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Abstract 
In the CAD, CAM. and Robotics environment the on-line con- 
struction and manipulation of data ob’ects is very often done at 
dedicated workstations rather than at h ost systems. As the stor- 
age space of workstations is usually not that large and as large 
designs are also not performed by a single designer but by a group 
of designers, in general, one would like to use host database sys- 
tems as central servers to store, to retrieve, and to “communicate” 
data objects. Current database management systems, however, 
have mainly been designed for business administration purposes 
where much simpler structured data objects occur. But even if the 
server database system offers adequate complex object support, 
the question remains how workstation and server database sys- 
tem should work together. That is, how the changes pcrformcd 
at the workstation should be communicated back to the Server 
such that a new version of an object can be created at the host 
site in an eflicicnt and storage saving way. In this oaocr the ao- 
preach implemented in the Advance2 Information ‘Managemcht 
Prototype (AIM-P) at the IBM lleidelberg Scientific Center is 
described. The AIM-P database managcmcnt system is based on 
NIT2 (Non First Normal Form) relations and follows the stratczv 
of a ’ multi-level cooperation]communication bctwccn wo& 
station and scrvcr database system in order to rcducc redundant 
work at both sides as much as possible. 

1. Introduction 
Current database manaacmcnt svstems have mainlv been de- 
signed for business adm?nistratioi applications like &counting, 
bankinn. etc. Within these aoolication areas. an “obiect” from the 
user’s &int of view, that ii ‘a part, a cusiomcr, a’ supplier, an 
emnlovee. etc.. is usuallv reoresented bv iust one record ftunlel 
in ihe ha&base or - in m&e complex cased - by a small col&&ioi 
of records. Therefore, a simple tabular (relational) representation 
of the data is sufficient here, in general. In the engineering envi- 
ronment, however, that is in the arcas of Computer Aided Design 
(CAD), Computer Aided Manufacturing (CAM), and Robotics, 
the data structures arc usually much more complex. Though It 
is oossible to man them into normal Yflat”) relational structures. 
fh$ is not very satisfying in many cas&, bo’th, from a conceptuai 
as well as from a performance point of view. I’hcrcforc, database 
research has been working since scvcral years on developing data 
models and underlying implcmcntations to deal with thcsc com- 

plex structures in a more adequate way (see c. /BBM, BC85,’ 
BKBS BKK85 Da86, Eb84, Fi83, HL82, IIR& Lu85, SRG83, 
VKCi6, SW86i). 
However, not only the structural complexity of the stored data 
differs between business administration data and engineering 
data, but also the way how users actually work with these data 
is dflerent. In the business administration environment t 
transactions access only a few records (exception: statistic all 

pical 
que- 

ries), perform only a few operations, and last only a few seconds. 
In the engineering environment, due to the structural corn lexity 
of data, data accesses and data manipulation - often invisi it le for 
the user - cause a lot of database operations. Also the logical 
units of work, that is the mani 

Y 
ulation or creation of data ob- 

jects, are usually a rather camp ex piece of work, very oRen re- 
quiring some auxiliary software and hardware in order to display 
and verify the results. For both reasons 

6 
structural complexity 

and additional software/hardware deman s), engineering users 
tend to perform their work at private workstations rather than 
at general purpose time-sharing systems (host systems), and to 
use the host system as a database server. (Note, that there are also 
trends in the business administration environment to off-load 
some of the work, especially for statistical evaluations, to de- 
partmental or personal computers (see e.g. /DBDZ85, GCIIS, 
Go84, RK86/).) 
As data accesses of a CAD program to the host system at 
runtime would cause very long delays, the necessary data is usu- 
ally extracted (“checked out”, see /I IL82/) at the beginning and 
brought back into the host database (“checked in”) when all the 
work has been done. If large complex objects are manipulated 
at the workstation, the question arises what shall be transferred 
back at check-in time and what shall take lace subsequently at 
the server site. To simply replace the old o E* lects by the new ob- 
jects is often not very adequate because in ths environment users 
usually wanf to keep old versions of an object see e. 

b cf 
. /BK85, 

DLIS, Ka85, KL84, KSW86, Ne83/). On the ot er si e, to gcn- 
erally store the new and the old versions always completely is also 
prohibitive because of storage space reasons. 
An obvious solution would be to record all changes which occur 
to the obiect durine manioulation at the workstation and to 
subsequenily gencraTe a s&pence of normal “high level” data 
manioulation statements le.e. in SEOUEI,/SOI, ICh76, IBM2/) 
which are executed by thc”server d&abase iystcm at.check-iti 
time. Bv doine so. the server database svstem would be able to 
perform all th: changes (hereby o tionaly. creating a compact 
“delta version” (see /DLW84/)) of t R e objcEt. On the other side, 
however, this would mean to duplicate at the server more or less 
all the work which has already been performed at the work- 
station. This is not only a waste of resources but also check-in 
times may become very long. Also the mapping of low Icvcl” 
data manipulation operations produced by the workstation CAD 
software into reasonable “high level” data manipulation state- 
ments may become a non-trivial problem. 
IJndcr such circumstances the probably best solution is that 
server database system and workstation database system arc de- 
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signed to cooperatively work together. This opens the possibility 
t&lay out boih systems in such a way that check-out requests, 
object transfer, and obiect check-in (complete obicct or infor- 
mation about changes 
system levels and in t I! 

