Cooperative Object Buffer Management in the

Advanced Information Management Prototype

K. Kiispert, P. Dadam,

J. Giinauer

IBM Heidelberg Scientific Center
Tiergartenstr. 15
D-6900 Heidelberg, West Germany

Abstract

In the CAD, CAM, and Robotics environment the on-line con-
struction and manipulation of data objects is very often done at
dedicated workstations rather than at host systems. As the stor-
age space of workstations is usually not that large and as large
designs are also not performed by a single designer but by a group
of designers, in general, one would like to use host database sys-
tems as central scrvers to store, to retrieve, and to “communicate”
data objects. Current database management systcms, however,
have mainly been designed for business administration purposes
where much simpler structured data objects occur. But even if the
server database system offers adequate complex object support,
the question remains how workstation and server database sys-
tem should work together. That is, how the changes performed
at the workstation should be communicated back to the scrver
such that a new version of an object can be created at the host
site in an efficient and storage saving way. In this paper the ap-
proach implemented in the Advanced Inly rmation Management
Prototype (AIM-P) at the IBM Heidelberg Scicntific Center is
described. The AIM-P database management system is based on
NI (Non First Normal Form) relations and follows the strate
of a multi-level cooperation/communication bctween work-
station and scrver database system in order to reduce redundant
work at both sides as much as possible.

1. Introduction

Current database management systems have mainly been de-
signed for business administration applications like accounting,
banking, ctc. Within thesc application arcas, an "object” from the
user’s point of view, that is a part, a customer, a supplier, an
employee, etc., is usually represented by just one record (tuple)
in the database or - in more complex cases - by a small collection
of records. Therefore, a simple tabular (relational) representation
of the data is sufficient here, in gencral. In the engincering envi-
ronment, however, that is in the arcas of Computer Aided Design
(CAD), Computer Aided Manufacturing (CAM), and Robotics,
the data structures are usually much more complex. Though it
is possible to map them into normal (“flat”) relational structures,
this is not very satisfying in many cases, both, from a conceptual
as well as from a performance point of view. Therefore, database
research has been working since several years on developing data
models and underlying implementations to deal with these com-

Proceedings of the 13th VLDB Conference, Brighton 1987

plex structures in a more adequate way (scc c.g. /BB84, BC8S,
BK 85, BKK85, Da86, Eb84, Fi83, HL82, HR&3, Lu8S, SRG83,
VKC86, SW86/).

However, not only the structural complexity of the stored data
differs between business administration data and engincering
data, but also the way how users actually work with these data
is different. In the business administration environment typical
transactions access only a few records {exception: statisticar que-
ries), perform only a few operations, and last only a few seconds.
In the engineering environment, due to the structural complexity
of data, data accesses and data manipulation - often invisible for
the user - cause a lot of database operations. Also the logical
units of work, that is the manipulation or creation of data ob-
jects, are usually a rather complex piece of work, very often re-
quiring some auxiliary software and hardware in order to display
and verify the results. For both reasons éstructural complexity
and additional software/hardware demands), engineering users
tend to perform their work at private workstations rather than
at general purpose time-sharing systems (host systems), and to
use the host system as a database server. (Note, that there are also
trends in the business administration environment to off-load
some of the work, especially for statistical evaluations, to de-
partmental or personal computers (see e.g. /DBDZ85, GC8S,
Go84, RK86/).)

As data accesses of a CAD program to the host system at
runtime would cause very long delays, the necessary data is usu-
ally extracted (“checked out”, sce /HL82/) at the beginning and
brought back into the host database ("checked in”) when all the
work has been done. If large complex objects are manipulated
at the workstation, the question anises what shall be transferred
back at check-in time and what shall take place subscquently at
the server site. To simply replace the old ogjects by the new ob-
jects is often not very adequate because in this environment users
usually want to keep old versions of an object (sce e.g. /BK8S,
DL8S, Ka85, K1.84, KSW86, Ne83/). On the other side, to gen-
erally store the new and the old versions always completely is also
prohibitive because of storage space reasons.

An obvious solution would be to record all changes which occur
to the object during manipulation at the workstation and to
subsequently gencrate a scquence of normal “high level” data
manipulation statcments (e.g. in SEQUEL/SQL, /Ch76, IBM2/)
which are executed by thc server database systcm at check-in
time. By doing so, the server database system would be able to
perform all the changes (hereby optionally, creating a compact
“delta version” (sec /DLW84/)) of the object. On the other side,
however, this would mean to duplicate at the server more or less
all the work which has already been performed at the work-
station. This is not only a waste of resources but also check-in
times may become very long. Also the mapping of Tow level”
data manipulation operations produced by the workstation CAD
software into reasonable “high level” data manipulation state-
ments may become a non-trivial problem.

Under such circumstances the probably best solution is that
server databasc system and workstation database system arc de-

483

signed to cooperatively work together. This opens the possibility
to lay out both systems in such a way that check-out requests,
object transfer, and object check-in (complete object or infor-
mation about changes) can be handled at the most appropriate
system levels and in the most efficient way. This is the way we
tried to follow with the Advanced Information Management
Prototype (AIM-P /Lu85, Da86/).

The key idea can be outlined as follows: The workstation oper-
ates on a so-called object buffer which is assumed to reside com-
pletely in virtual (or real) memory, in general. This object buffer
stores a}complex] object in a form which allows fast traversal as
well as fast access to subobjects (parts). Workstation users will
usually work with the AIM-P on-line interface /AL.PS86/ to
browse through object libraries but will use the Application
Program Interface (API /EW86, EW87/) when really working
with an object. Objects to be checked out are spcciﬁcci’ using the
same “high level” query statements as provided by the on-line
interface. After check-out the API offers hierarchically oriented
cursors to “navigate” on the complex object in the object buffer
as well as to communicate changes to the object buffer.

The object buffer is implemented in such a way that redundant
changes (e.g. if certain pieces of data have been modified more
than once since check-out) are detected and removed “automat-
ically” during update processing. As a conscquence, only the ‘net’
changes have to be communicated back to the server at check-in
time. In addition, changes are reflected at the level of AIM-P’s
basic access and storage units - the so-called subtuples (sce Secc-
tion 2). Hence, check-in processing at the server can avoid the
overhead of normal ("hifﬁ level”) query processing and - more
than that - can sclectively touch only those parts of a complex
object which are actually affected by the change. Though the
solution described in this paper uses AIM-P and its implemen-
tation as a reference basis, the general idea is certainly applicable
to a large variety of systems.

The remainder of this paper is organizcd as follows: In Section 2
an AIM-P system overview is gtven which covers the AIM-P
data model, query language, storage structures, and system ar-
chitecture. The techniques for AIM-P object buffer management
(incl. object buffer layout, check-out processing, and check-in
processing) are described in detail in Section 3. In Section 4 the
AIM-P Application Program Interface (AP1) is shortly discussed
to give an impression how the programmer actually works with
AIM-P at a workstation. Section 5 provides some final remarks
on the main issues of this paper and on some future dircctions
of rescarch in the AIM-P project.

2. System Overview

In the following we will briefly introduce the AIM-P data model,
query language, storage structurcs, and system architccture, as far
as needed to understand the subsequent discussion. More detailed
descriptions of these issucs can be found in /I.u85, DGWRS,
Da86, PT86, PA86, ALPS86/.

The AIM-P system is a DBMS prototype implementation to
support NF? relations (sce e.g. /JS82, 1783, RKS84, AB84,
Sch85/), also known as ‘relations with rclation valued attributes’
(see e.g. /Jae85a, Jae85b, SS86/), as ‘unnormalized relations’ (sce
e.g. [KTT83, Van(G85/), or as ‘nested relations’ S:cc e.g. JOY85)).
An NF? relation (also called NI? table) may have atomic and
non-atomic attributes. Atomic attributes are eg. of type
boolean, integer, real, or string, whercas non-atomic attributes
are relation-valued /JaeB5a, Jae85b/ again. In the latter case we
also use the term [NF? subrelation or [NF?] subtable. A table in
first normal form (I1NF) is just a special case of an NI table
(without non-atomic attributes). Hence, in the NI data model
tables as well as subtables may bc non-flat (i.e. hierarchically
structured) or flat.

