telephone number; 

l we do not know whether O’Brian, in Com- 
puter Science, has a telephone or not. 

Because of the open world assumption, we also do not 
know any other information concerning the three at- 
tribute of relation R. So for example, we do not know 
whether Smith haa another phone number in CS other 
than 5512, or whether there exist other employee8 work- 
ing for some other departments and M on. 

In the next two sections we describe our concept of lo- 
cally opened databases. 

3. Locally Opened Databaaea 

Our approach ie simple, yet powerfui: We consider clo- 
sed world databases which can relax part or all of their 
closure assumption when explicitely marked. 

We consider three types of nulls; the standard unk and 
dne, and the new one , we call open. An open null says 
that an attribute of a particular tuple is under the open 
world assumption: therefore the attribute value may 
not exist, or there may be exactly one value, or there 
may be several values (from the attribute domain) for 
it; in other no&r, things are left eopen’. 

The approach ia better explained with ill example. Con- 
sider the three different instance8 of R, ro, rb, and t, 
with null valuecl: 

r-e : r-e : 

EMPI DEPZ EMPI DEPlj TE 

EMPI DEPlj TE$ 

Smitd CS 1 55121 

Srnit~ cs 1 open1 

Ismit~ cs 1 Smitd CS 1 55121 

f,, : 

1 open 1 open 1 opcnl 

Instance r, show8 a database where no attributes have 
the “open” value. This models a closed world databane. 
The semantics of the two null values is the one given in 
section 2. 

Instance rb models a database which is closed except for 
the value of attribute TEL of the second tuple. Under 
thii interpretation, the following facto can be inferred 
from rb: 

l Smith is the only employee; 

l CS is the only department; 

l Smith has one phone number 5512; 

l Smith may have rero or one or several other 
additional phone numbers, we do not know. 

No other facts are true. 

Note that the value ‘open’ in TEL does not mean 
that TEL L a set-valued attribute [AbBi84,ScSc861. If 
Smith had more than one additional phone numbers, 
this would be represented by a set of tuples each with 
mme value for EMP and DEPT, and different number 
for TEL. 

Instance r, models an open world database. In fact, all 
attributes of the second tuple are left ‘open’, this corre- 
rponds to say that we know that Smith work8 in CS, and 
ha8 5512 a8 phone number, but nothing else ia known 
and therefore cannot be negated. It is important to note 
that the way a database is considered (closed, partially- 
opened, opened) ia explicitly controlled through intro- 
duction (or absence) of ‘open’ nulls. Hence we are not 
bound to any partial a priori choice between the open 
and closed world assumption. 

There are three important motivation8 for our approach. 

The 6rst one in the high expressive power resulting from 
the combination of the three different nulls. The unk 
and dnc null8 have already been recognted a8 impor- 
tant by several authors. The addition of the open null 
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allow8 to model a large number of further situations of 
highly applicative importance. 

The second motivation is related to the nested relation 
or NF’ data model [ScPi82, AbBi84, FiVG85, ScSc86). 
We observed that when a single type of null, namely the 
unk null ie introduced into a nested relation which is 
interpreted under the CWA, then thie unk null must be 
represented by either unk or open in the corresponding 
flat relation (according to the position of the unk in 
the ne-sted relation). Furthermore, when the empty set 
0 appear8 aa attribute value in a nested relation, then 
this value corresponds to a dne in the corresponding flat 
relation. 

Consider for example the following instance r, of a 
nested relation with schema (EMP, {TEL}). It ia easy 
to gee that after application of the UNNEST operator, 
r, must be transformed into the following flat instance 
r/ with the schema (EMP, TEL): 

IEMP]l 

I EMPI {TEL} 1 

1 b 1 unk 1 

rn ‘f 

Due to our three different nulls we are thus able to ap 
ply (in many cases) the UNNEST operator to a nested 
relation with uak null8 and to model uncertain infor- 
mation in flat relations which otherwise could only be 
modelled by wing the nested relations approach. 

The third motivation for our approach is related to the 
problem of updating views [BaSp81, GPZ88j. 