can be handled at-the most appropriate 
e most efftcient way. This is the way we 

tried to follow with the Advanced Information Management 
Prototype (AIM-P /Lu85, Da86/). 
The key idea can be outlined as follows: The workstation oper- 
ates on a so-called object bulfk which is assumed to rcsidc com- 
pletely in virtual (or real) memory, in general. This object buffer 
stores a complex] object in a form whrch allows fast traversal as 
welI as I ast access to subobjects (parts). Workstation users will 
usually work with the AIM-P on-tine interface /AI,PS86/ to 
browse through object libraries but will use the Application 
Program Interface (API /EW86, EW87/) when real1 working 
with an object. Objects to be checked out are specific cf using the 
same “high level” query statements as provided by the on-line 
interface. After check-out the API offers hierarchically oriented 
cursors to “navigate” on the complex object in the obIcct buffer 
as weIl as to communicate changes to the object buffer. 
The object buffer is implemented in such a way that redundant 
changes (e.g. if certain pieces of data have been modified more 
than once since check-out) are detected and removed “automat- 
ically” during update processing. As a consc uencc, only the ‘net’ 
changes have to be communicated back to t x e server at cheek-in 
time. In addition, changes are reflected at the level of AIM-P’s 
basic access and storage units - the so-called suhfu&.r (see Sec- 
tion 2). Hence, checkTin 
overhead of normal (“hi 
than that - can f 

recessing at the server can avoid the 

selective y 
level”) query processing and - more 

touch only those parts of a complex 
object which are actually affected by the change. Though the 
solution described in this paper uses AIM-P and its implcmcn- 
tation as a reference basis, the general idea is certainly applicable 
to a large variety of systems. 
The remainder of this paper is organized as follows: In Seclion 2 
an AIM-P system overvrew is gtven which covers the AIM-P 
data model, query language, storage structures, and system ar- 
chitecture. The techniques for AIM-P object buffer managcmcnt 
(incl. object buffer layout, check-out processing, and check-in 
processing) are described m detail in Section 3. In Section 4 the 
AIM-P Application Program Interface (API) is shortly discussed 
to give an unpression how the programmer actually works with 
AIM-P at a workstation. Section 5 nrovides some final remarks 
on the main issues of this paper and on some future directions 
of research in the AIM-P proIect. 

2. System Overview 
In the following we will briefly introduce the AIM-I’ data model, 
query language, storage structures, and system architccturc, as far 
as needed to understand the subsc ucnt discussion. Marc dctailcd 
descriptions of these issues can % c found in /I.u85, DGW85, 
Da86, PT86, PA86, AI,PS86/. 
The AIM-P svstem is a DBMS nrototvne imnlcmcntation to 
support NF’ ielations (see e.g. iJS82, ‘f;T83, ‘RKSM, AB84, 
Sch85/). also known as ‘relations rvith relation valued attrihutes’ 
(see e.g.’ /Jae85a, Jae85b, SS86/), as ‘unnormalizcd relations’ (see 
e.g. /KTT83, VanG85/), or as ‘n&cd relations’ see e.g. /OYSS/). 
An NF2 relation (also called NF2 l&e) may 6 ave atomic and 
non-atomic attributes. Atomic attributes are e.g. of type 
boolean, integer, real, or string, whcrcas non-atomic attributes 
are relation-valued /Jae85a, Jae85b/ again. In the latter case WC 
also use the term INF’I subrelation or lNF21 suhfah/e. A table in 
first normal form-( 1NF) is just a special case of an NF’ table 
(without non-atomic attributes). Ilcncc. in the NIT2 data model 
tables as well as subtablcs may bc non-flat (i.e. hierarchically 
structured) or flat. 

Fig. 1 shows an example of an NF* table which is non-flat. The 
PROGRAMS table has - at the top lcvcl - two atomic attributes 
PROGNAME (program name) and MAINPROG (main pro- 
gram) as well as two non-atomic attributes MODIJIJIS and 
MACLIBS (macro libraries). 

MODIJLES is a non-flat subtablc with an atomic attribute 
MODNAME (module name) and a non-atomic attribute PRO- 

CEDURES. PROCEDIJRES is a flat subtable with two atomic 
attributes PROCNAME (procedure name) and SIZE (size of the 
procedure in kilo bytes). 

