
ENFORCING INCLUSION DEPENDENCIES
AND REFERENTIAL INTEGRITY

Marco A. Casanova, Luiz Tucherman

Rio Scientific Center - IBM Brasil
P.O. Box 4624 - Rio de Janeiro - Brasil

Antonio L. Furtado

Pontificia Universidade Catblica do Rio de Janeiro
R. Marques de S. Vicente, 225 - Rio de Janeiro - Brasil

ABSTRACT

The general architecture of a monitor that enforces
inclusion dependencies and referential integrity is de-
scribed. The monitor traces the operations a user
submits in a session and can either modify an opera-
tion or propagate it, depending on additional infor-
mation the database designer provided at design time.
Propagation is implemented by executing new oper-
ations when the session terminates, using summary
data collected during normal processing.

1. INTRODUCTION

When the database designer specifies a conceptual
schema, he may include a set of integrity constraints
to capture when a database state correctly reflects the
real world. A database state is consistent when it sat-
isfies all integrity constraints. Therefore, any operation
modifying the database must preserve consistency, that
is, map consistent states into consistent states.

An important feature of a database system would then
be to automatically enforce constraints. Such feature
would completely free users from worrying about
consistency preservation and protect the information
stored from incorrect operations. We can devise two
basic strategies to accomplish this goal, depending on
when constraints are taken into consideration. The
difference between the two strategies is essentially be-
tween compilation and interpretation. The system
may incorporate a constraint enforcement pre-compiler

Permission to copy without fee all or part of this mataial is
granted provided that the copies are not made or diitributcd for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear. and notice is given
that cqying is by permission of the Very Large Data Base
Endowment. To copy orhh, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles. California 1988

that accepts a user’s program and produces a new
program that has new tests and operations, depending
on the constraints of the schema. The new program
would have the same basic behavior as the old pro-
gram, but it would preserve consistency of the data-
base. Such strategy would then help produce correct
pre-defined update programs. In a second scenario,
the system may have a constraint enforcement
monitor, acting as a front-end to the DBMS, that
controls (interprets) streams of operations guarantee-
ing that the fmal database state is consistent. This
second strategy would allow users to submit on-line
streams of operations leaving to the monitor the
problem of consistency preservation.

However, it is very difficult to find an optimized
enforcement strategy due to the intrinsic complexity
of general integrity constraints. Therefore, it is rea-
sonable to concentrate on small, but significant classes
of constraints that can be enforced efficiently.

This paper contributes to the investigation on the au-
tomatic enforcement of constraints by describing the
general architecture of a monitor that enforces inclu-
sion dependencies and a variation of these dependen-
cies that expresses referential integrity. Depending on
additional information the database designer provides
at design time, the monitor can reject operations or
execute new operations. The monitor optimizes the
process even when the stream consists of several dif-
ferent operations submitted in any order, but it as-
sumes that the underlying DBMS guarantees keys,
type checking and absence of null values.

In general, the motivation for the paper lies, in the
unquestionable importance of inclusion dependencies
for conceptual modelling and in that their enforcement
offers an ample margin for optimization at many dii-
ferent levels, not yet fully explored.

To enforce constraints, the monitor uses two basic
strategies: it can either modify the qualification of
DML statements, an idea frost introduced in [St], or
propagate the operation using summary data collected
during the session by a technique similar to ftite dif-
ferencing. Fast automatic maintenance of derived data
by finite differencing, applied to the enforcement of

38

general constraints, is discussed in [KP,Pa]. A special
case of this technique is discussed in [BBC]. The da-
tabase designer must inform, for each inclusion de-
pendency, which strategy the monitor must use. This
idea and a general overview of referential integrity is
contained in [Da]. New storage structures to speed up
testing referential integrity are discussed in [BL].
Techniques to optimize the enforcement of general
constraints are discussed, for example, in
[BB,HI,HS,LB,QS]. A discussion on constraint
compiling, using theorem proving techniques, is con-
tained in [HMN]. The implementation of alerters is
discussed in [BC] and delayed integrity checking in
[La]. A discussion on integrity checking for deductive
databases can be found in [ASM,Li]. Finally, the
newer relational DBMS prototypes, such as
POSTGRES [SAH] and STARBURST [LMP], offer
interesting facilities to implement integrity checking.

The paper is organized as follows. Section 2 intro-
duces the notation and basic definitions used
throughout the paper. Section 3 informally discusses
important points such as the basic strategies for en-
forcing inclusion dependencies, simple optimizations
that can be done at execution time and problems re-
lated to the processing of triggers. Section 4 describes
the monitor. Finally, section 5 contains the conclu-
sions.

2. PRELIMINARIES

We assume that the reader has some familiarity with
the relational model and, thus, we just recall here a few
basic concepts and notation.