Updates of projective views are a source of incomplete 
information. Consider for example the view V defined 
as a projection on EMP of the database r: 

m pJ 

database r : view V : 

Now if we insert into V the tuple < Zhou >, this should 
correspond to adding the tuple < Zhou, open > to 
the underlying database r, because we do not know 

how many phone numbers Zhou has. Note that in 
moat commercial database systems this is not the ca8e: 
in fact, most systems only have one type of null, the 
unk . Adding the tuple < Zhou, unk > instead of 
< Zhou, open > to the database would introduce an 
arbitrary and perhaps incorrect mapping between view 
states and database states: we would constrain Zhou to 
have only one telephone number. 

4. Semantics of Relations with Null Values. 

In this section we specify the semantics of relation in- 
stances in which the null value8 open, dne and unk are 
allowed to appear. Our approach is a model-theoretic 
one. We will show that to each instance r of a relation 
schema R, there corresponds a precise set of ‘posai- 
ble worlds” which we call the models of r. Intuitively, 
these model8 stand for all the possible “real world sit- 
uations’ that may correspond to the given relation in- 
stance. Our notion of model is comparable to the one 
of ezteluion defined in [Mai83]. However, the unk null8 
are treated according to the completion paradigm aa de- 
scribed in [h&83] and the dne null8 represent additional 
constraints. 

This section is subdivided into three subsections. The 
first introduce8 our notation and defines some basic con- 
cepts. The second eubsection give8 an exact formal 
specification of the semantics of relational instances. Fi- 
nally, our approach is illustrated by several examples in 
the third subsection. 

4.1 Notation and Basic Concepts. 

In order to distinguish single values (including null val- 
ues) from one another we will u8e in the entire Section 
4 the strong equality, also called symbolic equality, de- 
fined more formally in section 6, denoted by “==“. If 
z and y are data or null values then x == y is true iff 
2 and y denote exactly the same value. For instance, 
the expressions 3 == 3, dne == dne, open == open 
are all true, while the expressions 3 == 5, dne == unk, 
dne = open, open = unk, and unk == 5 are all false. 
The negation of z == y ia expreeaed by z + y. Later 
(in Section 0) we will define another concept of equality, 
called the semantic equality. Whenever we use the sign 
‘=’ in this section, we refer to the usual mathematical 
equality. 

We denote by R(A1,. . . , A,,) a relation schema defined 
over a set of attributes Al,. . . , A,,. The domain of 
each attribute Ai is denoted by Dom(Ai). The domain 
Dam(R) of R consists of the cross product Dom(Al) x 
Dom(A1) . - * x Dom(A,). We extend each domain 
Dom(Ai) to an extended domain Dom*(Ai) by adding 
the three symbols dne , unk and open which denote 
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the three different, null values. The extended domain 
Dom* (R) of R consists of the cross product Dom*(Al) x 
Dom’(A1) x . . . x Dom’(A,). 

A relation instance of a schema R ie a subse. t of Dom* (R) . 
Such instancee are denoted by lower case letters (if nec- 
essary with s&scripts), such as r, rl, to, and so on. 

A tuplc of an instance r is an element of r. We denote 
tuples by letters such as t, t’, tl, t,, and so on. If t is a 
tuple of an instance r, then t[Ai] denotes the compo- 
nenf of t which corresponds fo the attribute Ai. The 
comparison operators == and + can be extended to 
apply to entire tuples in the obvious way. 

Before giving a precise definition of the concept of pos- 
sible world, let us make some informal remarks. 

We wish to establish that to each relation instance r 
correspond some models. Each model is a possible world 
of the underlying relation schema. In general, there will 
be several other possible worlds which are not models 
of r. Each possible world consists of tuples filled with 
‘effective data values” instead of null values. Consider, 
for example, a relational instance r consisting of one 
single tuple: r : {< a, unk, b >} and assume that the 
domain of the middle attribute of r is the set of integers 
{ 1,2,3,4,5}. One possible world which is a model for r 
is, for example, the sef {< a, 3, b >). Another model for 
r is the set (C a, 5, b >). Thus models are drawn from 
relation instances by replacing null values with effective 
data values. More generally, possible worlds are sets of 
tuplee consieting of effective values. 