Fig. 1 shows an example of an NF? table which is non-flat. The
PROGRAMS table has - at the top level - two atomic attributes
PROGNAME (program name) and MAINPROG (main pro-
gram) as well as two non-atomic attributes MODULES and
MACLIBS (macro librarics).

MODULES is a non-flat subtable with an atomic attribute
MODNAME (module name) and a non-atomic attribute PRO-

484

CEDURES. PROCEDURES is a flat subtable with two atomic
attributes PROCNAME (procedure name) and SIZFE (size of the
procedure in kilo bytes).

MACLIBS is also a non-flat subtable with an atomic attribute
LIBNAME (library name) and a non-atomic attribute
MACROS. MACROS is a flat subtable with two atomic attri-
butes MACNAME (macro name) and MACTYPE (macro type,
either TYPEDECL (type declaration) or PROCDICL (proce-
durc declaration)).

In IMS-like notation /IBMI/ the PROGRAMS table would
look like as shown in Fig. 2.

A few more remarks on Fig. | and on the terminology which will
be used in the following: The PROGRAMS table in Fig. 1 con-
tains two complex objects [HL82/: Programs AIMPV0l and
AIMPVO02. Program AIMPVO0I, for example, contains three
complex subobjects in subtable MODULES (modules PARSI .1,
TIMLI, and COROU2) and also threc complex subobjects in
subtable MACLIBS (libraries GENTYI1, PROCDI, and
SPECTY1). Module PARSI.1 contains two flat subobjects (pro-
cedures PARSIER and SCANNER), module TIML1 contains
three flat subobjects (procedures GETTIME, CONVTIME,
FROMTIME, and TOTIME), etc. For clarity it is always helpful
to distinguish carefully between tables/subtables on the onc side
and objects/subobjects on the other side.

Fig. 3 gives an example of a query staternent which performs a
projection on the PROGRAMS table and also contains some
restrictions (via predicates in the WHERE clauses). This query
has been formulated in AIM-P’s Fleidelberg Data Base Language
(HDBL |ALPS86/) which is an extension of SQL to cope also
with hierarchical structures. The query retrieves those programs
(attributes PROGNAMTI: and MAINPROG) where the program
name contains the substring ‘VOI’. The respective modules (at-
tribute MODNAME) are also retrieved if their name contains the
substring ‘1". Finally, the query selects only those procedurcs
(attributes PROCNAME and SIZI3) of the sclected programs
and modules with a size of at least 25 kilo bytes. The rcader
should note that the result table of this query (Fig. 4) has - except
the projection - the same structure as the PROGRAMS table
shown in Fig. 1. A query result of this type will be called an
updatable query result (sece Section 3.2.1). Far more about the
query and also about the data manipulation facilitics of AIM-P
can be found in some HDBL rclated papers /PT86, PARS,
ALPS86/.

Some remarks on the storage structures of AIM-P: AIM-P uscs
a so-called Mini Directory concept which scparates the structural
information of a complex object from its data (a discussion of
this approach and on other alternatives for NIF? storage structures
can be found in /DGW85/ and /Da86/). For illustration, Fig. 5
shows the storage structure of the complex object ‘program
AIMPVO0!” and some of its subobjects from the PROGRAMS
table of Fig. 1. In the AIM-P approach, a complex object con-
sists of Mini Directory (MD) subtuples (rectangles in Fig. 5)
which represent the complex object’s structure and data
subtuples (ovals in Fig. 5) which contain the (atomic) data fields.
As one can see in Fig. 5, there is one data subtuple per
object/subobject and one MD subtuple - as a kind of “directory”
- per subtable. One additional MDD subtuple (called root MD
subtuple) represents the root of the complex object and is also
the database management system’s entry point into that complex
object. The subtuples inside a complex object are linked together
in tree structure via pointers (tuple identifiers, TIDs): D (data)
pointers are addresses of data subtuples, whereas C (child)
pointers are addresses of MD subtuples, again. Data and MD
subtuples are similar to and handled like ‘normal’ tuples or re-
cords in other database systems (in the RSS of System R /As81/,
for instance) but are not limited to page size. All subtuples of a
complex object arc part of a so-called local address space which
supports inner-object clustering /DDa86/.

Because of lack of space, we cannot discuss the whole AIM-P
architecture in full detail here (see /L.u85/). We will rather con-
centrate on those parts of the system which are relevant to show
the relationship and cooperation between database server

Proceedings of the 13th VLDB Conference, Brighton 1987

(AIM-P main system) and the AIM-P agent running at the
workstation.

Fig. 6 shows those components of AIM-P which arc mainly in-
volved in query execution and result table creation. We will first
shortly explain how data extraction on the lower levels of the
system is done: The database pages which contain the requested
data are retrieved via the Buffer I%'lanager (step 1). The Subtuple
Manager (or Record Manager) is then responsible for the inter-
pretation of the page contents; it retrieves - TID driven - those
data and Mini Directory subtuples (records) of a complex object
which are required for rf’lllrther processing on higher system levels.
These subtuples are delivered to the Database &DB) Walk Man-
ager (step 2). This component provides a so-called walk interface
for the Query Processor (step 3). Since these database walk
functions ﬁtogether with the Result Walk Manager) are the es-
sential tool for reading data from the database and writing these
data into the result table (step 4), we will describe this interface
in some detail in Section 3.2.2. The other steps shown in Fig. 6
(steps S to 8) will also be explained later on.

3. Result Table and Object Buffer Management

As already described in Sect. 2, the AIM-P main system at the
database server uses MD subtuples as a special access path within
a complex object (NF? tuple) to provide fast access with only few
disk accesses to every subobject of a complex object. Moreover,
MD subtuples and data subtuples are also iept separate such that
scanning the MD structure of an NF? tuple can be done without
touching the data subtuples and (in most cases) the pages they
are residing on. The rationale behind this approach is to cffi-
ciently support projection and selection operations by reading
only those parts of an NI tuple which are involved in the pred-
icate evaluation (if any) or show up in the result table.

When having specified a query, however, the result table contains
nothing but relevant attributes and subobjects. Hence, a more
compact representation scheme is adequate for storing the data
and structural information of a complex result object - the
AIM-P object buffer format. The AIM-P object buffer in its
current implementation always contains one [complex] result
- object with an arbitrary number of [complex] subobjects at a time
{but could be casily extended to contain several [com lcx} result
objects at a time, if needed). The object buffer can therefore be
seen as a kind of ‘window’ over the result table as shown in Fig.
7. Usually the result table of a query contains more than one
[complex] result object. Each of these result objects is created at
the server (in the object buffer) and then - as soon as it is com-
plete - written into the result table on external storage (temporary
segment). The result table as a whole is finally sent to the work-
station where the object buffer is used - again - to accommodate
a complex result object as long as it is internally processed (sec
Sect. 3.3).

The following four demands mainly guided our design and im-

plementation of the AIM-P object buffer:

1. Fast access: Fast access to any part (subtable/subobject) of
a complex object in the object buffer shall be adequatcly
supported.

2. Site autonomy: Any kind of processing in the object buffer
at a workstation shall be possible in an autonomous way.
Especially, the workstation DBMS shall be able to create
and insert new objects/subobjects locally, i.c. without having
to ask the server DBMS for empty space, free addresses
(TIDs), etc. All that work shall be postponed until check-in
processing is done, thus avoiding unnecessary interactions
between server and workstation.