MACLIBS is also a non-flat subtable with an atomic attribute 
LIBNAME (library name) and a non-atomic attribute 
MACROS. MACROS is a flat subtable with two atomic attri- 
butes MACNAME (macro name) and MACTYI’E (macro type, 
either TYPEDECL (type declaration) or PROCIXCL (proce- 
dure declaration)). 
In IMS-like notation /IBMI/ the PROGRAMS table would 
look like as shown in Fig. 2. 
A few more remarks on Fig. 1 and on the terminology which will 
be used in the following: The PROGRAMS table in Fig. 1 con- 
tams two complex objects /IIL82/: Programs AIMPVOI and 
AIMPVOZ. Program AIMPVOl, for example, contains three. 
complex subobjects in subtable MODIJLES (modules PARS1 ,l, 
TIMLI, and COROU2) and also three complex subobjects in 
subtable MACLIBS (libraries GENTY I, PROCDI, and 
SPECTY I). Module PARSI,l contains two /rat .ruhob$~~r (pro- 
cedures PARSER and SCANNER), module TIMI,l contains 
three flat subobjects (procedures GETTIME, CONVTIME, 
FROMTIME, and TOTIME), etc. For clarity it is always helpful 
to distinguish carefully between tables/subtablcs on the one side 
and objects/subobjects on the other side. 
Fig. 3 gives an example of a query statement which performs a 
projection on the PROGRAMS table and also contains some 
restrictions (via predicates in the WIIERE clauses). This query 
has been formulated in AIM-P’s Ifeidelberg Data Base language 
(f-ID&L /ALPS86/) which is an extension of SQL to cope also 
with hierarchical structures. The query retrieves those programs 
(attributes PROGNAME and MAINPROG) whcrc the program 
name contains the substring ‘VOI’. The respective modules (at- 
tribute MODNAME) are also retrieved if their name contains the 
substring ‘1’. Finally, the query selects only those procedures 
(attributes PROCNAME and SIZE) of the selected programs 
and modules with a size of at least 25 kilo bytes. The reader 
should note that the result table of this query (I@. 4) has - except 
the projection - the same structure as the PROGRAMS table. 
shown in Fig. 1. A query result of this type will ‘>e c,allcd an 
up&tab/e query result (see Section 3.2.1). Far more about the 
query and also about the data manipulation facilities of AIM-P 
can be found in some I-II>% related papers /PT86, I’A86, 
AIPS86/. 
Some remarks on the storage structures of AIM-P: AIM-I’ uses 
a so-called Mini Directory concept which separates the structural 
information of a complex object from its data (a discussion of 
this approach and on other altemativcs for NF2 storage structures 
can be found in /DGW85/ and /Da86/). For illustration, Fig. S 
shows the storage structure of the complex object ‘program 
AIMPVOI’ and some of its subobjccts from the PROGRAMS 
table of Fig. 1. In the AIM-I’ approach, a complex object con- 
sists of Mini Directory (MD) subtuplcs (rectangles in Fig. 5) 
which represent the complex object’s structure and data 
subtuples (ovals in Fig. 5) which contain the (atomic) data fields. 
As one can see in Fig. 5, there is one data subtuple per 
objcct/subobject and one MD subtuplc - as a kind of ‘directory’ 
- per subtable. One additional MD subtuple (called rent MD 
subtuple) represents the root of the complex object and is also 
the database management system’s entry point into that complex 
object. The subtuples inside a complex object are linked together 
in tree structure via pointers (tuple identifiers, TIDs): I1 (data) 
pointers are addresses of data subtuples, whcrcas (3 (child) 
pointers are addresses of MD subtuplcs, again. Data and MD 
subtuples are similar to and handled like ‘normal’ tuplcs or rc- 
cords in other database systems (in the RSS of System R /As81/, 
for instance) but are not limited to page siac. All subtuples of a 
complex object arc part of a so-called /oca/ ad&.r~r space which 
supports inner-object clustering /Da86/. 
Because of lack of space we cannot discuss the whole AIM-I’ 
architecture in full detail here (see /I,u8.5/). We will rather con- 
centrate on those parts of the system which are relevant to show 
the relationship and cooperation between database server 
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(AIM-P main system) and the AIM-P agent running at the 
workstation. 
Fig. 6 shows those components of AIM-P which are mainly in- 
volved in auerv execution and result table creation. We will first 
shortly ex$ain’ how data extraction on the lower levels of the 
system is done: The database pa 
data are retrieved via the Buffer a 

es which contain the requested 
anager (step I). The Subtuple 

Manager (or Record Manager) is then responsible for the inter- 
pretation of the Page contents; it retrieves - TID driven - those 
data and Mini Dlrectorv subtuoles Irecords) of a comolex obiect 
which are required for further iroce‘ssing on’ higher sy&em le;els. 
These subtuples are delivered to the Database 

6 
I 
DB) Walk Man- 

ager step 2). This component provides a so-Cal ed 
for t e 

walk inter/ace 
Query Processor (step 3). Since these database walk 

functions together with the Result Walk Manager) are the es- 
\ sential too for readin 

data into the result ta % 
data from the database and writing these 
le (step 4), we will describe this interface 

in some detail in Section 3.2.2. The other stem shown in Fia. 6 
(steps 5 to 8) will also be explained later on. ’ 

3. Result Table and Object Buffer Management 
As already described in Sect. 2, the AIM-P main system at the 
database server uses MD subtuples as a special accesi path within 
a comnlex obiect (NF’ tuole) to nrovide fast access with onlv few 

touchin the data subtuples and (in most cases) the pages they 
are rest mg on. The rationale behind this approach is to effi- *Lf- 
ciently support projection and selection operations by reading 
only those parts of an NF’ tuple which are mvolvcd in the pred- 
icate evaluation (if any) or show up in the result table. 
When having s 
nothing but r 

cified a query, however, the result table contains 
re evant altnbutes and subobjects. Ilence, a more 

compact representation scheme is adequate for storing the data 
and structural information of a complex result object - the 
AIM-P object buffer format. The AIM-P object buffer in its 
current implementation always contains one jcomplex] result 
object with an arbitrary number of [complex] subobjects at a time 
(but could be easily extended to contain several lcom kx result 
objects at a time, if needed). The object buffer can t I? E ere ore be 
seen as a kind of ‘window’ over the result table as shown in Fig. 
7. Usually the result table of a 

the server (in the o 
e.se result objects is created at 

plete - written into the result table on external storage (temporary 
segment). The result table as a whole is finally sent to the work- 
station where the object buffer is used - again - to accommodate 
a complex result object as long as it is intcmally processed (set 
Sect. 3.3). 
The following four demands main1 
plementation of the AIM-P object B 

guided our design and im- 
uffcr: 

1. Fart access: Fast access to any nart (subtablclsubobiect) of 
a complex object in the object- buffer shall be ade&icly 
supported. 
Site autonomy: Any kind of processing in the object buffer 
at a workstation shall be possible in an autonomous way. 
Especially, the workstation DBMS shall be able to create 
and insert new objects/s&objects locally, i.e. without having 
to ask the server DBMS for empty space, free addresses 
(TIDs), etc. AU that work shall be postponed until check-in 
processing is done, thus avoiding unnecessary interactions 
between server and workstation. 
Object buffer = transfer unit: It considerablv simnlifies and 
s&eds u; the checklout 1 check-in process at ihe work- 
station if a common data structure for complex object trans- 
fer between server and workstation on the one side and for 
complex object processing at the workstation on the other 
side is used. We therefore tried to find an object buffer lay- 
out which is suitable for both, object transfer and object 
processing. 
EJficient check-in: The information kept in the object buffer 
should also directly support eflcient check-in techniques at 
the server. It cannot be tolerated, for instance, that the da- 

tabase server has to scan the object buffer completely just 
to find out where changes have been performed at the 
workstation. That is, a mechanism must be provided by the 
object buffer management to locate changes in a co& 
oblect easilv and to materialize these chantzcs in the data iY 

kx 
ase 

eff;cientl . -Especially, redundant work at”the Server should 
be avow ed as far as possible to achieve also a substantiaI +B 
reduction of the server’s workload by manipulating compkx 
objects at a workstation. 