There is, however, one problem. We do nof wish that 
the null value dne be represented by any effective value 
in a model. This would violate our intuitive under- 
standing of this null value. For this reason, we in- 
troduce a dummy symbol I which will be used as a 
“filler” for gapa corresponding to dne -nulls (or, in some 
cases, to open nulls). Consider, for example, an in- 
stance r consisfing of the single tuple < a, dne, unk >. 
Two possible models for this instance are the worlds 
~~:{<~,I,c>}and~:{<o,I,d>}. 

Let us now give a formal definition of the concept of 
possible world. If R( AI,. . . , Am) is a relation schema 
then a possible world of R is any subset of Doml (R) = 
DomA x . * - x Doml(A,), where, for 1 < i I 
n Dom’(Ai) = Dom(Ai) U {I}. In order to dis- 
tinguish tuples of possible worlds from fuplee of ordi- 
nary relation instances, we will refer to the latter by 
using greek letters such as 6, 6’ and so on. The i-th 
component of such a tuple 6 is referred to as S[Ai]s 

Intuitively, a possible world w represents a real life sit- 
uation where all tuples of w correspond to true facts, 
while all tuples belonging to DomL (R) - w correspond 

to false propositions. 

The set of all possible worlds of R is denoted by Q(R). 

Let r be a relation instance. A relation instance f ob- 
tained from r by textually replacing each occurrence of 
unk by a nonnull data value is called an unk-completion 
of r. This notion is related to the one of completion (see 
(Mai83]). 

For instance, let r = (< open, 1, unk >, 
< open,unk, unk >}, then fwo different unk-comple- 
tions of r are: r = {< open, 1,2 >, < open, 4,5 >} and 
f’ = {< open, 1,s >}. 

The set of all u&completions of a relation instance r 
is denoted by UC(r). 

Given a relation instance r of R and a possible world w 
of R, we must be able to establish whether w is a model 
of r or nof. Hence, we muaf provide a precise definition 
of the concept of model. Once we have such a definition, 
we can define the semantics of a relation instance r 
(which possibly contains null values) as the set of all 
models of r. The concept of model is thus central to the 
semantica of relational instances. Its exact definition is 
given in the next subsection. 

4.2 The Model Theoretic Semantica of Relation 
Instancea with Null Values 

For all this subsection, let r be a relation instance with 
schema R(A1,. . . , An) and let, w E R(R) be a possible 
world. Our aim is to eetabliih condition8 allowing to 
decide whether w is a model of r or not. 

Let t be a tuple of r and let 6 be a tuple of w. We say 
that t induces 6 , denoted by t D 6, iff for 1 5 i < n at 
least one of the following conditions is satisfied: 

i 

t Ai 
I I 

== 6[Ai] or 
t Ai == open or 
t Ai 

II I 
== ;$ ::: f/g zI’1. Or tAi == 

The possible world w is a model of r iff the following 
four condifiona are all satisfied: 

1.) 3PEUC(r)V6Ew3tEP: to6. 

2.) Vt E r : ((t -+< open, open,. . . , open > A 
t +< dne,dne,...,dne >) =S 36~~: tD6). 

3.) VIE w 736’~ w: (6 yk 6’ A Vl Si< n: 
(b[Ai] =# I Jo 6[Ai] == 6’[Ai]))s 

4.1 < dne,dne,..., dne>Er =+ w= {}. 

The above four conditions represent the definition of the 
concept of model which in turn define8 the semantics of 
relational instancea with or without null values. Let 
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us give some brief informal comment8 to each of these 
conditions. 

The first condition state8 that unk null8 are to be re- 
placed each with a single data value - hence they are 
treated according to the completion paradigm [Mai83]. 

The fimt condition also states that every tuple of 6 must 
be induced by at leacrt one tuple of t. Intuitively, this 
means that r has to be interpreted under the closed 
world assumption unless there appear some open null8 
in r. 

Each tuple. with open nulls which appears in r may have 
a wide variety of corresponding induced tuples in w and 
may thus lead to a local ‘expansion’ of the CWA. In 
the extreme case, r may contain a tuple topen : 
< open, open,. . . , open > which consists only of open 
nulls. In this case, since each possible tuple is induced 
by b,m.r the CWA is ‘expanded” to a maximum extent 
such that it coincide8 with the open world assumption. 
Thus r ia de facto interpreted according to the open 
world assumption. Note that dnc nulls occurring in r 
may in turn restrict this open world assumption (see 
condition 3). 