3. Object buffer = transfer unit: 1t considerably simplifies and
speeds up the check-out / check-in process at the work-
station if a common data structure for complex object trans-
fer between server and workstation on the one side and for
complex object processing at the workstation on the other
side 1s used. We therefore tried to find an object buffer lay-
out which is suitable for both, object transfer and object
processing.

4. Efficient check-in: The information kept in the object buffer
should also directly support efficient check-in techniques at
the server. It cannot be tolerated, for instance, that the da-

Proceedings of the 13th VLDB Conference, Brighton 1987

tabase server has to scan the object buffer completely just
to find out where changes have been performed at the
workstation. That is, a mechanism must be provided by the
object buffer management to locate changes in a complex
object easily and to matenialize these changes in the database
efficiently. Especially, redundant work at the server should
be avoided as far as possible to achieve also a substantial
reduction of the server’s workload by manipulating complex
objects at a workstation.

Data which shall be processed at a workstation is extracted from
the AIM-P database and thereby transformed into the object
buffer format. In Section 3.1 we explain how this internal format
of complex (result) objects looks ﬁke. Then, in Section 3.2, it
will be shown how data extraction and format transformation are
actually done. In Section 3.3 the mechanisms for data manipu-
lation in the object buffer at the workstation are described.
Finally, in Sections 3.4 and 3.5, propagation of changed data
from the workstation back to the server and materialization of
these changes in the server database are discussed.

3.1 Object Buffer Layout

The AIM-P object buffer consists of two major areas: A de-
scription area and a data area. Both are linear, consecutive stor-
age spaces residing in virtual memory. Fig. 8 shows the contents
of the object buffer after having loa?d the complex result object
‘program AIMPV(1’ and its subobjects as shown in the result
table of Fig. 4. We will use Fig. 8 in the following to explain the
AIM-P object buffer concept in more detail.

The contents of the data area are the data of the complex object
as selected via the predicates and projections of the query state-
ment (Fig. 3 in our example). The data area does not contain any
auxiliary information, such as length descriptions for fields, etc.

The description area contains all structure information which are
needed for the interpretation of the data area as well as for the
structural representation of the complex object. The description
area consists of two parts: a main part and an instance part.

The main part contains some global information like the data
area pointer, which points to the beginning (start address) of the
data area, the free space offset, which tells where the unused (free)
space arca begins within the data area, and the no. of subobjects
entry, which tells the number of subobjects within the complex
object (this number is § in Fig, 8 - two modules plus three pro-
cedures).

The instance part consists of no. of subobjects + | entries (called
‘rows’ R)), containing all the structure and hierarchical relation-
ship (‘child’) information for every subobject of the complex
object which is currently residing in the object buffer. To make
the description area relocatable as well as to keep address calcu-
lation within the instance part simple, all instance rows have the
same length. The first row (R,) describes the object, the other
rows (2 ... no. of subobjects ¥ 1) describe the subobjects, i.e.
there is also one row R, per subobject (‘instance’).

Fig. 9 shows - from a logical as well as from a physical point of
view - how these instance rows actually represent a complex ob-
ject’s structure.

Fig. 9a illustrates how the rows R, are used to describe a tree
structure. Node R, represents the root of the complex object
(program AIMPV! in the result table of Fig. 4), node R, and
node R, represent the two modules PARSL1 and TIMLI, which
are children (subobijects) of program AIMPVO01. R, and R, stand
for the two procedures PARSER and SCANNER in module
PARSLI1. Node R, stands for the procedure CONVTIME in
module TIMLI1. Conceptually, child and brother pointers are
used as ‘links’ for a complex object’s structural representation in
the object buffer.

Fig. 9b shows how these ‘links’ are implemented via first child
(FC), left brother (L.B), and right brother (RB) "pointers” which
are actually row numbers. The child information (FC) is only set
in rows R,, R,, and R, since only these rows - respectively the
corresponding nodes in the tree representation - have other sub-
objects as children, again. The left and right brother information
(LB, RB) are only set in rows R, and Ry (module level) as well

485

as in rows R, and R, (procedure level). In all other cases LB,

RB, and FC are ‘null®

Besides the LB, RB, and FC information the instance rows also
contain data (DA) offsets relatively to the beginning of the data
area. One data offset exists in the instance part for each (atomic)
attribute value which is stored in the data area. Note, that the
data area pointer is the only real pointer (as a virtual memory
address) in the object buffer whereas all other kinds of addressing
(FC, LB, RB, and DA) are done via row numbers and off5ets.
This saves much processing time when a complex object is
moved to another place, especially from the database server to
the workstation and vice versa, since the offsets are stable and
need not be recomputed (‘relocatable object’).

Apart from what has been explained so far, the instance rows
contain some more information (especially in the hAeader fields)
to keep track of changes which have been performed on the
complex object at the workstation since check-out. We will come
back to that issue in more detail in Sections 3.2.1 and 3.3.

3.2 Filling the Object Buffer - Check-out

As already mentioned above, the AIM-P object buffer is created
and filled with data at the server side. First, an HDBL query is
sent from the workstation to the server where query execution
takes place. The server DBMS extracts the requested data from
the database and transforms these data into the internal object
buffer format. The reader should note that a complex object as
it is stored in the database (Fig. 5) cannot - or should not, at least

- simply be taken ‘as it is’ and sent to a workstation for several

reasons: '

1. In many cases only certain parts of a complex object are
actually needed for processing at the workstation (see also
the projections and restrictions in our example query (Fig.
3)). To avoid unneccssary data retrieval and transfer oper-
ations, only the requested data should be extracted and
transformed to a ‘dense’ format before sending them out.

2. Database addresses (tuil‘;identiﬁers (TIDs), page numbers,
etc.) are only valid within a certain context, e.g. a database
segment. Moving data to another ﬁlace (such as a work-
station) can usu J not be done without recomputing these
addresses. Even if a more indirect addressing concept via
translation tables etc. is used, the contents of these tables
must at least be adjusted.

3. Because of hardware and/or software restrictions the work-
station DBMS should often be smaller and less complex
than the general purpose server DBMS. Therefore, sophisti-
cated storage structures and addressing concepts as they may
be used for the server DBMS are not always appropriate for
the workstation DBMS.

3.2.1 Updatable and Non-Updatable Query Results

In the following, we will have to distinguish between two kinds

of queries and query results:

® A non-updatable query result means that the workstation
user has formulated a query just to read the query result
(result table) which he got from the database server. The
user does not want to perform any updates (which shall be
propagated back to the server) on this result table. A query
result may also be non-updatable ‘per se’, for instance if join
operations or aggregations (SUM, AVG, etc.) have been
performed. In these cases there is no simple correspondence
between the database objects on the one side and the result
objects on the other side such that updates cannot be ap-
plied and materialized unambiguously.

® An updatable query result permits any kind of update oper-
ations on the result data at the workstation, and the updates
can of course also be materialized at the server later on.

In AIM-P the workstation user must state for any query explic-
itly which kind of query result (updatable or non-updatable) he
wants to have. If the server DBMS gets a request for an
updatable query result, it checks whether the following condi-
tions are all fulfilled: :

1. The query extracts its data only from a single database table.
2. No joins between subtables have been specified (i.e. no re-

structuring has been done).

486

3. No attribute values in the result table have been generated
using aggregation functions (SUM, AVG, ...) or arithmetic
functions.

If one of these checks fails the workstation user gets a messa;
that the given query produces a non-updatable query result. The
query in Fig. 3 complies with these rules since it contains only

rojections and restrictions, i.e. the result table shown in Fig. 4
1s updatable.