Data which shall be processed at a workstation is extracted from 
the AIM-P database and thereby transformed into the object 
buffer format. In Section 3.1 we ex lain how this internal format 
of complex (result) objects looks i ke. Then, in Section 3.2, it 
will be shown how data extraction and format transformation a~ 
actually done. In Section 3.3 the mechanisms for data manipu- 
lation in the object buffer at the workstation are described. 
Finally, in Sections 3.4 and 3.5, propagation of changed data 
from the workstation back to the server and materialization of 
these changes in the server database are discussed. 

3.1 Object Buffer Layout 
The AIM-P object buffer consists of two major areas: A de- 
scriotion area and a data area. Both are Linear. consecutive stor- 
age’spaces residing in virtual memo 
of the object buffer after having loa 7’ 

Fig. 8 shows the contents 
ed the complex result object 

‘program AIMPVOI’ and its subobjects as ahown in the result 
table of Fig. 4. We will use F$. 8 in the following to explain the 
AIM-P object buffer concept m more detail. 
The contents of the data area are the data of the comolex obiect 
as selected via the predicates and projections of the {uery s&e- 
ment (Fie. 3 in our example). The data area does nor contain any 
auxiliary mformation, such as length descriptions for fields, etc. 
The descritltion area contains all structure information which are 
needed fo; the interpretation of the data area as well as for the 
structural representation of the comdex obiect. The descriotion 
area consists of two parts: a main p&t and & instance part: 

The main part contains some global information like the data 
area pointer, which points to the beginning (star! address) of the 
data area, the free space offset, which tells where the unused (free) 
space area begins within the data area, and the no. of subobjects 
entry, which teUs the number of s&objects within the complex 
ob’ect (this number is 5 in Fig. 8 - two modules plus three pro- 
ce ures). d 

The instance part consists of no. of subobjects + 1 entries (called 
‘rows’ R,), containing all the structure and hierarchical relation- 
ship (‘child’) information for every subobject of the complex 
object which is currently residing in the object buffer. To make 
the description area relocatable as well as to keep address caku- 
lation within the instance part sim le, all instance rows have the 
same length. The first row (R ) escribes the object, the other B 
rows (2 . . . no. of subobjects 4 1) describe the subobjects, i.e. 
there is also one row R, per SubobJect (‘instance’). 
Fig. 9 shows - from a logical as weU as from a physical point of 
view - how these instance rows actually represent a complex ob- 
ject’s StNCtU~. 

Fig. 9a illustrates how the rows R, are used to describe a tree 
structure. Node R represents the root of the complex object 
(program AIMPVdl in the result table of Fig. 4), node R, and 
node R represent the two modules PARSLl and TIMLl, which 
are &i&en (subobjects) of program AIMPVO 1. R and R, stand 
for the two procedures PARSER and SCANNE?R in module 
PARSL,l. Node R, stands for the rocedure CONVTIME in 
module TIMLl. Conceptually, chd and brother pointers are 4 
used as ‘links’ for a complex object’s structural representation in 
the object buffer. 
Fig. 9b shows how these ‘links’ are implemented via first child 
IF0 left brother (LB). and rieht brother (RB) ‘Dointers’ which 
&e &tuaIly row n;mb&s. TheYchild info&atioh {FC) is only set 
in rows R , R,, and R, since only these rows - respectively the 
correspon d. mg nodes in the tree representation - have other sub- 
objects as children, again. The left and right brother information 
(LB, RB) are only set in rows R, and R, (module level) as weU 
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as in rows R, and Rr (procedure level). In all other cases LB, 
RB, and FC are ‘null. 
Besides the LB, RB, and FC information the instance rows also 
contain data (DA offsets relatively to the beginning of the data 
area. One data o rz set exists in the mstance part for each (atomic) 
attribute value which is stored in the data area. Note, that the 
data area winter is the onlv real Dointer (as a virtual memorv 
address) mthe object buffer whereas all other kinds of addressing 
(FC. LB. RB. and DA) are done via row numbers and otTJets. 
‘his’ sav& much processing time when a corn lex object is 
moved to another place, especially from the data i ase server to 
the workstation and vice versa, smce the offsets are stable and 
need not be recomputed (‘relocatable object’). 
Apart from what has been explained so far, the instance rows 
contain some more information (especially m the header fields) 
to keep track of changes which have been performed on the 
comolex obiect at the workstation since check-out. We will come 
back’ to thai issue in more detail in Sections 3.2.1 and 3.3. 

3.2 Filling the Object Buffer - Check-out 
As already mentioned above, the AIM-P object buffer is created 
and filed with data at the server side. First, an HDIIL query is 
sent from the workstation to the server where que 

72 

execution 
takes place. The server DBMS extracts the ueste data from 
the database and transforms these data into t e internal object 
buffer format. The reader should note that a corn 

Y 
lex object as 

it is stored in the database (Fig. 5) cannot - or shou d not, at least 
- simply be taken ‘as it is’ and sent to a workstation for several 
reasons: 

In many cases only certain parts of a complex object are 
actually needed for processing at the workstation (see also 
the projections and restrictions in our exam 
3)). To avoid unnecessary data retrieval an B 

le query (Fig. 
transfer oper- 

attons, onl the requested data should be extracted and 
transforme cl to a ‘dense’ format before sending them out. 
Database addresses (tu le identifiers (TIDs), page numbers, 
etc.) are only valid wtt 3lin a certain context, e.g. a database 
secment. Movintz data to another date (such as a work- 
s&ion) can usu& not be done without recomputing these 
addresses. Even J a more indirect addressinn conceot via 
translation tables etc. is used, the contents 07 these iables 
must at least be adjusted. 
Because of hardware and/or software restrictions the work- 
station DBMS should often be smaller and less complex 
than the general purpose server DBMS. Therefore, sophisti- 
cated storage structures and addressing concepts as they may 
be used for the server DBMS are not always appropriate for 
the workstation DBMS. 