The way open null8 are treated by our approach corre- 
sponds to the ezteneion paradigm described by Maier 
in [Mai83]. 

The second condition state8 that each tuple of r (ex- 
cept the two ‘extreme” tuplee) must induce at least 
one tuple of UP. Thie means that each model of r must 
contain at least all the ‘$ositive knowledge” contained 
in r and must represent a particular choice for each ‘un- 
certainty” expreeeed by r. Hence r can be viewed a8 a 
set of axiom8 to be satisfied by each model. 

In particular, this condition enforces that every tuple of 
r consisting only of ordinary data value8 must appear in 
the model UJ. Furthermore, every tuple of r containing 
one or more uuk null value8 must induce at least one 
tuple in w where the unk values have been replaced 
by ordinary data values. The open values, in turn, are 
resolved iu each model w, either by replacing them with 
I (a placeholder for non-existent values) or by one or 
several data values (in the latter case, the tuple of r will 
correspond to several tuplee in w, each with a different 
choice for the open null). Finally, each dne null value 
which appear8 in a tuple will be replaced by the value 
I in the corresponding tuple(s) of w. 

The third condition expresses the strong semantics of 
the dnc null value. It says that whenever there exists 
a tuple 6 in w which ha8 some I values, then there 
cannot be any other tuple in w which differ8 from 6 
only by the replacement of some I value8 with real data 
values. Since each occurrence of dnc in r induces at leaat 

one occurrence of a I value in w (condition 2), each 
occurrence of dne iu r implies the effective nonexistence 
of real data values in the model w in the given context. 
For example, if r contains a tuple < 3, dne, 4 >, then, 
by condition 2, w must contain the tuple < 3,1,4 >; 
but then, by condition 3, it is enforced that no tuple 
< 3,x,4 > may exist in w, where z is an effective data 
value. 

In a similar way, the third condition also assures that 
whenever the choice ‘does not exist” is taken for an 
open value of r, then this is reflected by the nonexistence 
of other alternatives than I for this open value in the 
model w. 

Note that it follows from condition 3, that the dne value 
is stronger than the open value. This will be made clear 
by an example which we present in the next subsection. 

Finally, the fourth condition says that whenever the 
=extreme” tuple < dne,dne,. . . ,dne > appears in r, 
then w must be the empty set. This condition is an ad- 
ditional specification to the semantics of dne . It follows 
from condition 4 and from condition 1 that a tuple of 
the form 61 :< &I,..., I > can never appear in any 
model. Condition 4 assures that the only model which 
expresses the nonexistence of any data value in a rela- 
tion is the empty set. In particular, it is enforced that 
the relation instance {< dne, dne,. . . , dne >} and the 
empty instance {} both have the same unique model {}. 
Indeed, we wish that these two instances have exactly 
the same semantics. 

The semantics of a relation instance r can now be ex- 
pressed as the set MODELS(r) of all models of r. Intu- 
itively, these semantics convey exactly all possible real 
world situations that may correspond to r. Note that 
when all domains are finite, then MODELS(r) can be 
effectively computed. 

We are now also able to express the fact that two re- 
lation instances r and f are semantically equivalent, 
denoted by r Z f: 

r cll r’ iff MODELS(r) = MODELS(r’). 

4.g Some Examples 

Consider a relation schema R’ = (X, Y) with Dom(X) = 
{o,b} and Dam(Y) = {1,2}. We will present different 
instances of R’ and discuss their semantics. 

It is easy to see that each relation instance contain- 
ing only classical data values admits exactly one model 
which contains the same tuples a8 the relation instance 
itself. This is consistent with our requirement that rela- 
tion instance8 without open nulls are to be interpreted, 
according to the closed world assumption. The follow- 
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ing inetance fl, for example, admit6 exactly one model 
w:: 

Y 

1 a 1 

a2 

inrtance fr world w; 

Let ue now connider the instance P$ which ia obtained 
by adding the tuple < opcn,open > to 4: 

instance fS 

The last triple of thin instance may induce sero or more 
additional model-tapla, giving raise to a variety of five 
different modeb of fa which are: 

model wi, = w: ; 

Hence MODELS(r’,) = {w&,, wibr to!!,, wid, ~4~). 
This ia consistent with our original intention to interpret 
relational instancea which contain a tuple of the form 
< open, . . .,opcn > according to the open world as- 
sumption. 