A relational schema is a pair S= (R,C) where R is a
set of relation schemes and C is a set of integrity con-
straints. A relation scheme is a statement of the form
WA, ,..., A,.,] where R is the name and A,,...,A, is
the list of attributes of the scheme. A database state
d over S is a function that assigns an n-ary relation to
each scheme in S with r~ attributes. The state d is
consistent iff it satisfies all constraints of S.

The classes of integrity constraints considered in this
paper will be keys, statements indicating the type of
an attribute and whether it admits null values, inclu-
sion dependencies and references. We assume that the
reader is familiar with the fust two classes and leave
them undefined.

We require that the conceptual schema specify, for
each relation scheme, a unique key, called the primq
key of the scheme, the type of each attribute of the
scheme and whether it admits null values or not. By
assumption, no attribute participating in the key ad-
mits null values.

We now define inclusion dependencies and references.
Let R[A, ,..., A,] and SIB1 ,..., B,] be relation
schemes (not necessarily distmct) of a relational
schema S, X be a sequence of k distinct members of
A, ,.-.,A, and Y be a sequence of k distinct members
of B,,..., B,. Let d be a database state of S that as-
signs the relations r and s to R and S.

We call the statement S[Y] E R[X] an incIusion de-
pendency (IND for short) [CFP]. The state d satisfies
S[Y] E R[X] iff s[Y] is a subset of r[X].

Assume now that X is a key of R. We call the state-
ment S[Y]+R[X] a reference (REF for short) and
say that Y is a foreign key of S. The state d satisfies
S[Y]-,R[X] iff s[Y] - {h} E r[X]. In words, the
projection of s on Y, excluding all tuples with a foreign
key composed of just null values, must be a subset of
the projection of r on X. Therefore, a REF is not an
IND, unless we allow more general relational ex-
pressions on the left-hand side of INDs.

Given either an IND of the form S[Y] s R[X] or a
REF of the form S[Y]+R[X], we say that a tuple u
in s references a tuple t in r iff U[Y] = t[X].

We will adopt an SQL-like notation to describe oper-
ations that depart from the SQL standard [SQL] in
many points. In particular, we will use two non-
standard statements:

V := <select statement>
meaning “store in V the result of the select statement”

insert into R tuples {t,, . . . ,t,)
meaning “insert into R tuples tl,..., t,“.

Finally, we assume throughout the paper that updates
cannot modify key values.

3. PROBLEMS WITH THE MONITORING OF
OPERATIONS

3.1 Blocking versus Propagation of
Operations

One of the fust problems one must face when design-
ing an automatic constraint enforcement subsystem is
that the declaration of a constraint says nothing about
how to preserve it. Consider, for example, the refer-
ence S[Y] +R[K]. If a deletion from R violates the
reference, one can block the deletion, propagate the
deletion by deleting tuples from S or propagate the
deletion by setting to null the Y-value of tuples in S.
The mere declaration of the reference does not indicate

39

which choice the constraint enforcement subsystem
should take.

To solve this first problem, one may prioritize the re-
lation schemes and dictate that operations can propa-
gate only from the higher priority schemes to the lower
priority ones [~a]. But this strategy does not distin-
guish between the two propagation options above, for
example. A second alternative, which we adopt fol-
lowing [Da], is to require that the database designer
explicitly declare which option he wants.

Considering that insertions to R and deletions from S
cannot violate an IND of the form S[Y] C_ R[X], the
options are:

block deletion, meaning “do not delete or update
the X-value of a tuple in R if it is the last tuple
referenced by some tuple in S”;
block insertion, meaning “do not insert, or up-
date the Y-value of a tuple in S if it will not
reference any tuple in R”;
propagate deletion, meaning “propagate the de-
letion, or update of the X-value of a tuple in R
by deleting those tuples in S that no longer ref-
erence any tuple in R”;
propagate insertion, meaning “propagate the in-
sertion or the update of a tuple u in S by creat-
ing a tuple t in R such that u[Y] = t[X], if u now
references no tuple in R”. In this case, the
monitor will prompt the user to supply the other
attribute values of t.

The options for a REF of the form S[Y]+R[K] dif-
fer from those just described because K is a key of R
and, hence, by assumption an update to R never
modifies K-values, and because a tuple in S may have
a null Y-value. Therefore, in addition to those listed
above, REFs have the following option:

l propagate by nullifying, meaning “propagate the
deletion of a tuple in R by nul.lifjGng the
Y-value of those tuples in S that referenced it”.

Note that the database designer must specify a valid
option for deletions from R and a valid option for in-
sertions into S, thus generating four different possibil-
ities for INDs and six for REFs.