An updatable query result differs from a non-updatable one in
so far, that the database addresses (TIDs) are part of the object
buffer in the first case, while they are missing in the second case.
These addresses are in fact ‘address pairs’ which consist of the
address of the respective data subtuple (DST, in Fig. 9b) and the
address of the MD subtuple it belongs to (Mb in Fig. 9b). These
addresses are contained in the header fields of the instance rows
R, which, in tumn, are part of the description area of the object
buffer, as already described in Section 3.1 (see also Fig. 9b).
DST,, for instance, represents the address (TID) of the data
subtuple '"AIMPV01 QPTEST’ shown in Fig. 5, etc.

Most of the following discussion applies to both updatable and
non-updatable query results. In our examples, however, we refer
to the creation of an updatable query result (Figs. 3 and 4) since
that scenario contains some more interesting aspects than the
non-updatable case.

3.2.2 Result Table and Object Buffer Creation at the Server

As for the AIM-P system complex objects are no “special ani-
mals” but normal NF? tuples, it supports - according to the NF?
data model - not only retrieval of complex objects as a whole but
also selections and projections within a complex object (see Fig.
3). As a consequence, the hierarchical structure of such an object
has to be explicitly exposed at some system-internal level to en-
able reasonable access to its subparts. As already outlined in
Section 2, NF? tuples are stored in a hierarchical fashion using
MD and data subtuples. To shield the Query Processor compo-
nent (see Fig. 6) from implementation details of these “physical”
structures, a somewhat “higher” logical interface - called database
walk - is used in AIM-P to traverse this hierarchy.

In reality, this database walk provides not just one operator for
traversing a complex object, but a set of interdependent elemen-
tary walks, each of which is bound to one NF? table or subtable.
At the instance level, the walks are “walking” over the respective
NF? table or subtable occurrences. To process e.g. an NF? table
having the structure as shown in Figs. 1 and 2, one walk would
have to be opened on PROGRAMS, two others - "below” this
walk - on MODULES respectively MACLIBS, and - finally -
also on PROCEDURES (“below” the MODULES walk) and
MACROS ("below” the MACLIBS walk).

Being positioned on a specific [subjobject, a walk gives access to
the atomic fields defined at this level, e.g. to PROGNAME and
MAINPROG at the PROGRAMS level, to MODNAME at the
MODULES level, to PROCNAME and SIZE at the PROCE-
DURES level, etc. The current walk position also defincs the
scope for the dependent walks "below”. If, for example, the top
level walk is positioned on the first complex object (first pro-

amk hereby giving access to the atomic values (AIMPV0I,
SPT ST), the walk at the MODULES level can only process
the modules belonging to the first program (PARSL1, TIMLI,
COROQOU2). The same holds, analogously, for the walk on
PROCEDURES (PROCNAME, SIZE), whose scope is defined
by the walk on MODULES (within the walk on PROGRAMS).

In total, one can also see a database walk as a multi-level scan
operation or some kind of currency indicator as used in
CODASYL-like s;;stems J/CODAT78/. There is also a pretty close
ﬁ}aa;i:lr;ship to the. concepts used for “navigation” in IMS

Processing a query leads to the creation of a result table con-
taining the updatable or non-updatable query result (see Section
3.2.1), which is then sent to the workstation for further process-
ing (step 5 in Fig. 6). Opposed to ordinary NF? tables, as per-
manently or temporarily stored in the database, the NF? tuples
(complex objects) within this result table are stored in the object
buffer representation form as described in Section 3.1. As also

Proceedings of the 13th VLDB Conference, Brighton 1987

described there, the object buffer representation is equivalent -
with re\'g)ect to describing the structural relationships - to the
MD and data subtuple representation in the stored database.
Therefore, an analogous walk interface - called reswlt walk - is
used for creating and traversing the object(s) in the result table.

Transforming an NF? database table (in MD / data subtuple
format) into a result table - hereby applying selections and
projections as specified in the query expression - requires a “syn-
chronized walking” on both, the NF? table and the result table,
hereby, step by step, filling the latter one.

Because of lack of space, we cannot describe these walks and
their implementation in more detail here. However, to under-
stand the subsequent discussion on object buffer processing and
update propagation, this outline of these functions should be
sufficient. For readers who are interested in some more details, a
list of the AIM-P walk functions is given in the Appendix; a
comprehensive description can be found in /Kii87/.

3.3 Object Buffer Processing at the Workstation

As already mentioned above, the reason for providing an object
buffer at the workstation is to achieve some level of site auton-
omy, efficient kgrocessing of complex objects at the workstation
site, and workload reduction at the server site by off-loading
some of the DBMS work to the workstation.

A necessary precondition to fulfill the first goal (site autonomy)
is to provide the workstation with enough information about the
Objmtfz in the object buffer(s). How this information currently
looks like in AIM-P has been described in Section 3.1. Auton-
omous processing has two sides, however: check-out and
check-in. To enable an efficient and "selective” (transmission and

rocessing of changes, only) check-in mechanism at the server
ater on, the workstation has to protocol all changes which hap-
pened to its complex objects in one way or another.

The most straightforward solution would be to use traditional
DBMS after image logging; this is not feasible here, because the
object buffer representation does not correspond to the complex
object representation in the NF? database tables at the server side.
That is, these after image log records could not directly be proc-
essed at the server side. But even if this would have been possible,
the amount of data to be transmitted and the resulting processing
overhead would be prohibitive, in general. To use operation log-
ging instead of after image logging would be possible, in pﬁncipﬁ:,
contradicts, however, to the goal of reducing some of the work
at the server side. Without applying highly sophisticated opti-
mization techniques to the initial sequence of (log) operations in
order to eliminate redundant operations or to group operations
where possible by object and subobject, the server would just
repeat all the work already done at the workstation side, hereby
causing long check-in times.

In AIM-P, protocolling is therefore done by flagging the affected
parts of an object in the object buffer according to the
operation(s) performed. By having different flags for insertions,
updates, and deletions, and by having some kind of flag priority
scheme (delete “overrules” a previously performed insert or up-
date), the object buffer is self-optimizing with respect to the
elimination of redundant operations.

The flagging itself can be done in two ways, namely
e one-level flagging and
¢ multi-level flagging.

When performing one-level flagging, only those instance rows
(respectively subobjects) in the object buffer are flagged, which
are directly affected by the change. This is sufficient from an in-
formation point of view, requires, however, a complete sequential
scan of the description area at check-in time at the server (see
Section 3.5). If the objects to be processed are not very big, i.e.
if they do not consist of too many subobjects, this overhead is
tolerable, in general. If the objects are very big, however (and in
many applications they are), a more selective scheme, which
avoids - or at least reduces - this overhead, would be preferable.

For that purpose, the multi-level flagging scheme has been de-
veloped. In this scheme, not only the directly affected instance
rows (respectively subobjects) are flagged, but also all other rows

Proceedings of the 13th VLDB Conference, Brighton 1987

lying on the same hierarchical path from the directly affected in-
stance row up to the root of the hierarchy (see Section 3.1). The
purpose of the additional “higher level” flags is to signal the Up-
date Manager (see Fig. 6 and Section 3.5) whether - within a
given subtree of the object hierarchy - a modification has been
done at some lower level or not. To distinguish “signal flags”
from real change flags, different flag types are used. This wpward
propagation of changes via signal flags is already done at the
workstation during normal object buffer processing. The upward
propagation of flags causes very little extra overhead since the
workstation DBMS keeps always track of the ‘parent’ rows of an
instance row.

3.4 Update Propagation - Check-in Preparation and Exe-
cution at the Workstation

If a query result has been changed at the workstation (via the
result w;ﬁ(services shown in the Appendix), the Result Walk
Manager must be able to propagate tmse changes back to the
server where they can be materialized in the database. It would
be far too expensive - especially if just a few small changes have
been performed in some large complex objects - to send all ob-
jects from the result table back to the server. For a given result
table the Result Walk Manager at the workstation must therefore
be able to

e find out which complex objects have been changed,

¢ extract the changed data from these complex objects.