In order to illustrate the remantica of unt , let us con- 
sider the following relation instance fs: 

Y 

H 

a 1 

a un 

instance fS 

Although there are two choicea ( 1 and 2) for the unk 
value, the general rationale for interpreting thii instance 

ia still the closed world assumption, since no open nulla 
occur in fs. According the conditions l-4, f3 admits the 
following two models: 

ITI 1 

III 1 Ltl 2 

model w&,, model wb,, 

Let ux~ now consider a somewhat more complicated re- 
lational instance 4, which combiiea several different 
types of null values. 

I I 1 

a dne 

t-t-i b unk 

[blopenl 

instance f, 

What are the models of Y$ ? The first tuple of 4, by 
condition 2, enforces the existence of a tuple < a, I > in 
every model off,. By condition 3, no other tuple with 
X-component a may appear in a model. Moreover, 
condition 2 enforces that at least one of the two tuples 
< b, 1 > or < b,2 > must appear in any model. It 
follows (by condition 3) that the open value of the third 
tuple cannot be translated into 1. Hence, there remain 
three alternatives for this open value: either 1, or 2 or 
both. In the latter case, the third tuple would give raise 
to two tuplea in the model; one of these two model- 
tuples, however, would coincide with the tuple induced 
by the second tuple in 4. 

By considering condition 1, we conclude that the set of 
possible worlds which are candidates for being models 
of f, is limited to the three worlds: 

Now, by checking all four conditions for each of these 
worlds, we conclude that all the three are models of f,. 

Finally, let us define a new relation instance 4 of R’ by 
f6 = r-f, U (< open,open >}, i.e., by adding the tuple 
< open, open > to f,. 
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x Y 

a dne 

EB 

b unk 

b open 

open open 

instance #s 

It is easy to see that all models of 4 are aleo models 
of ti5, but that 4 admits the following two additional 
models: 

a a 

I ill 

b 1 b 2 

2 1 

& da 

There are no further models for (,, because the choice 
of the Y-component of the taple with X-component a 
is limited to 1. In this sense, we may say that in our 
model the dne null ie stronger than the open null 

6. Inconsistent Relationa and Redundancy Elim- 
ination 

In this section we will brieiy discuss a few particular 
problems related to the null values introduced by our 
approach. Some of the issues treated here are still under 
investigation. 

Fit, let us note that there exist relational instances 
which do not admit any model. Consider, for example 
an instance I of R’ of the form 

Y 

El 

a 1 

a dn 

instance r 

It is easy to prove that r cannot have any model. As- 
sume r has a model w. Then, by Condition 2 of Section 
4, the two tuples < a, 1 > and < a, I > must be el- 
ements of w, but this is a contradiction to Condition 
3. 

Indeed, according to our intended informal semantics, 
r expresses a contradiction: the f% tuple rtates that a 
is in relation with 1, while the second tuple states that 
there exists no effective value which is related to ‘a”. 

The possibility of contradictory instances due to the 
dnc null has also been noted by Roth, Korth and Sil- 
berschatr (RKS85j. 

In general, we will say that a relation instance r is in- 
con&tent iff r has no model. Such instances should be 
avoided, because they have no meaning. 

Our definition of inconsistent instance is a semantic one. 
The question whether there exist simple syntactic cri- 
teria for recognising inconsistent instances arises natu- 
rally. In case all domains are infinite, this question is 
answered positively by the following theorem for which 
we omit the proof: 

Theorem. Let R(Al, . . . , An) be a relation schema 
such that 11 Dona 11 = oo for 1 5 i 5 n. A rels 
tion instance r of R is inconsistent iff there exist two 
tuples t, t’ E r such that the following conditions are all 
satisfied: 

a) neither open nor unk nulls occur in t 

b) the dne occurs at least once in t 

c) t’ can be derived from t by the substitution of 
one or more occurrences of the dne null with unk 
or with an effective data value. 