Finally, we will use the term trigger to refer to an op-
eration automatically executed to implement a propa-
gation, and the term firing to refer to the act of
invoking a trigger.

3.2 A First Look at the Problem of
Monitoring Operations

The monitor described in section 4 tries to reduce the
cost of enforcing constraints by: (i) rolling back the
session as early as possible and when there is no other
alternative; (ii) never directly testing if a state is con-
sistent. Intuitively, the monitoring strategy adopted
will be as follows:

1. for each operation 0 the user submits:

a. for each constraint C with a block option
for 0, modify 0 to preserve C;

b. for each constraint C with a propagate
option for 0, collect the values necessary
to propagate 0;

C. execute 0;

2. when the user signals that he has terminated the
session, execute all triggers resulting from prop-
agated operations, using the values collected
during the processing.

The monitor will use in-core data structures similar to
differential files to efficient and correctly propagate
operations and speed up certain tests needed for
blocking operations.

The rest of this subsection contains a preliminary
analysis of the problem of monitoring operations that
will be refined and revised in the next subsections.
The analysis will be based on examples that cover all
block and propagate options for a REF (since the
treatment of INDs is more complex than that of
REFs).

Let R[A,B] and S[A,B] be two relation schemes,
with key A and subjected to S [B] + R [A]. Consider
the deletion:

DRl. delete from R where Q

Suppose initially that the database designer selected
the option block deletion.

We first observe that this option does not require re-
jecting an operation 0 if just some of the tuples 0
deletes or modifies cause a consistency violation. It
leaves open the possibility of modifying 0 to reject
deleting or modifying just those tuples that would
cause problems (we shall see in section 3.4 that this
approach does not work correctly for triggers, though).
The monitor will adopt this second alternative, imple-
mented by query modification [St] and optimized
when possible.

In the example, the monitor will modify DRl to:

40

DR2. delete from R
where Q

Since, except for this point, it is fairly similar to the
previous case, we move to the options involving in-

and not exists sertions into S.
(select * from S

where S.B = R.A) The option block insertion can be treated by query
modification without problems. For example, given

which reads “delete from R those tuples satisfying Q the insertion:

and which are not referenced by any tuple in S’. Note
that, since A is a key of R, each tuple in S references

IS6. insert into S values (k',k)

exactly one tuple in R. This is not true about INDs. the monitor will proceed as follows. If the attribute

Consider now the option propagate deletion from R.
value k is null, then the monitor executes I S6 un-
changed, otherwise it executes:

The monitor will implement the propagate deletion
option for REFs by keeping a set V containing the key IS7. Z := select * from R
values of the tuples deleted by an operation and by where R.A = k

deleting those tuples in S whose foreign key is in V. ifZ+0
(Keeping such sets is also important to solve problems then
to be discussed in the next two subsections). insert into S values (k',k)

The monitored execution of DRl for the propagate
deletion option will be equivalent to:

Finally, the option propagate insertion requires
prompting the user to supply the missing attribute

DR3. V := select R.A from R where Q
values for the tuple to be inserted into R.

delete from R where Q 3.3 Monitoring Multiple User Operations
. . .

DS3. delete from S where S.B in V

Note that the monitor must obviously retrieve the sets
of values necessary to fne triggers before actually
processing the operation since otherwise it would lose
the needed values. Also note that V may contain
values not referenced by tuples in S, thus increasing
the cost of DS3. However, we consider that the cost
of filtering out such tuples does not compensate since
it would require replacing DR3 by:

DR4. V := select S.B from S, R
where R.A = S.B and Q

delete from R where Q

which, unlike DR3, involves a join between S and R.

Finally, note that if the DBMS offered a deletion-
and-retrieve command, then we could simplify DR3 io:

DR5. delete from R
retrieve R.A into V

where Q

The statement DR5 deletes from R all tuples satisfying
Q and, at the same time, saves their A-values in V.

The discussion in section 3.2 must be revised, first of
all, because the user may himself create several oper-
ations that together preserve consistency, thus making
it unnecessary to modify or propagate operations in
certain cases.

For example, consider again the two relation schemes
NAB1 and WW, with key A and subjected to
S[B]-+R[A]. A ssume that the options selected are
block insertion into S and propagate deletion from R.

We first illustrate how the modification of an opera-
tion may become unnecessary. Using a strategy simi-
lar to that described in section 3.2, if the user submits
a sequence of insertions of the form:

IRl. insert into R values (k,b)
ISl. insert into S values (k',k)

the monitor will process IRl without modification,
but it will unnecessarily change IS1 to:

IS2. z := select * from R
where R.A = k

ifZ#0
then

insert into S values (k',k)

The option propagate by nullifying raises problems of
its own, specially when two foreign keys overlap.