3.2.1 Updatable and Nun-UpdatabIe Query Results 
In the following, we will have to distinguish between two kinds 
of queries and query results: 
l A non-updatable query result means that the workstation 

user has formulated a query just to read the query result 
(result table) which he got from the database server. The 
user does not want to perform any updates (which shag be 
propagated back to the server) on this result table. A query 
result may also be non-updatable ‘per se’, for instance if join 
operations or aggregations (SUM, AVG, etc.) have been 
performed. In these cases there is no simple correspondence 
between the database objects on the one side and the result 
objects on the other side such that updates cannot be ap- 
plied and materialized unambiguously. 

l An updatable query result permits any kind of update oper- 
ations on the result data at the workstation, and the updates 
can of course also be materialized at the server later on. 

In AIM-P the workstation user must state for any quety explic- 
itlv which kind of auerv result (uodatabIe or non-uodatable) he 
w&s to have. If-the- server ‘DBMS gets a request for’ an 
updatable query result, it checks whether the following condi- 
tions are all fulfilled: 
1. The query extracts its data only from a single database table. 
2. No joins between subtables have been specifted (i.e. no re- 

structuring has been done). 

3. No attribute values in the result table have been generated 
using aggregation functions (SUM, AVG, . ..) or arithmetic 
functions. 

If one of these checks fails the workstation user gets a messa 
that the given query produces a non-updatable query result. I -r e 
query m Fig. 3 cornPlies with these rules since it contains only 
Projecttons and restncttons, t.e. the result table shown tn Fig. 4 
ts updatable. 
An updatable query result differs from a non-updatable one in 
so far, that the database addresses (TIDs) are part of the object 
buffer in the first case. while thev are missinn in the second case. 
These addresses are h fact ‘address pairs’ \;hich consist of the 
address of the respective data subtuple (DST in Fig. 9b) and the 
address of the MD subtuple it belongs to (Mb in Fig. 9b). These 
addresses are contained in the header fields or the instance rows 
R, which, in turn, am part of the description area of the object 
buffer. as alreadv described in Section 3.1 (see also Fin. 9b). 
DST,; for ins&e, represents the address (TID) of thi dat’a 
subtuple ‘AIMPVOI QPTEST’ shown in Fig. 5, etc. 
Most of the following discussion applies to both updatable and 
non-updatable query results. In our examples, however, we refer 
to the creation of an updatable query result (Figs. 3 and 4) since 
that scenario contains some more mteresting aspects than the 
non-updatable case. 
3.2.2 Result Table aud Object Buffer Creation at the Server 
As for the AIM-P svstem comnlex obiects are no “soecial ani- 
mals” but normal NF’ tuples, it*suppor& - according (0 the NF’ 
data model - not onlv retrieval of comdex obiects as a whole but 
also selections and projections within-a complex object (see Fig. 
3). As a consequence, the hierarchical structure of such an object 
has to be explicitly exposed at some system-internal level to en- 
able reasonable access to its subparts. As already outlined in 
Section 2, NF’ tuples are stored in a hierarchical fashion using 
MD and data subtuples. To shield the Query Processor compo- 
nent (see Fig. 6) from implementation details of these “physical” 
structures, a somewhat ‘higher” logical interface - caged dutabare 
walk - is used in AIM-P to traverse this hierarchy. 
In reality, this database walk provides not just one operator for 
traversing a complex ob’ect, but a set of interdependent elemen- 
tary walks, each of whrc 4. 1s bound to one NF’ table or subtable. 
At the instance level, the walks are “walking” over the resnective 
NF* table or subtabie occurrences. To pro&&s e.g. an NF’ table 
having the structure as shown in Figs. I and 2, one walk would 
F; to be o ned on PROGRAMS, two others - “below thts 

- on kr ODULES respecttvely MACLIBS, and - finally - 
also on PROCEDURES (below” the MODIJLES walk) and 
MACROS (“below” the MACLIBS walk). 
Being positioned on 
the atomic fields define 

citic [subjobject, a walk gives access to 
to PROGNAME and 

MAINPROG at the to MODNAME at the 
MODULES level, to PROCNAME and SIZE at the PROCE- 
DURES level, etc. The current walk position also defines the 
scope for the dependent walks “below”. If, for example, the top 

the fast complex object (first pro- 
to the atormc values (AIMPVOI, 

ST), the walk at the MODULES level can only process 
the modules belonging to the first program (PAR&I, TIMLI, 
COROUZ). The same holds, anal0 ously, for the walk on 
PROCEDURES (PROCNAME SIZi) whose scope is defined 
by the walk on MODULES (witdi the walk on PROGRAMS). 
In total, one can also see a database walk as a multi-level stun 
operation or some kind of currency indicator as used in 
CODASYL-like s stems /CODA78/. There is also a pretty close 
relationship to i t e concepts used for “navigation” in IMS 
/IBMI/. 
Processing a uery leads to the creation of a result table con- 
taining the u A table or non-updatable query result (see Section 
3.2.1), which is then sent to the workstation for further process- 
ing (step 5 in Fig. 6). Opposed to ordiiary NF’ tables, as per- 
manently or temporarily stored in the database, the NF’ tuples 
(complex objects) within this result table are stored in the object 
buffer representation form as described in Section 3.1. As also 
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described there, the obiect buffer rcoresentation is eauivalent - 
with res 
MD an B 

ect to describing the struc&l relationship’s - to the 
data subtunle renresentation in the stored database. 