This theorem is important, because it guarantees that 
the recognition of inconsistency can be done by using 
purely syntactic criteria, i.e., by checking all pairs of 
tuples of a given instance. It is easy to see, that the 
complexity of consistency checking is quadratic in the 
number of tuples of an instance. 

The theorem does not hold for finite domains. Algo- 
rithms for consistency checking in the case of finite do- 
mains are currently under investigation. 

Let us now draw our attention to the second issue ad- 
dressed in this section: redundancy. 

A tuple t of a relation instance is redundant iff t can 
be removed from r without changing the semantics of 
r, i.e., iff MODELS(r - {t}) = MODELS(r). 

We identify three important situations where a relation 
contains redundant tuples. These three situations are 
exemplified respectively by the following instances r,,,, 
ra, and r7 : 

A _, H 

ra ra r7 
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The second tuple of rcr ia obviously redundant because 
there b a unique posoibile value for the open null, namely 
1. Thus both ra and t, - { < 0, open >} admit exactly 
one model consisting of the single tuple < Q, I >. 

Thii type of redundancy ir called type a mdundancy 
and ia defined more generally 88 followr: A tuple t E r 
i type a redundant iff there is another taple t’ E r 
such that t’ doer not contain open or unk nulls and t 
can be obtained from t’ by replacing all occurrencea of 
dne with open . 

Let PI) now consider the second type of redundancy, 
type /3 redundancy. It b easy to eee that the second 
tuple of ra is redundant becauee each model-tuple in- 
duced by the second tuple of of ra ia also induced by 
the 6rst tuple and because the existence of at least one 
model-tuple with X-component Q ia enforced by the 
third tuple anyway. 

Before giving a formal definition of type p redundancy, 
we introduce a partial ordering ‘E” on attribute values 
and on tuplee of a relation instance. 

Let t and y be nulb or data values. y refiner 2, denoted 
by 2 C y iff one of the following conditions holds: 

l z ie open and 1 is either unk , or dnc , or a 
nonnull datavalue; 

l z ia unk and y ia a nonnull datavalue; 

l z is identical to y. 

A tuple t E r refines a tuple t’ E r, denoted by t’ E t iff 
for each attribute A of r t’[A] E t[AJ. 

A tuple t of r is type /J redundant iff there exist two 
tuplea t’ and t” both distinct from t such that t’ C_ t E t” 
and such that uak does not occur in t’. 

Finally, let us consider the thii pattern of redundancy, 
type 7 redundancy. The second tuple of r7 is redundant 
because each model-tuple induced by the second tuple 
is also induced by the 6rat tuple and vice versa. This 
b 80 because the third tuple of r, con&rake the open 
null appearing in the 6rst tuple to be mapped to a value 
different from I (for consistency reasons). 

More generally, we can define type 7 redundancy as 
follown: 

A tuple t E r ia type 7 redundant iff there exist distinct 
tuples t’ and t” (different from t), ruch that t’ does not 
contain unk and t’ E: t and such that the following three 
conditions are satisfied for each attribute A of r: 

a) t’[A] == open =+ (t[A) == unk A t”[A) $! 
{open ,dnc }. 

b) t’[A] == I + t”(A] 4 {unk , open }. 

c) t’[ A] is nonnull =+ t”[A] == t’[A]. 

It can be shown that all three tyw of redundancia are 
effectively redundancies in the sense of our definition. 
If finite domains are considered, then there exist other 
types of redundancies. It remains to be seen whether 
the here presented types of redundancy a, p and 7 are 
an exhaustive list in case all domains are infinite. 

6. Arithmetical, Logical, and Relational Opera- 
tore 

Let us first state some desirable properties of arithmeti- 
cal and logical operators. 

Our four principles for arithmetic and logical operators 
are the following (we consider in the rest expressions 
obtained through composition of logical and arithmetic 
operators): 

a) Extension : If an expression E containa only non- 
null datavalues, then its value is the same aa if all op 
erators had their classical meaning. 

b) Preservation of identities: Any operator (or pair 
of operators) which is (are) associative, commutative, 
and distributive for nonnull datavalues have the same 
property if null values are involved. In particular, we 
request to hold: 

l the associativity and commutativity of *, +, 
4 v; 

l the distributivity of + over +, and of A over 
V; 

l De Morgan’s laws. 