Indeed, the qualification of IS2 is trivially satisfied in
view of IRl.

41

It is very difficult to completely avoid unnecessary tests
because we would have to take into account not only
insertions, but also complex updates. Therefore, we
adopted a compromise solution. The monitor will
maintain in core the set w of all foreign key values
that it knows to be in the database because of the op-
erations it has already processed. It will then use such
set to speed up the acceptance test for insertions.

In the case of the current example, the monitor will
then produce the following stream of operations when
processing IRl and ISl:

IR3. W := {k};
insert into R values (k,b)

IS3. if k occurs in W
then

insert into S values (k',k)
else

begin
Z := select * from R

where R.A = k
ifZ+O

then
insert into S values (k',k)

end

An identical problem occurs with deletions, which the
monitor will minimize by keeping the set of all foreign
key values that it knows not to be in the database be-
cause of the operations it has already processed.

Modifications may also be wrongly applied if oper-
ations are submitted in the wrong order, as would be
the case if IS1 were submitted before I Rl. The
monitor will not avoid this problem, however, since it
will always modify an operation before processing it,
for each constraint with a block option foi that type
of operation.

We now turn to operation propagation, which creates
a different source of problems. Indeed, if the monitor
fires triggers immediately after an operation, it may be
anticipathg a corrective action that will become un-
necessary or even wrong due to an operation that the
user will still submit.

For example, suppose that the user intends to submit
the following sequence of operations:

DR4. delete from R where R.A = k
us4. update S set S.6 = null

where S.B = k
DR4'. delete from R where R.A = k'

Intuitively, the database designer may have decided
that deletions from R propagate to deletions from S

when he specified the propagate deletion option. But
the user, for this particular session, decided that the
deletion of a tuple with key k from R propagates by
nullifying the foreign key values of the appropriate
tuples of S.

Firing triggers right after operations would imply exe-
cuting statement DS4 below before processing US4:

DS4. delete from S where S.B = k

But DS4 wrongly deletes all tuples US4 will process.

To avoid such problems, the monitor will: (i) post-
pone firing triggers until the user signals that he has
terminated the session; (ii) maintain the set of values
needed to fire triggers using a technique similar to that
used to implement differential files [Pa].

In the current example, the monitor will then produce
the following stream of operations (V is the set of key
values of the tuples deleted from R) :

DR5. V := {k}
delete from R where R.A = k

us5. update S set S.B = null
where S.0 = k

DR5'. V := V U {k'}
delete from R where R.A = k'

/* session ends - fire triggers */

DS5. ifV#@
then

delete from S where S.B in V

In this particular case, DS5 will delete only those
tuples in S whose foreign key value is k’ since, after
US5, no tuple whose foreign key value is k remains in
S. Note that we could, again in this particular case,
easily deduce that k can be removed from v after ex-
ecuting US5.

3.4 Monitoring Triggers

On a frost approximation, the monitor may treat a
trigger 0 as if it were part of the stream of operations
the user submitted. In particular, and this is very im-
portant, the monitor must check: (i) if 0 may violate
a constraint C and apply the appropriate block or
propagate option; (ii) if 0 requires changing one of the
sets of values kept to fire further triggers (such as v in
the examples in sections 3.2 and 3.3). This is done
exactly as for user operations, except for the differences
discussed in what follows.

42

First, unlike a user operation, the monitor cannot
modify a trigger as otherwise the final state may be
inconsistent. Therefore, if any block option applies to
a trigger, the monitor must perform a test to decide if
the trigger can run unchanged. If not, the monitor has
to abort and rollback the complete session or to return
to the user for corrective act&.

For example, consider the three relation schemes
R[A,B], S[A,B] and T[A,B], with key A and sub-
jetted to S[B]+R[A] and T[B]+S[A]. Suppose
that the options are propagate deletion from R and
block deletion from S.

Let DRl be a deletion of the form:

DRl. delete from R where Q

Then, the monitor will proceed as follows:

DRZ. V := select R.A from R
where Q

delete from R where Q

/* session ends - fire triggers */

DS2. W :=
select * from S
where S.B in V

and exists
(select * from T

where S.A = T.B)

if&V=@
then

delete from S where S.B in V
else

rollback

In DS2, the monitor fust tests if the deletion of any
tuple from S needed to propagate DR2 violates con-
sistency. If not, the monitor will execute the deletion
from S, otherwise it will abort execution. This course
of action is necessary as otherwise the propagation
from DR2 would be executed only partially thus pos-
sibly not fully restoring consistency with respetit to
S[B]-+R[A].

The last problem we illustrate is trigger interference.
Assume the same scenario as in the previous example,
but suppose that the options are propagate deletion

from R and propagate insertion into S.

