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Abstract 

Thie paper presents a representation echeme for 
polyhedral objects in arbitrary dimensions. Each object 
ie represented as the algebraic sum of convex polyhedra 
(cells). Each cell in turn ie represented ae the intereec- 
tion of halfspacee and encoded in a vector. The notion of 
vertices is abandoned completely aa it ie not needed for 
the eet and eearch operators we intend to support. We 
ehow how thie approach allows UB to decompose set 
operations (such aa intersection) on polyhedral objecta 
into two atepe. The first step consists of a collection of 
vector operations; the second step is a garbage collec- 
tion where vectors that represent empty celle are elim- 
inated. 

1. Introduction 

Modern database eyeteme are no longer limited to 
bueinese applications. Non-standard applications euch 
as computer-aided design, computer vision, or geo- 
graphic data proceeeing are becoming increasingly 
important, and geometric data play a crucial role in 
many of theee new applications. For efficiency reaeone 
it is essential that the special properties of geometric 
data be fully utilized in the data base management eye- 
tern. It ie important to view geometric object6 (such aa 
points, lines, or polygons) aa integral entitiee and not 
aa tuplee of numbers that may be used to represent 
them. 

Furthermore, the special operators that are 
defined on these objects need to be eupported. Common 
examples include eet operators such a8 union or inter- 
section or eearch operators such a8 range eearch or 
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point location. These operators are substantially 
different from the operators defined on numerical data. 
They are often harder to compute, and it ie not trivial 
to determine the smalleet domain on which they are 
closed. Even the regularized* set operators, for exam- 
ple, are not closed on the set of simple polyhedra; eee 
figure 1.1. 

Fig. 1.1: The intersection of two simple polyhedra is 
not neceeearily a simple polyhedron. 

In short, to deal with geometric data effectively 
requires some recognition of geometry, and nowhere is 
thie more important than in the representation of 
geometric objects, which can be interpreted a8 the map- 
ping of the original data objects into a set of objecta 
that facilitates the computation of a particular claee of 
operators. The significance of representation echemee 
for efficient data management has been discussed by 
Requicha [RequBOl. A survey of various repreeentation 
echemes for two- and three-dimeneional geometric data 
can be found in [Besl851. In this paper we develop this 
theme in connection with a particular representation 
scheme for an important claee of geometric objecte, viz., 

* The regularized set operatore, as defined by Tilove 
[TiloBOl , include intersection, union, and difference. 
They differ from the correeponding simple set operators 
by an additional step making the result regular, i.e. the 
closure of its interior. This way, the dimension of the 
result is equal b the lowest dimension of any of the 
operands. In this paper, all set operators that are defined 
on point sets are aesumed to be regularized. 
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polyhedra. 

In eection 2, we deecribe the concept of polyhedral 
chains where a polyhedral object is repreeented as an 
algebraic sum of simple polyhedra (cells). Section 3 
introduces a repreeentation echeme for convex celle; 
each cell is repreeented aa an intereection of halfepacee 
and encoded in a vector. Section 4 ehowe how eet 
operations are carried out ueing this repreeentation 
echeme, and eection 5 contains our conclueione. 

2. Polyhedral Chains 

We extend the notion of polyhedron in the follow- 
ing way. A d-dimensional polyhedral chain in 
Euclidean space Ed [Whit571 ie an expreeeion of the 
form 

=P = &i 

Here, the pi are d-dimensional regular polyhedra in Ed 
that are not neceeearily bounded. We consider a point 
tcEd inside the polyhedral chain P if and only if it ie 
inside any of the polyhedra pi, i.e. 

tfP e tCpi for some i=l . . m 

Thie way, each polyhedral chain represents a 
polyhedral point set. Two polyhedral chains P and Q 
are equivalent if they represent the same point set, i.e. 
if 

Polyhedral chains are a simple and powerful tool 
to deecribe varioue kinds of polyhedral objects. They 
may be used to describe any simple (i.e. non eelf- 
intereecting) polyhedral point eet in Ed (fig. 2.1), ae 
well as eelf-intersecting polyhedra of any shape (fig. 
2.2, 2.3). 