However we do not require that 0 is the only neutral 
element, and that the law of the excluded middle is still 
valid. 

c) Monotonicity of substitution: If we replace in an 
expression E a value x with a value y, such that x E y, 
then we obtain a new expression E’ whose result e’ is a 
refinement of the result c of E, that ie: e’& e. 

d) No global information loss for sure valuea: If 
we group all possible datavalueil in two groups as fol- 
lows: group I contains the “for sure” values, i.e., dne 
and all nonnull data values, group II contains “uncer- 
tain” values unk and open, then any expression E which 
is composed only of values belonging to group I cannot 
result in a value of group II. 

Arithmetic operators 

Table 1. displays the semantics of any binary arithmetic 
operator (0) in presence of null-valued attributes. 
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Table 1 

For particular data values, the choice of the result ia 
left open to the implementor: u/O may result in a run- 
time error or alternatively in a dne value. A different 
semantics from the one in the above table can also be 
given to the following expression: 0 + unk resulting in 
0. 

Logical operatore 

If we place true in the top clase, unk in the eecond, falac 
in the third, open in the fourth, and dnc in the fifth, the 
logical AND of any two itema is an item of whichever 
class ia the lower of the two operanda. Table 2 displays 
the semantica of the AND operator in the presence of 
null values. 

s 
Table 2 

Note that the result open of the expression ‘F AND 
open * represents an information loo. We know for 
sure that this expression evaluates to a value different 
from T for each effective data value the operand open 
may take, but the result open stand8 for the possible 
valuer I, F and T. Nevertheless, open is the most ap 
propriate result value we can stipulate for the expression 
‘F AND open “. Indeed, each other value would lead 
to an injuetified gain of information. If we used two 
additional null, say open- which can never be turned 
into T and open + which can never be turned into F, 
we could circumvent this problem. We prefer, however, 
to cope with a lees of information, rather than dealing 
with five null values. Note also that a similar problem 
& with arithmetical operators. Everybody agreea 
with WI that on real valued domains unk * unk muat 
yield unk . But then we loose the information that this 
result muat be a nonnegative number. 

If we arrange attribute values in a different order: dnc aa 
the highest, open, true, unk and falac next in the order, 
then the logical OR of any two items ia the item which 
ia the higher of the two operands. Table 3 displays 
the semantics of the OR in the presence of null vlaues. 
Table 4 displays the semantics of the NOT operator. 

Table 3 Table 4 

Note that for AND and OR, dne is an ‘absorbing truth 
value, this means that when dne occurs in a logical ex- 
pression, the entire expression results in dne . Here dne 
has the semantics of the null-value defined by Bochvar 
in the context of many-valued logic8 [Res69, Got82]. 

It is easy to see that all four principles stated at the the 
beginning of this section are satisfied by our definition 
of the arithmetical and logical operators. 

Equality and Relational Operators 

We distinguish between two kinds of equality of at- 
tribute values: a semantic equality, denoted with * = “, 
and a symbolic equality, denoted with ’ = l . The ‘ =I’ 
operator checks for semantic equality, while ’ == ’ 
checks for equality of representation, i.e. the operator 
evaluates to true iff two values are symbolically equal. 
Table 5 and 6 display the semantics of these operators. 
The need for two equality representations has also been 
recognised in [Codd80, GZC87j. 

Table 5 

== b dne unk open 
u=bF F F 

ine F T F F 

I-- 

unk F F T F 
open F F F T 

Table 6 

We now discuss the behavior of relational operators 
when null values are considered. We do not provide 
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formal definitions of the semantics of all relational op 
erators, but limit ourselv~ to an informal presentation 
of some of the implications that the introduction of nulls 
have on the extension of standard operators. A deeper 
analysis of this part is important and is subject to cur- 
rent research. 

Selection 0. Let us restrict our attention to select 
predicates of the form ‘A = d” or “A = B’ , where A 
and B are attribute names and d id a nonnull value. We 
6rst define a strong selection operator b based on the 
symbolic equality sign which accepts only sure tuples: 

h&(r) = {t E I 1 t[A] == d}. 

&4=&3(r) = {t E r 1 t[A] is nonnull A t[A] == t[B]}. 