The Result Walk Manager can then perform some kind of ‘delta
ropagation’ in order to reduce the communication overhead
tween workstation and server.

To find out which complex objects have been changed, the Re-
sult Walk Manager maintains a bit list for each result table with
one bit %osition per complex result object. A bit is ‘on’ if and
only if the respective object has been changed. At propagation
time this bit list is scanned and those complex objects which have
been changed are read into the object buffer for further exam-
ination.

To support delta propagation on complex object level, the Result
Walk Manager at the workstation does not mix the ‘old’” data
(which have been sent from the server to the workstation) and
the ‘new’ data (which are created at the workstation during up-
dates and inserts). As a general strategy, no update in place is
performed in the data area even if the length of an attribute value
does not change. New data or changed data are always appended
to the current end of the data area. The respective data offset in
the instance row (DA field in Fig. 9b) is set or changed to
maintain the correct address.

Fig. 10 shows the object buffer of Fig. 9 after a new module (with
one procedure) has been inserted and the name of an old module
(PARSLI) has been changed to PARSL2. To reflect the in-
sertions, two new instance rows have been created at the end of
the description area, one (R,) for the new module and one (R,)
for the new procedure in that module. To connect R, and R, to
the existing instance trec, RB (right brother) in R, - which was
previously ‘null’ - and LB (left brother) in R, have been sct. The
name of the new module (CHECK) and the data for the new
procedure (CHECKDTA, 40) have been appended to the current
end of the data area (offsets O,,, O,,, O,,). The update of the
MODNAME attribute for module PARSEI has then been done
via an insertion at offset O, in the data area, and the respective
data offset in instance row R, has been changed from O, (—
PARSLI) to O, (- PARSL2].

This mechanism requires, of course, some more storage space in
the data area than an update-in-place strategy. The major ad-
vantage is, however, that the new data is always separated from
the old data and hence needs not be extracted at propagation
time. Since both kinds of data (old and new) are stored in the
same data area, addressing can still be done in a simple and uni-
form way.

To propagate all these changes back to the server, the description
area (incl. rows R to R,) and the new (!) contents of the data area
(from offset O,, to offset O,,) are concatenated in virtual storage.
The start offset of the new data (0,)) is stored within the main
part of the description area since it is needed later on for address

487

calculation at the server side. The concatenated storage spaces are
then sent back to the database server (step 6 in Fig. 6).

3.5 Update Materialization at the Server

After having received the ‘delta” object buffer(s) from the work-
station at the server the Update Manager of the server DBMS is
responsible for the matenalization of all changes (updates, in-
sertions, and deletions) which are reflected in these object
buffer(s). The changes must be transformed into modifications
of the database storage structures (Mini Directory (MD) and data
subtuples, steps 7 and 8 in Fig. 6).

A complex object in the object buffer may contain an arbitr
number and ‘mixture’ of changes at different places and on dit-
ferent levels: Some of its data may have been updated at the
workstation, new subobjects may have been inserted, and old
subobjects may have been deleted. The Update Manager must
look at the change flags (which have been introduced in Section
3.3) in the instance rows to find out where (and which kind of)
changes have been performed.

When a change has been detected in the object buffer (via the

flags), the database addresses (T1Ds) in the header of the respec-

tive instance row (MD, and DST, in Fig. 10b) are used to deter-

mine those database subtuples which have to be modified. De-

pending on the change flags, the following actions have to be

performed to materialize the changes in the database:

® Update: In case of a simple update the TID of the respective
data subtuple (DST)) is known from the instance row. The
Update Manafer modifies that data subtuple via an appro-
pnate Subtuple Manager call, where the update is (phys-
ically) performed at the end.

¢ Deletion: If the change flag says that a subobject shall be
deleted from a certain subtable, the MD subtuple of this
subtable is accessed via its TID (MD, in the instance row).
The address entry for the subobjec{ is determined via a
search and can then be eliminated from the MD subtuple.
Finally, the whole subobject can be deleted. This is all done
via an appropriate series of Subtuple Manager calls (‘update
subtuple’, “delete subtuple(s)).
The deletion of a complex object as a whole is just a special
case of that strategy.

® [nsertion: For an insertion of a new subobject, the MD
subtuple of the subtable where the insertion shall be done
must be retrieved. Its address can again be found as MD, in
the instance row. The subobject is stored via Subtuple
Manager calls (‘store subtuple(s)’), and a new address entry
is appended to the end of the respective MD subtuple. This
MD subtuple is finally updated.
The creation of a new complex object as a whole can again
be treated as a special case of that scenario. The new object
is built up in the object buffer at the workstation
autonomously and finally - at check-in time - sent to the
server for insertion into the database table where cmpty
space is acquired, addresses (TIDs) are assigned, etc.

4. Introduction to the Application Program Interface

As already stated earlier, an application program at a workstation
does not directly interact with the Result Walk Manager. The
Result Walk interface (see Appendix) is not yet the right tool for
that purpose since it offers only some basic services (as procedure
calls) for object buffer and result table processing. A more user
friendly - and also more powerful - interface for data access and
manipulation via an application program had to be provided.

In the following we just want to give an impression how the
AIM-P application program interface (API) works and how it
looks like. A more comprehensive discussion can be found in
JEW86/ and /EW87/.

For using AIM-P from an application program at a workstation
a precompilation approach has been taken which is an exiension
to what has been done for System R /LW79/ and SQI/DS
JIBM2/. To define which query result shall be processed, the
programmer embeds the appropriate HDBL query statement
(such as the one in Fig. 3) into the source code of the application
program. Such a result declaration can be done via the statement:
DECLARE RESULT result_name [FOR UPDATT]

488

FROM QUERY_STATEMENT 'SELECT ...’
‘Result_name’ becomes the program-intemal name (identifier)
of the result table to be obtained from the database server, and
via the ‘'FOR UPDATE’ option an updatable query result (see
Section 3.2.1) can be requested. The DECLARE RESULT
statement, however, does not imply the query execution and data
extraction. This has to be done via another statement which is
also embedded into the application program: EVALUATE
result_name. These statements for result table declaration and
data extraction have been separated in order to permit a repetitive
execution of a query which has to be defined (and parsed, etc.)
only once (see also /LW79/ and /Ch81/ for a similar concept in
System R).

Before we discuss how the contents of a result table can be
processed via the API, the general strategy for program precom-
pilation and execution shall shortly be explained. The embedded
statements (like DECLARE, EVALUATE, and others which
will be described later on) are understood by the API
precompiler. The precompiler transforms the source program
with the cmbeddetf statements so that it can then be processed
by the ‘normal’ compiler. At precompilation time, the embedded
statements are replaced by procedure calls to the API runtime
system (RTS) which runs on top of the Result Walk Manager
(see Fig. 6). At program execution time (runtime), the applica-
tion program calf; the API runtime system which in turn calls the
Result Walk Manager for certain operations on the result table.

Query execution and data extraction at the server are also done
at runtime via a call to the API RTS which is forwarded to the
Query Processor. The result table is then sent to the workstation
where further processing is done via the APL

As an extension to the cursor concept for (flat) tables in System
R and SQL/DS, hierarchical cursors can be defined in the appli-
cation program to handle also non-flat result tables. Like a data-
base or result walk (see Section 3.2.2), a hierarchical cursor con-
sists of a set of interdependent elementary cursors. Each elemen-
tary cursor is bound to one “data subtuple level” in the hierarchy.
Because of this one-to-one correspondence between cursors and
walks, a cursor can directly be implemented as a walk at the Re-
sult Walk interface /Ki87/.