Consider the sequence of operations:

DR3. delete from R where R.A = k

IS3. insert into S values (k',k)

During normal processing, the monitor executes:

DR4. V := (k}

delete from R where R.A = k

IS4. W := {k}
insert into S values (k',k)

When the session terminates, the monitor will then fire
the triggers in some order, for instance:

DS4. delete from S where S.B in V

IR4. for each x in W do
begin

Z := select * from R
where R.A = x

ifZ=0
then

begin
ask the user for

the B-value y of the tuple
to be inserted with key x

insert into R values (x,y)
end

end

But the two triggers interfere with each other. If, as
written above, the monitor executes DS4 before IR4,
the tuple (k ’ , k) inserted by IS4 is deleted by DS4,
making the firing of IR4 no longer necessary.

On the other hand, if the monitor executes I R4 before
DS4, then DS4 need not execute at all because R will
again have a tuple with key value k.

The monitor will resolve interference by having trig-
gers modify the values kept to fire further triggers. It
will also give preference to insertion triggers to avoid
firing deletion triggers unnecessarily.

Therefore, the monitor will execute (modified) triggers
in the following order:

IR5. for each x in W do
begin

ask the user for
the B-value y of the tuple
to be inserted with key x

insert into R values (x,y)
end
V := v- w

DS5. delete from S where S.B in V

In this specific example, we have V= W= (k} just
before the execution of the triggers. Thus, the firing
of DS5 becomes vacuous, as desired, since V will be-

43

come empty just be-fore the execution of this state-
ment .

Finally, we observe that the strategy of keeping the sets
of values required to process triggers also copes, with-
out change, with the recursive firing of triggers.

4. DESCRIPTION OF THE MONITOR

4.1 The Basic Data Structure of the Monitor

The monitor will process block options by modifying
an operation, if necessary, as soon as it is submitted.
To process propagate options, the monitor will main-
tain, during normal processing, summary information
and, when the session terminates, it will process all
triggers required to restore consistency as if they were
user operations, with the differences pointed out in
section 3.4.

The summary information will take the form of a list
f i re whose entries will be quadruples with the format
(t,R,X, V) where t is either d (for deleted) or i (for
inserted), R is a relation name, X is a list of attributes
of R and V is a set of X-values. Briefly, the entries in
f i re will serve the following purposes:

l keep information needed to fire triggers;
0 avoid trigger interference;
0 solve the problem of recursive propagation of

triggers;
l speed up testing if an operation can run un-

modsed.

The rest of this section details how the monitor main-
tains the list f i re.

Let s= (R,C) be the relational schema in question.
For each constraint C of S, if C is an IND of the form
S[Y] E R[X] or a REF of the form S[Y]+R[X], the
monitor will maintain the following entries in fire
(the two cases are not mutually exclusive):

Case 1: C has one of the options - propagate deletion
or propagate by nullifying from R, or block insertion
into s.

Let Ye indicate the value of R in a state f and sf the
valueofS inf:

The monitor will maintain an entry in fire of the
form (d,R,X,V) in such a way that the following as-
sertion is an invariant:

Y E V iff there is a state d previous to the current
state c such that there is td in rd with td[X] = v
and there is no tc in rc with t,[X] = V.

It is then possible to prove that:

Lemma 1: Let fbe any state during the processing.
Then:

foranyuinsf ,u[Y]isin Vathereisno tin
r, such that u[Y] = t[X].

Thus, in particular, any tuple u in sf such that
u[Y]e V must be deleted or have its Y-value null&ed,
depending on the option chosen.

We now describe how the monitor maintains c/ to
satisfy the above assertion, considering each possible
operation over R. Intuitively, the monitor must in-
clude in V a value v iff v was in the projection of R
on X before, but not after, the operation is executed
(in all situations below, the reader must remember
that, when C is an IND of the form S[Y] E R[X], X
is not a key of R and, hence, there may be more than
one tuple in R with the same X-value).

CareA: delete from R where Q

/*
select X-values deleted from R[X]

*/
V' :=

select R.X from R
where Q

and not exists
(select * from R R'

where R.X = R'.X
and not Q[R'/RJ)

/*
add them to V

*/
V := v u V’

where the notation Q[R ’ /R J indicates Q with all oc-
currences of R replaced by R ' .

CaseB:insert into R tuples {t,,...,t,}

/*
remove inserted X-values from V

*/
V := v - {t,[X], . . . ,t,[X]}

44

CaseC: update R set P where Q

/*
select X-values deleted from R[X]

*/
:=

select R.X from R
where Q

kl

and not exists
(select * from R R'

where R.X = R'.X
and not Q[R'/R])

/*
select X-values inserted into R[X]

*/

V” := select PX from R where Q
/*

add X-values deleted and
remove those inserted

*/
V := (V u V’) - V”

where PX indicates the projection on X of the result
of applying the changes described by P on each tuple.