Therefore, an anal0 bus w’auc interface - called result walk - is 
used for creating an d traversing the object(s) in the result table. 
Transforming an NF’ database table (in MD / data subtuple 
format) into a result table - hereby applying selections and 
projections as specified in the query expression - requires a “syn- 
chronized walkmg” on both, the NF’ table and the result table, 
hereby, step by step, filling the latter one. 
Because of lack of space, we cannot describe these walks and 
their implementation in more detail here. Ilowever, to under- 
stand the subsequent discussion on object buffer processin 

H 
and 

update propagation, this outline of these functions shou d be 
sufftcient. For readers who are interested in some more details, a 
list of the AIM-P waIk functions is given in the Appendix; a 
comprehensive description can be found in /Kiig7/. 

3.3 Object Buffer Processing at the Workstation 
As already mentioned above, the reason for providing an object 
buffer at the workstation is to achieve some level of site auton- 
omy, efficient 
site, and wor s 

recessing of complex objects at the workstation 
oad reduction at the server site by off-loading 

some of the DBMS work to the workstation. 
A necessarv orecondition to fulfrh the first noal (site autonomv) 
is to provide-the workstation with enough Gforrnation about the 
obiect(s) in the obiect buffer(s). How this information currentlv 
looks hke in AIM:P has been’ described in Section 3.1. huton- 
omous processin has two sides, however: check-out and 
check-m. To enab e f an efficient and *selective” (transmission and 

P 
recessing of changes, only) check-in mechamsm at the server 

ater on, the workstatton has to protocol all changes which hap- 
pened to its complex objects in one way or another. 
The most straightforward solution would be to use traditional 
DBMS after image logging; this is not feasible here, because the 
object buffer representation does not corms 
obrect reoresentation in the NF? database ta 6” 

nd to the complex 
les at the server side. 

fiat is, ihese after image log records could not directly be proc- 
essed at the server side. But even if this would have been oossible. 
the amount of data to be transmitted and the resulting p;ocessing 
overhead would be prohibitive, in general. To use operation lo 
ging instead of after Image loggut 

J 
would be possible, in princip e, 3 

- 

contradicts, however, to the go of reducing some of the work 
at the server side. Without applying highly sophisticated opti- 
mization techniques to the initral sequence of (log) operations in 
order to eliiate redundant oneratrons or to erou~ onerations 
where possible by object and &object, the serve; would just 
rencat all the work aheadv done at the workstation side. herebv 
causing long check-in timds. 
In AIM-P, protocolling is therefore done by/lagging the affected 
parts of an object in the object buffer according to the 
operation(s) performed. By having different flags for insertions, 
updates, and deletions, and by having some kind of flag priority 
scheme (delete “overrules” a previously performed insert or up- 
date). the obiect buffer is selfootimizin~ with rcsoect to the 
elir&ation of redundant operaiions. ” 
The flagging itself can be done in two ways, namely 
. one-level flagging and 
. multi-level flagging. 
When performing one-level Jagging, only those instance rows 
(respectively subobjects) in the object buffer are flagged, which 
are diily affected by the change. This is sufficient from an in- 
formation point of view, requires, however, a complete sequential 
scan of the description area at check-in time at the server (see 
Section 3.5). If the objects to be processed are not very big, i.e. 
if they do not consist of too many subobjects, this overhead is 
tolerable, in general. If the objects are ve big, however (and in 
many applications they are), a more se ective scheme, which 7 
avoids - or at least reduces - this overhead, would be preferable. 
For that purpose, the multi-level flagging scheme has been de- 
veloped. In this scheme, not only the directly affected instance 
rows (respectively subobjects) are flagged, but also all other rows 

lying on the same hierarchical path from the directly affected in- 
stance row up to the root of the hierarch 
purpose of the additional higher level 

(see Section 3.1). The 

date Manager (see 
t&s is to signal the Up- 
3.5) whether - within a 
a modification has been 

o distinguish *signal flags” 
from real change flags, different flag types are used. This zpwrd 
propagation of changes via signal flags is already done at the 
workstation during normal object buffer processin 
propagation of flags causes very little extra over a 

. The upward 
ead since the 

workstation DBMS keeps always track of the ‘parent’ rows of an 
instance row. 

3.4 Update Propa 
cution at the Wor t 

ation - Check-in Preparation and Exe- 
station 

be far too expensive - especially if just a few small than s have 
been 

F 
erformed in some large complex objects - to sen r all ob- 

jects rom the result table back to the server. For a given restsIt 
table the Result Walk Manager at the workstation must therefore 
be able to 
l 
. 

find out which complex objects have been changed, 
extract the changed data from these complex oblects. 

The Result Walk Manager can then perform some kind of ‘delta 
ropagation’ in order to reduce the communication overhead 

L tween workstation and server. 
To find out which complex objects have been than ed, 

f 
the Rc- 

sult Walk Manager maintains a bit list for each resu t table with 
one bit 

x” 
sition per complex result object. A bit is ‘on’ if and 

only if t e respective object has been changed. At propagation 
time this bit list is scanned and those complex objects whrch have 
been changed are read into the object buffer for further exam- 
ination. 
To support delta propagation on complex object level, the Result 
Walk Manager at the workstation does not mix the ‘old’ data 
(which have been sent from the server to the workstation) and 
the ‘new’ data (which are created at the workstation during up- 
dates and inserts). As a general strategy, no update in place is 
performed in the data area even if the length of an attribute value 
does not change. New data or changed data are alwa s appended 
to the current end of the data area. The respective ct ata offset in 
the instance row (DA field in Fig. 9b) is set or changed to 
maintain the correct address. 
Fig. IO shows the object buffer of Fig. 9 after a new module (with 
one procedure) has been inserted and the name of an old module 
(PARSLI) has been changed to PARSLZ. To reflect the in- 
sertions, two new instance rows have been created at the end of 
the description area, one R,) for the new module and one (R,) 