The cursor definition in the application program is again done
via an embedded statement (DECLARE CURSOR ..) which
is understood by the API precompiler. Other statements, which
the API precompiler transforms into API RTS calls, are available
to OPEN, to MOVE, or to CLOSE a cursor. The application
program intetface offers some more options for these statcments
than are provided by the Result Walk Manager one level “below”.
The programmer may move, for instance, a cursor forward or
backward by a given step-width. He may also move it directly to
a certain position in a table or subtable what can be used for
partial and range processing of lists (‘from element ... to element
..."). These more powerful cursor operations are mapped down
1l_)y the API RTS to a sequence of calls at the Result Walk inter-
ace.

Embedded program statements like FE'TCH, UPDATE, IN-

SERT, and DELETE can be used

® o read data from a result table into application program
variables,

® 10 change data in objects or subobjects, i.e. to move the
contents of program variables into a result table,

® to insert new objects or subobjects into a result table,

e 10 delete existing objects or subobjects from a result table.

These statements are always bound to a cursor. The cursor’s state
(ON an object/subobject, BEFORE an object/subobject, ctc.)
and position within the table or subtable determine which data
are actually read, changed, inserted, or deleted. (UPDATE, IN-
SERT, and DELETE statements are only allowed, of course, for
updatable query results.) All these statements are in fact set-
oriented. This simplifies programming substantially and may also
speed up runtime processing since the number of RTS calls can
be reduced. The programmer may, for instance, delete all objects
or subobjects of a table or subtable with one DELETE state-
ment, and he may also use one INSERT statement to insert more
than one object or subobject at a time. Since an INSERT state-

Proceedings of the 13th VLDB Conference, Brighton 1987

ment also delivers the data, this implies that a set of data must
be provided rather than the data for a single object or subobject.
For that purpose, the programmer may fill an array in the ap-
plication program with the new data before the insertion is done.

Besides that set-orientation, there is also - as another option - a
tuple-orientation which can be used for further simplification of
data handling and data transfer between the application program
and the API runtime system /EW86/. If the programmer wants
to read the data tuple-oriented, he must provide suitable record
variables in his application program where the data can be deliv-
ered by the APl runtime system. Tuple and set orientation can,
of course, also be used in combination if an array of records is
provided.

5. Summary and Outlook

In this paper we have described how a workstation and a server
DBMS can closely work together such that in an engincering
design cnvironment (and not only there) a substantial reduction
of the server’s workload can be achieved. As opposed to concepts
used for most distributed database management systems, the
systems in our approach do not only communicate via the “high
level” [relational| database interface but also via “lower” system
interfaces. That 1s, we have proposed a logically tight cooperation
between workstation and server database system using a multi-
level cooperation and communication strategy. The solution de-
scribed in this paper has been fully implemented and is in use as
an integral part of our DBMS. Though this approach helps al-
ready quite a lot to speed up check-in processing, we would like
to gain even more from the local processing which is done (or
could be done) at the workstation.

In the current implementation, e.g. index updates are performed
completely at the server side during check-in processing. Though
this 1s not that bad for simple indexes like B-trees, the overhead
for maintaining more complex indexes - e.g. like our text frag-
ment index /KW81/ - is considerable. Instead of performing all
this work at check-in time at the server, a lot of ﬁ)reparatory work
(e.g. text decomposition and computation of all index terms for
text index maintenance) could already be done at the work-
station. Also more has to be done for consistency control, like
checking whether a unique key condition has been violated dur-
ing update processing at the workstation. This should also al-
ready be done ahead of normal check-in processing. We are co-
operating with the University of Darmstadt (see /De86, DO86/)
to develop more comprehensive solutions. -- In this cooperation
we are also currently looking into the problems of concurrency
control for workstation server DBMS’s what has not been men-
tioned in this paper so far. The granularity of locking (complex
object level, subobject level, subtuple level, ...), for instance, will
of course be a decisive factor for tﬁe overall system performance
in a multi-user environment.

The Advanced Information Management Prototype has now
entered the phase of being experimentally used in various appli-
cation areas. Especially connecting the system to CAD, CAM,
and Robotics applications will be of major interest (sce
/DDK186, KL W86, K185, KSW86/). We plan to report about
our experiences in a forthcoming paper.

Acknowledgements

We wish to thank our colleagues of the Advanced Information
Management Prototype project, especially R. Erbe, U.
Herrmann, P. Pistor, and N. Stidkamp, for their helpful com-
ments on an earlier version of this paper.

References

ABS4 S. Abiteboul, N. Bidoit: Non Tirst Normal Form for Re-

lations to Represent 1lierarchically Organized Data. Proc.

ACM PODS, 1984, pp. 191-200

F. Andersen, V. Linnemann, P. Pistor, N, Sudkamp: Ad-

vanced Information Management Prototype - User Manual

of the On-line Interface of the Heidelberg Data Base l.an-
vage (HDBL) Prototype Implementation (Release 1.1).

’ ecﬁnical Note TN 86.01, IBM Heidelberg Scientific Cen-
ter, Nov. 1986

M.M. Astrahan et al.: A History and Evaluation of System
R. Communic. of the ACM, Vol. 24, No. 10, Oct. 1981, pp.
632-646

ALPS86

As81

Proceedings of the 13th VLDB Conference, Brighton 1987

BB34

BC8S

BK8S

BKK3S

Ch76

Ch81

CODAT8

Da86

DBDZA8S

DDKL386

De86

DGWSS

DL385

DL.W84

DO86

Fh34

EW386

EWR7

Fig3

FT83

GC85

D.S. Batory, A.P. Buchmann: Molecular Objects, Abstract
Data Types, and Data Models: A Framework. Proc. VI.DB
84, Singapore, Aug. 1984, pp. 172-184

A.P. Buchmann, C.P. de gelis: An Architecture and Data
Model for CAD Databases. Proc. VL.DB 85, Stockholm,
Sept. 1985, pp. 105-114

D.S. Batory, W. Kim: Modelling Concepts for VLSI CAD
Objects. ACM TODS, Vol. 10, No. 3, Sept. 1985, pp.
322-346

F. Bancilhon, W. Kim, H.F. Korth: A Model for CAD
;";a;;actions. Proc. VLDB 85, Stockholm, Sept. 1985, pp.
D.D. Chamberlin et al.: SEQUEL 2: A Unified Approach
to Data Definition, Manipulation, and Control. IBM Jour-
nal of Research and Development, Vol. 20, No. 6, Nov.
1976,&:. 560-575

D.D. Chamberlin et al.: Support for Repetitive Transactions
and Ad-Hoc Queries in System R. ACM TODS, Vol. 6,
No. 1, March 1981, pp. 70-94

Report of the COlgASYL Data Description Language
Committee. Information Systems, Vol. 3, No. 4, 1978, pp.
247-320

P. Dadam, K. Kispert, F. Andersen, H. Blanken, R. Erbe,
J. Giinauer, V. Lum, P. Pistor, G. Walch: A DBMS Pro-
totype to Suppori Extended NF? Relations: An Integrated
View on Flat Tables and Hierarchies. Proc. ACM
SIGMOD 86, Washington, D.C., May 1986, pp. 356-367
A. Diener, R.P. Brigger, A. Dudler, C.A. Zehnder: Repli-
cating and Allocating Data in a Distributed Database Sys-
tem for Workstations. Proc. ACM SIGSMALL Symposium
on Small Systems, Danvers, Mass., May 1985, pp. 5-9

P. Dadam, R. Dillmann, A. Kemper, P.C. Lockemann:
Objektorientierte Datenhaltung fiir die
Roboterprogrammierung (Object-Oriented Data Manage-
ment for Robot Programming). University of Karlsruhe,
Dept. of Computer Science, Technical Report 18/86, Nov.
1986 (in German)