The qualifications enclosed within a box in cases A
and C become unnecessary if the following condition
holds:

(*) (Vt E R)(Vu E R)
UQPI A WI = WI) + Q[ul)

that is, when for any two tuples in R with the same
X-value, if one satisfies Q so does the other. Two
simple and sufficient conditions for (+) are:

(*. 1) X functionally determines all other attributes
used in Q;

(*.2) Q is a condition involving only attributes in
X.

Note that, when C is a REF of the form
S[Y]4R[X], condition (*.l) is satisfied since X is a
key of R. Therefore, the qualifications within boxes
above may all be dropped.

Case 2: C has one of the options block deletion from
R or propagate insertion into S.

The monitor will maintain an entry in fire of the
form (i ,S ,Y, W) in such a way that the following as-
sertion is an invariant:

w E w iff there is a state d previous to the cur-
rent state C such that there is no ud in sd with
+[Y] = W and there is 2.4, in S, with u,[Y] = W.

In this case, it is possible to prove that:

Lemma 2: Let f be any state during the processing.
Then:

for any 24 in sf , if there is no t in of such that
u[Y] = t[X] then u[Y] is in W.

Since the lemma holds in just one direction, to prop-
agate insertions into S, the monitor has to synthesize
a trigger that tests if tuples need at all be inserted into
R.

The maintenance of w depends only on the oper-
ations over S to satisfy the above assertion. Intu-
itively, the monitor must include in w a value w iff

w is in the projection of S on Y after the operation is
executed, but it was not there before (the reader must
again remember that there may be more than one
tuple in S with the same Y-value):

CaseA: delete from S where Q

/*
select Y-values deleted from S[YJ

*/
I

wsii

/*

remove them from W
*/
w := w - W’

45

CaseB: insert into S tuples (u~,...,u,)

/*

4.2 Synthesis of Triggers and Modification
of Operations

select Y-values already in S[Y]
*/
W' :=

For the sake of clarity, the exposition considers sepa-
rately each possible block/propagate alternative for
INDs and REFs, omitting repetitive details as much
as possible.

select S.Y from S where S.Y in

k, I?1 9 * * - 9 qlCYI)
/*

Case I: Consider an IND of the form S[YJ E R[X].

add Y-values inserted,
except those already in S[Y)

"1
w := w u (bqP1, * * * ,$JYl~ - W')

Case 1.1: propagate deletion from R and block in-
sertion into S.

Case C: update S set P where Q

Recall from section 4.1 that the monitor will maintain
an entry in f i re of the form (d,R,X, V). Then, in
view of Lemma 1, to propagate deletions from R, the
monitor must synthesize a trigger of the form:

/*
select Y-values deleted from S[YJ

*/
I

wsii,

/*

DS. delete from S where S.Y in V

Now, to block insertions into S, the monitor has to
modify both insertions and updates as follows.

Case A: let IS be a multiple insertion statement of the
form:

IS. insert into S tuples (u,,...,~,}

If IS is an operation submitted by the user, the mon-
itor will modify IS to:

ISl. z :=

select Y-values inserted into S[Y],
except those already there

*/
W" :=

select Py from S
where Q

select R.X from R
where R.X in {uIIY],...,u,[Y]}

ISl. for each Ui in {q,...,~,)
such that Ui[Y] 5s not in Z do

insert into S values 24i
end

and not exists
(select * from S S'

where S'.Y = Py
and not Q[S'/S])

/*

But if IS is a trigger, the monitor will first perform the
following acceptance test:

TSl. Z :=
select R.X from R

add new Y-values and
remove those deleted
but not re-inserted

*/

where R.X in (uIIY],...,u,[Y])

w := (W - W') u W"

If Z is not equal to {u~[Y],...,z+,[Y]}, then some tuple
to be inserted by IS will not reference any tuple in R
and, hence, the monitor must reject IS and rollback
the whole session.

All conditions enclosed within a box above again be- The monitor can also use the entry (d,R,X,V) to

come unnecessary when a condition similar to that speed up rejecting IS in both cases. Indeed, if
introduced in the previous case holds. Ui[Y]E V holds., then by definition of v there is no

.

46

tuple t in the current value of R such that
t[X] = Ui[Y]*

Case B: let UP be an update statement of the form:

UP.. update S set P where Q

If UP is an operation submitted by the user that
changes Y-values, the monitor will modify it to:

UPl. update S set P
where Q

and exists
(select * from R

where R.X = Py)

But if UP is a trigger, the monitor performs acceptance
tests whose qualification is similar to that added above.