6 for the new procedure in t at module. To connect R, and R, to 
the existing mstance tree, RB right brother) in R, - which was 
previously ‘null’ - and LB (left 6 rother) in R, have been set. The 
name of the new moduIe (CHECK) and the data for the new 
procedure (CHECKDTA, 40) have been appended to the current 
end of the data area (offsets 0 0 , 0 ). The update of the 
MODNAME attribute for mod& PXR!&l has then been done 
via an insertion at offset 0,, in the data area, and the respective 
data offset in instance row R has been changed from 0, (4 
PARSLl) to O,, (+ PARSLZj. 
This mechanism requires, of course, some more storage space in 
the data area than an update-in-place strategy. The major ad- 
vantage is, however, that the new data is always separated from 
the old data and hence needs not be extracted at propagation 
time. Since both kinds of data (old and new) are stored in the 
same data area, addressing can still be done in a simple and uni- 
form way. 
To propagate all these changes back to the server, the description 
ama (incl. rows R. to R.) and the new (!) contents of the data area 
(from offset 0,, to off& 0,,) are concatenated in virtual storage. 
The start offset of the new data (O,,) is stored within the main 
part of the description area since rt 1s needed later on for address 
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calculation at the server side. The concatenated storage spaces are 
then sent back to the database server (.rter, 6 in Fig. 6). 

3.5 Update Materialization at the Server 
After having received the ‘delta’ object buffer(s) from the work- 
station at the server the Update Manager of the server DBMS is 
responsible for the matenalization of all changes (updates, in- 
sertions, and deletions) which are reflected in these object 
buffer(s). The changes must be transformed into modifications 
of the database storage structures (Mini Directory (MD) and data 
subtuples, steps 7 and 8 in Fig. 6). 
A complex object in the object buffer may contain an arbitr 
number and ‘mixture’ of changes at different places and on dl - Y 
ferent levels: Some of its data may have been updated at the 
workstation, new subobjects may have been inserted, and old 
subobjects may have been deleted. The Update Manager must 
look at the change flags (which have been mtroduced in Section 
3.3) in the instance rows to find out where (and which kind of) 
changes have been performed. 
When a change has been detected in the object buffer (via the 
flags), the database addresses (TIDs) in the header of the respec- 
tive mstance row (MD, and DST, in Fig. lob) are used to deter- 
mine those database subtuples which have to be modified. Dc- 
pending on the change flags, the following actions have to be 
performed to materialize the changes in the database: 
. 

. 

. 

4. 

UDdate: In case of a siiole &ate the TlD of the respective 
d&a subtuple (DST,) is kno& from the instance ro&. The 
Update Mana er modifies that data subtuple via an ap ro- 
pnate Subtup e Manager call, where the update is f (p 1 
lcally) performed at the end. 

ys- 

Deletion: If the change flag says that a subobjcct shall be 
deleted from a certain subtable, the MD subtuple of this 
subtable is accessed via its TID (MD in the instance row). 
The address entry for the subobjecl is determined via a 
search and can then be eliminated from the MD subtuple. 
Finallv. the whole subobiect can be deleted. This is all done 
via an’appropriate series of Subtuple Manager calls (‘update 
subtu 
The (f 

le’, ‘delete subtuple(s)‘). 
eletion of a complex object as a whole is just a special 

case of that strategy. 
Insertion: For an insertion of a new subobiect. the MD 
subtu le of the subtable where the insertion ahail be done 
must t e retrieved. Its address can again be found as MD, in 
the instance row. The subobject ‘;ls stored via Subtuple 
Manager calls (‘store subtuple(s)‘), and a new address entry 
is appended to the end of the respective MD subtuple. This 
MD subtuple is finally updated. 
The creation of a new complex object as a whole can again 
be treated as a special case of that scenario. The new object 
is built up in the object buffer at the workstation 
autonomously and finally - at check-in time - sent to the 
server for insertion into the database table where empty 
space is acquired, addresses (TIDs) are assigned, etc. 

Introduction to the Application Program Interface 
As already stated earlier, an application program at a workstation 
does not directlv interact with the Result Walk Manaeer. The 
Result Walk in&face (see Appendix) is not yet the riahrtool for 
that purpose since it ofi’ers o&y somd basic s&vices (as procedure 
calls) for obiect buffer and result table processing. A more user 
friendly - arid also more powerful - inte;face for data access and 
manipulation via an application program had to be provided. 
In the following we just want to give an impression how the 
AIM-P application program interface (API) works and how it 
looks like. A more comprehensive discussion can be found in 
/EW86/ and /EW87/. 
For using AIM-P from an application program at a workstation 
a precompilation approach has been taken which is an extension 
to what has been done for System R /LW79/ and SQl,/DS 
/IBMZ/. To define which query result shall be processed, the 
programmer embeds the appropriate HDBL query statement 
(such as the one in Fig. 3) into the source code of the application 
program. Such a result declaration can be done via the statement: 

DECLARE RESULT result-name [FOR UPDATE] 

FROM QUERY-STATEMENT ‘SEL,ECT . . . ’ 
‘Result name’ becomes the program-internal name (identifier) 
of the result table to be obtamed from the database server, and 
via the ‘FOR UPDATE’ option an updatable query result (see 
Section 3.2.1) can be requested. The DECL,ARE RESUI,T 
statement, however, dots not imply the query execution and data 
extraction. This has to be done via another statement which is 
also embedded into the aoolication moeram: EVALUATE 
result name. These stateme& for resilt t;ble declaration and 
data &traction have been separated in order to oermit a remtitive 
execution of a query which-has to be defined land parsed, etc.) 
only once (see also /LW79/ and /Ch81/ for a similar concept in 
System R). 
Before we discuss how the contents of a result table can be 
processed via the API, the general strategy for program prccom- 
pilation and execution shall shortly be explained. The embedded 
statements (like DECLARE, EVALIJATE, and others which 
will be described later on) are understood bv the API 
precompiler. The recompile; transforms the sot&e program 
with the embedde B statements so that it can then be orocessed 
by the ‘normal’ compiler. At precompilation time, the Embedded 
statements are reolaced bv orocedure cab to the API runtime 
system (RTS) wh’ich runs-oh top of the Result Walk Manager 
(see Fig. 6). At rogram execution time (runtime), the ap 
tion program cal s the API runtime system which in turn ca P R 