U. Deppisch, J. Ginauer, K. Kispert, V. Obermeit, G.
Walch: Uberlegungen zur Datenbank-Kooperation
zwischen Server und Workstations (Thoughts on Database
Cooperation belween Server and Workstations). Proc.
Gl-Jahrestagung 86, Berlin, Oct. 1986, Informatik-
Fachberichte 126, Springer-Verlag, pp. 565-580 (in
German)

U. Deppisch, J. Giinaver, G. Walch: Speiche-
rungsstrukturen_und Adressierungstechniken fiisr komplexe
Objekte des NF2-Relationenmodells (Storage Structures and
Addressing Techniques for Complex Objects of the NF?
Relational Model). Proc. Gl-Fachtagung
"Datenbanksysteme fir Buro, Technik und Wissenschaft”,
Karlsruhe, March 1985, Informatik-Fachberichte 94,
Springer-Verlag, pp. 441-459 (in German)

K.R. Dittrich, R.A. Lorie: Version Support for Engineering
Data Base Systems. IBM Research Report RJ4769, San
Jose, Cal., July 1985

P. Dadam, V. Lum, H.-D. Werner: Integration of Time
Versions into a Relational Database System. Proc. VI.DB
84, Singapore, Aug. 1984, pp. 509-522

U. Deppisch, V. Obermeit: Tight Database Cooperation in
a Server-Workstation Environment. Univ. of Darmstadt,
Dept. of Compuler Science, 1986 (accepted for publication)
W. Eberlein: Architektur technischer Datenbanken fiir
integrierte Ingenieursysteme (Architecture of Technical Da-
tabases for Integrated Engineering Systems). Ph.D. Disser-
tation, University of Erlangen-Niirnberg, 1984 (in German)
R. Erbe, G. Walch: Usage of the Application Program
Interface of the Advanced Information Management Pro-
totype. Technical Note TN 86.03, IBM Heidelberg Scientific
Center, Dec. 1986

R. Erbe, G. Walch: An Application Program Interface for
an NF? Data Base Language or How to Transfer Com-
plex Object Data into an Application Program. Technical
Report TR 87.04.003, IBM Heidelberg Scientific Center,
April 1987

W.E. Fischer: Datenbanksysteme fir CAD-Arbeitsplitze
(Database Systems for CAD Workstations). Informatik-
Fachberichte 70, Springer-Verlag, 1983

P.C. Tischer, S8.J. Thomas: Opecrations on Non-First-
Normal-Form Relations. Proc. IEEE Computer Software
and Applications Conf., Oct. 1983, pp. 464-475

D. Gantenbein, A. Cockburn: Architecture and Usage of a
Ilost-Coupled Workstation. Research Report RZ1382,
IBM Zirich Research Lab., Rischlikon, Schweiz, June
1985

489

Go84 B.C. Goldstein, A.R. Heller, F.H. Moss, . Wiladawsky- LuBS V. Lum et al.: Design of an Integrated DBMS to Support
Befsef; Directions in Coopefaﬁve Processing Between Advanced App!lca!.lons. PI:OC. Int. Conf. on Foundations
Workstations and Hosts. IBM Systems Journal, Vol. 23, of Data Organization (Invited Talk), Kyoto, Japan, May
1984, pp. 236-244 1985, pp. 21-31 (also published in Informatik-Fachberichte

HL32 R.L. lgaskin, R.A. Lorie: On Extending the Funclions of a 94, Springer-Verlag, 1985, pp. 362-381)

Relational Database System. Proc. ACM SIGMOD 82, LW79 R.A. Lorie, B.W. Wade: The Compilation of a High Level
Orlando, Florida, June 1982, pp. 207-212 Data Language. Research Report RJ2598, IBM San Jose

HRS83 Th. Harder, A. Reuter: Database Systems for Non- Research Lab., 1979
Standard Applications. Proc. ICS 83, Nirnberg, pp. Ne83 T. Neumann: On Representing the Design Information in
452-466 a Common Database. Proc. ACM SIGMOD 83, San Jose,

IBMI IBM Systems Journal (Special Issue on JMS), Vol. 16, No. Cal., May 1983
2,197 0Y8s Z.M. Ozsoyoglu, L.Y. Yuan: A Normal Form for Nested

IBM2 SQL/Data System, Concepts and Facilities. IBM Corpo- Relations. Proc. ACM PODS, March 1985, pp. 251-260
ration, GH24-5013 . . . PAB6 P. Pistor, F. Andersen: Designing a Generalized NF?

Jae85a G. Jaeschke: Nonrecursive Algebra for Relations with Re- Model with an SQL-type Language Interface. Proc. VLDB
lation Valued Autributes. Technical Report TR 85.03.001, 86, Kyoto, Japan, Aug. 1986, pp. 278-285
IBM Heidelberg Scientific Center, March 1985 . PT86 P. Pistor, R. Traunmiiller: A Data Base Language for Sets,

Jae85h G. Jaeschke: Recursive Algebra for Relations with Relation Lists, and Tables. Information Systems, Vol. 11, No. 4
Valued Attributes. Technical Report TR 85.03.002, IBM ’) . HE ; y

. fpnig 1986, pp. 323-336 (also available as Technical Report TR
eldelberg Scientific Center, March 1985 85.10.004, IBM Heidelberg Scientific Center, 1985)

JS82 G. Jaeschke, H.-J. Schek: Remarks on the Algebra of Non o 8 P .

4 A RK86 N. Roussopoulos, H. Kang: Preliminary Design of
First Normal Form Relations. Proc. ACM X v .
SIGACT-SIGMOD Symp. on Principles of Data Base ADMS £: A Workstation-Mainframe Integrated Architec-
Systems, Los Angeles, Cal., March 1982, pp. 124-138 ture for Database Management Systems. Proc. VL.DB 86,

Ka85 R. Katz: Information Management for Engineering Design. Kyoto, Japan, Aug. 1986, pp. 35.5‘364
Springer-Verlag, 1985 RKS84 M.A. Roth, H.F. Korth, A. Silberschatz: A Theory of

KL84 R.H. Katz, T.J. Lehman: Database Support for Versions Non-TFirst-Normal-Form Relational Databases. Technical
and Alternatives of Large Design Files. rgEE Transactions Report TR-84-36, Univ. of Texas at Austin, Dept. of
on Software Engineering, Vol. SE-10, No.2, March 1984 Computer Science, Dec. 1984 2

KI85 P. Klahold et al.: A Transaction Model Supporting Com- Sch8s H.-J. Schek: Towards a Basic Relational NF* Algebra
plex Agrlications in Integrated Information Systems. Proc. Processor. Proc. Int. Conf. on Foundations of Data Or-
ACM SIGMOD 88, Austin, Texas, May 1985),, pp. 388-401 ganization, Kyoto, Japan, May 1985, pp. 173-182

KLW86 A. Kemper, P.C. Lockemann, M. Wallrath: An Object- SRG33 M. Stonebraker, B. Rubenstein, A. Guttman: Application
Oriented Database System for Engineering Applications. of Abstract Data Types and Abstract Indices to CAD Data
To appear in Proc. ACM SIGMOD 87, San Francisco, Proc. Database Week - Engineering Applications Stream,
Cal., May 1987 Database Week 83, San Jose, Cal., May 1983

KSW86 P. Klahold, G. Schlageter, W. Wilkes: A General Model for SS86 H.-J. Schek, M. Scholl: The Relational Model with
Version Management in Databases. Proc. VLDB 86, Relation-Valued Attributes. Information Systems, Vol. 11,
Kyoto, Japan, Aug. 1986, pp. 319-327 No. 2, 1986, '()_!,) 137-147

KTT83 Y. Kambayashi, K. Tanaka, K. Takeda: Synthesis of Un- SW86 H.-J. Schek, G. Weikum: DASDBS: Concepts an(} /\rchi—
normalized Relations Incorporating More Meaning. Infor- tecture of a Database System for Advanced Applications.
mation Sciences, 1983 Technical Report DVSI-1986-T1, University of Darmstadt,

Kii7 K. Kiispert: Advanced Information Management Prototype Dept. of Computer Science, 1986 .