Fig. 2.1: p1+p2+p3 

Ae pointed out in [NeweSO] , applicatione for 
non-simple polyhedra are becoming increaeingly impor- 
tant in areas like computer-aided design or geographic 
data processing. Also, there are numerous applications 
for higher-dimeneional geometric objecte, such as linear 
programming [Dant63] or logic databases where 
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Fig. 2.2: p1 tp2tp3 

Fig. 2.3: p1 tp2 tp3 

geometric object6 are ueed to repreeent predicates 
fSton661. 

Unlike eimple polyhedra, polyhedral chains are 
cloned under all regularized eet operators. Furthermore, 
the boundary of a convex polyhedron of dimension d is 
a polyhedral chain of dimension (d -1). Hence, the 
complete set of polyhedral chaine of dimensions 0 
through d in Ed ie closed under the boundary operator 
a. For these reasons, polyhedral chain8 form an 
appropriate eet for embedding polyhedra. 

Now coneider a database consisting of a collection 
of (possibly self-intersecting) d-dimensional polyhedra 
in Euclidean epace Ed. The restriction to polyhedra, 
rather than general eubeete of Ed, is justified by the 
fact that thoee are commonly used to approximate gen- 
eral ehapee in practice [Faux79]. 

To support eearch and set operators, we represent 
the polyhedra in the database aa conuex polyhedral 
chaine, i.e. ae euma of conuex polyhedra pi (cek). 
Each cell in turn will be represented ae the intersection 
of halfspaces and encoded in a vector. Our scheme ie 
conceptually simple, provides eupport for eet and search 
operatore, and seeme well euited for parallel proceeeing. 
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Formally, each data object P ie represented as a 
convex polyhedral chain in Ed, 

,.. 

XP = x,pi 
i=l 

with all pi being convex. Obviously, for any polyhedral 
chain in Ed there ie an equivalent convex polyhedral 
chain in Ed. For eimplicity (see section 3) we require 
that for each face f of any convex cell p, there be a face 
g of P, euch that f and g are both subeets al the same 
(d-ll-dimensional hyperplane. Note that -ye do not 
require the pi to be mutually diejoint. Diajointneee is 
hard to maintain and provides no particular advan- 
tages for the operators we intend to support. 

3. The h-Vector 

The next question ie how to represent the convex 
cells pi. It ie well known that any convex polyhedron 
in Ed can be represented aa the intereection of 
halfapacee in Ed. Each halfepace in turn can be 
represented ae a product h.H where H ie an oriented 
(d- ll-dimensional hyperplane and h ie an integer 
number. In particular, we define 1.H aa the closed 
halfapace to the right of H, -1.H aa the cloeed 
halfapace to the left of H, and for completeneee 0.H ae 
Ed. 

Let H = HIHP . . HlAl denote a list of (d-l)- 
dimensional oriented hyperplanee such that for each 
face f of any data object in the databaee there ie a 
hyperplane in H that embeds f. Now each cell 

P 
can be 

represente$,aa a ternary vector h,, = {OJ, - 1) ‘1, euch 

that p = n(hp)i*Hi. 
i=l 

We note that for a given cell p, h,, is by no means 
unique. For example, suppoee that hyperplane H, and 
cell p are disjoint and p is a subset of the halfspace 
l*Hi. Then whether (h,), is 0 or I makes no difference. 
For a given p, the eet of all poeeible h,-vectors ie an 
equivalence class which contains a unique vector with 
the minimum number of nonzero componente. For this 
unique minimum h, every nonzero component 
corresponds to a supporting hyperplane of p. Note that 
there is no unique minimum vector to represent the 
empty set. On the other hand, there ie a unique 
minimum vector to represent the whole space Ed, viz., 
the vector 01’1. 

The insertion of new data objects is performed by 
adding new hyperplanee to H, if neceeeary. For eimpli- 
city we assume that the components of the ternary vec- 
tors h, default to zero if they are not explicitly 
specified. Under thie aesumption an insertion does not 
change the representation of existing celle. 