If we want to define a weak selection b accepting also 
uncertain tuples, then we are faced with an interesting 
problem: sometimes an unk or open null cannot be re- 
placed by a particular value, because this would lead 
to an inconsistency. For example, if t contains two tu- 
ples < a, unk , dne > and < a,4,6 >, then we know 
for sure that the unk null of the first tuple can never 
assume the value 4. Hence any selection (even a weak 
one) equating the second attribute of r with 4 should 
discard the first tuple of r. Let cat(s) be a predicate 
which is satisfied whenever I is a consistent instance. 
Then we can define our weak selection on a relation r 
with schema S as follows: 

bA=d(r) = {t’ 1 3 E r : t[A] E (d, unk , open } h 

WI == d A t’(D - A] == t[D - A] A cst(r u {t’})}. 

5,4d (r) = {t’ 13 E r : (t[A] = t[B]) =/= F A 

t’[A] == t’[B] == min(t[A],t[B]) A t’[D - AB] == 
t[D - AB] A cst(r U {t’})} 

where tin denotes the miniium of two values accord- 
ing to the ordering I defined by {dne , nonnulls} < 
unk < open. 

Cartesian product x. The Cartesian product can be 
defined in a similar way as the standard one. 

Projection X. The projection can be defined in a sim- 
ilar way as the standard one. However, the execution 
of the x operator may lead to an inconsistent result. 
Consider, for example the instance r,, of Section 3. If 
we project on the TEL attribute, then we get an incon- 
sistent relation containing the three tuples < 5511 >, 
< dne >, and < unk >. There are different ways 
to circumvent this problem: One is to require that the 
projected attributes always contain the primary key of 
each relation and to forbid that nulls occur in the pri- 
mary key columns. Another (and more appealing) way 
is to automatically eliminate all tuples with dne nulls 
which are responsible for inconsistencies from the result 
of a projection. 

A second problem with projection is the elimination of 
duplicates when projected tuples contain unk nulls. If 
several identical tuplea, e.g. of the form < a, unk > 
are generated during a projection, we propose to elim- 
inate all but one of these tuples and to add the tuple 
< a, open > to the result. 

Union U The union operator can be defined in a sim- 
ilar way as the standard one using the symbolic equality 
to eliminate duplicates. As for the projection operator, 
execution of a union operator may result in inconsistent 
relation instances. 

Join w Join is a derived operator. It can be defined as 
a selection applied to a Cartesian product of two relation 
instances. Since we have defined two types of selection, 
a strong and weak one, we can define a strong and a 
weak join accordingly. 

Difference -,Intersection n The definition of these 
operators is similar to the standard one using the sym- 
bolic cqualify. However, problems can arise with re- 
dundant relations. For example, if the application of a 
set difference or of an intersection eliminates the third 
tuple from instance r7 of section 5, then the second tu- 
ple is no more redundant. Therefore, we must make 
sure that the operands of these operations are nonre- 
dundant. This can be obtained either by eliminating 
redudant tuples before applying the operations or by 
imposing some restrictive sufficient conditions on the 
operands which make sure that they are nonredundant. 
One such condition is, for instance, that only dne and 
nonnull values are allowed to appear as field values in 
the operands. 

7. Open Problems and Possible Extensions 

The most significant contribution of this paper is the 
presentation and semantical specification of a new ap 
preach for binding nulls into the relational model. Sev- 
eral problems, however, have to be resolved until our 
ideas can be fruitfully applied. The most important bf 
these problems are: 

a) The consistency problem when finite domains are 
considered. 

b) The problem of finding simple syntactic criteria for 
nonredundancy of relation instances under both assump 
tions, finite and infinite domains. 

c) The interaction of constraints, such as FDs, MVDs, 
JDs, etc. with our model of nulls. 

d) The adequacy problem of relational operators. We 
will extend our approach to cover partitioned relations 
with sure and uncertain tuples [Bisk83, Mai83]. On such 
relations, the generalisations of the classical relational 
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operators can be defined more adequately. 

We also believe that our approach is well suited for be- 
ing applied in the context of nested relations (see section 
3), where nulls have been considered so far only under 
the open world assumption [RKSSL, GZC87]. 
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