Case 1.2: propagate insertion into S and block deletion
from R.

Recall from section 4.1 that the monitor will maintain
an entry in f i re of the form (i ,S,Y, W). Therefore,
to propagate insertions into S, since Lemma 2 holds
in just one direction, the monitor has to synthesize a
trigger that tests if tuples need at all be inserted into
R:

IR. W’ := select R.X from R
where R.X in W

W := w- W’
for each w E W do
begin

construct a tuple t
with X-value equal to w and
with the other attribute values
supplied by the user

insert into R values t
end

Note that, if the monitor also maintains an entry in
f i re of the form (d,R,X, V) then, by definition of v,
it could speed up IR as follows (Z and z’ are just
temporary variables):

IR’. Z :=wnv
Z’ :=w-v
W’ := select R.X from R

where R.X in Z’
W :=W’ u z
for each w E W do
. . .

Now, to block deletions from R, the monitor has to
modify both deletions and updates as follows:

Case A: let DR be a deletion statement of the form:

DR. delete from R where Q

The monitor will proceed as follows.

If DR is an operation submitted by the user, the mon-
itor will modify OR to:

DRl. delete from R
where Q and
not (exists

(select * from S
where S.Y = R.X)

and
not exists
(select * from R R'

where R'.X = R.X
and not Q[R'/R])) I

If DR is a trigger, the monitor wi.U perform the follow-
ing acceptance test:

TRl. Z :=
select S.Y from R,S
where Q

and S.Y = R.X

and
not exists
(select * from R R'

where R'.X = R.X
and not Q[R'/R))

Note: as in section 4.1, the qualifications enclosed
within boxes may be dropped if condition (*) holds.

If Z is not empty, then some tuple DR deletes is the
last one referenced by some tuple in S and, hence, the
monitor must reject DR and rollback the whole session.

In a particular situation, the monitor can use the entry
(i ,S,Y, W) to speed up rejecting DR in both cases.
Indeed, suppose that the qualification Q is equivalent
to the disjunction "R.X=c, or...or R.X=c,".
Then, if Ci E W, for some i, DR must be rejected be-
cause, by definition of W, there is a tuple u in the
current value of S such that u[Y] = Cia

47

Care B: let UP be an update statement
of the form:

UP. update R set P where Q

If UP is a user operation and it changes X-values, the
monitor modifies it as follows:

DRl. update R set P
where Q and
not (exists

(s;:;;," ; yfrom S
. = R.X)

and
not exists
(s;;;;," * from R R'

or (R.X = Px[R'/R]
and Q[WRI)))

But if UP is a trigger, the monitor performs acceptance
tests similar to those already discussed.

Case 1.3: block deletion from R and block insertion
into s.

The monitor will maintain entries in f i re of the form
(d,R,X,V) and (i,S,Y,W) just to speed up rejection
tests as in cases 1.1 and 1.2.

Case 1.4: propagate deletion from R and propagate
insertion into S.

The monitor will maintain entries in f i re of the form
(d,R,X, V) and (i ,S,Y, W) to process propagations as
in cases 1.1 and 1.2.

Case 2: Consider a REF of the form S[Y] +R[K]

The treatment of REFs is similar to that of INDs, but
considerably simpler because K is the key of R, which
implies that:

l no two tuples in R have the same K-value;
l updates do not affect, by assumption, K-values.

However, we must also take into account the fact that
tuples in S may have null Y-values. We refer the
reader to the full paper for the details [CFT].

5. CONCLUSIONS

A monitor that enforces INDs and REFs for single
operation transactions has already been implemented
[FCT]. The monitor is coupled with a design helper
that automatically maps an entity-relationship schema
into a relational schema and that incorporates opti-
mization features at the design level. We began to ex-
tend the monitor to control streams consisting of
multiple operations, along the lines of this paper, and
also to enhance the design helper to cope with other
optimization strategies at the design level.

The monitoring strategy can be enhanced along many
lines. First, the strategy may be locally improved in
many points, such as ordering acceptance tests based
on their estimated cost.

Second, the strategy can be further elaborated to cope
with more sophisticated options. We may introduce
immediate propagation options that force the ftig of
triggers immediately after operations, as an alternative
to the deferred propagation options we defined in sec-
tion 3.1. We may also create different
block/propagation options for different classes of us-
ers. Finally, we may introduce modify options that
explicitly indicate how to modify certain types of op-
erations.

The monitor can obviously be extended to cope with
other classes of constraints. Naturally the qualification
modification algorithms and the synthesis of triggers
would have to be reworked. But the maintenance and
the general idea behind the basic data structure,
f i re, might possibly remain the same.