The deletion of data objecta may cause some 
hyperplanee in H to become redundant. The deletion of 
such a hyperplane from H correeponde to a compression 
of each vector h, by one component. Although it may 
not be efficient to perform this update after each single 
deletion, it might be worthwhile to do such a clean-up 

after a certain number of deletiona. Otherwiee a large 
number of redundant hyperplanee will inflate the 
repreeentatione unneceeearily. 

It IHI ie large, aa it may well be, the explicit 
storage repreeentation of h, ie not feaeible. However, 
the simple structure of hp allowe many alternative data 
etructuree to be ueed. Ae one example, hp can be 
repreeented by a eet of (signed) pointers, pointing to 
those hyperplanes that correspond to the nonzero ele- 
ments. In this paper we do not explore the relative com- 
putational efficiencies of euch alternatives. 

Note that this approach to repreeent polyhedral 
data objects abandon8 the notion of vertex completely. 
Repreeentation of celle by h-vectors has both conceptual 
and computational advantages. To repreeent cells in 
terms of supporting hyperplanee rather than in terme 
of vertices ie usually the moat apace-efficient way 
because no adjacency relations need to be etored. This 
becomes especially important in higher dimensions ae 
the number of adjacencies may grow exponentially in 
the dimension [Prep85]. Furthermore, it eeems that 
vertices are not necessary for the search and set opera- 
tore we intend to support. Search operators euch a8 
point location or range search can be supported 
efficiently by search structures that are baaed on eup- 
porting hyperplanee rather than vertices; an example 
for euch a etructure ie the binary apace partitioning 
tree lFuch801. All set operations on cells can be corn- . 
puted efficiently without using verticee by decomposing 
them into two parta: (al an operation on the h-vectore 
without references to the geometric coordinate6 of the 
hyperplanes, and (bl a generic operation that teete 
whether a vector h, ie null, i.e. whether the intersec- 
tion of the halfepaces epecified by hp is empty. This 
decomposition will be deecribed in detail in the follow- 
ing section. 

4. Set Operations 

Let P and Q be two general polyhedral objects. 
We now show that any eet operation on P and Q can be 
decompoeed into: (a) operatione on the h-vectore, and 
(b) deleting the null vectors from the eet of resulting 
h-vectore. The following propositions are eaeily verified 
with the definition0 of set operations and of polyhedral 
chaine. 

Proposition 4.1: Let P and Q be represe,nted by convex 

polyhedral chaine xp = $pi and 4 = ,zq,. Then 

=PUQ = xp + XQ 

G = Xp;n np; 
XP-Q = xpn4 

Proposition 4.2: Let hp denote a h-vector of a cell p 
Then x~= - h,sH. 
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For an example Bee figure 4.1. 

HI F 

Fig. 4.1: h,=(0,~,-l,O,-1),x,-=-1~H~+l~H~+1~H~ 

Note that the length of thie chain equale the number of 
nonxero components of the vector hp. It ie therefore 
de&able to keep this number low, poeeibly at its 
minimum. 

Proposition 4.3: Let hp and h, denote the h-vectors for 
two celle p and q respectively. Then hpnq can be com- 

puted ueing the following table for each component 
(hpn,)i. 

Table 4.1: In those cases denoted by *, the hyperplane 
Hi separates p and q, i.e. p n q = q~. 

Note that both the intersection and the comple- 
mentation operator are defined on the components of 
the h-vector. The component6 are independent of each 
other and can therefore be proceeeed in parallel. In par- 
ticular, a systolic array [Kung’79] or a connection 
machine [Hill851 with one proceseor per hyperplane 
seem to be promising for an efficient implementation. 

It follows from propositions 4.1-4.3 that for any 
set operation de, the h-vector representation of P&Q 
can be computed from the h-vector representations of P 
and Q. However, the h-vectors in the resulting 
representation may not be minimal. Also, some vectors 
may define empty eete, due to the fact that condition * 
is a sufficient, but not a necessary condition for non- 
intersection. Two cells p and q may not intersect, but 
there is no component (hpn& where condition * 

occurs. In that case, the reeulting vector hpnq defines 

an empty eet. Although that ca8e ie coneietent with 
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our data model, it is not desirable. A large number of 

empty cells p, in the anvex polyhedral chains xp = spi 
i=l 

representing the data objecte may elow down the eye- 
tern performance considerably. We therefore need an 
efficient meane for detecting empty celle. 