lica- 
s the 

Result Walk Manager for certain operations on the result table. 
Query execution and data extraction at the server are also done 
at runtime via a call to the API RTS which is forwarded to the 
Query Processor. The result table is then sent to the workstation 
where further processing is done via the API. 
As an extension to the cursor concept for (flat) tables in System 
R and SQL/D& hierarchicaf cursors can be defined in the a 

s 
pli- 

cation program to handle also non-flat result tables. Like a ata- 
base or result walk (see Section 3.2.2), a hierarchical cursor con- 
sists of a set of interdependent elementary cursors. Each elcmen- 
tary cursor is bound to one “data subtuple level” in the hierarchy. 
Because of this one-to-one correspondence between cursors and 
walks, a cursor can directly be implemented as a walk at the Re- 
sult Walk interface /Ki.i87/. 
The cursor definition in the application program is again done 
via an embedded statement (DECLARE CURSOR . ..) which 
is understood by the API precompiler. Other statements, which 
the API precompiler transforms into API RTS calls, are available 
to OPEN, to MOVE, or to CLOSE a cursor. The application 
program Interface offers some more options for these statements 
than are orovided bv the Result Walk Manager one level “below”. 
The programmer Gay move, for instance,-a cursor forward or 
backward by a given step-width. IIe may also move it directly to 
a certain 
partial an 8” 

sition in a table or subtable what can be used for 
range processing of lists (‘from elcmcnt . . . to element 

. ..‘). These more powerful cursor operations are mapped down 
by the API RTS to a sequence of calls at the Result Walk inter- 
face. 
Embedded program statements like FE’I’CII, UPDATE, IN- 
SERT, and DELETE can be used 
. tomr;;zsdata from a result table into application program 

. to change data in objects or subobjects, i.e. to move the 
contents of program variables into a result table, 

. to insert new objects or subob’ects into a result 
L 

table, 
. to de/ete existing objects or su objects from a result table. 
These statements are always bound to a cursor. The cursor’s state 
(ON an object/s&object, BEFORE an object/s&object, etc.) 
and position within the table or subtable determine which data 
are actually read, changed, inserted, or deleted. (UPDATE, IN- 
SERT, and DELETE statements are only allowed, of course, for 
updatable query results.) All these staiements are in fact set- 
oriented. This simolifies oroprammina substanti;allv and may also 
speed up runtime -proce&ing since th> number of-RTS calis can 
be reduced. The programmer may, for instance, delete all objects 
or subobjects of a table or subtable with one DEL,ETE state- 
ment, and he may also use one INSERT statement to insert more 
than one object or subobject at a time. Since an INSERT state- 
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ment also delivers the data, this implies that a set of data must 
be orovided rather than the data for a sinde obiect or subobiect. 
Fo; that purpose, the programmer may El1 an- array in the-ap- 
plication program with the new data before the insertion is done. 
Besides that set-orientation, there is also - as another option - a 
tuple-orientation which can be used for further simplification of 
data handling and data transfer between the application program 
and the API runtime system /EW86/. If the programmer wants 
to read the data tu le-oriented, he must provide suitable record 
variables in his app lcation program where the data can be deliv- J! 
ered by the API runtime system. Tuple and set orientation can, 
of course. also be used in combination if an array of records is 
provided.’ 

5. Summary and Outlook 
In this oaner we have described how a workstation and a server 
DBMS-c& closely work together such that in an engineering 
desiefl environment (and not only there) a substantial reduction 
of ti;e server’s workldad can be aihieved. As opposed to concepts 
used for most distributed database management systems, the 
systems in our approach do not only communicate via the “high 
level” (relationalJ database interface but also vi? ‘lower” system 
interfaces. That IS, we have proposed a logically tight cooperation 
between workstation and server database system using a multi- 
level cooperation and communication strategy. The solution dc- 
scribed in this paper has been fully implemented and is in use as 
an integral part of our DBMS. Though this approach helps al- 
ready quite a lot to speed up check-in processin k 
to gain even more from the local processing w 

we. would like 
tch IS done (or 

could be done) at the workstation. 
In the current implementation, e.g. index updates are performed 
completely at the server side during check-in processing. Though 
this IS not that bad for simple indexes lie B-trees, the overhead 
for maintaining more complex indexes - e.g. like our text frag- 
ment index /KW81/ - is considerable. Instead of performing all 
this work at check-in time at the server, a lot of preparatory work 
(e.g. text decomposition and comrtation of an index terms for 
text index maintenance) could ready be done at the work- 
station. Also more has to be done for consistency control, like 
checking whether a unique key condition has been violated dur- 
ing update processing at the workstation. This should also al- 
ready be done ahead of normal check-in processing. We are co- 
operating with the University of Darmstadt (see /De86, D086/) 
to develoo more comprehensive solutions. -- In this cooperation 
we are a&o currently’ looking into the problems of con&rency 
control for workstation server DBMS’s what has not been men- 
tioned in this paper so far. The granularity of locking (complex 
obiect level. subobiect level. subtuole level, . ..). for instance, will -, 
of course be a deccsive factor for the overall system performance 
in a multi-user environment. 
The Advanced Information Management Prototype has now 
entered the phase of being experimentally used in various appli- 
cation areas. Especially connecting the system to CAD, CAM, 
and Robotics applications wiLl be of major interest (see 
/DDKL,86, KL,W86, Kl85, KSW86/). We plan to report about 
our experiences in a forthcoming paper. 
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