- Result Walk: External Interface Description. Technical VanG8S D. var;’}?BchBTheory of {,Jnné)mtl’alllzltjad Rel:_mor;‘a)lggtruv
Note-TN 87.01, IBM Heidelb ientific Center, b. tures. Ph.D. Dissertation, Vanderbilt University,
19(;;; 8 B cidelberg Scientific Center, Fe VKCB6 P. Valduriez, S. Khoshafian, G. Copeland: Im fementation

KW81 D. Kropp, G. Walch: A Graph Structured Text Field Index 'erch"“k’es f‘l’gsc(fml"el"o?‘l’!le;“- roc. VLDB 86, Kyoto,
Based on Word Fragments. Information Processing and apan, Aug. » pp- 101
Management, Vol. 17, No. 6, 1981, pp. 363-376

Tables and Figures
{ PROGRAMS }
PROGNAME| MAINPROG { MODULES } { MACLIDS } e . ':RO(?“"MS
MODNAME { PROCEDURES } LIANAME { MACROS }
PROCNAME SIZE MACNAME | MACTYPE I
AIMPVO! QPTEST PARSLI gé\lr\(zzkﬁk |!2é) GENTY! gc:)h#\;g: ‘;z:ggaﬂgt l MODULES ‘ MACLIRS
TIMLL GETTIML 20 DATE TYPEDECL [stonname] N LINNAME]
CONVTIMP 3n STRTY TYPEDECL
FROMTIMT 15 PROCDt DATEPROC| PROCDECL
TOTIME 15 FTPROC PROCDECL PROCEDURFS | MACROS
COROU2 | MOVEORJ 20 El;m ﬂggg‘ggf W m
© | UDNUFFTY | TYPEDECL
SPECTY1 INTTY TYPEDECL
k - Fig. 2 PROGRAMS Table of Fig. 1 in IMS-1ike Notation
AIMPVO2 AIMPDB OBRJIIDLY GETOR 12 GENTY2 COMMON TYPERDECL

Fig. 1: Example of an NF? Table

490

Proceedings of the 13th VLDB Conference, Brighton 1987

result “first level” “second level” “third level”
name altributes attributes attributes
! 1 1
Q_RESULT :=
SELECT | x.PROGN/\MF
X-MAINPRO!
MODULES : (ﬁEl ECT {y.MODNAME,
PROCEDURES : (SELECT [z PROCNAME
SIZE
l
FROM 2 IN y PROCEDURES
WHERE z.8171 » 25
I
FROM y IN xMODULES
WHERE y. MODNAME CONTAINS ‘*1¢
)
|
FROM x IN PROGRAMS
WHERE xPROGNAME CONTAINS “*V0t*
Tig. 3: Example of an 1IDBL Query on the NI*? Table PROGRAMS

Virtuat [Complex Object] Object
Memory i BufTer
v
Lo
Cxterpal Complex Ohject Complcx Object] Complex Object Result
Storage . i+t M M Table

Fig. 7: The Object Buffer as a “Window’ over the Resuit Table

{Q_RESULT }
PROGNAME| MAINPROG { MODULES }
MODNAME { PROCEDURFS |
PROCNAMP SIZE
AIMPYOL QrTrsT PARSLE PARSFER 120
SCANNIER AG
TIMLY CONVTIME 0

Iig. 4: Result Table for the Query of Fig. 3 (Applicd to the Table of Fig. 1)

Root M3 Subtuple

‘ AIMPV0] QPTEST)

Fig. 5: Database Storage Structure for Compicx Object AIMPVO! of Tig, |

Description Area

- Data Area Pointer et
; Frec Space Offsct -
: No. of Subohjects (5 o
: - .
s .

R, | Descr. for ohject AIMPVOL

R, Descr. for subobject PARSL.L
_ Ry Descr, for subosject PARSTR
é R,] Descr. for subobject SCANNER
¢ Ry| Deser. for subobject TIML1
; R,| Deser. for subnhjcet CONVTIME
i

FREE

Data Arca
/\IMPVOI] QI"TF,ST] PARSLI1} P
/\RSI'LRJ 120 l SCANNER| 801 T
CONVTIME| 30
h ~ - - -
FREE

Fiig. 8: Object Bulfer Contents for Complex Object AIMIPVOL of Fig. 4

User
Applicstion

/ ot
- i
-
m ’
l t
Objeet Rufler &
Result Table

| S

Workstation

Server

fiig. 6: AIM-T Architccture and Data llow:
- Data fixtraction and Check-out (steps | to 5)
- Check-in and Update Matcerialization (steps 6 to R)

RE

)

LB

RB

Fig. 9a: Instance Part -- Logical View

LD

R,

Proceedings of the 13th VLDB Conference, Brighton 1987

Description Area (Instance Part) Data Area
Child| Brother Data
Header | Info. Tnfo. Info. o, 0, 0, o,
fefto|Re} DA IAIMI‘V(II QPrF,SjLPARSLl" vl
R, [MD, BT [R, 0, | o,
R, [MD, DS R ® | o, o,
R, [MD, DT, ®, | 0, | o, SARSI‘R 120 || SCANNER sol—)
R, [MD, DsT, R, o, | o, o o 0,
R [MD, DST| R, | R 0,
St 2 . (70NVT|ME
R, [MD, DsT, 0, | 0,

Tig. 9b: Instance Part and Data Area -- Physical View

491

492

Fi
- LB L LB
R, y R¢ » R,
) RB
Fi rc FC
LB
—
Ry Lo R Ry Ry
RD
Tig. 10a: Instance Part -- Logical View (After Update Execution)
Description Area {Instance Part) Data Area
Child] Brother Data
1leader | Info. Info. Info. 0, 0, o, o,
FC]LBIRB| DA umrvm Ql’ra[PARSLl”P?
R, [MD, OsT| &, o | o,
o, o 0, 0
R, IMD, DST,| Ry R, | O L] & 7 8
®, [MD, DST, R [9|0 (ARSF.R 120 [| SCANNER ao”ﬂ
R, [MD, DST, R, o, | o, o, o 0,
R {MD, DsT| &, | R, | R,] O,
S —a 62 L S IMI.I] cowv’ran[mchnEc'
®, [MD, DST, o, | 0,
R, Mo, bst | R, | R o,]. 0y 0y Oy Oys
R, {MD, DST, 0,1 0, L klferiicknval aoff parst2 |

Fig. 10b: Instance Part and Data Arca -- Physical View (After Update Execttion)

Appendix: Databese Walk and Result Walk Operations - Sumsmary

Database Walk
(retrieval)

Result Walk
(retr. & upd.)

Short Description

OPEN_DB_TABLE

OPEN_R_TABLE

Opens a (database or resuit) table

OPEN_DB_WALK | OPEN_R_WALK Opens a walk on & table or subtable

START_DB_WALK i| START_R_WALK i | Sets a walk on a table or a subtable occurrence
before object/subobiject i

DB_WALK R_WALK Moves a walk on the next object/subobject
within a table or 2 subtable occurrence

DB_GET R_GET

Reads atribule values at & walk position

CLOSE_DB_WALK

CLOSE_R_WALK

Closes a walk (incl. all dependent walks)

CLOSE_DB_TABLE

CLOSE_R_TABLE

Closes a table (incl. ail walks)

MOVE_FROM_DB_TO_RES Moves ausibute values from a database table {walk position)
10 a result table (walk position)
R_PUT Updates or sets attribute values at a walk position
R_INSERT nscrts an object/subobject at a walk position
R_DELETE Deletes an object/subobject at a walk position

Proceedings of the 13th VLDB Conference, Brighton 1987