One approach would be to abandon the concept of 
minimality and to increase the number of nonzero com- 
ponents in the h-vector, poseibly to its maximum, i.e. 

I 

1 ifp_C l..Hi 

(hp)i = -1 ifpc -1-H‘ 

0 otherwise 

Each nonzero component increases the chance that a 
separating hyperplane is found, i.e. that condition * ie 
met if two polyhedra do not intersect. If each h-vector 
had a maximum number of nonzero components then a 
separating hyperplane would be detected immediately; 
i.e. condition * would be a neceeeary and sufficient con- 
dition for non-intersection. On the other hand, this 
approach makes the identification of supporting hyper- 
planes and therefore the cell complementation and 
boundary retrieval operations much more difficult. 
Also, computing the above function for each cell p in 
the database requires an immense amount of computa- 
tion and produces a lot of data that ie probably never 
needed. 

A garbage collector seems to be a better solution. 
Each time a new cell ie computed ae the intereection of 
two cells, the new cell is tagged. A background procese 
(the garbage collector) keeps checking the tagged cells 
in the database for emptiness. If a cell ie found non- 
empty, it is untagged. Otherwiee, it is deleted from 
storage and from the chains that contain that cell. 
Unfortunately, the representation of celle by means of 
their h-vectors does not lead to an efficient algorithm to 
check cells for emptiness. A better approach to this 
problem, based on geometric duality, ie preeented in a 
separate paper [Gunt661. In that paper, we show that 
the time complexity to check two celle for intersection 
is polylogarithmic and therefore eublinear in the 
number of vertices of any of the cells. 

In order to avoid duplicating computational effort 
and looeing information, we propose to cache the reeultn 
obtained by the garbage collector. Whenever a cell 
intereection p nq is computed a second time, it should 
be immediately clear from the vectors hp and h, if the 
intereection p nq is empty or not. Whenever the gar- 
bage collector checks a new cell r=pnq, it either die- 
covers a separating hyperplane (if p and q are disjoint) 
or it discovers that there are no separating hyperplanee 
(if p and q intereect). This result can be cached by 
extending the notion of the h-vector to capture more 
information in the following way. 
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Each cell p is represented ae a vector I$ with 
the following semantics. 

(I$+), 
(l,Y) 

(- l,Y) 

(l?N) 

(-W) 

I 

Meaning 
p _C l.H,, Zf, may be a 
supporting hyperplane of p 

p _C -l.H,,H,maybea 
supporting hyperplane of p 

p _C l.H,, Hi is not a 
supporting hyperplane of p 

PC - l’Hi, Hi is IlOt a 
supporting hyperplane of p 
Hi intersect8 the interior of p 
(hence, it is not a supporting hyperplane) 
Hi is not a supporting hyperplane of p 

Table 4.2 

Components that are not explicitly specified default to 
0. Now (h’ pns)i is given by the following tables. 

I 
0 11 (l,y)+ 1 (-I,Y)+ 1 UN I] 

Table 4.3a 

Table 4.3b 

If p and q do not intersect there will be at least 
one eeparating hyperplane H, that supports p or q. In 

this case (b pn4)i corresponds to one of the cases 

denoted by * or by +. Therefore, a new cell r=pnq is 
certainly empty if any component (bp-,& corresponds 

to one of the cases denoted by *. Otherwise, it needs to 
be tagged if and only if there is at least one component 
(b ,,ns), that correeponde to one of the cases with the f. 

If a tagged cell r =p (Iq is found empty, this 
result can be cached by the following updatee. Let H, 
be a separating hyperplane and, w.1.o.g. let p_C l.Hi 

and g_C -l*Hi. 
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IF (h,,+), = 0 
THEN (hl)i := (1,N) 

IF (h,‘), = 0 
THEN (h:)i := (-l&N) 

If, on the other hand, a tagged cell r =pn q is 
found non-empty, we know that there are no separating 
hyperplanee between p and q. For any hyperplane Hi 
that eupports p, either (a) q lies on the same aide of Hi 
as p, or (b) Hi intersects the interior of q. A similar 
condition holds for any hyperplane Hi that eupports q. 