ACKNOWLEDGEMENT

We thank Prof. Claudia B. Medeiros for her careful
reading of a preliminary version of the manuscript.

48

REFERENCES

[ASMI

[BBI

[BBC]

[BCI

[BLI

P-1

[CFTI

P. Asirelli, M. de Santis and M. Martelli,
“Integrity constraints in logic databases”, J.
Logic Progmmming 2:3 (Oct. 1985),
22 l-232.
P.A. Bernstein and B.T. Blaustein, “Fast
method for testing quantified relational cal-
culus assertions”, Proc. SIGIMOD Int. Conf.
on Management of Data, Orlando, Florida
(June 1982), 39-50.
P.A. Bernstein, B.T. Blaustein and EM.
Clarke, “Fast maintenance of semantic in-
tegrity assertions using redundant aggregate
date”, Proc. of 6th Int. Conf. on Very Large
Data Bases, Montreal, Canada (Oct. 1980),
126-136.
O.P. Buneman and E.K. Clemons, “Et&
ciently monitoring relational databases”,
ACM TODS 4:3 (Sept. 1979), 368-382,
M. Bever and R. Lorie, “An enhanced ref-
erential integrity scheme supporting com-
plex objects”, IBM Research Report,
RJ-5585 (1987).
M.A. Casanova, R. Fagin and C.H.
Papadimitriou, “Inclusion dependencies and
their interaction with functional dependen-
cies”, J. Computer and System Sciences 28: 1
(Feb. 1984), 29-59.
M.A. Casanova, A.L. Furtado and L.
Tucherman, “Enforcing Inclusion Depend-
encies and Referential Integrity”, Technical
Report CCR052, Rio Scientific Center,
IBM Brazil (Feb. 1988).
C.J. Date, “Referential integrity”, Proc. of
7th Int. Conf. on Very Large Data Bases,
Cannes, France (Sept. 1981), 2-12.
A.L. Furtado, M.A. Casanova and L.
Tucherman, ‘The CHRIS consultam,
Proc. 6th Int. Conf. on Entity-Relationship
Approach (Nov. 1987), 479-486.
A. Hsu and T. Imielinski, “Integrity check-
ing for multiple updates”, Proc. hit. Conf.
on Management of Data, Austin, Texas
(May 1985), 152-168.
L.J. Henschen, W.W.McCune and S.A.
Naqvi, “Compiling constraint-checking pro-
grams from first-order formulas”, Advances

D-Is1

[KPI

[LB]

M

[LMPI

Pal

[Qsl

iSAH

[SQL]

WI

in Data Base Theory, vol. 2, H. Gallaire, J.
Minker and J.M. Nicolas, Eds., Plenum
(1984), 145-169.
M. Hammer and S. Sarin, “Efficient moni-
toring of database assertions”, Proc. Int.
Conf. on Management of Data, Austin,
Texas (May 1978) 38-49.
S. Koenig and R. Paige, “A transformational
framework for the automatic control of de-
rived data”, Proc. of 7th Int. Conf. on Very
Large Data Bases, Cannes, France (Sept.
1981) 306-318.
G.M.E. Lafue, “Semantic integrity depend-
encies and delayed integrity checking”, Proc.
of 8th Int. Conf. on Very Large Data Bases,
Mexico (Sept. 1982), 292-299.
L. Lilien and B. Bhargava, “A scheme for
batch verification of integrity assertions in a
database systems”, IEEE Trans. on Software
Engineering IO:6 (Nov. 1984).
T. Lmg, “Integrity constraint checking in
deductive databases using the Prolog not-
predicate”, Data & Knowledge Engineering
2:2 (June 1987), 145-168.
B. Lindsay, J. McPherson and H. Pirahesh,
“A data management extension architec-
ture”, Proc. Int. Conf. on Management of
Data, San Francisco, CA (May 1987)
220-226.
R. Paige, “Applications of finite differencing
to database integrity control and
query/transaction optimization”, Advances
in Data Base Theory, vol. 2, H. Gallaire, J.
Minker and J.M. Nicolas,Eds., Plenum
(1984), 171-209.
X. Qian and D.R. Smith, “Integrity con-
straint reformulation for efficient validation”,
Proc. of 13th Int. Conf. on Very Large Data
Bases, Brighton, UK (Sept. 1987), 417-425.
M. Stonebraker, J. Anton and E. Hanson,
“Extending a database system with proce-
dures”, ACM TODS 12:3 (Sept. 1987)
350-376.
ANSI, Database Language SQL, New York,
NY, X3.135-1986 (1986).
M. Stonebraker, “Implementation of integ-
rity constraints and views by query modii-
cation”, Proc. Int. Conf. on Management
of Data, San Jose, CA (May 1975), 65-78.

49