This result can be cached by performing the following 
updates. 

IF (hi), = (fl,Y) AND (hl), = 0 AND Hinq=q 
THEN (h:)i := (&lJv) 

IF (hi)i = (fl,Y) AND (h,+)i = 0 AND Hinq*v 
THEN (hl)i := I 

IF (h:)i = (fl,Y) AND (hl)i = 0 AND Hinp=v 

THEN (hi)i : = ( f 1JV) 

IF (hJ)i = (fl,Y) AND (hP+)i = 0 AND Hinptv 

THEN (h,+)i := I 

Whenever p n q is computed again, it follows from the 
vectors hi and h: if p and q intersect or not. If they 
do intersect, the resulting cell will not have to be 
tagged again. 

When a new cell is inserted into the database, 
most of the component8 of its h-vector are zero. Ae set 
operations are performed on the data objects, the data- 
baee evolves. More and more zero components of the h- 
vectors are replaced, and the vectors carry more and 
more information. Therefore, it will happen less and 
less frequently that a new cell has to be tagged and 
checked for emptiness. Also, at some point it may be 
more efficient to teat a new cell r =p n q for emptiness 
by checking the hyperplanee that may be separating 
ones (i.e. the ones that correspond to components with a 
+) one by one if they are actually separating. If they are 
few enough components with a +‘, this may be eimpler 
and faster than ueing the dual approach proposed in 
[Gunt661. 

Problems such aa complementation, point location 
or boundary retrieval may be solved by looking at only 
those hyperplanes that may be supporting, i.e. the 
hyperplanee H, where (hi)i is (l,Y) or (-l,Y). 

There are variations to this approach. First, one 
may prefer to have only minimal h-vectors, i.e. to iden- 
tify the supporting hyperplanes of each cell explicitly. 
This can be achieved, for example, by extending the 
garbage collector as follows. Each time an intersection 
cell is found non-empty, its supporting hyperplanes are 
computed and the h-vector ie updated accordingly. 
Second, one may decide to eimplify the update pro- 
cedure above by introducing eymbole (1,NZ) and 
(-1,NZ) which represent (1,N) ORZ and (-1,N) OR I, 
respectively. Then the set of updates for the case that p 

and q intersect can be simplified to 
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References IF ((hp+)i = (flay) AND (hq+)i = 0 
THEN (hq+)i := (& 1,iVZ) 

IF ((h;), = (flay) AND (hp+)i = 0 
THEN (h,+)i := (fl,ZVZ) 

In particular, it ie not neceseary anymore to check any 
hyperplane Hi that aupporta p (q) if it intereects the 
interior of q @I, i.e. if Hi nq (Hi np)= v. As proven in 
lGunt861 , the time complexity to check thie condition 
for a particular hyperplane Hi is logarithmjc in the 
number of vertices of q @). 

5. Conclusions 

We presented a representation echeme for 
polyhedral data objects, baaed on convex polyhedral 
chaine. Each cell is represented ae an intereection of 
halfepacee, encoded in a vector. The notion of verticee ie 
abandoned completely as it is not needed for the eet 
and eearch operators we intend to eupport. 

Baaed on this representation, we deecribed a 
echeme to decompoee the execution of eet operatore into 
two steps. The first step consiets of a set of vector 
operations; the eecond etep ie a garbage collection 
where those vectors are eliminated that represent 
empty cells. All results of the garbage collection are 
cached in the vectore in euch a way that no computa- 
tions have to be duplicated. Ae the databaee ia learning 
more and more information through the garbage collec- 
tor, it will be able to detect empty cells immediately 
euch that no additional teat for emptiness ie required. 
Future work will focue on an experimental implemen- 
tation of our echeme. 

Aleo, we believe that this approach ie more amen- 
able to parallel processing than a vertex-baeed 
approach. In particular, the components of the h- 
vectors are processed independently from each other. 
Therefore, it seems poseible to aesign one processor to 
each hyperplane in H and to carry out a significant 
fraction of the necessary computations locally without 
interproceesor communication. We are currently work- 
ing on the details of thie approach and are planning an 
experimental implementation on a connection machine. 
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